
Quantitative approach to ISA design and compilation for code
size reduction

K. M. Lo, Lin Ma

SimpLight Nanoelectronics, Ltd., Beijing China
100088

kevin.lo@simplnano.com, lin.ma@simplnano.com

Abstract

In this paper, an efficient code size optimization instruction
set architecture targeting embedded telecommunication
applications is introduced. Nowadays, mixed 16-bit and 32-
bit size instruction set approaches are commonly used to
achieve code size reduction while minimizing performance
loss. They are usually designed with some restrictions such
as reducing the number of accessible registers, mode
switching, or special hardware logic handling.
The approach starts with a common, basic RISC ISA [6]
and a re-targetable high performance compiler. The
Open64 compiler was chosen for its machine independent
optimization so that once retargeted, the generated code
will be of high performance quality. Once retargeted, we
start our ISA compression design based on statistics
collected from the code generated. By judicious selection
from actual instructions generated, a high code
compression rate is achieved without adding restrictions to
the number of registers used and hardware implementation.
Furthermore, this approach does not introduce any
noticeable performance degradation due to the mixed
32/16-bit ISA compared to the full 32-bit ISA.
Keywords mixed instruction code generation, code size,
ISA design, instruction scheduling

1. Introduction

Due to technological advances, people now enjoy high
speed computing and large amounts of memory at
relatively low prices in desktop computers. However, in the
world of embedded systems, the situation is quite different.
On the embedded systems, size and power consumption is
a big concern during the development process. Therefore,

code size is always a critical issue on embedded systems
while on desktop platforms it is insignificant.
Because of the importance of code size, many system
developers place much effort on improving the related
issue. Common methods to reduce code size are mainly
based on mode switching, pre-processing decoder, 1-to-n
instruction mapping, 16/32-bit instructions mixing, or
reducing the number of accessible registers. Some
methodologies from well-known developers are discussed
below:

1.1 ARM - Thumb [7, 12]

The code compression is done by using Thumb ISA with
about extra 36 16-bit instructions. A mode-switch
instruction is needed to differentiate between the modes,
and the program can only be executed either in 16-bit mode
or 32-bit mode.

Thumb ISA cannot handle interrupts and only eight
registers out of sixteen can be accessed. Code size can be
reduced up to 20-30% while the performance is reduced
about 15% due to mode-switch and other overheads [8].

1.2 ARM - Thumb-2[11]

Thumb-2 is an individual ISA with mixed 16-bit and 32-bit
instructions. Unlike Thumb, Thumb-2 does not require any
mode-switch and is a complete, functional ISA. A special
unit is added to map the Thumb-2 instruction to the
corresponding ARM instruction.

patent pending

Possible code size reduction with Thumb-2 is less than the
reduction possible with Thumb, with a performance
penalty of about 15-25% [8].

1.3 MIPS - MIPS16e [9]

MIPS16e is a 16-bit ISA extension in some MIPS
processors. And MIPS16e is used similarly to Thumb. A
mode-switch with a special branch instruction is needed to
switch between 16-bit and 32-bit modes.

Code size can be reduced up to 20-30% while the
performance is reduced about 15% due to the extraction of
data structure and mode-switch handlings.

1.4 IBM PowerPC – CodePack [5, 10]

CodePack uses an approach similar to application
compression/decompression. The executable is compressed
by a program based on several compression algorithms.
The executable will be decompressed on the fly during
execution by the CodePack-equipped processor.

CodePack delivers up to 20-30% compression rate with a
negligible performance penalty [8]. However, a complex
hardware de-compressor support is required.

1.5 ARC International – ARCompact [1, 2]

ARCompact allows users to define their instructions. In
order to improve the code size optimization, some 16-bit
instructions are added to the user-defined space.

By using intermix of 16/32-bit instructions, up to 40%
compression rate with a negligible performance penalty [8].
However, complex hardware design is required.

From the methodologies listed above, developers place
much effort on hardware design to improve the code size.
However, hardware support is always accompanied by
higher costs and less flexibility compared to software. By
making use of statistical data from fully optimized binaries
and software-hardware co-design methodology, an ISA
that supports mixed 16/32-bit instructions was designed,
with very limited hardware costs. The code size
compression ratio is competitive, and the performance
penalty is negligible. Mode changing is not needed. The

ISA supports thirty-two registers for both the 32-bit and
16-bit sized instructions.

2. Instruction Analysis

Most RISC ISA support a maximum of three operands.
However, it is not essential that every instruction occupy
all operand space. Provided that thirty-two registers (ie.
GPR field = 5bits) and 6-bit opcode length are supported,
several groups have been defined as follows to generalize
the instruction format:

Combination Bits used Example
No operands 0 bits Jr, Ret
Index24 24bits Jp
2 GPRs/ 10 bits Mvtc, Mvfc
3 GPRs 15 bits Add, muls
2GPRs+ imm16 10bits+16bits Load/Store
2GPRs+ imm5 10bits + 5bits Shift imm

In order to compress a 32-bit instruction into a 16-bit
instruction, the following methods are commonly used:

 Reducing the number of available registers (the
number of bits representing GPR fields). As the
number of useable registers is reduced, the number of
register swapping will be increased. Performance
penalty is introduced and the register usability is
reduced.

 Reducing the value range of immediate operand. The
expressible offset/value range is reduced.

 Breaking a 3-operand instruction to a 2-operand (or
less) instruction. Extra instructions are needed for the
same function, and therefore, the number of execution
cycles is usually increased [6].

By compressing 32-bit instructions to 16-instructions, these
solutions can reduce the code size. However, the overhead
that accompanies the solutions is also significant and
impacts the overall performance. In order to select the right
instruction candidates for optimizing code size, a series of
analyses have been done. These analyses are based on
some data from several commonly used applications of
embedded systems.

 Uclibc Open source library package for

embedded applications
 G729a Voice codec program used in mobile

phones
 Mpeg4 MPEG-4/ASP decoder program
 Nucleus A popular RTOS for embedded

processors (ported to the Mips-like architecture)
 libmad MPEG audio decoder library
 ucLinux Linux kernel release 2.6.xx for embedded

processors

patent pending

 Lay 2/3 Layer 2 and Layer 3 of the GSM wireless
communication protocol stack

2.1 Register Reducing Method

At first, a typical method is used to test the influence to
performance. The compiler is modified to reduce the
number of available registers from thirty-two to sixteen.
Applications are compiled by both original compiler (32
available registers) and modified compiler (16 available
registers). The numbers of instruction issuing and
execution cycles are counted for both versions of
applications.
The performance penalty is significantly larger and violates
the original criteria, namely, achieving a high compression
ratio without significant performance impact. From this
experiment, the number of instructions count was increased
by 1.6%-13.1% (Figure 1) and the number of execution
cycles was increased by 2%-12.4% (Figure 2). The
performance penalty will be higher in proportion to the
complexity of the applications. Because of the significant
performance penalty, this mechanism is not the ideal
method to design compressed instructions.

0.9

0.95

1

1.05

1.1

1.15

mp3 mpeg4 729a

applications

n
o
r
m
a
l
i
z
e
d

i
s
s
u
e
d

c
o
u
n
t
s

32 regs

16 regs

Figure 1: Normalized execution instruction counts (32 registers
vs. 16 registers)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

mp3 mpeg4 729a

applications

e
x
e
c
u
t
i
o
n

c
y
c
l
e
s

32 regs

16 regs

Figure 2: Normalized execution cycles (32 registers vs. 16
registers)

2.2 Instruction characteristics

To find a better solution to reduce the code size without a
large impact on performance, a series of detailed
experiments were completed. From the results, some
interesting characteristics have been found. Around 50-
65% of the instruction distribution belongs to one of the
following groups (Table 1):

 Instruction using $0 (hardwired register value 0)
accounts for a large percentage of static instruction
counts. The reason being that many register copy
operations are involved (add $rd, $rs, $0). Another
typical case is branch instructions with branch
condition involved $0 (eg. x>0).

 $sp(stack pointer) with small offset, which is mainly
due to memory spill/fill operations. Offset of this type
is always word aligned and positive, and we found
approximately 80.44% could be represented by 7-bit
immediate operand (Fig. 3).

 Destination register is same as one of the sources, that
is, 2-operand logically. The reason is that much of the
calculation is going to apply the result to itself (eg.
i++, a=a<<4).

 Offset is zero. As mentioned, most load/store
operations have zero offset.

 Instruction without any operand.
 Calculation with a small immediate or offset. This is

due to most of ALU calculations being small number
or pointer increments (eg. a=b+2, ptr++). Another
reason is that quite a few of branches are within a
small offset. Around 78% of the offsets could be
represented by 5-bit unsigned immediate operand
(Figure 4).

2.3 Compressible Instructions

From the above observations, related instructions can either
be reduced to 16-bit or converted to a 2-operand instruction
by following ways:

 Removing the unused bits

patent pending

application $0 $sp $rs==$rd imme0 No operand total

uclibc 26.83% 23.99% 4.88% 5.93% 3.00% 64.64%

mp3 18.46% 21.07% 8.51% 3.71% 1.79% 53.53%

mpeg4 12.92% 11.55% 19.10% 4.61% 0.85% 49.02%

729a 27.24% 22.55% 8.38% 4.60% 1.53% 64.29%

nucleus-demo 18.44% 21.00% 5.70% 4.52% 3.72% 53.38%

L2/L3 22.89% 21.21% 3.62% 3.55% 3.55% 54.82%

linux 19.60% 27.44% 6.85% 3.56% 2.42% 59.86%

Table 1: Distribution for some compressible instructions.

memory based on $sp

0%
10%
20%
30%
40%
50%

60%
70%
80%
90%

100%

uclibc mp3 mpeg4 729a demo linux lay-

L2/L3

applications

o
f
f
s
e
t

r
a
n
g
e

other

[32-127]

[0-31]

Figure 3: Range distribution of memory operations based on stack pointer.

br.eq/br.ne offset

0%

20%

40%

60%

80%

100%

uclibc mp3 mpeg4 729a demo linux lay-

L2/L3

applications

o
f
f
s
e
t

r
a
n
g
e

c
o
v
e
r
a
g
e

other

[16,31]

[0,15]

[-16,0]

Figure 4: Range distribution of br.eq/br.ne offset

application uclibc mp3 mpeg4 729a
Nucleus-

demo
linux L2/L3

coverage 51.62% 42.46% 45.07% 48.89% 45.64% 49.59% 49.04%

Table 2: Coverage of designed compressed instructions.

patent pending

 Combining destination operand to source when they
are equal

 Implicitly using well-known registers like $0 and $sp

 Reducing the immediate size to 5bits for some
immediate/offset typed instructions

By selecting the compressible and frequently used
instructions, a special 16-bit instruction set is designed. The
16-bit instruction set can be covered up to approximately
40% to 50% of the testing program instruction distribution
(Table 2).

3. Compiler Support

After designing the 16-bit instruction subset, an enhanced
compiler is essential for effectively generating those16-bit
instructions. Since the average coverage is around 47.47%,
the maximum code reduction goal should be 23.7%. In this
section, the modifications of the retargeted Open64
compiler and the code generating process will be described.
According 2.1 described above, the compressible
characteristics can be detected after the register allocation
phase in the compiler. There are three steps to generate
optimized mixed instructions in the compiler as shown in
Figure 5.

Figure 5: Flow of mixed instruction set generation.

3.1 First step: marking convertible instructions

According to the rules described in Section 2, the 32-bit
instruction set is divided into different types (see Table 3).
If an instruction has a corresponding compressed opcode
and satisfies any of following conditions, it is marked as a
candidate for 16-bit instruction.
Instruction type Satisfied condition
Opcode rd, rs1,
rs2

rd==rs1 or rd==rs2 or rs1==$0 or
rs2 ==0

Opcode rd, rs1,
imm

((rd==rs1 or rs1 == $sp) and
restricted immediate value) or imm
== 0

Opcode rd, rs1 no condition
Opcode no condition
Table3: Instruction selection pattern.

In this step, instruction candidates will be selected and
tagged but instruction replacement will not be done. In our
architecture, 16-bit instructions must be half-word aligned,
and 32-bit instructions must be word aligned. Therefore,
16-bit instructions should come in pairs. Also, a 16-bit
NOP is required to fill up the slot of the unaligned 16-bit
instructions should the next instruction be a 32-bit one. As
such, the compression rate will be reduced if the code
replacement is completed in this step. For example, if the
assembler code sequence is as below, 16-bit NOP
instruction will be inserted between instr16 and instr32 for
fetching alignment, thus the code size cannot be reduced.
Moreover, a nop16 instruction occupies an issue slot and
instruction buffer, which is extra overhead.

…
instr16
instr32
instr16
…

instr16
nop16
instr32
instr16
nop16

After this step, the average code size reduction of 14%-
21% can be achieved (Table 4).

patent pending

3.2 Second step: optimization for code size reduction

In this step, 16-bit instruction will be grouped together by
the compiler scheduler. This operation differs from three-
operand instruction with limited registers which need a
complex cost model in the register allocation phase to
achieve a balance between the register spill cost and code
size[3,4,13]. Originally, instruction scheduling in Open64
is designed to minimize the number of performance stalls.
By making use of the original local scheduler, a heuristic
process to group suitable 16-bit instructions together is
added. For each basic block, a list of candidate instructions
is computed. The instructions without data hazard at each
time step t are selected and sorted by latency in decreasing
order. A compressed instruction is selected at time step t as
best candidate if and only if one of following conditions is
satisfied:

 At time step t, the compressed instruction is the only
candidate.

 At time step t, the number of compressed instructions
of the candidate list is larger than 1.

 The committed scheduled instruction at time step t-1 is
compressed.

By this method, compressed instructions can be scheduled
together and paired up. Based on this heuristic instruction
scheduling, the code size reduction is achieved by 17%-
24% (Table 4).
Meanwhile, in order to minimize performance degradation,
not all basic blocks are treated in the same manner. For
example, if the basic block is a loop body, performance has
higher preference than code size. In order to have a balance
between performance and code size, the code scheduling
will favor performance over code size. Thus the code size
compression rate is achieved by 16%-23% (Table 4).

3.3 Third step: instruction replacement

In this step, the instruction replacement will finally be
carried out. All tagged 16-bit instructions will be checked.
If paired instructions are found, they will be substituted by
equivalent 16-bit instructions. Otherwise, the tag will be
removed, and the original 32-bit instruction will be used.
As a result, there may still be several percents of 32-bit
instructions that cannot be replaced for lack of paired 16-bit
instructions.

4. Hardware support

The 16-bit instruction set will actually be expanded to a
corresponding equivalent 32-bit instruction so no extra
execution unit is required. The decoding is transparent to
the program. The 16-bit instruction will be supported and
handled by the corresponding 32-bit instruction execution
unit and the instruction will be expanded in the normal
decoding phase. In the instruction decoding phase, a special

instruction fetching handler with limited hardware logic is
provided.

4.1 Original 32-bit instructions

The 32-bit instruction will be fetched and decoded as usual.
Only word aligned PC is supported.

4.2 Word aligned 16-bit instructions

For a 16-bit instruction with word aligned PC, the 16-bit
instruction opcode will be decoded so that only the first
sixteen bits will be taken by the decoder to form a
corresponding word-aligned 32-bit instruction.

patent pending

File size(byte) instr32 Mixed-perf

Mixed-

perf

reduction

Mixed-size
Mixed-size

reduction
Mixed-p&s

Mixed-

p&s

reduction

Uclibc 126400 105664 19.62% 103664 21.93% 103952 21.59%

mp3 55004 48092 14.37% 46764 17.62% 47148 16.66%

mpeg4 113220 97940 15.60% 95892 18.07% 96836 16.92%

729aori 53244 44812 18.82% 43820 21.51% 44140 20.63%

nucleus-demo 37779 32451 16.42% 31763 18.94% 31827 18.70%

L2/L3 600795 506971 18.51% 494011 21.62% 495435 21.27%

Linux 1016364 843244 20.53% 823792 23.38% 826400 22.99%

Table 4: Code size reduction comparison using 32-bit instructions and mixed instruction set.
*for uclibc, the size is text segment
* mixed-*: mixed 32/16 instructions with different scheduling policies
* mixed-perf: for performance only
* mixed-size: for code size
* mixed-p&s: for code size except loop body

4.3 Half-word aligned 16-bit instructions

For a 16-bit instruction with half-word aligned PC, the 16-
bit instruction raw bits will be shifted to form a
corresponding word-aligned 32-bit instruction. Then the
opcode will be fetched and decoded as a world-aligned 16-
bit instruction.

By using this simple fetching and decoding scheme, 16-bit
and 32-bit instructions can be mixed transparently with
negligible performance impact and hardware
implementation cost.

5. Performance Analysis

In order to determine the impact of our ISA compaction on
performance, the execution cycles of applications have
been

measured. A performance simulator was used to measure
pure execution cycles. For the compressed instruction
replacement algorithm, the total instruction numbers of
different mixed 16/32-bit versions are same as the full 32-
bit instructions. For the heuristic instruction scheduling on
code size purpose, the mixed instructions scheme has slight
but negligible degradation to performance compared to the
full 32-bit instructions without memory effects such as I-
cache miss and D-cache misses (Figure 6). Furthermore I-
cache miss counts are decreased (approximately 26% ~
46%) due to code size reduction (Figure 7). If considering
the penalty of I-cache miss, the mixed instructions scheme
has slight improvement to performance from 0.6% to 4.6%
(Figure 8).

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

mp3 mpeg4 729a

n
o
r
m
a
l
i
z
e
d

c
y
c
l
e
s

instr32

mixed-perf

mixed-size

mixed-p&s

Figure 6: Normalized cycle counts without I-cache miss
penalty.

patent pending

0

0.2

0.4

0.6

0.8

1

1.2

mp3 mpeg4 729a

n
o
r
m
a
l
i
z
e
d

I
$

m
i
s
s

c
o
u
n
t

instr32

mixed-perf

mixed-size

mixed-p&s

Figure 7: Normalized I-cache miss counts

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

mp3 mpeg4 729a

n
o
r
m
a
l
i
z
e
d

c
y
c
l
e
s

instr32

mixed-perf

mixed-size

mixed-p&s

Figure 8: Normalized cycle counts with I-cache miss
penalty.

6. Summary

See Table 5.

7. Conclusion

A methodology of compressed instruction selection and
generation is introduced in this article. By using a native
support 16/32-bit mixed ISA, an advanced compiler, and
limited hardware logics, a significant 17-23% code
reduction ratio is achieved without performance penalty.
The instruction scheduling heuristic on code size purpose
helps to improve about 2.7% of the code reduction ratio.
With the scheduling policy, the average code reduction
ratio is 20.44%, which achieved 86.2% of the peak code

reduction ratio (23.7%) of our mixed instruction. Other
than instruction alignment, there are practically no
restrictions on the code generated. All thirty-two registers
are usable in any of the instructions used. There is no need
for mode changing during execution.

8. Reference

[1] ARC Cores, ARC Tangent Programmer’s Reference”,
2001.
[2] ARC Cores, ARCompact Technical Backgrounder,
http://www.arc.com [ONLINE], 2001.
[3] A. Krishnaswamy and R. Gupta, "Profile guided
selection of arm and thumb instructions", ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'02), Jun 2002.
[4] Halambi,A, etc., "An efficient compiler technique for
code size reduction usingreduced bit-width ISAs", Design,
Automation and Test in Europe Conference and Exhibition,
Proceedings Volume, Issue 2002, pp.402-408, 2002.
[5] IBM, “CodePack PowerPC Code Compression Utility
User's Manual Version 3.0”, IBM, 1998.
[6] J.L. Hennessy, D. A. Patterson, "Computer architecture:
a quantitative approach", Morgan Kaufmann Publishers,
Inc., 2002.
[7] J.L. Turley, "Thumb Squeezes Arm Code Size",
Microprocessor Report, 9, 4., 1995.
[8]Jim Turley, "Code compression under the microscope",
http://embedded.com/columns/significantbits/17701289?_r
equestid=204208 [ONLINE], Feb 2004.
[9] K.D. Kissell, “MIPS16: High-Density MIPS for the
Embedded Market,” Proc. Real Time System ’97 (RTS97),
1997.
[10] Mark Game and Alan Booker, "Codepack: Code
Compression for PowerPC Processors", International
Business Machines (IBM) Corporation, 1998.
[11] Richard Phelan, "Improving ARM Code Density and
Performance: New Thumb Extensions to the ARM
Architecture", ARM Limited, June 2003.
[12] S. Segars, K. Clarke, and L. Goude, “Embedded
Control Problems, Thumb and the ARM7TDMI,” IEEE
Micro, vol.16, no.6, pp.22-30, 1995.
[13]Young-Jun Kwon, etc. “PARE: instruction set
architecture for efficient code size reduction”. Electronics
Letters, Volume 35, Issue 24, 25 Nov 1999 Page(s):2098 –
2099.

patent pending

Scheme Methodology Decoding Compression
ratio

Performance
Penalty

Hardware
Cost

Compiler
complexit
y

ARM -Thumb Extended ISA +
mode Switching

Instruction
mapping 20-30% Very High Thumb Engine Low

ARM -
Thumb-2

Separated ISA
with Mapping
Engine

Instruction
mapping 15-25%

High Thumb-2 instruction
mapping Engine High

MIPS -
MIPS16e

Extended ISA +
mode Switching

Native
support 20-30% Very High Special branch

detection engine Low

IBM-
CodePack

Binary
Compression via
software engine

Build-in de-
compressor
Engine

20-30%
Negligible Hardware de-

compressor No effort

ARC-
ARCompact

16-bit instruction
support via User
defined interface

Native
support 20-40%

Negligible Complex
reconfigurable
processor

Low

Proposed
Heuristic
Scheme

Native 16/32-bit
mixed ISA

Native
support 17-23%

Negligible to
positive gain Simple fetch

handler Low

Table 5: summary of different schemes

patent pending

