
An Open64-Based Framework Tool for Analyzing Parallel
Applications

Laksono Adhianto
Rice University

laksono@rice.edu

Barbara Chapman
University of Houston
chapman@cs.uh.edu

Abstract
We propose an infrastructure based on the Open64 com-
piler for analyzing, modeling and optimizing MPI and/or
OpenMP applications. The framework consists of four main
parts: a compiler, microbenchmarks, a user interface and a
runtime library. The compiler generates the application sig-
nature containing a portable representation of the applica-
tion structure that may influence program performance. Mi-
crobenchmarks are needed to capture the system profile, in-
cluding MPI latency and OpenMP overhead. The user inter-
face, based on Eclipse, is used to drive code transformation,
such as OpenMP code generation. And lastly, our runtime li-
brary can be used to balance the MPI workload, thus reduc-
ing load imbalance. In this paper we show that our frame-
work can analyze and model MPI and/or OpenMP applica-
tions. We also demonstrate that it can be used for program
understanding of large scale complex applications.

Categories and Subject Descriptors D.2 SOFTWARE
ENGINEERING [D.2.3 Coding Tools and Techniques,D.2.6
Programming Environments]; C.4 PERFORMANCE OF
SYSTEMS [Modeling techniques,Performance attributes]

Keywords Static analysis, Parallel applications, OpenMP,
MPI

1. Introduction
Analyses of MPI (Forum) and OpenMP (OpenMP) pro-
grams have been done for nearly a decade. There are two
major types of analysis which have been used for this pur-
pose: static analysis which is performed during compila-
tion time and dynamic analysis which is performed dur-
ing program execution. Some known techniques of dy-
namic analysis include simulation, where the program is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Open64 Workshop 16 April 2008, Boston, MA.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

executed in an emulated environment, and program mea-
surement/instrumentation, where program behavior is cap-
tured with special libraries.

Some existing tools use dynamic analysis to perform
analysis during the program execution (Brunst et al. 2004;
Wolf and Mohr 2003; Song et al. 2004; Brunst and Mohr
2005). The dynamic measurement approach through instru-
mentation is probably the most accurate of all techniques.
However, this technique is not without disadvantages. In-
strumentation overhead may significantly perturb results and
huge trace/event files may be generated. It is important to
note that a program counter-based approach (Ammons et al.
1997; Froyd et al. 2005) does not suffer from these problems
but has somewhat limited applicability.

A simulation can also provide an excellent source for
analysis (Tao et al. 2003). Simulation enables an automated
approach for assessing program performance under a variety
of conditions. However, it takes an excessive amount of time
and has limited accuracy.

Of all analysis approaches, static analysis has the lowest
cost and is the fastest to perform since it does not need pro-
gram execution. However, it must make assumptions about
a program’s control-flow and the values of its data, and may
not take the runtime environment properly into account.

Currently, there are several tools which have been devel-
oped to analyze MPI or OpenMP applications. For instance,
Jumpshot (Zaki et al. 1999) is a tool which can be used to vi-
sualize a state-based log trace file for MPI applications. It is
unknown if the tool will also support OpenMP in the future.

The closest work on analyzing high performance sci-
entific applications includes the Program Database Toolkit
(PDT) (Lindlan et al. 2000). PDT uses compile-time infor-
mation to create a complete database of high-level program
information that is structured for well-defined and uniform
access by external tools such as SvPablo (de Rose and Reed
1999) and Tau (Shende and Malony 2006). Tau is an open
source tool that provides a general solution to analyze and
tune parallel programs. Tau is portable and provides an inte-
grated framework for performance measurement, instrumen-
tation, analysis and visualization based on information col-
lected in a program database (PDB).

Application

Machine Network

Operating System

Runtime l ibrary Compiler

Application signature System profi le

Analysis

Figure 1: Analyzing applications approach by combining
static analysis and runtime environment information.

The POEMS project (Adve and Vernon 2004) is another
framework which has been developed by different institu-
tions to analyze, model and optimize parallel programs. It
provides an environment for end-to-end performance mod-
eling of complex parallel and distributed systems such as
language, compiler, and runtime environment. This project
took advantage of compiler analyses to optimize the execu-
tion time of its simulator so that some fraction of the pro-
gram that has no impact on the performance can be skipped
during the simulation and replaced by the analytical model.

The objective of our work is to develop an infrastructure
to help programmers to analyze large scale parallel applica-
tions, to model performance behavior and to optimize MPI
and OpenMP interaction (Adhianto and Chapman 2007). In
this paper, we describe how our framework can be used for
program analysis, program understanding and some of its
applications for reducing application load imbalance.

2. Methodology
Our framework adopts a static analysis approach by using
the OpenUH compiler (OpenUH) for gathering the appli-
cation signature. Application signature is a portable rep-
resentation of the application structure that may influence
program performance and program control-flow. This ap-
plication signature includes program structure representa-
tions, such as call graph and program control-flow, and is
enhanced with the information concerning the system envi-
ronment (Figure 1). One of the advantages of this approach
is the ability to map between the analysis result and the
source code so that programmers can identify the location
of the potential problem accurately. Static analysis also has
the advantage of not needing a program to be executed. This
feature is critical for analyzing a large-scale application that
may take days or even weeks to execute.

Our framework, Framework for OpenMP and MPI (FOMPI)
(shown in Figure 2), is designed to analyze, model and
optimize the parallel code of MPI, OpenMP or hybrid
MPI+OpenMP. Our framework is based on Eclipse (Weinand
2003) as the main user interface, OpenUH as the source
code analyzer and for collecting application signature, mi-
crobenchmarks for probing system profile, and load balanc-
ing library (LBL) for reducing load imbalance.

Our framework works as follows:

1. The OpenUH compiler analyzes the source code (ei-
ther MPI, OpenMP or the combination). This analy-
sis is invoked through a special flag: -apocost. If
more detailed information is needed, additional flags
can be added. For instance, in order to retrieve infor-
mation on the data scope of variables, the additional flag
-autoscope is needed (Adhianto and Chapman 2006).

2. The compiler then generates an application signature
which is a summary of program representations, mem-
ory operations and arithmetic operations in XML format
file. This file contains information on MPI communica-
tion routines used in the source code, OpenMP directives,
control-flow, call sites, loop information and paralleliza-
tion status.

3. By using the application signature, it is possible to de-
termine which loop has the potential to be parallelized.
FOMPI also assists in parallelizing loops intelligently,
and inserting instrumentation such as load balancing as-
sistance.

4. Further, in order to accurately evaluate a hybrid code for
a specific target machine, system profile such as an over-
head measurement and cache analysis is needed. If the
overhead measurement does not exist, the interface tool
runs Sphinx (Sphinx) to perform a new measurement and
update the database. If the information of the cache be-
havior is unknown, the tool will request the information
on the target machine through Perfsuite (Kufrin 2005).

5. Using the information from application signature and
system profile, FOMPI is able to construct a performance
modeling. From this modeling the user will be able to
evaluate if there is a OpenMP or MPI inefficiency (Adhi-
anto and Chapman 2007).

6. Finally, the decomposition of MPI process and OpenMP
threads for a specific target machine architecture can be
determined. By using microbenchmark measurements, it
is possible to determine the most efficient decomposition
of processes and threads for a given problem size.

3. The OpenUH Compiler
The OpenUH compiler (OpenUH) is a well-written, modular
compiler for Fortran, C and C++ based on Open64 (Open64)
which has been made increasingly robust in the last few
years. Open64 was the open source version of SGI MIP-

Source code

FOMPI View

FOMPI Analyzer

OpenUH plug-in

Eclipse

Executable

OpenUHCompiler

XML Representation

Application signature

Load Balancing Library

Microbenchmarks

Database

System profile

Figure 2: FOMPI framework for analyzing, modeling and optimizing MPI and/or OpenMP applications.

SPro, a high-end commercial compiler developed by SGI,
under the GNU Public License (GPL). Open64 is the final
result of research contributions from a number of research
compiler groups and industries around the world, such as
Rice University, the University of Houston, the University
of Delaware, Tsinghua University, Intel, STMicroelectron-
ics and Pathscale. As a derivative of Open64, OpenUH also
inherits advanced analyses and sophisticated optimization.

As shown in Figure 3, the major functional parts of
OpenUH are the Fortran 77/90, C/C++ and OpenMP front-
ends, the inter-procedural analyzer/optimizer (IPA/IPO) and
the middle-end/back-end. The back-end is further subdi-
vided into the loop nest optimizer(LNO), auto-parallelizer
(APO), global optimizer(WOPT), and code generator (CG).
In addition, there is a complete analysis and optimizing
framework available to facilitate further analyses and op-
timizations.

In order to exchange data between different modules,
OpenUH utilizes its own intermediate representation (IR),
called Winning Hierarchical Intermediate Representation
Language (WHIRL). As shown in Figure 3, WHIRL con-
sists of five different levels:

1. Very High Level WHIRL (VHLW) serves as the inter-
face between the front-end and the middle-end of the
compiler. It contains some Fortran- and C-specific lan-
guage representations which are still preserved in order
to perform language specific optimization.

2. High Level WHIRL (HLW) is used as the common in-
terface among middle-end components such as LNO and
IPA. It preserves high level control-flow constructs, such
as loops and arrays, as well as OpenMP directives.

3. Mid Level WHIRL (MLW) is mainly the representa-
tion for WOPT components and the representation at this
level starts to reflect the characteristics of the target ar-
chitecture.

4. Low Level WHIRL (LLW) is used by the low-level opti-
mizer and the representation is similar to code sequences
generated in the target architecture.

LNO
(Loop Nest Oprtimizer)

WOPT
(Global scalar optimizer)

IPA
(Inter Procedural Analyzer)

Front-end
C/C++,Fortran 77/90

WHIRL2C/F
IR-to-source

OpenUH

CG
Code Generator

OpenMP/MPI

Source code

Source code

Native compiler

XML Code

Representation

Object files

RVI2
(Register level optimizer)

Very High
WHIRL

High
WHIRL

Middle
WHIRL

Low
WHIRL

Very Low
WHIRL

Application signature

Figure 3: OpenUH infrastructure

5. Very Low Level WHIRL (VLLW) is the lowest level of
WHIRL and has a very target-dependent representation;
it happens before translation to code generation (CG).

We have added a new feature for OpenUH, implemented
within the LNO module: an XML program representation
which stores application signature of the source code of the
application. There are some advantages for implementing
these features in LNO. First, LNO is carried out after IPA,
which can take advantage of higher analysis accuracy due
to interprocedural analysis (IPA). Second, LNO uses High
Level (HL) WHIRL which contains rich information about
loops, the loop index and OpenMP directives (or pragmas
in C/C++). Lastly, loop-based analysis, such as data depen-
dence and array region analysis, is performed in this level.
This enables us to easily manipulate and analyze data at the

loop level. The only disadvantage of using this approach is
that the analysis is performed after some general optimiza-
tion, such as constant propagation and code hoisting, which
may have slightly modified the original program structure.

4. Information Gathered
4.1 Application Signature
Application signature is a portable representation of the ap-
plication structure that may influence program performance
and program control-flow. We have extended the definition
of application signature used in the PERC project (Snavely
et al. 2002) by including additional features such as program
unit dependencies and program control-flow.

Like intermediate representation, application signature
represents an application, but in an abstract fashion. Com-
pared to intermediate representation, which contains very
detailed information of the code structure, our application
signature only stores indispensable information of code
structure and the summary of the execution time inside the
loop. Moreover, our application signature is language and
architecture independent, so that it can be used for any im-
perative languages such as Fortran and C. Thus, the advan-
tage of using application signature, instead of intermediate
representation, is that we can maintain scalability for large-
scale information without losing critical information.

We found that XML is the most suitable format for stor-
ing application signature for several reasons. First, XML
has an open format, is interoperable and supports hierar-
chical documents. Secondly, parsers already exist in XML,
and some are optimized to handle huge files. However, XML
also has disadvantages, since it is known to be slow and big
(Anderson 2005). Most XML files are bigger than any other
format, especially the binary format. Moreover, since XML
is a text-based format, it is slow to access. However, since
XML is so widely used, many free-software developers and
commercial vendors have put a lot of time into profiling and
optimizing the programs that do low-level XML parsing.

The application signature generated by our compiler is
stored in an XML format called the XML program represen-
tation. Our XML program representation is designed to sup-
port scalability, portability and extensibility. In our work, we
require the application signature to contain some informa-
tion needed for our work, including MPI communications,
loop parallelization status, data scope of variables and the
estimated execution time as follows:

Application Signature =Memory Access+

Arithmetic Operation+

Control Flow + MPI Calls+

OpenMP Directives+

Parallelism Status + Autoscoping

The application signature is a “specification”, and can
be stored into any format, including database, binary, text

do j =1 ,1024
q = mod (j , nx)+1
i f (q . ge . x s t a r t (1) . and . q . l e . xend (1)) then

r = mod(3∗ j , ny)+1
i f (r . ge . y s t a r t (1) . and . r . l e . yend (1)) then

s = mod(5∗ j , nz)+1
i f (s . ge . z s t a r t (1) . and . s . l e . zend (1)) then

chk=chk+u1 (q−x s t a r t (1) + 1 , r−y s t a r t (1) + 1 , s−z s t a r t (1) + 1)
end i f

end i f
end i f

end do
chk = chk / n t o t a l f

c a l l MPI Reduce (chk , a l l c h k , 1 , d c t y p e , MPI SUM ,
0 , MPI COMM WORLD, i e r r)

Figure 4: An extract of NAS FT Benchmark

or XML. We decided to use XML format for its openness,
ease of access by other tools and the fact that its parser is
available in most programming languages. However, since
an XML format is based on pure text format, presenting all
the details of program representation may affect scalability
issues in manipulating the XML file.

To overcome this limitation, we do not store all program
representations in XML files. Instead, we only store blocks
of program sequences which are significant in either control
execution or code execution of the application in the XML
files.

Figure 5 provides an example of the application signa-
ture. This application is obtained from the NAS Fourier
Transform (FT) source code shown in Figure 4. In Figure
5, we can see that the attribute line number is available
for every block. This attribute is critical to map between the
analysis and the source code so that programmers can mod-
ify the code easily. In addition, we can see the detailed in-
sight of the MPI parameters. This information is particularly
useful for MPI optimization, including overlapped commu-
nication and computation.

The XML file also shows detailed information on loops.
This feature is important since the loop is perhaps the most
critical block, considering that it is executed several times.
For this reason, the XML file provides complete loop in-
formation, such as loop bounds (upper bound, lower bound
and the estimated number of iterations), estimated execution
time (estimated machine cycles, estimated cache cycles and
estimated loop overhead) and parallelization status, includ-
ing whether or not the loop is parallelizable.

4.2 System Profile
System profile is a collection of information concerning the
platform where the program is executed. This information
is application-independent and collected from microbench-
marks and then stored in a database, so that any programs
and any users can access it. The concept of a microbench-

<l oop Line =” 1699 ” opcode=”OPC DO LOOP” >
<h e a d e r>
<i n d e x>J< / i n d e x>
<lowerbound>1< / lowerbound>
<upperbound>1024< / upperbound>
<i n c r e m e n t>+1< / i n c r e m e n t>

< / h e a d e r>
<c o s t>
< i t e r a t i o n s>1024< / i t e r a t i o n s>
<a v e r a g e>31 .1755< / a v e r a g e>
<machine>3776< / machine>
<cache>3458 .25< / cache>
<o v e r h e a d>4096< / o v e r h e a d>
< t o t a l>11330 .2< / t o t a l>

< / c o s t>
<p a r a l l e l>
<s t a t u s>None< / s t a t u s>
<r e a s o n> 1699 : Not P a r a l l e l

S c a l a r dependence on CHK. S c a l a r CHK w i t h o u t u n i qu e l a s t v a l u e .< / r e a s o n>
<scope>
<p r i v a t e> J Q R S< / p r i v a t e>
<s h a r e d> XSTART XEND YSTART YEND ZSTART ZEND U1< / s h a r e d>

< / s cope>
< / p a r a l l e l>
<k i d s>

. . .
< / k i d s>

< / l oop>

<m p i c a l l name=” m p i r e d u c e ” l i n e =” 1713 ” a r g s =” 8 ”>
<a rgumen t s>
<a r g t y p e =”SCALAR” name=”CHK” />
<a r g t y p e =”SCALAR” name=”ALLCHK” />
<a r g t y p e =”SCALAR” name=” ede f B ” />
<a r g t y p e =”SCALAR” name=”DC TYPE” />
<a r g t y p e =”SCALAR” name=” f B ” />
<a r g t y p e =”SCALAR” name=” def B ” />
<a r g t y p e =”SCALAR” name=” def B ” />
<a r g t y p e =”SCALAR” name=”IERR” />

< / a rgumen t s>
< / m p i c a l l>

Figure 5: An extract of application signature of the NAS FT benchmark.

mark, or synthetic benchmark, for collecting specific aspects
of system performance has existed in the performance anal-
ysis literature for nearly four decades. A program of this
form is intended to probe the system in order to reveal a
specific performance characteristic such as network latency,
bus bandwidth and cache structure.

System profile information consists of two main parts: (1)
machine architecture, which is collected by Perfsuite (Kufrin
2005); and (2) MPI latency and OpenMP overhead from
Sphinx (Sphinx). Machine architecture is the information of
the hardware, including memory hierarchy, cache size, cache
line size and CPU speed. This information is collected by
Perfsuite (Kufrin 2005), a suite of tools developed by the Na-
tional Center for Supercomputing Applications (NCSA). In
order to measure MPI communication latency and OpenMP
overhead for different network type, compiler flags and li-
braries, we use the Sphinx microbenchmark (Sphinx). The

result of these measurements is stored in the database and
can be retrieved by any tools including our Eclipse plug-in
(Section 5).

Figure 6 shows the relational database diagram of our sys-
tem profile database. The diagram shows that our database
consists of four main tables (and consequently, three tables
as the associative1 table):

• The Machine table, which stores information about the
processors, memory and cache. This information is col-
lected from the Perfsuite microbenchmark;

• The System Profile table, which contains a description
of performance measurement;

• The Patterns table, which contains a list of patterns sup-
ported by Sphinx (point-to-point, collective, . . .); and

1 An associative table is a table created as the “bridge” between two differ-
ent tables.

Machine

+id: int(4)

+description: varchar(126)

+cachelevel: int(2)

+cache1: int(6)

+cache2: int(6)

+cache3: int(6)

+cachetype: char(2)

+memory: decimal(12,2)

+cpuspeed: int(9)

+lastprofile: date System_Profile

+profile: int(4)

+type: int(2)

+pattern: int(2)

+description: varchar(126)

+nprocs: int(6)

+length: int(6)
Measurements

+measurement: int(6)

+variant: int(6)

+value: decimal(20,6)

+stdev: decimal(20,6)

Patterns

+pattern: int(2)

+description: varchar(54)

1,*

Figure 6: Diagram of system profile database

• The Measurements table, which stores the result of per-
formance measurement from Sphinx.

The advantage of using a relational database is that the in-
formation can be shared with different users, the concurrent
access (read/write) is guaranteed by the database server, and
lastly other tools can also take advantage of this information
for analysis or modeling.

5. Eclipse Plug-in
Eclipse is a platform based on the Java programming lan-
guage. Therefore, it is portable to any operating systems.
Eclipse is simply a framework which consists of a set of
plug-in components for building a development environ-
ment. A plug-in is the smallest unit that can be developed
and delivered separately. The Eclipse platform is built on a
mechanism which can be used for integrating and running
independent plug-ins. Usually a small tool is written as a
single plug-in, whereas a complex tool has its functionality
split across several plug-ins.

We have developed a new plug-in for interacting with
the OpenUH compiler, manipulating the XML program rep-
resentation file, and allowing user interaction for applica-
tion analysis, modeling and optimization. Furthermore, our
plug-in provides functionalities to generate call graphs and
control-flow graphs.

The FOMPI view plug-in is based on the Eclipse view
model. A view is an Eclipse user interface part that is used to
display the program property and additional information of
the source code. The advantage of implementing an Eclipse
plug-in as a view is that our plug-in can be used in any
perspective 2. In Figure 7, our FOMPI view is shown at the

2 In Eclipse, a perspective defines the initial set and layout of views in the
workbench window.

bottom part of the Eclipse GUI, where it is called within
Eclipse Fortran perspective.

FOMPI view is a table consisting of four columns: the
program unit, the line number where the program unit is de-
fined, the estimated execution time of the unit and the status
of the unit (whether it has MPI communication, OpenMP
parallelization or contains a parallelizable loop). Currently,
FOMPI view provides three menu items:

• Load XML file: to open an application signature file
stored in XML format (as described in Section 4.1);

• Create call graph: to generate a call graph of the pro-
gram (this will be described in Section 7.1); and

• Create control-flow graph: to create a control-flow
graph of the selected program unit (see Section 7.2 for
more details).

In order to use our plug-in, the user needs to generate the
application signature either by using the OpenUH plug-in
or by compiling the source code with the flag -apocost.
Once the XML file is generated, it has to be loaded via
the Load XML file menu. Then a list of program prop-
erties from the application signature is displayed in the
FOMPI view (as was seen in Figure 7). In order to gener-
ate a call graph and control-flow graph, an external library
called graphviz is required. This library is open source and
available for download at (Graphviz).

6. Load-Balancing Library
A load imbalance usually manifests itself as waiting time at
synchronization points. An MPI program suffers from load
imbalance if it has a small number of processes with less
work than the majority, forcing the former to be in an idle
state in order to synchronize with other processes.

One of the major benefits of OpenMP is its ability to
reduce the negative impact of load imbalance in MPI code
by providing a fine-grained decomposition of work (W. and
K. 1999). Therefore, in addition to the OpenUH compiler,
Eclipse and microbenchmarks, our framework contains a
load balancing library which is useful for optimizing MPI
and hybrid MPI+OpenMP applications.

Some previous work has also adopted this approach,
namely Dynamic Thread Balancing (DTB) (Spiegel et al.
2004) and Dynamic Processor Balancing (DPB) (Corbaln
et al. 2004). Unfortunately, DTB needs programmer inter-
vention to add the library into the main iteration loop in the
source code, whereas DPB can transform the code automati-
cally by identifying the main iteration during runtime which
causes significant overhead. We have designed a load bal-
ancing library which, unlike DTB, can transform the code
automatically, and which, unlike DPB, performs the trans-
formation prior to execution, hence reducing large overhead.

Our strategy is based on adjusting the number of OpenMP
threads according to the MPI process workload. In contrast,
if an MPI process has a higher workload than average, then

Figure 7: FOMPI plug-in within the Eclipse platform. The plug-in is implemented as an Eclipse view and can be seen in the
bottom part of the platform.

OpenMP threads were added to reduce the workload. On the
other hand, if a process has a low workload, then the number
of threads were decreased.

6.1 Detecting Load Imbalance
Detecting load imbalance is performed during the program
execution. In order to detect load imbalance in an MPI pro-
cess, we follow the work of Gabriel et al. (Gabriel et al.
2001) which is defined as follows:

Li =
|ti(N)− ¯t(N)|

¯t(N)
, (1)

where ti(N) is the time spent in the MPI process i at the
N th iteration, and ¯t(N) is the average time of all the MPI
processes for the N th iteration. Here, the value of i is varied
from 1 to p which is the number of MPI processes. Without
loss of generality, we assume the number of MPI processes
to be constant.

The value of Li is normalized from 0, meaning that there
is no load imbalance at all, to the theoretically infinite. The
bigger the value of Li, the more load imbalance the process
has. Therefore, when Li exceeds a certain threshold, then the
process is allowed to have an additional OpenMP thread to
perform computation. Currently, the value of the threshold is

still defined by the user. We plan to estimate by computing
this threshold automatically based on the information of
OpenMP overhead from our microbenchmark.

We have designed our library to minimize perturbation as
much as possible. For instance, in order to collect Li, the
local computation time, from other MPI processes, we adopt
overlapped communication and computation mechanism by
using asynchronous MPI communication: MPI Isend and
MPI Irecv.

6.2 Using LBL Library
In most scientific and engineering applications, the main it-
eration code is the most time-consuming loop containing the
most time-consuming computations and frequent communi-
cations. Our approach to find such an iterative loop is then
based on two properties:

1. The loop must contain a parallelizable or OpenMP par-
allel computation loop which has a long execution time
.

2. The loop must contain MPI communication. For some
types of applications, such as the embarrassingly parallel
(EP) program, this property is not necessary.

Once the main iterative loop is identified, the next step
is to insert the load-balancing library application program-
ming interface (LBL API). There are three functions to be
inserted:

1. LBL Init(). This function prepares the initialization
of the load-balancing library and is inserted before the
main iterative loop.

2. LBL LoadDetection(). This is the main function
that verifies the existence of load imbalance and adds
OpenMP threads if necessary. A more detailed descrip-
tion on how the load imbalance is detected is presented
in Section 6.1.

3. LBL Finalize(): This function performs the finaliza-
tion step, such as cleaning up used variables inside the
library.

LBL also supports functions to configure some parameters:

1. LBL SetSkipIterations(int) to set the num-
ber of iterations to skip;

2. LBL GetSkipIterations() to retrieve the current
number of iterations to skip;

3. LBL SetThreshold(double) to set the maximum
percentage of load imbalance to be tolerated; and

4. LBL GetThreshold() to retrieve the current maxi-
mum percentage of load imbalance to be tolerated.

Figure 8 shows an example of using the library. First of
all, the lbl.h header file, which contains function proto-
types, needs to be included. Lines 5 and 6 set the configura-
tion to determine the number of iterations to skip (line 5) and
the threshold for the maximum percentage of load imbalance
to be tolerated.

Once the LBL Init() function in line 7 initializes the
library just before entering the main iterative loop, load-
balancing detection and optimization is then performed
within LBL LoadDetection() located inside the loop
(line 10). Lastly, LBL Finalize() marks the end of the
LBL library by performing finalization, such as freeing vari-
ables.

6.3 Case Study
In order to validate our library, we examined a Jacobi code
which has load imbalance where some processes have more
workload than others; this is shown in Figure 9.

We ran our experiment on the SGI Altix with 256 In-
tel Itanium processors, which is a cache coherence Non-
Uniform Memory Architecture (cc-NUMA) machine hosted
in the National Center for Supercomputing Applications
(NCSA). The advantage of using a cc-NUMA machine is
that unlike a clustered SMP machine which can only ac-
commodate a certain number of OpenMP threads depend-
ing on the number of processors inside the SMP box, a cc-

1 # i n c l u d e < l b l . h>
2
3 i n t MainFunc t ion () {
4
5 L B L S e t S k i p I t e r a t i o n s (4 0) ;
6 LBL SetThresho ld (3 0) ;
7 L B L I n i t () ;
8 /∗ Main i t e r a t i o n ∗ /
9 whi le (i t e r <MAX ITER) {

10 LBL LoadDetec t ion () ;
11 . . .
12 Do Computa t ion () ;
13 . . .
14 Do Communication () ;
15 }
16 /∗ end o f main i t e r a t i o n ∗ /
17 L B L F i n a l i z e () ;
18
19 }

Figure 8: Example using the Load Balancing Library (LBL)

NUMA machine is capable of supporting a flexible number
of OpenMP threads.

As shown in Figure 10, our load-balancing library is able
to reduce the load imbalance of Jacobi code by modifying
the number of OpenMP threads during execution time (Fig-
ure 9). Consequently, it results in a marked decrease in over-
all execution time.

7. Program Understanding
Program understanding is an approach to help programmers
to understand software behavior or structure during the de-
velopment and maintenance phases of the software life cy-
cle. One of our research goals has been to develop a more
effective program understanding tool for large-scale parallel
applications. Although many program understanding tools
already exist, we have noticed that the majority of the pro-
gram understanding tools have not been adapted for com-
plex large scale parallel applications, especially the MPI and
OpenMP programs. In addition, they also do not have high
scalability. In this section, we demonstrate that some FOMPI
tools can be used for program understanding tailored for
large-scale parallel applications.

7.1 Call Graphs
A Call Graph (CG) is a static representation of the dynamic
invocation relationships between procedures in a program.
A call graph shows not only the interaction among proce-
dures, but also the interaction with external libraries such as
printf, malloc, etc. Our implementation of a call graph
differs from the traditional call graph since ours only shows

 50

 55

 60

 65

 70

 75

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of iterations

Process 0
Process 1
Process 2
Process 3

Figure 9: Execution time per process for original code

 35

 40

 45

 50

 55

 60

 65

 70

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of iterations

Process 0
Process 1
Process 2
Process 3

Figure 10: Execution time per process for balanced code

the interaction among procedures, hence increasing its scal-
ability and user visibility.

A call graph Gc = 〈Nc, Ec, sc〉 is a collection of a set of
vertex Nc which represents a set of analyzable program units
(also called procedures), a set of directed edges Ec which
represents call site or procedure invocation from another
procedure, and sc ∈ Nc is the initial vertex. For instance,
a call graph Gc = 〈{p, q}, {p→ q}, p〉 which represents the
invocation of procedure q by procedure p.

Call graphs have been reported to be useful for program
understanding, reverse engineering and for showing interac-
tion between program units. We have designed a call graph
to represent not only program dependency, but also the es-
timated execution time, the estimated number of call sites
and the subroutine status. The subroutine status is useful to
determine whether a subroutine contains communication or
potential parallelization. By using the FOMPI XML code
representation, it is possible to construct the call graph of

map_zones__

A 95.3166

get_comm_index__

 0.0000272.0

timer_stop__

C 0.0000

error_norm__

O 33.9767

exact_solution__

 0.0000

1000000.0

decode_line__

 0.0000

z_solve__

O 31396.0379

1.0

binvcrhs_

 0.0000
590000.0

lhsinit_

 54.4928
10000.0

binvrhs_

 0.0000
10000.0

matvec_sub__

 0.0000
590000.0

timer_start__

C 0.0000

1.0

matmul_sub__

 28.6747
590000.0

x_solve__

O 28412.8899

1.0

590000.0

10000.0

10000.0

590000.0

1.0

590000.0

initialize_

O 103.8160
6060000.0

copy_y_face__

O 19.0709

env_setup__

AC 35.2858

1.0zone_setup__

 120.4955

compute_rhs__

O 896435.9149

4.0

4.0

print_results__

 0.0000

adi_

 984706.8904

1.0

1.0

1.0

y_solve__

O 28422.8173
1.0

add_

O 39.2305

1.0

1.0

590000.0

10000.0

10000.0

590000.0

1.0

590000.0

1.0

1.0

exact_rhs__

O 21548.1592
1770000.0

rhs_norm__

O 20.1799

zone_starts__

C 694.8908

timer_clear__

 0.0000

set_constants__

 0.0000

MAIN__

C 1904770.1852

1.0

1.0

1.0

32.0

1.0

1.0

1.0

1616.0

16.0

1.0

22.0

1.0

exch_qbc__

C 820.9353101.0

verify_

C 896561.43731.0

mpi_setup__

C 0.0000

1.0

timer_read__

 0.0000

12.0

3.0

3.0

96.0

copy_x_face__

O 23.029496.0

16.0

16.0

16.0

Figure 11: Call-graph of NAS BT Multizone benchmark.
The label on the edge denotes the number of calls, while
the figure within the node denotes the estimated number of
cycles.

the application shown in Figure 11. This diagram has been
generated by our Eclipse plug-in via graphviz library (Ell-
son et al. 2004), a free and open source graph visualization
software package developed by AT&T.

Hence, we have extended the traditional call graph, not
only by showing the interaction between program units,

but also by including the estimated number of invocations
of the program unit and the estimated execution time for
an invocation. In order to improve scalability and enhance
visibility for large-scale applications, the set of vertex Nc

is limited only for program units that are analyzed by our
compiler. For instance, if a program unit invokes an external
routine, say printf, this routine will not be included in our
Nc.

Each node Nc in a call graph contains three fields: the
program unit’s name, the unit status and the estimated exe-
cution time of the unit. The cumulative estimated execution
time N t

c is the sum of the local execution time of the node
(N l

c) and the total of the estimated execution time of its call
sites, as shown in Equation 2:

N t
c = N l

c +
n∑

i=0

(
N t

ci
× Ei

c

)
, (2)

where n is the number of call sites, N t
ci

is the estimated
execution time of the call site i and Ei

c is its number of
invocations. For instance, it was seen in Figure 11, that the
unit exact rhs is executed approximately 16 times with
the estimated execution time of 21548 cycles.

The directed edge Ec represents the caller-callee relation-
ship, where the figure on the edge shows the number of in-
vocations in the caller (also called calling frequency). Stat-
ically, the number of invocations of a call site can be esti-
mated as the sum of the number of occurrences times the
number of iterations, provided the call site occurs inside a
loop:

Et
c =

∑
i

Eci × lt. (3)

A summary of program unit status is represented by the
letters C, O and A to mark whether the unit contains MPI
communications, OpenMP parallelization and potentially
parallelizable loops, respectively. For instance, as was shown
in Figure 11, the MAIN unit, contains MPI communication
since it is attributed by the letter C. This attribute is critical
for some types of analysis, for instance, when an analysis is
performed for the purpose of identifying the main iterations
in a unit which has the most time-consuming loop containing
both MPI communication and OpenMP parallelization.

7.2 Control-Flow Graphs
A control-flow graph (CFG) is a directed graph which repre-
sents code representation abstracting the control-flow behav-
ior of a program unit. A CFG Gf = 〈Nf , Ef , sf 〉 contains
a set of nodes Nf , a set of directed edges Ef which rep-
resent control-flow transfer from one node to another, and
sf ∈ Nf which is the initial node. For instance, a CFG
Gf = 〈{a, b}, {a→ b}, a〉 represents a control-flow transfer
from a to b.

In common with our call graph, our control-flow graph is
designed for helping the programmer to understand the pro-
gram structure of large-scale applications by summarizing

Total Cost:985537.84

Total Cost:984711.05

Total Cost:32.95

MAIN__ 1904770.19

mpi_setup__ 0.00

mpi_bcast__ 0.00

timer_start__ 0.00

Loop STEP 5.86 100.0

If 0.00

mpi_wtime__ 0.00

exch_qbc__ C 820.94

Loop IZ 4.16 16.0

adi_ 984706.89

timer_stop__ 0.00

timer_read__ 0.00

verify_ 0.00

mpi_reduce__ 0.00

If 32.95

If 32.95

Loop ZONE 32.95 16.0

print_results__ 0.00

mpi_finalize__ 0.00

Figure 12: Control-flow graph of NAS BT Multizone bench-
mark in the main procedure. Each node contains an esti-
mated execution time in cycles. A loop is represented by a
subgraph.

some statements; this is shown in Figure 12. We also restrict
the set of nodes Nf to only represent basic blocks that influ-
ence program control-flow such as branches, and program
performance such as loops. These basic blocks are defined
in the XML program representation (Section 4.1).

Some basic blocks, such as loops and branches, can
contain others called children. Furthermore, each basic block

Nf has an estimated execution time N t
f which is the sum of

its own exclusive estimated execution time N l
f and the total

of the estimated execution time of its children (if they exist)
as follows:

N t
f =

N l

f +
∑n

i=0 Efi
×N t

fi
, inside loop;

N l
f + maxn

i=0(
∑mi

j=0 N t
fij

), conditional branch;

N l
f , otherwise,

(4)
where Efi denotes the number of invocations of the ith child
basic block N t

fi
and n is the number of children. For condi-

tional branches such as the ones with the if-then statement,
N t

f is the maximum of the total estimated execution time of
its children (N t

fij
). In the case of other conditional branches

such as the if-then-else statement, the maximum value of n
is 2.

In Figure 12, we showed that we were able to abstract
the control-flow graph of the main procedure in an NAS BT
multizone benchmark. In this figure, each node represents a
basic block such as branch, loop and call site, and each block
is denoted by its estimated execution time. However, since a
loop can be executed hundreds or even thousands of times,
and therefore can have significant execution time, we used a
subgraph, instead of a node to represent the loop body.

Finally, we designed our control-flow graph so it does not
show all available information. By eliminating detailed in-
formation such as assignment statements, not only can our
control-flow graph support scalability, but it is also capa-
ble of generating a clearer graph compared to a traditional
control-flow graph. This, combined with additional informa-
tion, such as parallelization status and estimated execution
time, enables the programmer to identify accurately which
part of the code has to be taken into consideration for opti-
mization.

8. Summary and Conclusions
We have presented FOMPI, the framework for analyzing
MPI and/or OpenMP applications based on the extended
version of the OpenUH compiler. The application signature
generated by our compiler has been proved to be critical for
this purpose. This application signature is stored in an open
format-based XML file which supports portability and inter-
operability so it be used for other external tools. It contains
the complete and detailed information to analyze and opti-
mize MPI or OpenMP applications, while maintaining scal-
ability.

We have developed an Eclipse plug-in as the prototype
of the user interface. The prototype can list all the program
units, including the estimated execution time and the unit
status needed to identify if a unit contains MPI communi-
cation, OpenMP regions or potentially parallelizable loops.
From the user interface, different applications of FOMPI
such as call graph, control-flow graph, OpenMP generation
and MPI load imbalance reduction can be accessed. We have

also shown that the call graph and control-flow graph can
improve program understanding thus enhancing reverse en-
gineering.

Finally, we have also shown that our framework can be
used to reduce MPI load imbalance using our load-balancing
library (LBL). The advantage of this approach is that a trans-
formation can be performed automatically without adding
significant overhead needed in other approaches. Currently
the usage of this library is limited to certain types of appli-
cations and hardware. Future work will have to address the
limitation of the library and the reduction of the overhead.

In order to be able to fully analyze parallel applications, it
is recommended for the Open64 compiler to have the facility
to extend the WHIRL structure, the symbol table and anal-
ysis/transformation/optimization components. For instance,
WHIRL needs to be extended in order to gather information
on parallel section, communication/synchronization section
(such as critical section and atomic operation) and the scope
of variables (such as shared and private). Due to raising pop-
ularity of multi and many-core processors, these additional
features are critical to accommodate the analses and opti-
mization of multi-threading applications.

References
Laksono Adhianto and Barbara Chapman. Autoscoping support

for openmp compiler. In Workshop on Tools and Compilers for
Hardware Acceleration, 2006.

Laksono Adhianto and Barbara Chapman. Performance modeling
of communication and computation in hybrid mpi and openmp
applications. Simulation Modelling Practice and Theory, 15(4):
481–491, 2007.

Vikram S. Adve and Mary K. Vernon. Parallel program perfor-
mance prediction using deterministic task graph analysis. ACM
Trans. Comput. Syst., 22(1):94–136, 2004. ISSN 0734-2071.
doi: http://doi.acm.org/10.1145/966785.966788.

Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting
hardware performance counters with flow and context sensitive
profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997
conference on Programming language design and implementa-
tion, pages 85–96, New York, NY, USA, 1997. ACM. ISBN 0-
89791-907-6. doi: http://doi.acm.org/10.1145/258915.258924.

Paul Anderson. The performance penalty of xml for program inter-
mediate representations. In SCAM ’05: Proceedings of the Fifth
IEEE International Workshop on Source Code Analysis and Ma-
nipulation (SCAM’05), pages 193–202, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2292-0. doi:
http://dx.doi.org/10.1109/SCAM.2005.25.

Holger Brunst and Bernd Mohr. Performance analysis of large-
scale openmp and hybrid mpi/openmp applications with vam-
pirng. In International Workshop on OpenMP (IWOMP), Eu-
gene, Oregon, June 2005.

Holger Brunst, Dieter Kranzlmüller, and Wolfgang E. Nagel. Tools
for scalable parallel program analysis - vampir vng and dewiz.
In DAPSYS, pages 93–102, 2004.

Julita Corbaln, Alejandro Duran, and Jess Labarta. Dynamic
load balancing of mpi+openmp applications. In Proceedings
of the 2004 International Conference on Parallel Processing
(ICPP’04), pages 195–202. IEEE, 2004.

Luiz A. de Rose and Daniel A. Reed. Svpablo: A multi-language
architecture-independent performance analysis system. In ICPP
’99: Proceedings of the 1999 International Conference on Par-
allel Processing, page 311, Washington, D.C., USA, 1999. IEEE
Computer Society. ISBN 0-7695-0350-0.

J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Wood-
hull. Graphviz and dynagraph – static and dynamic graph draw-
ing tools. In M. Junger and P. Mutzel, editors, Graph Drawing
Software, pages 127–148. Springer-Verlag, 2004.

Message Passing Interface Forum. http://www.mpi-forum.org.

Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-
overhead call path profiling of unmodified, optimized code. In
ICS ’05: Proceedings of the 19th annual international confer-
ence on Supercomputing, pages 81–90, New York, NY, USA,
2005. ACM. ISBN 1-59593-167-8.

Edgar Gabriel, Marc Lange, and Roland Ruhle. Direct numeri-
cal simulation of turbulent reactive flows in a metacomputing
environment. International Conference on Parallel Processing
Workshops, 00:0237, 2001. doi: http://doi.ieeecomputersociety.
org/10.1109/ICPPW.2001.951957.

Graphviz. http://www.graphviz.org.

Rick Kufrin. Measuring and improving application performance
with perfsuite. Linux J., 2005(135):4, 2005. ISSN 1075-3583.

Kathleen A. Lindlan, Janice Cuny, Allen D. Malony, Sameer
Shende, Forschungszentrum Juelich, Reid Rivenburgh, Craig
Rasmussen, and Bernd Mohr. A tool framework for static and
dynamic analysis of object-oriented software with templates. In
Supercomputing ’00: Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDROM), page 49, Washington,
DC, USA, 2000. IEEE Computer Society. ISBN 0-7803-9802-5.

Open64. http://sourceforge.net/projects/open64/.

OpenMP. http://www.openmp.org.

OpenUH. http://www.cs.uh.edu/õpenuh.

Sameer S. Shende and Allen D. Malony. The tau parallel perfor-
mance system. Int. J. High Perform. Comput. Appl., 20(2):287–
311, 2006. ISSN 1094-3420. doi: http://dx.doi.org/10.1177/
1094342006064482.

Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta,
Rosa Badia, and Avi Purkayastha. A framework for performance
modeling and prediction. In Supercomputing ’02: Proceedings
of the 2002 ACM/IEEE conference on Supercomputing, pages
1–17, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

Fengguang Song, Felix Wolf, Nikhil Bhatia, Jack Dongarra, and
Shirley Moore. An algebra for cross-experiment performance
analysis. In ICPP ’04: Proceedings of the 2004 International
Conference on Parallel Processing (ICPP’04), pages 63–72,
Washington, D.C., USA, 2004. IEEE Computer Society. ISBN
0-7695-2197-5. doi: http://dx.doi.org/10.1109/ICPP.2004.15.

Sphinx. http://www.llnl.gov/casc/sphinx/sphinx.html.

Alexander Spiegel, Dieter an Mey, and Christian H. Bischof. Hy-
brid parallelization of cfd applications with dynamic thread bal-
ancing. In PARA, pages 433–441, 2004.

Jie Tao, Martin Schulz, and Wolfgang Karl. A simulation tool for
evaluating shared memory systems. In ANSS ’03: Proceedings of
the 36th annual symposium on Simulation, page 335, Washing-
ton, D.C., USA, 2003. IEEE Computer Society. ISBN 0-7695-
1911-3.

Huang W. and Tafti D. K. A parallel computing framework for
dynamic power balancing in adaptive mesh refinement applica-
tions. In Parallel CFD99, Williamsburg, VA, May 1999.

Andre Weinand. Eclipse - an open source platform for the next
generation of development tools. In NODe ’02: Revised Papers
from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a
Networked World, page 3, London, UK, 2003. Springer-Verlag.
ISBN 3-540-00737-7.

Felix Wolf and Bernd Mohr. Automatic performance analysis of
hybrid mpi/openmp applications. J. Syst. Archit., 49(10-11):
421–439, 2003. ISSN 1383-7621. doi: http://dx.doi.org/10.
1016/S1383-7621(03)00102-4.

Omer Zaki, Ewing Lusk, William Gropp, and Debo-
rah Swider. Toward scalable performance visualiza-
tion with jumpshot. Int. J. High Perform. Comput.
Appl., 13(3):277–288, 1999. ISSN 1094-3420. doi:
http://dx.doi.org/10.1177/109434209901300310.

	Introduction
	Methodology
	The OpenUH Compiler
	Information Gathered
	Application Signature
	System Profile

	Eclipse Plug-in
	Load-Balancing Library
	Detecting Load Imbalance
	Using LBL Library
	Case Study

	Program Understanding
	Call Graphs
	Control-Flow Graphs

	Summary and Conclusions

