
 1

Development of an Efficient DSP Compiler Based on Open64
Subrato K. De, Anshuman Dasgupta, Sundeep Kushwaha, Tony Linthicum, Susan Brownhill, Sergei Larin,

Taylor Simpson

Qualcomm Incorporated, San Diego & Austin, USA.

{sde,adasgupt,sundeepk,tlinth,yzhu,slarin,tsimpson}@qualcomm.com

ABSTRACT
In this paper we describe the development of an efficient

compiler for digital signal processors (DSP) based on the

Open64 compiler infrastructure. Our development has

focused on state-of-the-art DSP architectures that allow

high degree of instruction level parallelism, support

hardware loops, address-generation units, DSP-specific

addressing features (e.g., circular and bit-reversed), and

many specialized instructions. We discuss the

enhancements made to the Open64 compiler infrastructure

to exploit the architectural features of contemporary DSPs.

1. Introduction

Open64 is an open source C/C++/Fortran77/90 compiler

that is currently used in various industry and academic

research projects. It originates from the SGI Pro64(TM)

compiler suite that was released under the GNU General

Public License. Even though Open64 was not originally

intended to be a DSP compiler, we decided to use and

enhance it for advanced DSP architectures. We wanted to

exploit its powerful set of compiler analyses and support for

multiple languages. To place our discussion in context, we

will briefly describe the typical features of DSP

architectures and different components of the Open64

compiler infrastructure in the next two sections.

1.1 Architectural features of a typical DSP and

challenges to compilation

DSPs typically contain heterogeneous register sets,

irregular data paths, multiple buses, separate program and

data memory, address generation units with specialized

addressing modes such as circular and bit-reversed

addressing, zero-overhead hardware loops, and instruction-

level parallelism. Most DSPs support zero-overhead

hardware loops that reduce the control-flow cycles in a

loop. Many DSPs have low latency CISC like instructions

(e.g., Multiply-Accumulate), and allow fixed point

arithmetic, saturation, and rounding. To achieve high

performance, application software has to effectively utilize

these hardware features.

1.2 Using Open64 to develop an efficient compiler for a

DSP

Open64 uses an intermediate representation (IR) called

WHIRL that has multiple levels of representation and

serves as the common interface for the compiler phases.

The important phases of Open64 are described below:

• The very high level optimizer (VHO) lowers

aggregates, flattens nested calls, etc.

• The inter-procedural analysis (IPA) first gathers data

flow analysis information from each procedure locally.

It then generates the call graph, performs inter-

procedural analysis and transformations. It performs

global variable optimization, dead function elimination,

inter-procedural alias analysis, cloning analysis,

constant propagation, function inlining, etc.

• The loop nest optimization (LNO) phase calculates

dependence graph for array accesses and performs loop

transformations, and automatic vectorization.

• The global optimizer (WOPT) computes the control

flow graph, the dominator tree, dominator frontier,

control dependence set, and then converts the IR to a

hashed SSA form. It performs def-use analysis, alias

classification, pointer analysis, induction variable

recognition/elimination, copy propagation, dead code

elimination, partial redundancy elimination, register

variable identification, bitwise dead-code elimination.

• The code generator (CG) performs target specific

optimizations, instruction selection, scheduling,

software pipelining, hyper-block scheduling, register

allocation and emits the assembly code.

The details of these phases can be found in [6, 7].

Our goal was to enhance Open64 to better support DSPs.

Features of traditional DSPs have been briefly described in

section 1.1 Many recent DSPs, however, are load-store

VLIW architectures and support some degree of general-

purpose computing. Given the new trends in DSP

architectures, we believed that Open64 could be modified

to be an efficient compiler for these processors.

This paper is organized as follows. Section 2 discusses the

C-language extensions we implemented in Open64. Section

3 describes the enhancements we performed on the global

optimizer. Section 4 describes the improvements in backend

including hyperblock scheduler and register allocator.

Finally, we present our conclusions in section 5.

2 C-language extensions for DSP

In recent years, mobile wireless applications and DSP

architectures on which they are implemented have

continued to increase in complexity. Consequently,

compiler support for DSP applications written in a high-

 2

level language (HLL) has become important. While DSPs

have traditionally been programmed in assembly,

application programmers are transitioning to higher-level

languages such as C and C++ for maintainability and in an

effort to reduce time-to-market. Therefore, an efficient

optimizing DSP compiler becomes very important.

However, a HLL such as C lacks support for many of the

DSP-specific features such as multiple memory spaces,

saturated arithmetic, circular and bit-reverse addressing,

and other specialized instructions. So many DSP compilers

use C language extensions to address this shortcoming. This

section describes the DSP-specific language extensions

added to the C/C++ Open64 compiler.

2.1 Intrinsics for DSP-specific addressing modes

DSP’s have specialized addressing modes like circular and

bit-reverse addressing for efficient implementation of signal

and image processing algorithms. These addressing modes

are in addition to the standard indirect addressing modes

found commonly in different microprocessors. This section

describes the programmer level APIs developed to facilitate

the use of these two specialized addressing modes (i.e.,

circular and bit-reversed) and the enhancement needed in

Open64 to implement the APIs.

2.1.1 Circular addressing

Circular addressing performs modulo-N wrap around access

over a contiguous memory region (called a circular buffer)

of size N. In between the two bounds of the buffer, the

pointer can be incremented linearly. Figure 1 shows a

circular buffer of length 4 words with start address 0x0F04

(i.e., buffer locations are 0x0F04, 0x0F08, 0x0F0C, and

0x0F10).

Hex

Address

word data

0x0F00

0x0F04

0x0F08

0x0F0C

0x0F10

0x0F14

Figure 1: A circular buffer of length 4 words and start

address as 0x0F04.

Circular addressing is commonly used in digital filters. The

C-code fragment below for a FIR-filter shows that the

pointer variable (coeffPointer), accessing the array

“coeff[]”, must be re-initialized to the start location (i.e.,

&coeff[0]) of the array for every iteration of the outer loop,

when using linear pointer increment:

int *coeffPointer;

for(i=0; i < noOfInputSamples; ++i){ sum = 0;

 coeffPointer = &coeff[0];

 for(j =0; j < 4; ++j)

 sum += inputSample[i+j] * *coeffPointer++;

 outputSample[i] = sum;}

However, the re-initialization will be unnecessary if circular

addressing is used.

2.1.2 Bit-Reversed Addressing

Bit-reversed addressing is useful for fast-fourier transforms

(FFT), viterbi decoding, and any algorithm (e.g., fast DCT)

that is based on FFT. Typical FFT algorithms either take an

in-order indexed array input and produce a bit-reverse

indexed array output or take a bit-reverse indexed array

input and produce an in-order indexed array output. Table 1

shows the relationship between the standard index and its

bit pattern that is repeatedly incremented by 1, and a bit-

reversed pattern and the bit-reversed Index for 3-bit

address. For 3-bit addresses the accessible buffer is of

length 8 with indices 0 to 7.

Table 1: relationship between the standard and bit reversed index

for a buffer of length 8.

As an example, let’s consider Simple radix-2 FFT C code,

outlined below. Refer [13] for the complete C-code listing.

The function “ReverseBits()” needs to perform explicit bit-

reversal if support for bit-reverse addressing is unavailable.

unsigned ReverseBits (unsigned index, unsigned NumBits){

 unsigned i, rev;

 for (i=rev=0; i < NumBits; i++){

 rev = (rev << 1) | (index & 1); index >>= 1;

 }

 return rev;

}

void fft(unsigned NumSamples, int *RealIn, int *ImagIn, int

*RealOut,int *ImagOut){

 unsigned NumBits; /*bits needed for indices */

 NumBits = NumberOfBitsNeeded (NumSamples);

 //data copy and bit-reversal ordering into outputs.

 for (i=0; i < NumSamples; i++){

 j = ReverseBits (i, NumBits);

 RealOut[j] = RealIn[i];

 ImagOut[j] = ImagIn[i];

 }

 //Inner kernel operations of FFT which reads RealOut[] and

 //ImagOut[] and then writes the final output in them. The code

 //below is actually within nested loops.

 tr = ar[0]*RealOut[k] - ai[0]*ImagOut[k];

Standard

Index

Standard Bit

Representation

Reverse Bit

Representation

Bit-Reversed

Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Address pointer �

 3

 ti = ar[0]*ImagOut[k] + ai[0]*RealOut[k];

 RealOut[k] = RealOut[j] - tr; ImagOut[k] = ImagOut[j] - ti;

 RealOut[j] += tr; ImagOut[j] += ti;

}

2.1.3 Design of intrinsics for circular and bit-reverse

addressing

For circular and bit-reversed addressing, a user level

intrinsic can specify the buffer (defined by the start location

and the length), the memory location to access the data, and

the increment or decrement value used to compute the next

location in the buffer. A pointer variable in a high level

language can be used to access data from the buffer. We

provided four user level intrinsics for circular and bit-

reverse load and store:

• LOAD_CIRC_DTYPE(v, p, s, l, a);

• STORE_CIRC_DTYPE(v, p, s, l, a);

• LOAD_BREV_DTYPE(v, p, s, l, a); and,

• STORE_BREV_ DTYPE(v, p, s, l, a).

where “v” is the variable loaded or stored; “p” is the pointer

variable used to access the buffer and is an l-value; “s” is a

signed value for linear increment/decrement and is a

constant; “l” is the buffer length in # of data elements in

buffer; “a” is the Buffer start address and is an l-value;

“DTYPE” denotes the data type in the buffer could be int,

short, char, double, etc depending on the data types

supported in the DSP.

As an example, when the API’s for circular load is used, the

FIR filter code shown in section 2.1.1 becomes:

int *coeffPointer; int value;

for(i=0; i < noOfInputSamples; ++i){ sum = 0;

 for(j =0; j < 4; ++j){

 LOAD_CIRC_INT(value, coeffPointer, 1, 4, &coeff[0]);

 sum += inputSample[i+j] * value;

 } outputSample[i] = sum;

}

The API “LOAD_CIRC_INT” loads the elements of the

array “coeff[]”, in the integer variable “value”, in a modulo

wrap-around fashion, creating a circular buffer of length 4.

There is no need to re-initialize the “coeffPointer” in the

outer loop body, unlike in section 2.1.1.

Similarly, when the intrinsics for bit-reverse store is used

the function “ReverseBits()” is no longer needed in the

Simple Radix-2 FFT implementation shown in section

2.1.2. The code below the comment statement “data copy

and bit-reversal ordering into outputs” in function “fft()”

can be implemented using bit-reverse store intrinsics as:

int *realOutPointer; int *imagOutPointer;

for (i=0; i < NumSamples; i++){

 STORE_BREV_INT(RealIn[i], realOutPointer, 1,

 NumSamples, &RealOut[0]).

 STORE_BREV_INT(ImagIn[i], imagOutPointer, 1,

 NumSamples, &ImagOut[0]).}

2.1.4 Implementation issues in Open64

WHIRL is a strict tree form with each node representing an

operator that takes zero or more operands and produces a

single output.. Therefore, WHIRL cannot represent the

semantics of an instruction such as "result = *(ptr++incr)”

as a single node. Consequently, a single Open64

“__builtin” cannot be used to implement the user-level

intrinsics/APIs described in section 2.1.3. Also the

characteristics of the load and store operations need to be

maintained. Hence, these user-level intrinsics are

implemented as macros that expand to two internal

operations: (i) indirect load/store with the circ/bit-reverse

pointer, and (ii) an internal intrinsic “circular/bit-reverse

update”. For example, LOAD_CIRC_INT() would expand

to an indirect load and a internal circular update intrinsic

that was transparent to the user:

#define LOAD_CIRC_INT(v, p, s, l, a) \

((v) = *(p); (p) = (int *) circ_update((void *) (p), (s), (l),

(void *) (a)))

Similarly, STORE_CIRC_INT expands to:

#define STORE_CIRC_INT(v, p, s, l, a) \

(*(p) = (v); (p) = (int *) circ_update((void *) (p), (s), (l),

(void *) (a)))

These WHIRL nodes (i.e., the load/store and the

circular/bit-reverse update) are combined into a single

multi-output operation in the CG-phase. The IR looks like

(we are using the circular load/store to illustrate):

<result> = load_indirect(pointer); or,

 store_indirect(pointer) = <source>;

and,

<pointer> = circ_update (pointer, step, CR)

CR is the configuration register that defines the associated

circular/bit-reverse buffer based on buffer size and the start

address. DSP architectures can have different hardware

implementations of the actual circular/bit-reverse

instruction; so we assume a generalized form of the

instruction where a configuration register is used to keep

track of the buffer associated with a particular circular/bit-

reverse load/store. The operation showing the initialization

of CR is not shown. The load/store and the corresponding

circular/bit-reverse update operations are then combined in

the CG phase into a single 2-output CGIR operation (2

outputs for the circular/bit-reverse load: one for pointer

update and the other for the loaded value):

<result, pointer> =load_circular_update(pointer, step, CR),

or

<pointer> =store_circular_update(source, pointer, step, CR)

The alias analysis for the circular/bit-reverse load/store

operations are made very conservative, since the pointer

updates are no longer linear. Some enhancement is needed

in Open64 to perform efficient alias analysis for circular

 4

updates, where the pointer wraps-around the buffer and

accesses the same memory locations periodically.

2.1.5 Hoisting and allocation of configuration

registers

A DSP can have multiple configuration registers (CRs) to

support multiple circular/bit-reverse buffers. The CRs need

to be assigned and allocated effectively. In our

implementation within Open64, CRs are considered

dedicated temporary names (TNs) and require special

handling. A simple algorithm for the hoisting of the loop-

invariant CR assignment statements and a balanced

allocation of the CR TNs, for two CR registers (i.e., CR0

and CR1) is described below:

1. The “def” of a CR is inserted just before its “use” in the

circular/bit-reverse load/store.

2. A special pass hoists the “def” of CRs from the loop

body, based on the following:

• A “def” of a CR can be hoisted only if a loop-invariant

TN is assigned to it.

• Multiple “def”s of the same CR from the same loop-

invariant TN are redundant (to a single assignment)

and can be hoisted above the loop.

• If different TNs (even if loop-invariant) are assigned to

the same CR at different points within the loop body,

none of the assignments can be hoisted above the loop.

3. The CR allocation mechanism follows use-def chains,

since it’s the use of the TN in the circular/bit-reverse

load/store instruction that determines if a CR needs to be

allocated. At the “def” of the TN a copy of the TN to the

CR is inserted. Thus, if the same TN has any use other than

in circular/bit-reverse load/store, it gets a GPR through

actual register allocation.

• A vector data structure is maintained for the CR

allocations to TNs in each PU.

• If there is a pre-existing CR allocated to the same TN,

it is reused.

• When a CR allocation is requested for a TN, the least

allocated CR (CR0 or CR1) within the BB is selected

to keep the CR usage balanced within the BB.

2.2 Pragmas for loop optimization

Many DSP architectures have hardware loops. Efficient

usage of the hardware loop support can be facilitated if

certain loop properties (i.e., minimum / maximum number

of loop iterations, loop step values) are known by the

compiler.

2.2.1 Loop trip count pragmas

We added three pragmas – LOOP_TRIP_COUNT_MIN,

LOOP_TRIP_COUNT_MAX, and LOOP_TRIP_COUNT-

_MODULO -- that the programmer can use to specify the

lower bound, the upper bound, and a divisor of the loop trip

count respectively. The compiler can use these information

to omit loop guards, omit cleanup or alternate loops during

unrolling and software pipelining. The compiler can decide

whether it is profitable to unroll or software pipeline the

loop. If the “min” is specified, the guard condition for a

loop can be eliminated. If the “modulo” is a multiple of the

unroll factor, the remainder loop can be eliminated while

unrolling. If both the “min” and the “max” values are same,

the loop is guaranteed to iterate min=max times. It is useful

in cases when ((loop end – loop start)/loop step) is a

constant quantity, but both “loop end” and “loop start” are

variables. In this situation the trip-count computations can

be made redundant.

2.2.2 Pragma for loop unrolling

The pragma LOOP_UNROLL(N), where “N” is a positive

constant, allows programmers to notify the compiler that a

loop should be unrolled “N” times. Scheduling opportunity

and parallelism can be increased by enlarging the loop

body. The jump overhead can be reduced for processors

that implement software loops

2.2.3 Implementation of the loop pragmas in Open64

Even though many industrial DSP compilers [1,2,3] provide

support for similar pragmas, the focus is on supporting

these pragmas in Open64. We present an overview of the

approach:

1. Pragmas are recognized in the C/C++ front-end and

added as whirl “PRAGMA” nodes in the IR just before the

whirl node for the loop.

2. The function “CODEREP *IVR:: Compute_trip_-

count()” is modified as:

• Bypass loop guard generation depending on the

LOOP_TRIP_COUNT_MIN

• Loop trip count computation is replaced with a

constant trip count, if LOOP_TRIP_COUNT_MIN ==

LOOP_TRIP_COUNT_MAX.

3. BB_Add_Annotation() is used to add the pragmas from

Whirl to CG IR.

4. The following modifications are done during CG loop

optimizations.

• If the loop min pragma >= SWP stage count, bypass

generation of alternate low-trip count loop during

software pipelining.

• Modify functions “Unroll_Do_Loop” and

“Unroll_Dowhile_Loop” to bypass “remainder loop”

and “unrolled loop guard” based on the loop count

MODULO or loop count MIN == loop count MAX.

5. The loop count min/max/modulo pragma are adjusted if

loop unrolling occurs in CG.

The pragma based loop unrolling is implemented in the

LNO phase as a generalized unroller using existing APIs.

 5

Even though Open64 performs limited loop unrolling in the

CG phase, the benefit is in implementing at LNO because

of the machine independent optimizations (WOPT)

performed after LNO. The implementation of the

generalized pragma based loop unroller in LNO is outlined

below:

1. Detect a whirl “DO_LOOP” IR and any loop pragmas

associated with it.

2. Determine the loop start, end, step, and trip count from

the “DO_LOOP” IR.

3. For constant trip count loop, determine if the unroll

factor perfectly divides the trip count (or the loop count

modulo pragma value, if specified), giving remainder =0.

4. If remainder=0 in step 3, invoke

“Unroll_Loop_By_Trip_Count()”, unroll by the specified

unroll factor, go to step 7.

5. If remainder! = 0 in step 3, split the loop into two loops:

the main loop having trip count that is completely divisible

by the unroll factor, and the remainder loop, whose trip

count = original trip count % unroll factor. Figure 2

illustrates loop splitting with an example.

6. Call “Unroll_Loop_By_Trip_Count()” for the main loop,

unroll by the specified unroll factor, (remainder loop is left

untouched). Go to step 7.

7. If unrolling occurs, adjust loop count min/max/modulo

pragmas. Set unroll pragma to 1.

8. END

 Original loop:

 #pragma LOOP_UNROLL(6)

 for (j = 0; j <77; j+=5)

 IR of the DO_LOOP after PreOpt is equivalent to:

 for (j = 0; j*5 <= 76; j++)

 The loop after splitting becomes:

 Main loop (first 12 iterations, perfectly divisible by 6):

 for (j = 0; j*5 <= 59; j++)

 Remainder loop (Last 4 iterations):

 for (j = 12; j*5 <= 76; j++)

Figure 2: Illustration of loop splitting followed by unrolling

of the main loop.

We implemented a parser to extract the loop start, end, and

step information (both for constant and variable trip count

loops) from the WN_end() of the DO_LOOP abstract

syntax tree (AST). Figure 3 shows the generalized structure

of the AST obtained from WN_end() of the DO_LOOP

structure. For some variable trip count loops, the AST

structure has different canonical forms for the same

functional loop end condition.

GT , LT , LE , GE

Loop END value
“LDID” or Constant

Loop START value
“LDID” or Constant

ADD or SUB

MULTIPLY

“LDID” Loop
Induction Variable

Loop STEP

a Constant

Figure 3: Generalized form of the WN_end() AST for a

DO_LOOP structure

3. Enhancement of the Global Optimizer

3.1 Register promotion of small structures

Many advanced DSPs support bit-level operations that can

insert/extract a number of consecutive bits at a given bit-

offset to/from a register. Applications like network

protocols, cryptography have many bit level operations

involving structures and unions (with a mix of bit-fields and

standard C-data type) of size less than or equal to 8 bytes

(called “small structures” in this paper). A considerable

reduction in stack size and cycle performance is possible if

the compiler is able to allocate the small structures

completely in registers. The algorithm uses the whirl level

“EXTRACT_BITS” and “COMPOSE_BITS” operations to

replace individual structure-member auxiliary symbols with

the full structure-sized auxiliary symbol in the WOPT

phase, as shown in figure 4.

• The auxiliary symbol table for a structure/union variable

contains entries for each member of the structure or union

that are actually “used” or “defined” in the program. As

in figure 4, auxiliary symbols “st 8”, “st 9”, “st 10”, and

“st 4” are auxiliary symbols for the type “PAIR”. Their

mappings: “st 8” is for “w[0]”;“st 9” is for “h[1]”; “st

10” is for “h[3]”, and “st 4” is for “d”.

• The register variable identification (RVI) cannot promote

structure/unions to registers because the overlapping data

layout introduces “may-use” and “may-def” nodes,

resulting in allocating the small structure always in stack.

 6

typedef union {

long long d;
int w[2];

short h[4];

char b[8];
} PAIR;

PAIR var, *Pi, *Po;

U4U4LDID 0 <st 3>

I8I8ILOAD 0
I8STID 0 <st 4>

I4INTCONST 6 (0x6)
I4STID 0 <st 8>

U4U4LDID 0 <st 3>
I8I8ILOAD 0
I8STID 0 <st 4>

I8I8LDID 0 <st 4>

I4INTCONST 6 (0x6)
I8CVTL 32

I8COMPOSE_BITS <bofst:0

bsize:32>
I8STID 0 <st 4>

I8I8LDID 0 <st 4>

I4INTCONST 7 (0x7)
I8CVTL 16
I8COMPOSE_BITS <bofst:48

bsize:16>
I8STID 0 <st 4>

I8I8LDID 0 <st 4>

U4U4LDID 0 <st 1>
I8ISTORE 0

I4INTCONST 7 (0x7)
I2STID 6 <st 10>

I8I8LDID 0 <st 4>
U4U4LDID 0 <st 1>

I8ISTORE 0

I4INTCONST 3 (0x3)

I2STID 2 <st 9>

I4I4LDID 0 <st 8>

I4STID 0 <st 5>

var.d = *Pi;

var.w[0] = 6;

var.h[1] = 3;
x = var.w[0];

var.h[3] = 7;
*Po = var.d

I8I8LDID 0 <st 4>

I4INTCONST 3 (0x3)
I8CVTL 16
I8COMPOSE_BITS <bofst:16

bsize:16>
I8STID 0 <st 4>

I8I8LDID 0 <st 4>
I8EXTRACT_BITS <bofst:0

bsize:32>
I4STID 0 <st 5>

Figure 4: Use of EXTRACT_BITS and COMPOSE_BITS for register promotion of small structures.

• However, when all the structure-member auxiliary

symbol accesses are replaced with the unique full-sized

auxiliary symbol access, using “EXTRACT_BITS” at the

“use” locations, and using “COMPOSE_BITS” at the

“def” locations, the “may-use” and “may-def” nodes are

no longer present. This facilitates register variable

identification (RVI).

This optimization is always beneficial for reducing stack

size. Moreover, there can be a significant improvement in

cycle performance if the insert and extract operations can

be further removed. As an example, if the access involves

32-bit integer members for a 64-bit structure, the insert and

extract operations can be completely removed.

 3.2 Removal of redundant alias stores encountered

during C++ inlining

We noticed many instances of redundant stack usage and

dead stores to stack locations when compiling C++ code

having variables of type small structures and classes with

bit-fields. The problem is especially acute when C++

overloaded operator functions and small class member

functions are inlined. For a DSP embedded on a mobile

device, memory (program, data, or runtime memory) is a

critical resource. Hence, even though the discussion in this

section in not specific to a DSP, the impact of the

modification is of high importance for DSP’s embedded in

mobile devices.

The Whirl IR has address of a stack variable saved using

the operation “LDA”. The first WOPT pass removes the

“LDA” operation, since the stack variable can be directly

accessible after inlining the C++ overloaded operator

functions and class members. But the second WOPT pass

still sets the POINTS_TO ALIAS flag, which results into an

alias store that is actually a dead store. Figure 5 illustrates

the problem: the “may-def” node is still associated to the

store of stack variable “anon1” in the second WOPT pass

even after the WHIRL operation “LDA anon1” is deleted in

the PreOpt pass, leading to dead store of “anon1“. The

problem is solved as follows:

1. VHO lowering doesn’t lower aggregate types when bit-

fields are present. It lowers by converting a single

MTYPE_M structure copy to multiple MTYPE_Ix/Ux

depending on the number & the type of the structure

members (it flattens nested structures). This was upgraded

to make a single MTYPE_M structure copy lower to an

equivalent single MTYPE_I/U structure copy for copies <=

8 bytes, irrespective of whether bit-fields are present.

2. The POINTS_TO is computed from the attributes of

“ST” set by the front-end, and not from attributes

recomputed in WOPT and set in class “BE_ST”. This gives

rise to stale alias information in the second pass of WOPT.

The attributes of BE_ST are used instead:

• Class “BE_ST” has fields like “address_used_locally”,

“address_passed”, etc, as in “ST”.

• Instances of “BE_ST” are created when WOPT creates

its own symbol table (auxiliary symbols).

“address_used_locally”, “address_passed” in BE_ST

are recomputed:

• An address saved operation (e.g., “LDA”) done on a

symbol sets “address_used_locally” in an instance of

the class BE_ST for the symbol.

• If the symbol’s address is ever passed to a function, it

set “address_passed”.

• The attribute fields of ST are never updated. Hence

“POINTS_TO” of a symbol (created using information

from both ST and BE_ST), can have outdated

information for a two pass WOPT (e.g., when a

previous WOPT pass deletes a redundant LDA).

 7

First pass of WOPT: After PRE-OPT LOWERING

I4I4LDID 0 <2,7,.Mreturn._ZN5tcb_t7get_tagEv_temp_0>
I4STID 0 <2,6,anon1>

--
U4LDA 0 <2,6,anon1>

U4STID 0 <2,19,_ZZN9msg_tag_t9is_notifyEvE4this>
--

U4U4LDID 0 <2,19,_ZZN9msg_tag_t9is_notifyEvE4this>
I4I4ILOAD 0

I4STID 80

IF

I4I4LDID 80
I4INTCONST 0 (0x0)

I4I4EQ

“LDA anon1” can be removed,
if the indirect access is replaced
by a direct load from anon1.

AT EXIT OF PRE-OPTIMIZER AFTER CONVERTING BACK TO WHIRL DOMAIN

I4I4LDID 82
I4STID 0 <2,6,anon1>

--
IF

I4I4LDID 0 <2,6,anon1>
I4INTCONST 0 (0x0)

I4I4EQ

SECOND WOPT PASS: AfterFree flow analysis (FFA) and MU and CHI

insertion

I4I4LDID 82 <st 12>
I4STID 0 <st 6>
chi node in opt_main < [aux_id=15] >

I4I4LDID 0 <st 6>
I4INTCONST 0

I4I4EQ

THE POINTS_TO
aux_id=6 fixed anon1,
byte ofst is 0, byte size is 4

“not_address_saved” *NOT* set

attr=not_addr_passed|local|named|
safe_to_speculate|not_f90_pointer|
not_f90_target

ERROR !

“not_address_saved”

should be set, and
the CHI node should

NOT be included

Figure 5: Example of redundant alias information

• If the first WOPT pass deletes all address saved

operations (LDA’s) for a local stack symbol, the

“address_used_locally” field of BE_ST is FALSE in

the second pass, even though “address saved” in “class

ST” is TRUE (i.e., ST is never updated). The solution

is to use the “address_used_locally” field from BE_ST

to compute POINTS_TO (instead of the

“address_saved” field of “class ST”).

We noticed cycle performance improvements ranging from

3% to 40%, stack size reductions of as much as 50% and

code size reductions by 1% to 2% for some modem

applications when register promotion of small structures are

enabled as described in section 3.1. These applications have

extensive use of small structures and unions and are a mix

of unstructured control flow and some loops. In a C++

kernel code having extensive use of small structures and

classes, we noticed stack size reductions of up to 80% when

both the modifications described in sections 3.1 and 3.2 are

applied.

4. Enhancement of the code generator: hyperblock

scheduling and register allocation

In Open64, the main phases of the code generator are:

instruction selection, register allocation, and scheduling.

The compiler should strive to exploit the instruction-level

parallelism provided by the architecture and also efficiently

allocate registers minimizing spills or copies. The register

allocation process can be complicated by the presence of

register pairs. In this section, we will discuss our efforts to

modify the code generator of Open64 to exploit and

accommodate architectural features typically present on a

DSP.

4.1 Aggressive hyperblock scheduling

Optimal instruction scheduling has been shown to be a NP-

complete problem [9]1. As a result, compilers typically use

heuristic-driven scheduling algorithms. Most conventional

compilers use a variant of list-scheduling. List scheduling,

described in [11], is an efficient algorithm that encodes

scheduling constraints in a directed-acyclic graph (DAG).

The scheduler traverses the DAG and consults a set of

heuristics to schedule instructions. This approach works

well in a single basic-block i.e., in the absence of control-

flow. Several algorithms such as extended-basic block

scheduling, trace scheduling, superblock scheduling, and

hyperblock scheduling have since tried to accommodate

control-flow in an instruction scheduler. In the next few

sections, we will focus on one such technique: hyperblock

scheduling. The use of predicated instructions if available

in a DSP can be extremely beneficial in reducing the

number of branches in the compiled code and enabling

aggressive scheduling across basic-blocks. Therefore, we

wanted to tune Open64 compiler to fully exploit this

feature.

1 Interestingly, eliminating control-flow does not improve the

complexity of the problem from a compiler-engineering

perspective. Single basic-block scheduling for realistic

architectural models has been shown to be NP-complete. [10]

 8

 Figure 6: Potentially profitable hyperblock rejected by default formation algorithm

4.1.1 Hyperblock scheduling in Open64

The Open64 compiler contains a hyperblock scheduler that

is largely derived from the algorithm described in [12]. To

obtain efficiently scheduled code, it was important that the

hyperblock scheduler was tuned for our processor. In this

paper, we describe the modifications we made to the default

Open64 hyperblock algorithm to accommodate constraints

in the target instruction set.

4.1.2 Predicated execution

The VLIW target contained support for predicated

execution. However, in comparison to processors such as

the Itanium, the predicated execution model on our target

processor was more restricted. In particular, not every

operation in the instruction set could be predicated. Due to

this constraint, we modified the hyperblock-selection

mechanism in Open64. This restricted form of predication

stems from a focus on power and resource savings and is

common on DSP architectures. Thus, changing Open64 to

handle these constraints makes Open64 more attractive for

embedded targets.

4.1.3 Hyperblock formation

A hyperblock, as described in [12], is a set of basic blocks

that contains a single entry block that dominates all other

blocks in the set. Note that the set can contain multiple

blocks where control-flow exits out of the hyperblock. The

default hyperblock-formation mechanism in Open64

rejected any basic blocks that contained instructions that

could not be predicated. This requirement proved to be too

restrictive for our architecture. Rejecting every set of basic

blocks that contained an unpredicatable2 instruction

2 A note on terminology: in this paper, we have used the terms

unpredicatable to refer to an instruction that cannot be

predicated on our architecture and predicatable for instructions

that can be predicated.

resulted in too few hyperblocks being formed. We wanted

to aggressively construct and schedule hyperblocks.

Therefore, we relaxed the restrictions in the hyperblock-

selection algorithm to accept a larger set of hyperblock

candidates.

4.1.4 Modifications to the hyperblock-formation

algorithm

In addition to the architectural constraint described in

section 4.1.2, the changes in the formation algorithm was

motivated by code that was generated by Open64. Figure 6

shows an example of compiled code we observed on

several benchmarks. The basic-block labeled B3 in the

figure contains an unpredictable instruction. Thus, this set

of blocks would be rejected by the default hyperblock

formation algorithm. However, note that blocks B4 and B5

contain a large number of instructions and, therefore, it can

be profitable to consider the blocks shown in the figure as

candidates for hyperblock scheduling. To that end, we

relaxed the selection criteria in the Open64 formation

algorithm. After our modifications, a candidate block can

contain unpredicatable instructions if it post-dominates the

entry block of the hyperblock. Consider block B3 in Figure

6 that contains an unpredicatable instruction. Since it post-

dominates the entry block – B1 – it will be considered for

inclusion in the hyperblock.

4.1.5 Safety

As we shall discuss in the next section, this modification

allows the hyperblock scheduling to be more aggressively

applied in our benchmark suite. More importantly,

however, this modification preserves the semantics of the

program i.e., this transformation is safe. We outline two key

attributes of the modified algorithm that ensure safety:

• First, the entry block of the hyperblock dominates all

other blocks in the hyperblock. Consider a basic block in

B1

B3

B2

B4

B1: Hyperblock entry
block

B3:Block contains
unpredicatable
instructions

B2, B4, B5: large
completely
predicatable basic
blocks.

B5

 9

Benchmark Hyperblocks formed by

selection algorithm

M/D

Basic blocks considered by selection

algorithm

M/D

networking applications 1.13 1.72

telecommunication applications 1.00 1.49

Table 2: Hyperblock formation by the default (D) and modified (M) algorithms

the hyperblock that post-dominates the entry block. The

instructions in such a basic block will always execute if

control flows along the hyperblock.

• Second, the Open64 hyperblock-aware instruction

scheduler constructs a data-precedence graph for the entire

hyperblock and does not move instructions across basic

blocks if the results of the instruction clobber a value in the

live-out set of the destination basic block.

These two properties of the algorithm guarantee that the

modification does not compromise program safety during

instruction scheduling.

4.1.6 Profitability

The modification described in section 4.2.4, the Open64

compiler increased the aggressiveness of the scheduler – in

particular, the compiler was able to consider significantly

more basic blocks as candidates for hyperblock scheduling.

Table 2 lists the additional number of basic blocks that

were considered and hyperblocks that were formed because

of the modification for two classes of applications. Both

application classes contained a set of programs commonly

used in DSPs for wireless communications. In the table, D

refers to the default Open64 algorithm and M refers to the

modified algorithm. The numbers have been normalized to

the default hyperblock algorithm. As can be seen in the

table, the modified algorithm allowed the examination of

basic blocks that would have been rejected by the default

block-selection algorithm. In the next section, we will

discuss a change we made in the code-generator to

effectively handle register-pairs.

4.2 Efficient register pair allocation

Many DSP applications that operate on 64-bit quantity also

need access to the upper half (bits 32-63) or the lower half

(bits 0-31) of the data. This can be problematic on DSPs

that support 64-bit registers by grouping two adjacent 32-

bit registers as register pair. For example, adjacent registers

r0 and r1 can be grouped together as r1:0 to hold a 64-bit

value.

On these architectures, a simple solution to the problem is

to introduce a copy of the upper or lower register to another

register. Introducing a copy can be expensive, especially

when it appears in a tight loop. We want to eliminate this

copy. The allocation of register pairs has been the focus of

prior compiler research [14,15]. However, we wanted to

improve register-pair allocation within the framework of the

Open64 compiler. We were particularly interested in

avoiding drastic changes to the default Open64 allocation

algorithm.

4.2.1 The solution strategy

We decided to handle this problem in the register allocator

since the allocator already performs preference copying.

The allocator recognizes these operations as special pseudo

copy instructions. We introduced 2 pseudo instructions as

follows:

• pseudo_pair_low: source operand is 8-byte TN, result

operand is lower 4-byte of source

• pseudo_pair_high: source operand is 8-byte TN, result

operand is upper 4-byte of source.

Figure 7 shows original program and IR dump after CG

Expand and EBO. EBO recognizes that 8-byte TN242 is

right shifted by 0x20 and replaces it with pseudo_pair_high

instruction. Next, the register allocator needs to recognize

pseudo_pair_high as a special copy and assign TN252 the

same color as the upper register of GTN242. In the next

few sections, we discuss our implementation of this

optimization.

4.2.2 Challenges

Implementation of pseudo register pair optimization proved

to be more difficult than originally anticipated. The Open64

register allocator works in 2 independent phases. First GRA

allocates live ranges which are live across multiple basic

blocks, also known as global live ranges. Next, LRA

allocates live ranges local to every basic block.

The source and result operands of pseudo pair instructions

can be either global or local. Thus, we need to handle the

following 4 cases:

Source Destination Comments

Global Global Both handled in GRA

Global Local Need interaction between GRA and LRA

Local Global Need interaction between GRA and LRA

Local Local Both handled in LRA

 10

Original C code After CG Expansion

extern long long bar(int a, long long b);

extern int baz(long long);

int foo(long long a, int c) {

 long long tmp = c + bar(1, a);

 int retval = (tmp>>32);

 if (c > 0) tmp++;

 return retval + baz(tmp); }

[11] TN249:8 :- asr_i_p TN242:8 (0x20) ;

 [11] TN250:4 :- tfr TN249:8 ;

[11] TN1(r0):4 :- add TN248:4 TN250:4 ;

After EBO

 [11] TN252:4 :- pseudo_pair_high GTN242:8 ;

 [11] GTN1(r0):4 :- add GTN1(r0):4<defopnd> TN252:4

Figure 7: IR before and after CG expand and EBO

This problem is aggravated by the fact that LRA does not

build an interference graph and hence can not reason about

preference copies. To reduce the problem space, we

globalize any local live range which appears in pseudo pair

instruction, provided the other operand is global.

For example, in Figure 8, TN252 will be globalized since it

is the result operand of pseudo_pair_high and the source

operand TN242 is global. After promoting local live ranges

to global, we reduce the original problem to the following 2

cases:

Source Destination Comments

Global Global Both handled in GRA

Local Local Both handled in LRA

4.2.3 Implementation details

We can group most of the changes in the following

categories: Globalize local live ranges, GRA Changes, and

LRA Changes

4.2.3.1 Globalize local live ranges

First, we identify local live ranges that should be promoted

to global by inserting a call to a new function

Identify_Pseudo_Globls in

Create_GRA_BBs_And_Regions for each basic block. In

Identify_Pseudo_Globls, we iterate over each instruction in

the basic block and mark a TN as pseudo global if it is the

source or the destination of a pseudo pair instruction and

the other TN is global. We add a new field pseudo_globls

in bbregs structure to hold promoted pseudo global TNs in

each basic block. Next, pseudo global TNs are added to

GTN_UNIVERSE and the needs_a_register set of

GRA_BB.

After Create_GRA_BBs_And_Regions, all pseudo global

TNs are recognized as globals since they are present in

GTN_UNIVERSE. Create_Live_BB_Sets is called to

populate live basic block sets of each global TN. Since

pseudo globals are not truly global (live only in 1 basic

block), Create_Live_BB_Sets does not account for them.

We populate a pseudo global TN's live set by iterating over

every basic block.

4.2.3.2 GRA changes

We were able to use the existing preference copying

mechanism to handle pseudo pair instructions. The only

modification needed was in the

CGTARG_Is_Preference_Copy function to return TRUE

for pseudo pair instructions. A pseudo pair instruction was

treated like a normal copy instruction that GRA attempts to

remove by preferencing.

4.2.3.3 LRA changes

LRA is expected to be a quick single pass allocation to

color all local live ranges. LRA does not create interference

graph and performs limited preference coloring. To support

pseudo pair instructions, we made the following changes in

LRA:

1. Added a new field preftn_list to live_range structure to

keep track of preferencing TNs.

2. For each basic block, we added a local pass to ensure

that source and result operands of pseudo pair instructions

are defined only once. This is a relatively inexpensive way

of ensuring that source and result operands can preference

each other without building an interference graph.

3. If pseudo pair instructions of the basic block do not

interfere, populate the preftn_list list of each local live

range.

4. Add code to the Open64 function Allocate_Register that

checks if a TN can be preferenced. If a member of a TN’s

preftn_list has been allocated a register, we assign the same

register to the TN.

4.2.4 Performance analysis of efficient register-pair

allocation

We evaluated the impact of the register-pair optimization

on two sets of benchmarks: telecommunication benchmarks

and kernel codes commonly used in DSP applications. On

telecommunication benchmarks, the optimization improved

performance by 3.91% on average. On kernel codes,

enabling the register-pair optimization resulted in an

improvement of 1.77% on average.

 11

5. Summary and conclusion

In this paper we described improvements to Open64 for

state of the art advanced DSP targets. We added support for

DSP-specific C-language extensions and loop

optimizations. We enhanced the register promotion of small

structures and the removal of dead stores in the global

optimizer. We also changed the hyperblock scheduling

algorithm to support DSP architectures that placed

significant constraints on the default block-selection

algorithm. Finally, we described the enhancement done to

the register allocator to efficiently allocate register pairs so

that the register-copies are minimized. Even though the

changes described in this paper are not a complete set of

changes needed to enhance Open64 for DSPs, they proved

to be effective: the modifications improved performance for

embedded programs and also allowed compiler users to

more effectively author DSP applications. The work to

enhance Open64 for DSPs is ongoing and further

enhancements are being looked into. We compared the

enhanced Open64 compiler with a GNU 3.4.6. C/C++

compiler retargeted for the same DSP. On average, the

enhanced Open64 compiler with interprocedural analysis

and optimizations (i.e., IPA) performed 5% to 40% better

(cycle comparison) than GCC 3.4.6. In a few benchmarks,

GCC 3.4.6 performed slightly better than Open64 and we

are investigating the causes.

6. Acknowledgements

Special thanks to Don Padgett and John McEnerney for

their initial effort on retargeting Open64 for the target DSP.

We also thank Sun Chan for some of the valuable

discussion we had with him with different issues in Open64

compiler.

REFERENCES
[1] TMS320C6000 Optimizing Compiler User’s Guide,

spru187l, May 2004.

[2] TMS320C55x Optimizing C/C++ Compiler User’s Guide,

spru281e, March 2003.

[3] C/C++ Compiler and Library Manual, for TigerSHARC®

Processors. Revision 2.0, January 2005, Part Number 82-

000336-03.

[4] Programming DSPs using C: efficiency and portability trade-

offs, Embedded Systems, May 2000.

[5] Extensions for the programming language C to support

embedded processors, ISO/IEC JTC1 SC22 WG14 N1021,

Date: 2003-09-24, Reference number of document: ISO/IEC

DTR 18037.

[6] Open64, http://open64.sourceforge.net/

[7] WHIRL Intermediate Language Specification, whirl.pdf.

http://open64.sourceforge.net

[8] WHIRL Symbol Table Specification,

symtab_Pro64_SGI.pdf. http://open64.sourceforge.net

[9] Bernstein, D., Rodeh, M., and Gertner, I. On the Complexity

of Scheduling Problems for Parallel/Pipelined Machines.

IEEE Trans. Comput. 38, 9 (Sep. 1989), 1308-1313.

[10] Hennessy, J. L. and Gross, T. 1983. Postpass Code

Optimization of Pipeline Constraints. ACM Trans. Program.

Lang. Syst. 5, 3 (Jul. 1983), 422-448.

[11] Gibbons, P. B. and Muchnick, S. S. 1986. Efficient

instruction scheduling for a pipelined architecture. In

Proceedings of the 1986 SIGPLAN Symposium on Compiler

Construction (Palo Alto, California, United States, June 25 -

27, 1986).

[12] Mahlke, S. A. 1997 Exploiting Instruction Level Parallelism

in the Presence of Conditional Branches. Doctoral Thesis.

UMI Order Number: UMI Order No. GAX97-17305.,

University of Illinois at Urbana-Champaign.

[13] Simple Radix-2 FFT code,

http://www.yov408.com/html/codespot.php?gg=36

[14] Daveau, J., Thery, T., Lepley, T., and Santana, M. 2004. A

retargetable register allocation framework for embedded

processors. SIGPLAN Not. 39, 7 (Jul. 2004), 202-210.

[15] Briggs, P., Cooper, K. D., and Torczon, L. 1992. Coloring

register pairs. ACM Lett. Program. Lang. Syst. 1, 1 (Mar.

1992), 3-13

