Explore Be-Nice Instruction Scheduling in Open64 for an
Embedded SMT Processor

Handong Ye Ge Gan Ziang Hu Xiaomi Anf
Guang R. Gao tSimpLight Nanoelectronics, Ltd., Beijing China
University of Delaware, Newark Delaware 19716, 100088
U.S.A xiaomi.an@simplnano.com

{handong,gan,hu,ggao}@capsl.udel.edu

Abstract Many chipmakers support SMT in their high-end products.
A SMT processor can fetch and issue instructions from SOMe examples are, IBM Powers, Sun UltraSparc 3, Intel
multiple independent hardware threads at every CPU cy- Xeon, and Alpha2}464. Now, Fh's trend has been also ex-
cle. Therefore, hardware resources are shared among théended to the architecture design of embedded processors,
concurrently-running threads at a very fine grain level,abhi Which are widely used in hand-held devices. o

can increase the utilization of processor pipeline. Howeve Simultaneous multithreading (1) (2) permits multiple in-
the concurrently-running threads in a SMT processor may dependent hardware threads to share the CPU pipeline re-
interfere with each other and stall the CPU pipeline. We sources when they ex.ecute concurre.ntly. In every CPU cy-
call this kind of pipeline stalinter-thread stall(ITS for qle, a SMT processor is ablg to fetch mst_ruc'uon_s from mul-
short) orthread interlockIn this paper, we present our study tiple hardwa_re t_hreads and issue these instructions irgo _th
on the ITS problem on an embedded heterogeneous gMmTProcessor p|_peI|ne (5). Therefore, hardware resources, i
processor. Our experiments demonstrate that, for some tesfUnctions units, are shared among the concurrently-ruginin

cases50% of the total pipeline stalls are caused by ITS. threads at a very fine grain level, which is an effective
Therefore, we have developed a new instruction schedul- method to improve the utilization of the processor pipeline

ing algorithm calledbe-nice instruction scheduling, based ~'€SOUrces. However, concurrently-running threads in a SMT
on Open64 Global Code Motion, to coordinate the conflicts Processor may interfere, or even conflict, with each other,
between concurrent threads. The instruction scheduler use @nd thus stall the CPU pipeline. We call this kind of pipeline
the thread interference information (obtained by profijing stall asinter-thread stall(ITS for short) orthread interlock

as heuristics to decrease the number of ITS without sacrific- AN TS happens when:

ing the overall CPU performance. The experimental results 1. A function unit, or all function units of the same type, are
show that, for our current test cases the be-nice instmctio occupied. Therefore, the subsequent instructions (from

scheduler can reducks% of the inter-thread stall cycles, different threads) in the issue queue (6) can not be dis-
and increase the IPC of the critical thread 29%-3%. The patched into the pipeline; and

iment f ing th 4 iler in- . . o . :
ﬁ);z?rtgi?es are performed using the Open64 compiler in 2. the occupied function unit is hold by an instruction that

may execute for a long time, like load/store and un-

1. Introduction pipelined floating point operations.

SMT is a very successful architecture design that can effec- IS or thread interlock, essentially, is a kindresource
tively improve CPU utilization (1) (2) in face of the ever hazard that happens between two threads. In the single
increasing long memory access latency (3) and the limits of thread system, a crafty compiler with a smart instruction
instruction level parallelism available in a single threasl scheduler can decrease the probability that resource haz-
ard would happen thus alleviate its effect on CPU perfor-
mance. However, the conventional instruction scheduling a
gorithms (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) only
Permission to make digital or hard copies of all or part of this work ferspnal or take into account the code in one thread when they do in-
classroom use is granted without fee provided that copies are not madsrdyuded . . ;
for profit or commercial advantage and that copies bear this notice and thedtitoit struction scheduling. They assume that the code being com-
on the first page. To copy otherwise, to republish, to post on serveesredistribute piled would run as a single thread program Without consid-
to lists, requires prior specific permission and/or a fee. R . i
CGO 2008 Open64 WorkshopApril 6th, Boston. ering the interference from another concurrent threacsehe

Copyright(© 2008 ACM [Open64 Workshop]. .. $5.00 algorithms can do little to alleviate ITS. This motivatesais

re-study the instruction scheduling problem in face ofiinte 15% of ITS cycles, and increase the IPC of critical thread by
thread stall in SMT processors. 2%-3%.

Generally, ITS may happen in two sets of circum- The paper is organized as follows. Section 2 will intro-
stances:heterogeneous multithreadingnd homogeneous duce the ITS problem using a particular embedded SMT pro-
multithreading Heterogeneous multithreading means that, cessor. We will also give some experimental data in this sec-
among all concurrent threads, a subset of threads (usuallytion to show how CPU performance is affected by ITS. Next,
contains only one thread) perform mission critical jobs, so in section 3, we present our be-nice instruction scheduling
they have higher priorities than other concurrent thregds. algorithm, including profiling and scheduling. In section 4
this reason, the methods used to optimize ITS shall favor thewe will use some micro-benchmarks to verify the effective-
threads with higher priorities and their performances kg2t ness of the new algorithm. Related works will be briefly in-
major metric used to evaluate the effectiveness of the@arti troduced in section 5 and the conclusions are made in section
ular ITS optimization technique (intuitively, the "overpkr- 6. Last, our future work is presented in section 7.
formance” can not be deteriorated too much). On the other
hand, homogeneous multithreading means that all the con-2. Inter-Thread Stall in an Embedded SMT
current threads are equally important. In this condititm t Processor
overall throughput of the system shall be used as the metric

o T.\I_lgluhie tgisrrrﬁo?gtlc;nftlezs“g:.embe dded SMT rocessorsOf JIAN, a dual-threaded SMT embedded processor. Then,
PP P based on this particular SMT processor, we use a real exam-

tsf;ann igntr?aetn:;alevr\rl:gg;jlzzge ilégggss%?lirszg)lreizgslé;r:?urﬁgple to introduce the ITS problem. At the end of this section,
. . . P y we provide some experimental data to show how ITS affects
tion units than its superscalar counterpart, so resouroe co

. : : . CPU performance.
tention on embedded processors is more intensive than on P

superscalar processors In addition, most embedded proces2.1 JIAN: a Dual-Threaded Embedded SMT
sors do not have cache memory. Examples are Motorola Processor

68HC12 (17), Motorola MCore (18), and Texas Instruments
TMS370Cx (19). Even some embedded chips have cache
the prefetch logic is usually not included in the chip be-
cause of its high power consumption and hardware complex-
ity. This would cause more long-latency load operations tha
make ITS a serious problem.

In this paper, our study on the ITS problem is focused
on an embedded SMT processor that supports only in-order
execution. Besides, we restrict our discussion only to the
heterogeneous multithreaded execution.

Our experiments demonstrate that, for some test cases
50% of the total pipeline stalls are caused by ITS. To al-
leviate this problem, we have developed a new instruction
scheduling algorithm calletie-nice instruction scheduling
to coordinate the conflicts between concurrent threads and
therefore reduce the ratio of ITS. First, our be-nice instru
tion scheduler needs to obtain the thread interference-info
mation. So, in the first pass, we profile the multithreaded
program to identify the pieces of code that cause most of the
ITS, and record the runtime status of the processor pipgline
This information is collected, analyzed, and structurdd in
well defined format. In the second pass, itis fed into the com-
piler, just right before instruction scheduling phase. The
struction scheduler uses the thread interference infoomat
as heuristics to try to decrease the number of ITS’s with-
out sacrificing too much the overall CPU performance. We
have performed some micro-benchmark experiments on theDEFINITION 2.1. Heterogeneous multithreading is a non-
Open64 (20) compiler infrastructure. The experimental re- Symmetric thread execution model on JIAN processor. In

sults show that, our be-nice instruction scheduler canaedu this model, two hardware threads perform different types
of tasks, and one thread has higher priority than the other

because it performs mission critical tasks.

In this section, we first introduce the architecture details

JIAN is an embedded processor targeted at wireless multi-
‘media applications. The processor core adopts a simultane-
ous multithreading design that is capable of executing con-
trol, DSP, and multi-media applications in a single instruc
tion set architecture. It provides substantial paralielsnd
high throughput for communication applications in hard-
ware, and at the same time, it still maintains low power con-
sumption, low cost and high-level language programmabil-
ity.

JIAN is a multi-issue super-scalar machine that effec-
tively utilizes and leverages expensive hardware ressurce
and achieve performance goals without requiring too high
a clock frequency. Figure 1 illustrates the structure of the
processor core. JIAN has a unified processor core shared
by domain-specific processing and general control-intensi
processing. The two functional tasks, instead of having the
specific execution resource, are represented by two haedwar
threads which run on the same execution pipeline with dif-
ferent storage space (register file). This allows bettdizati
tion of hardware resources and better load balancing.

Before going into details, we define three terretero-
geneous multithreadingv-thread andg-threadin the con-
text of JIAN SMT processor. The definition of these terms
would make it easy for us to describe the ITS problem. Thus
they are used throughout this paper.

DEFINITION 2.2. a-thread is the hardware thread on JIAN from «-thread is two and the maximum issue width fexr
processor that runs general control-intensive workloditte, thread is three. This is to save issuing logic and register
runtime system or OS. Since these are not mission critical ports. At every cycle, up to two earliest instructions from
jobs, a-thread has lower priority in this heterogeneous mul- a-thread’s instruction buffer and three earliest instrocs
tithreading system. from g-thread’s instruction buffer will go through hazard

. checks. See Figure 2. Up to four cleared instructions will
DEFINITION 2.3. §-thread is the hardware thread on JIAN be selected to enter execution blocks at the next cycle. If

processor that runs domain specmc Workloads_, I_|ke D_S_P’ everything is equal, i.e. all five instructions are clearéd o
mpeg4 encode&decode, etc. Since these are mission cr|t|calhazard S-thread has a higher priority tham-thread. That
jobs, -thread has higher priority than-thread. means three instructions froptthread and one instruction
On the JIAN processor, thiseterogeneityis reinforced in ~ from a-thread will be issued.

hardware. See the next paragraph for details. While the execution engine is unified and shared for two
threads for better load balancing and hardware utilization
To I-Cache From |I-Cache .) .
) | §torage such as r_eglster file has to be separateq. The registe
’_fj H—\ Instruction W file of 32x32-bit is used for thex-thread to be like many
P?‘O ?’Cl Buffer Coztrol typical RISCs. The smaller 16x32-bit is used fthread.
Ftc _ 2.2 Inter-Thread Stall in Heterogeneous
Lﬁ nstucin Multithreading
The current implementation of JJAN SMT architecture has
i I I } one load/store unitl(S), one ALU unit ALU), one hybrid
[Ls] [ALU] ALU_LS] [Macm Fur@ function unit that can do both load/store and ALALU_LS),
1 ! ! ! and several macro function units which perform a specific
i l kernel routine, like FFT or Viterbi. See Figure 1 for details
soxazhi Lox32bit Currently, our study of the ITS problem is focused on the
GPRO GPR1 three simple functional units: LS, ALU, and ALUS. To

make the problem easier to understand, we use the classical
5-stage pipeline to illustrate how ITS happens in the JIAN
processor core. The five pipeline stages are denotdH,as
ID, EX, MEM, WB. These are very well known abbrevia-
tions, so we do not need to explain their meaning here.
Instr from I-Cache The two pieces of code below is a runtime snapshot of
i Pjgelect } the status of the instructions in the pipeline._ These code
Threado | Threadt are dumped put frorr_1 the JIAN performance simulator. The
Instruction | Dufull - buf_ful | nsruction first group of instructions are from-thread, and the second
(8-entry) (8-entry) group of instructions are fromi-thread.

Figure 1. JIAN: Dual-Threaded SMT Processor Core Ar-
chitecture

u

| From a-thread |

Iu%rzeaaﬁo chk_stats | | chk_statg L%&eaaﬁl 1 FU. LS MEM | dwi6 r31,r1l #m ss
¢ Che 12 FU: ALULS MEM add16.i r3,1

thrfinst [From j-thread |

select |13 FU: ALULLS EX add16.i r10, 4
issue selecte 4 FULS ID Idw r24,r2, -8
EEEE 5 FU: ALU I D add16.i r3,1
4 16 FU ALULS ID Idw r25,r10, -4

to execution units

Figure 2. JIAN: Thread Control and Management Figure 3. An Inter-Thread Stall Example

Every cycle, four instructions from one thread are fetched = The comment#missat the end of I1 indicates that a
from the I-Cache into the thread’s instruction buffer. The cache miss happened when instruction 11 was executing on
two threads are alternated during instruction fetch. Irt tha LS Since JIAN is an in-order machine (in-order issue, in-
case, only one thread’s instructions will be fetched every order execution, and in-order commit), 12 was also stalled o
cycle. Because the processor core is an in-order machine ALU_LS. Therefore, all function units that can do load/store
only the earliest instructions will be checked to see if they operations are occupied. This made the instrucitions fem
can be issued or not. Currently, the maximum issue width thread, i.e. 14&16, could not be issued to the function units

that were assigned to them. So, the cache misstinread (control, data, or resource) caused by preceding instmsti

stalleds-thread, which is nameld’ S in the samethread. As we all know, intra-thread stall plus
As we have mentionedy-thread ands-thread are not ITS account for all stall cycles in the execution@®thread.
equally importants-thread always has higher priority than Figure 4 is the stall cycle breakdown for alithreads of

a-thread, thus we care for the performancesehread more seven micro-benchmarks. k2, 37.75% (the lowest) stall
thana-thread. So, this kind of ITS is what we intend to avoid cycles are ITS cycles, and k&3, 63.40% (the highest) stall
at runtime. cycles are ITS cycles. In average, for all benchmark®%

ITS is caused by long-latency instructions executed on of all stall cycles are ITS cycles. This means that ITS ac-
SMT processors. These instructions usually are cache-misscounts for a significant proportion of performance degrada-
load and non-pipelined floating point operations. Theereti tion. This also indicates thai-thread is equally stalled by
cally, the amount of performance degradation caused by ITS a-thread (ITS) and itself (intra-thread stall).
is decided by three factors: These data are obtained from the inside of JIAN per-
formance simulator. At every CPU cycle, the simulator can
check whethers-thread is stalled. If it detects that the
)) _ thread is stalled, it can analyze the status of each pipeline
2. The number of function units occupied by the same giage to see whether this is an intra-thread stall or ITS. If i

1. The number of long-latency instructions executed per
time unit

thread when it executes the long-latency instructions. s an TS, a finite state automata will be started to record all
3. The number of idle cycles caused by the long-latency microarchitecture status changes at each following CPU cy-
instruction. cle, until the stall disappears, thus obtains the lengtinisf t

pipeline stall. Because in JIAN architecture, the insiinr

On a general SMT processor, any thread may lock any i L -
other concurrent thread. In our case, a heterogeneous dual?’® issued, executed, and retired in order, only one firate st

threaded SMT processor, we care the performancg-of automata is needed.
thread more than the performance wthread, becausg-

thread usually run mission critical jobs. In the next settio 3 A Be-Nice Instruction Scheduling
we will present some experiment data to show how ITS af- Algorithm

fects program performance.
In the last section, we introduced the ITS problem, and

2.3 How Inter-Thread Stall Affects the Performance of demonstrated how it degrades the performancg-tiread

(-thread in JIAN - a heterogeneous multithreaded system. In this sec-
tion, we will propose a new instruction scheduling algarith
that can reduce the number of ITS. Since this method boosts
the performance of one threa@-thread) through instruction
scheduling in the other thread-thread), we call ibe-nice
instruction scheduling.

100%

90%

80%

70%

60%

c0% | 3.1 The Be-Nice Instruction Scheduling Framework
There are several hardware approaches that can either elim-
inate a certain number of ITS or alleviate their adverse im-
pact to the performance gfthread. First, the issue logic of
the processor can be improved such that instructions ffem
thread would not be issued into the functional unit that-is al
K1 k2 k3 k4 kB kB k7 ready hold by a long-latency instructiondnthread. Second,
Kernel Benchmarks people can adopt an out-of-order issue & execution engine
instead of an in-order one, so the successive independent in
structions can be issued and executed even if the previous
instructions are stalled. Third, hardware can use some kind
of prefetching mechanism to reduce the number of cache
Before we start thinking of the solution for the inter- miss, therefore reduce the number of long-latency load-oper
thread stall (or ITS for short) problem, it is very helpful ations. All these hardware solutions require extra complex
to know whether ITS affects the performance @thread ity in hardware design, and demand disproportionally high
significantly, especially how it compares with other simila power consumption, which is not acceptable for an embed-
performance degradation factors. In an SMT processor like ded processor. High-end SMT processors can use these hard-
JIAN, there are roughly two types of pipeline stalls: intra- ware approaches to solve the ITS problem. For an embedded
thread stall and ITS. Intra-thread stall is the pipelineandz ~ SMT processor like JIAN, we would prefer to using a power

40% A

30% -

20% A

Percent of idle cycles: ITS vs. Non-ITS

10%

0% -

Figure 4. Stall Cycle Breakdown ofB-thread: inter-thread
stall vs. intra-thread stall

efficient method - static instructions scheduling at compil information contained in thénterference record filés an

time. array which looks like this:
The new instruction scheduling algorithm consists of four 5 5 5
StepS: [(Ii17lﬁa7-k1)a(Ii271%7Tk2)7"'7(IilaI;);aTkl)a"'} (2)

1. Use the SMT simulator to identify the code sequences ot gl interference records will be used to direct instruc-

in the two threads that would interfere with each other (o scheduling. We will filter out some records according to
frequently. Atthe same time, the interference information ,ese criteria:

will be collected and dumped into a file, which is called] 3 i

interference record file 1 bFolr an mtir;erence_recofr(dilalg,Tklr)], if dIil does not

, _ elong to thehot portion of code in3-thread;

2. The interference records are analyzed offline. Not all g. P 4 s))
interference records are useful, and only part of them will 2. For an interference record; , I7, 7,), if 7i, is smaller

be analyzed and interpreted to make annotation possible ~thant - the penalty threshold, which is a configurable

and easy. parameter;

3. At the second round compilation farthread, the inter- 3. For an interference reco(c_If, 15, m,), if the frequency
ference record file is read and used to annotate the in- that Ij appears in the interference array is not big
structions before scheduling. enough.

4. When performing instruction scheduling, instructions Among all the above criteria, the last two is configurable.

that cause many ITS will be lazily scheduled according Currently, thelTS penalty thresholdsed in the second cri-

to the annotation. teria is set to 5, and as to the third criteria, 25% of the least
frequent/s, are removed. Later, we merge all interference
records with the samé& to one record. The ITS penalty of
the new record is the arithmetic mean of the ITS penalties
in the old records. Therefore, we get a new version of thread
interference file which contains an array of records liksthi

The goal of profiling is to obtain the accurate thread inter- 7). (5 72), o (05575, ©)
ference information that can be used (as heuristics) by the For each record in this file, we malfy back to the as-
instruction scheduler. Thread interference informatieltlst ~ sembly code and get the information that can be used by
where ina-thread ands-thread that ITS happened; the num- compiler, i.e. a triplet X7, Y, Z°P), which are used to
ber of idle cycles caused by the ITS; the functional unit$ tha denote thePU number, theBB number and th©P number
were blocked in the ITS; and the instructions (in beth in Open64 code generator. So, the final version of interfer-
thread angs-thread) that were stalled in the ITS. In this pa- ence file becomes an array of records:

per, we only focus on the ITS problem in the context of the

So be-nice scheduling is only applied dethread, ands3-
thread isn’t re-scheduled any more. In the next several sec-
tions, we will introduce how each step is performed in de-
tails.

3.2 Profiling and Analysis

heterogeneous multithreaded SMT processor, i.e. thesstall — [(X?*, Y, Z7P), 7)), ..., (X, Y22, Z2P), %), .. (4)
happened ins-thread due to the long latency operations in
a-thread. Finally, these records will be used to annotate the corre-

Thread interference information is collected by JIAN pro- Sponding OP to direct the instruction scheduling.
cessor, and we have implemented this feature in the per-
formance simulator. When the simulator detects an ITS, it
records the necessary machine states and program states. [hhe annotation of ITS information and be-nice instruc-
order not to slowdown the simulation too much, we only tion scheduling are performed in the code generator of the
record the address of the first instructiondrthread thatwas ~ Open64 compiler (20). The flow chart in Figure 5 outlines
blocked because of the ITS; the address of the instruction inthe framework of the Open64 code genera@ for short.
a-thread that caused the ITS; and the number of idle cycles. It shows the order of each important optimization phases

Formally, thread interference information consists of an performed in it. Open64 CG has its own intermediate repre-

array ofinterference recordAn interference record is de- sentation, calle€€GIR It is expanded fronWHIRL, which
fined as triplet: is the major intermediate representation of Open64 used in

(If,fj‘ﬁk) 1) VHO, IPA/IPO, LNO, andWOPT CGIR is a language that
is very close to the target machine language. Each CGIR
The first elemenff is the address of the first instruction in operation can be mapped directly to a machine instruction.
[-thread that was blocked ky-thread. The second element The operations in CG are partitioned to basic blodB for
I3 is the address of the instruction that caused ITS. The short) and basic blocks are connected by direct arcs that de-
third elementr;, is the penalty caused by the ITS. So, the note correct control flow relationships.

3.3 Annotation and Instruction Scheduling

S input : unscheduled PU
! Annotation output: scheduled PU
! 2.1 foreach unscheduled loop bodyoop_body in the
I be-nice scheduling in GCM current PUdo
Exte'n = 22 initialize candidate listand_list of the current
Ostli?%lzer |00p,b0dy)
X 23 | while there are unscheduled OPs oand_list
o I be-nice scheduling in LCM do
Loop Optimizations 2.4 cand_op « select the best OP from
N cand_list ;
Software | | Loop 25 if (cand_op is annotated) &&
(cand_op.slack > 0) then
t ! 26 cand_op.slack ——;
S 27 temp_op «cand_op ;
28 cand_op < the next best OP from
Figure 5. Annotation and Scheduling in Open64 Code Gen- cand_list ;
erator 2.9 puttemp_op back tocand._list ;
2.10 end
2.11 if cand_op # NULL then
input : PU without being annotated 2.12 if cand_op is not annotatedhen
input : An array of thread interference records 213 G rcul ar Schedul e(cand_op,
output: PU with OPs that are annotated loop_body) ;
. . 2.14 end
11 ;orrrz?/cdhoRecord in the thread interference record)15 EqUpGodeNbt i on(cand_op,
1.2 BBnum < Record.BBnum ; loop-body) ; .
' ‘ ' 2.16 EgDownCodeMdt i on(cand_op,
13 OPnum « Record.OPnum ; loop_body) ;
1.4 slack — ConpSl ack(Record.Penalty) ; 217 end
15 OP «— Fi ndOP(BBnum, OPnum) ; 218 updatecand._list ;
16 Mark OP as annotated 219 end
17 OP.slack «slack ; 220 end
L8 end Algorithm 2 : be-nice instruction scheduling
Algorithm 1: Annotate Thread Interference Infor-
mation

In the Global Code Motion phase, thlackvalue in each
annotated operation is used as heuristic to direct theliostr
There are two passes of instruction scheduling in Open64 tion scheduling. Algorithm 2 shows the procedure. The algo-
CG, the global code motion (GCM) phase and the local in- rithm treats each loop body in the PU as a scheduling unit,
struction scheduling (LIS) phase. Be-Nice algorithm aggpli from inner most to outer most. For each loop body, it first
to both phases, and Algorithm 2 demonstrates how to do it create the initial candidate list, which consists of instians
in GCM. We annotatéT S informationon the corresponding that are ready to be issued into the pipeline (which means
instructions just before global code motion. Since we only their control and data dependence relationships are satis-
perform be-nice instruction scheduling fefthread, we only fied). The algorithm tries to issue each instruction in the-ca
do annotation on the code afthread, not3-thread. The an- didate list one by one, following an priority order determih
notation algorithm is shown in Algorithm 1. The algorithm by a particular heuristic. If an annotated instruction was s
has two inputs, the current PU under processing and the as{ected from the candidate list, it checks that if #lackvalue
sociated thread interference information, which is anyarra of the instruction is zero. If zero, the annotated instirtti
of ITS records as shown in Equation (4). The algorithm tra- is scheduled as a normal instruction. Otherwise, decrésse i
verse each record in the array. It easily locates the OP basedlack value and put the annotated instruction back to the can

on the PU numbeUnun) and BB numberBBnun) given didate list, and another instruction is selected from thelca
by the ITS record, and then it needs to compute dlaek date list for scheduling. The annotated instruction onlggyo
valueusing a certain heuristic approach. T8lack valuede- through equivalent upward code motion or equivalent down-

cides how late that the operation would be scheduled. ward code motion, but not circular scheduling (21), which is

a light-weight software pipeline algorithm other than mod- —
ulo scheduling (22). The candidate list is updated after the ki
selected instruction has been scheduled. i
The slack value of each annotated operation prevent 35000
the ITS instructions from being scheduled too aggressively
Therefore, the algorithm creates a certain amount of slacks
in a-thread to makes-thread less likely to be stalled by
thread. In the next section, we will use some experimental Tt
data to show how be-nice instruction scheduling can improve 100001
the throughput ofs-thread.

30000

5000

mw/o B-N
ow/ B-N

[

0000

#ITS Idle Cycles

5000 -

k-1 k-2 k-3 k-4 k-5 k-6 k7
Kernel Benchmarks

4. Experiment Results

In order to verify the effectiveness of be-nice instruction Figure 6. The Number of Inter-Thread Stall Cycles j#
scheduling, we performed a series of experiments on a JIAN thread: w/ Be-Nice Scheduling vs. w/o Be-Nice Scheduling
performance simulator using seven micro-benchmarks. Cur-

rently, all micro-benchmarks are hand-write code. Each

benchmark consists of two threads, running on JIAN sim- phenchmarks except-2 got > 10% decrease in the number
ulator asa-thread andj-thread, respectively. of ITS cycles. The biggest improvement was obtained on
The simulator used in our experiments is a cycle accu- .7 whose ITS cycles reducef%. The smallest one i&-
rate performance simulator that models JIAN architecture & 2 \hich only got3% improvement. The average i$%.
micro-architecture described in section 2. In additionfte t Thjs result indicates that our be-nice instruction schiedul
processor core, the simulator also simulates two caches, th method can effectively reduce ITS cyclesdrthread.
instruction cache (I-Cache) and the data cache (D-Cache).
The 32KB I-Cache is partitioned into two banks (16KB for
each) for each thread. To reduce external memory transac-|
tion, the 16KB D-Cache is a write-back cache. Since all "]

data used bys-thread are streaming datgé;thread is not - W

designed to use D-cache. Instead, it use a piece of on-chip| 27 u

memory to help it to hide the memory access latency. This |, ' W I
= ow/ B-N

on-chip memory is dedicated t@thread.a-thread use the 08 1
D-Cache, and its miss penalty is 20 cycles. 06 1 m
In the simulator, we do not allove-thread issue two 041 =
memory operations or two ALU operations at the same cy- 021 —
cle, which means that-thread can issue a single load, or a 04 L
single ALU, or an ALU plus a load. The simulator models S T
an in order machine, and at each cycle it first updates the sta-
tus of pipeline, from WB stage to ID stage, and then it take — . - .
the instructions from the buffer to feed into the ID stage of Figure 7. IPC Improvement with Be-Nice Instruction
relative FUs if the resource is available. ITS can be detecte Scheduling
when the simulator scans and updates the status of pipeline
stages. Therefore, the simulator can record all the inferma Figure 7 shows the instruction issue rate improvement of
tion necessary for profiling. [-thread. The metric on y-axis is IPC: instruction per cycle.
We used Open64 compiler to compile each benchmark The bars with deep color represent the IPC of the code with-
twice. In the first pass, we run the binary to collect the tdrea out be-nice instruction scheduling, and the bars with light
interference information; in the second pass, we applied th color represent the IPC of the code with be-nice instruction
be-nice instruction scheduling with the knowledge of threa scheduling. Since this is an in-order issue processor, abne
interference information collected in the first pass and tun ~ the benchmarks have IPC bigger than 2. The improvements
again. The details about how to do profiling and scheduling of IPC range fron0.63% to 4.90%. Average is2.37%, not
are presented in section 3. a significant improvement. We think the reason is that our
We compared the performance data of two versions of benchmarks are still too small and can not run for a long
binary code: the one with be-nice instruction scheduling time.
and the one without be-nice instruction scheduling. Figure However, the average performance has a small decrease
4 shows the absolute number of ITS cycles that were de-about2% on a-thread, because it has a lower issue rate in
creased after we applied be-nice instruction schedulidlg. A Be-Nice scheduling. Since this is an heterogeneous mgltrea

ing environment, we are OK with this trivial performance 6. Conclusion

decrease. In the previous sections, we discussed the ITS problem

in a heterogeneous multithreaded SMT embedded proces-
5. Related Works sor. We demonstrated that ITS caused many idle cycles in
the thread that execute mission critical code. Instead of us
ing the traditional hardware-based approach, we proposed a
static compiler optimizing technique callée-niceinstruc-
tion scheduling to solve this problem. The experimental re-
sults show that thbe-niceinstruction scheduling can effec-
tively reduce the number of ITS happened at runtime. And
therefore increase the throughput of the critical thredwe T
advantage of our approach is that it avoids adding more com-
plicate hardware logics in the processor as the previous so-
lutions. This makes a lot of sense for an embedded SMT
processor that has very tight power budget.

In order to increase the pipeline utilization and improve th
overall throughput, many people have studied the thread sen
sitive scheduling problem on simultaneous multithreading
processors (23) (24) (25) (26). However, they either adopt
a hardware approach (23) (25), or try to explore the thread
scheduling policies in operating system (24) (26), instafad
instruction scheduling methods in compiler.

In (23), the SMT processor under consideration supports
eight concurrent threads and can fetch up to eight instruc-
tions from one thread each cycle. The authors have studied
many diverse instruction fetch schemes - either fetch four
instructions from two different threads, or fetch two ingsty
tions from four different threads, etc. Meanwhile, threads 7. Future Work
given priorities based on their characteristics of workloa N this paper, our discussion of ITS is restricted to an ideor
the length of instruction queue, or the likelihood of branch issue embedded SMT processor. We haven't yet studied this
mis-prediction and cache miss. (25) extended the work in Problem carefully on the general SMT processors that sup-
(23) with a thread sensitive instruction scheduler thasuse Port out-of-order issue & execution (28). The reason is,that
the ready-instruction-count (RIC) metric. The RIC metsci With more function units and the flexibility of speculative
a dynamic and real-time metric that quantifies the urgency execution, the effect of ITS would be alleviated.
of a thread for CPU resources. Instruction issue is first per- In the next step, we will study the impact of ITS to the
formed at the intra-thread phase in the partitioned instruc CPU performance of general SMT processors that support
tion gqueue (27)' then at the inter-thread phase, in which out-of-order execution. At the same time, we will extend our

the thread-sensitive scheduler perform thread-senstbe be-nice instruction scheduling to do cross-thread insimac
policy. scheduling and solve the problem in a more general frame-

The above methods are hardware-based solutions. Theywork. We will also study the method that can profile a mul-
try to implement the thread sensitive instruction schedpli tithread program running on a SMT processor to identify the
in front-end of processor pipeline, i.e. fetch units andigss ~ Places in the code that would trigger most of the harmful
scheduler. These hardware costs are heavyweight which cadTS. In addition, we also want to extend our study to homo-
not be afforded by a low-power embedded chip. geneous multithread execution.

In (24), operating system uses the thread-behavior feed-
back information to choose the set of threads that can ACknowledgments
best utilize the CPU resources to try to maximize proces- The author would like to acknowledge SimpLight Nanoelec-
sor throughput. The thread-behaviors taken into considera tronics Co. Ltd for providing us the simulator and toolchain
tion are cache (L1 or L2) miss rate, IPC, characteristic of on which we can conduct our research on this problem. First
workload (integer or floating point intensive), etc. Di@t and foremost, we thank Sun Chan for his wisdom that direct
thread-sensitive scheduling schemes are experimented ands in the research. We also thank Xiaomi An and Lin Ma for
compared with those thread-oblivious scheduling schemes.giving us the benchmarks.
(26) investigates the problem that how the contention for
shared resources affect the overall system throughput. TheReferences
auth_or found that the contention for L2 cache has .the_gr(.aat— [1] Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneonal-
est impact on system performance. Based on this finding, " jithreading: Maximizing on-chip parallelism. In: Proceedings
a balanced-set scheduling principle is adopted. It tries to of the 22nd Annual International Symposium on Computer
schedule a group of threads whose combined working set Architecture, Santa Margherita Ligure, Italy, ACM SIGARCH

has no problem to fit into L2 cache. and IEEE Computer Society (1995) 392—4D8mputer Archi-
The above OS-based thread-sensitive scheduling and our tecture News23(2), May 1995.
compiler-based thread-sensitive instruction schedwigg- [2] Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm,.R.L

rithm are perfectly complement to each other. The OS-based Tullsen, D.M.: Simultaneous multithreading: A platform for
methods try to solve the resource contention problem at the next-generation processors. |EEE Midr¢(5) (1997) 12-19

thread level, while our method works at instruction level, [3] Saulsbury, A., Pong, F., Nowatzyk, A.: Missing the mem-
which is more fine grain. ory wall: The case for processor/memory integration. In:

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Proceedings of the 23rd Annual International Symposium on [14] Bernstein, D., Cohen, D., Krawczyk, H.: Code duplication:

Computer Architecture, Philadelphia, ACM SIGARCH and
IEEE Computer Society (1996) 90-1@lomputer Architec-
ture News24(2), May 1996.

Wall, D.W.: Limits of instruction-level parallelism. In: Pro-
ceedings of the Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, Santa Clara, California, ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society (1991) 176-188
Computer Architecture New49(2), April 1991; Operating
Systems Review25, April 1991; SIGPLAN Notices26(4),
April 1991.

Laudon, J., Gupta, A., Horowitz, M.: Interleaving: A mul-
tithreading technique targeting multiprocessors and worksta-
tions. In: Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, ACM SIGARCH,
SIGOPS, SIGPLAN, and the IEEE Computer Society (1994)
308-318Computer Architecture New22, October 19940p-
erating Systems RevieW@8(5), December 1994SIGPLAN
Notices,29(11), November 1994.

Ponomarev, D.V., Kucuk, G., Ergin, O., Ghose, K., Kogge,
P.M.: Energy-efficient issue queue design. IEEE Trans. Very
Large Scale Integr. Syst1(5) (2003) 789-800

Gibbons, P.B., Muchnick, S.S.: Efficient instruction schedul-
ing for a pipelined architecture. In: Proceedings of the SIG-
PLAN '86 Symposium on Compiler Construction, Palo Alto,
California, ACM SIGPLAN (1986) 11-16IGPLAN Notices,
21(7), July 1986.

Fisher, J.A.: Trace scheduling: A technique for global mi-
crocode compaction. IEEE Transactions on Compl36¢g)
(1981) 478-490

Fisher, J.: Global code generation for instruction-level par-
allelism: Trace scheduling-2. Technical Report HPL-93-43,
Hewlett-Packard Laboratories (1993)

Hwu, W.M.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warte
N.J., Bringmann, R.A., Ouellette, R.G., Hank, R.E., Kiyohara,
T.,Haab, G.E., Holm, J.G., Lavery, D.M.: The superblock: An
effective technique for vliw and superscalar compilation. The
Journal of Supercomputing(1-2) (1993) 229-248

Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann
R.A.: Effective compiler support for predicated execution us-
ing the hyperblock. In: Proceedings of the 25th Annual Inter-
national Symposium on Microarchitecture, Portland, Oregon,
ACM SIGMICRO and IEEE-CS TC-MICRO (1992) 45-54
SIG MICRO Newslette23(1-2), December 1992.

Bala, V., Rubin, N.: Efficient instruction scheduling using fi-
nite state automata. In: Proceedings of the 28th Annual Inter-
national Symposium on Microarchitecture, Ann Arbor, Michi-
gan, IEEE-CS TC-MICRO and ACM SIGMICRO (1995) 46—
56

Beaty, S.J.: Genetic algorithms and instruction scheduling. In:
Proceedings of the 24th Annual International Symposium on
Microarchitecture, Albuquerque, New Mexico, ACM SIGMI-
CRO and IEEE-CS TC-MICRO (1991) 206-211

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24] Parekh, S., Eggers, S., Levy, H., Lo, J.:

[26] Fedorova, A., Seltzer,

An assist for global instruction scheduling. In: Proceedings
of the 24th Annual International Symposium on Microarchi-
tecture, Albuguerque, New Mexico, ACM SIGMICRO and

IEEE-CS TC-MICRO (1991) 103-113

Bernstein, D., Rodeh, M.: Global instruction scheduling for
superscalar machines. In: Proceedings of the ACM SIG-
PLAN '91 Conference on Programming Language Design and
Implementation, Toronto, Ontario (1991) 241-25K5PLAN
Notices,26(6), June 1991.

Bradlee, D.G., Eggers, S.J., Henry, R.R.: Integrating regis
ter allocation and instruction scheduling for RISCs. In: Pro-
ceedings of the Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, Santa Clara, California, ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society (1991) 122-131
Computer Architecture New49(2), April 1991; Operating
Systems Reviev25, April 1991; SIGPLAN Notices26(4),
April 1991.

Motorola Corporation: CPU12 Reference Man-
ual (2000) http://e-www.motorola.com/ brdata/
PDFDB/MICROCONTROLLERS/16BIT/68HC12FAMILY/
REFMAT/CPU12RM.pdf.

Motorola Corporation: M-CORE - MMC2001 Reference
Manual (1998) http://www.motorola. com/ SPS/MCORE/info
documentation.htm.

Texas Instruments: Tms370cx7x 8-bit microcontroller (1997)
http://wwws.ti.com/ sc/psheets/ spns034c/spns034c.pdf.

SGI: Open64 compiler URL
http://www.open64.net (2008)

Jain, S.: Circular scheduling: A new technique to perform
software pipelining. In: Proceedings of the ACM SIGPLAN
'91 Conference on Programming Language Design and Im-
plementation, Toronto, Ontario (1991) 219-238GPLAN
Notices,26(6), June 1991.

Lam, M.: Software pipelining: An effective scheduling tech-
nigue for VLIW machines. In: Proceedings of the SIG-
PLAN '88 Conference on Programming Language Design and
Implementation, Atlanta, Georgia (1988) 318—-3&PLAN
Notices,23(7), July 1988.

Tullsen, D.M., Eggers, S.J., Emer, J.S., Levy, H.M,, L&, ,J
Stamm, R.L.: Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading processor.
In: ISCA. (1996) 191-202

and tools.

Thread-seresitiv
scheduling for smt processors. Technical Report 2000-04-02,
University of Washington (2000)

[25] Robatmili, B., Yazdani, N., Sardashti, S., Nourani, M.:

Thread-sensitive instruction issue for smt processors. |IEEE
Comput. Archit. Lett3(1) (2004) 5

M., Small, C., Nussbaum, D.:

Throughput-oriented scheduling on chip multithreading sys-
tems. Technical Report TR-17-04, Computer Science Group,
Harvard University, Cambridge, Massachusetts (2005)

[27] Goncalves, R., Ayguade, E., Valero, M., Navaux, P.: A simula

tor for smt architectures: Evaluating instruction cache topolo-

gies. In: 12th Symposium on Computer Architecture and High
Performance Computing. (2000) 279-286
[28] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A

Quantitative Approach. 2nd edn. Morgan Kaufmann Publish-
ers, Inc., San Francisco (1996)

