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Abstract  
The lack of tools that provide performance feedback at a level of 
abstraction programmers can relate to makes the problem of per-
formance prediction and portability extremely difficult.  Pro-
grammers have no simple way of knowing what programming 
constructs significantly effect performance in today’s machines, 
much less in machines that are under development and are not 
readily available.  We describe an Open64-based compiler ap-
proach to the problem of performance prediction and architecture 
sensitivity analysis done at a source-level. Our analysis tool ex-
tracts the computation’s high-level dataflow-graph from the 
code’s WHIRL representation, and uses source-level data access 
patterns information as well as register needs to derive perform-
ance bounds for the program under various architectural scenar-
ios. The end result is a very fast performance prediction as well as 
insight into where performance bottlenecks are. We have experi-
mented with a real code engineers and scientists use in practice – 
a sparse matrix-vector multiplication kernel. The results correlate 
very well with the execution of the code on a real machine and 
allow programmers to understand the performance bottlenecks 
without having to engage in very low-level instrumentation analy-
sis.  

Categories and Subject Descriptors C.4.3 [Performance of 
Systems]: Measurement techniques, modeling techniques, per-
formance attributes  

General Terms:  Measurement, Performance. 

Keywords  performance prediction and modeling; program 
analysis; architecture modeling; Open64 

1. Introduction and Background 
Modern high-end computers present a complex execution envi-
ronment that makes performance understanding and performance 
portability extremely difficult. Programmers go to extreme lengths 
to manually apply various high-level transformations (most nota-

bly loop-unrolling) in an attempt to expose more Instruction-Level 
Parallelism (ILP).  Exploiting ILP allows the compiler to take 
advantage of micro architecture features such as pipelining, super-
scalar and multi-core characteristics. The lack of performance 
prediction and analysis tools that can provide meaningful per-
formance feedback leave the programmer in an unfortunate situa-
tion. Without understanding why the performance is what it is, the 
programmer is forced to search for the best possible transforma-
tion sequences by trial and error. At best, existing performance 
understanding tools provide feedback at a very low level of ab-
straction – such as cache miss rates – that provide no clue as to 
what architectural bottlenecks, if any, lead to such results.  

Earlier approaches to performance modeling and understand-
ing were purely empirical. Researchers developed representative 
kernel codes of large-scale applications such as the NAS Parallel 
[8] and the SPEC [9] benchmarks. By observing the performance 
of these kernels on a given machine one could extrapolate in a 
qualitative fashion the performance behavior of a real application. 
More recently researchers have developed models for the per-
formance of parallel applications by examining their memory 
behavior [5,6]. Other work has focused on modeling the behavior 
of an application by first accurately characterizing the running 
time of the sequential portions of the application.  This is done by 
using analytical modeling, based on intimate knowledge of the 
application's mathematics, in addition to empirical observations to 
extract the corresponding parameter values [7]. On the other end 
of the spectrum, cycle-level simulators for architecture perform-
ance understanding at a very low level are simply too slow for 
realistic workloads. As a result the simulations tend to focus on a 
minute subset of the instruction stream or use sampling techniques 
and are thus limited to very focused architectural analyses. 

This paper describes an alternative approach to the problem of 
performance prediction and architecture sensitivity analysis using 
source level program analysis and scheduling techniques. An 
architectural overview of the tool is given in Figure 1. Our ap-
proach looks at the High-Level (HL) WHIRL tree and isolates the 
basic blocks of the input source program.  It then extracts the 
corresponding high-level data-flow graph (DFG) information.  
Using high-level information about the data access patterns of 
array references, it determines the expected latency of memory 
operations. Once the DFG of each basic block - most notably the 
ones in the body of nested loops - is extracted, the compiler tool 
uses a list-scheduling algorithm to determine the execution time 
of the computation. This scheduling makes use of the DFG as well 
as a number of other tunable architecture parameters, such as the 



number of load/store or arithmetic units, the number of available 
registers and specific operation latency values.  

We have developed our tool based on the Open64 compiler in-
frastructure [3], and experimented with this approach using the 
CG sparse matrix-vector multiplication kernel, a synthetic kernel 
from the original NAS benchmark set. Using this computational 
kernel our tool determines qualitatively that in the absence of loop 
unrolling no more than three functional load/store units are 
needed to attain a level of performance that is consistent with the 
critical path of the computation (see figure 5). When the core is 
unrolled by a factor of 8 no more than four functional load/store 
units are needed (figure 6). In the context of a multi-core architec-
ture, this information would allow a compiler to adjust the 
concurrency in the generated code to match the target architecture 
resources, in some cases even by dynamically adapting its run-
time execution strategy to unroll just the required amount depend-
ing on the available units.  

The remainder of this paper is organized as follows. In the next 
section we describe in more detail the technical approach of our 
tool and how it provides performance predictions and architectural 
sensitivity analysis. Section 3 presents the experimental results for 
our case study application - the NAS CG kernel code. We present 
concluding remarks in section 4.  

2. Technical Approach 
We now describe the details of our technical approach to the prob-
lem of performance prediction and sensitivity analysis.  Using 
high-level WHIRL source code information, static compiler data 
and control- dependence analysis techniques, we can determine 
performance bounds and performance sensitivity in a fraction of 
the time it takes to run the actual code. 

2.1 Basic Analyses: Data-Flow Graph (DFG) 

This analysis tool extracts the basic blocks at the source code 
level by inspection of the compiler intermediate representations in 
WHIRL. Because the front-end of the compiler does perform 
some deconstruction of high-level constructs, most notably while-
loops, it is not always possible to map the intermediate representa-
tion constructs back to source code constructs. Despite some of 
these shortcomings the front-end does keep track of line number 
information that allows the tool to provide reasonably accurate 
feedback to the programmer. 

For each basic block the compiler extracts a data-flow graph, 
accurately keeping track of dependencies (true-, anti-, input- and 
output-dependencies) via scalar variables and conservatively as-
sume that any reference to an array variable may induce a de-
pendency. In some cases, the compiler uses data dependence 
analysis techniques (see e.g., [4]) to disambiguate the references 
to arrays and thus eliminate false dependences in the DFG. In the 
current implementation we make the optimistic assumption that 
arrays with distinct symbolic names are unaliased. While this 
assumption is clearly not realistic in the general case, it holds for 
the Fortran kernel code in our controlled experimental results.   
Future revisions will handle cases where symbols can be aliased. 

Figure 2 shows the dataflow graph resulting from the WHIRL 
representation of the innermost loop nest of CG. Each node in the 
DFG corresponds to a line of WHIRL from the abstract syntax 
tree.  The operational latencies are given by the edge-weights of 
the graph (see table 2).  Because of the high level intermediate 
representation, array references are not lowered, and can be easily 
reconstructed from their corresponding array nodes in the DFG.  
This allows the programmer to gain important insight to which 
operations most affect performance. The original Fortran code is 
shown in Figure 3, where the critical computation is performed 
using an indirect access to the y array variable.  

Figure 1. Analysis tool architectural block diagram 



Finally, we identify the loops of the code across the various 
basic blocks of a procedure to uncover basic and derived induc-
tion variables. This information is vital in determining array ac-
cess stride information as explained below. 

2.2 Data Access Pattern Analysis 

In this analysis the compiler extracts the affine relations between 
scalar variables in the array indexing functions, taking into ac-
count the basic and derived induction variables whenever possi-
ble. For example, knowing that scalar variables i and j are loop 
induction variables, the array reference a[i][j+1] has array sub-
scripts with affine coefficients (1,0,0) and (0,1,1) respectively.  
The last element in each tuple corresponds to the constants 0 and 
1 in the expressions i+0 and j+1. Using this access information 
and the layout of the array (i.e., either column-wise and row-wise) 
the analysis determines the stride information for each access and 
estimates the latency of the corresponding memory operations.  
We use the assumptions that regular memory access are very 
likely to hit the cache or reside in registers as a result of an ag-
gressive pre-fetching algorithm [1] whereas an irregular or ran-
dom memory reference is very likely to miss the cache.  The 
construction of the DFG uses this knowledge to decorate the la-

tency of the individual array accesses as either regular or irregular 
thus taking into account, to some extent, the effects of the mem-
ory hierarchy.  Future work will focus on refining the array data-
reuse model, adopting a strategy such as that given in [14]. 

2.3 Memory Hierarchy Effects 

Given a DFG whose nodes are decorated with data access pattern 
information the next step is to assess the latency of the various 
load/store operations. Our analysis tackles the memory hierarchy 
efforts by modeling cache effects as well as register allocation for 
the various symbolic variables the computation manipulates. As 
described in Table 1 we use a cost model based on the stride and 
observed range of the various data references during execution. 
The table also includes a column to show that in cases where pre-
fetching is being modeled, the cost of a load operation is zero at 
the expense of an additional register. This prefetching is not used 
when the data access pattern is irregular, as the address cannot be 
computed before the load is executed. Note that some of the range 
analysis requires profiling knowledge of the computation that is 
obtained by source-level instrumentation that is fairly lightweight 
as described in [10]. 

Figure 2. Data-flow graph for the core of CG 



In limited cases the compiler can uncover self- and group-
reuse opportunities. These are important when exploring cache-
line size reuse (also known as spatial reuse). When an array data 
reference exhibits reuse across iterations of an outermost loop of a 
nest, if the range of locations visited in a previous invocation of 
the innermost loops overlaps with the current invocation, then we 
consider all the overlapped locations to be still residing in cache 
as long as the reused data is smaller than the cache size (capacity 
reuse). When the range of reused data items is simply too big, 
irrespective of the type of stride, then we consider the addressed 
location not to reside in cache. This capacity argument is used for 
both L1 and L2 caches. 

Finally, we use a register allocation strategy for the symbolic 
variables the code manipulates. The first time a symbol is refer-
enced in the DFG, it will pay a miss penalty, as given by table 1.  
It then resides in a register and incurs latency of 0, until it is 
spilled.  Both the overall number of registers and the method to 
choose which register to spill are modular, and can be changed to 
see the effect different schemes have on performance.  Initially, 
we choose a scheme whereby the symbol with the fewest number 
of [future] uses is evicted from the register file.  This is similar to 
the "top-down" register allocation algorithm given in [15]. 

2.4 Hardware Resources and Scheduling Analysis 

We develop our own operation scheduler for determining the 
latency of execution of each basic block, given its DFG. In this 
scheduler we can program the latencies of the individual opera-
tions, taking into account the memory hierarchy effects as de-
scribed above, as well as if they are executed in a pipelined 
fashion or not. Our scheduler also allows us to specify the number 
of functional units for either each individual type of operations or 
for a generic functional unit. For example we can segregate the 
arithmetic and floating-point operations in a single functional 
units or allow all of them to be executed in a generic functional 
unit with both integer and floating-point operations. We can also 
specify multiple load and store units thus modeling the available 
bandwidth of the target architecture. Finally, we assume the 
scheduler is an on-line as-soon-as-possible scheduling algorithm 
with zero-time overhead in scheduling of the various operations in 
the functional units. 

This analysis allows us to derive upper bounds for the ex-
pected performance of the computation at an intermediate level of 
representation and thus provide meaningful feedback to both the 
programmer and the architecture designer. By considering an 
infinite number of registers and infinite number of functional units 
or memory bandwidth, the programmer can quickly determine 
which statements at the source-code level contribute to the critical 
path of the computation. These inherent dependencies thus con-
strain the maximum achievable performance. For more realistic 
scenarios the critical path is determined by the need to reload 
values in registers or by the limited available memory bandwidth.  
The approach can determine for each computation, possibly trans-
formed at the source code level, where the performance bottle-
necks are. In addition, by varying the architectural parameters, the 
architecture designer can quickly determine what architectural 
configuration can best realize performance gains.  For example, a 
computation whose critical path is made up of many high-latency 
arithmetic operations (such as floating-point divide or square root) 
will likely realize performance improvements when run on a ma-
chine in which these operations are pipelined (versus a machine 
with more load/store units, for example).  Our approach allows 
these scenarios to be quickly tested and analyzed, without having 
to actually run the code on such a machine.    

Our scheduler, though simple, allows us to anticipate the com-
pletion time of the operations corresponding to a given basic 
block along with various efficiency metrics such as the number of 
clock cycles a given computation was stalled awaiting an avail-
able functional unit or awaiting a data dependency to be satisfied.  
 
do 200 j = 1, n 

xj = x(j)    
do 100 k = colstr(j) , colstr(j+1)-1 

 // DFG shown in fig. 2 
y(rowidx(k)) = y(rowidx(k)) + a(k) + xj     

100 continue 
200  continue 

Figure 3. Fortran source for the core of CG 

3. A Case Study 
We now present preliminary experimental results of the perform-

Stride  

 Short (less than L1 cache 

line) 

Long (larger than L1 cache 

line) 

 

Prefetched /in register 

Regular L1 hit latency on all but 

first  of K accesses to each 

line 

 

L1 miss latency 

0 

Irregular L1 miss latency L1 miss latency --- 

 Table 1.  Modeling Caching and Data Reuse Behavior for Array Data References (K is ratio of cache line size 
over stride) 

Load 

(cache miss) 

Load 

Address 

32-bit int. 

Add 

32-bit Int. 

Multiply 

32-bit FP 

Multiply 

32-bit FP 

Divide 

Array Address 

Calculation 

(Non-affine) 

Array Address 

Calculation 

(Affine) 

20 2 1 2 2 12 29 9 

 
Table 2. Selected operation latencies 



ance expectation and sensitivity analysis for a synthetic code, 
NAS CG.  The NAS CG kernel is written in FORTRAN and im-
plements the conjugate-gradient iterative refinements method for 
a positive-definite input sparse-matrix. At the core of this kernel is 
a sparse-matrix vector multiplication. We first describe the meth-
odology followed in these experiments and then present and dis-
cuss our findings using our analysis approach. 

3.1 Methodology 

We have built the basic analyses described in Section 2 using the 
Open64 compilation infrastructure. Our implementation takes an 
input source program file and focuses on the computationally 
generate performance expectation metrics for various combina-
tions of architectural elements. We also applied manual unrolling 
to the significant loops in the kernel code as a way to compare the 
expected performance of different code variants given the poten-
tial increase in instruction-level parallelism. 

3.2 The Kernel Code 

The computationally intensive section of the CG code is located in 
the matvec subroutine. This basic block, executed at each iteration 
of the loop, is the "core" of the computation, with the critical 
computation being an indirect access to the y array variable (see 
figure 3). 

In the next section we review some of the experimental results 
for this basic block in an unmodified form, as well as manually 
unrolled versions in order to explore the performance impact of 
data dependences and the number of arithmetic and load/store 
units on the projected performance.  

3.3 Experiments 

These experiments focus on two major aspects of performance 
analysis: varying the number of floating point units and varying 
the number of load/store units. The main goal of these experi-
ments is to understand which aspect of the computation is limiting 

the performance of its execution, i.e. if the computation is mem-
ory- or performance bound and how many units should be allo-
cated to its execution in the most profitable fashion.  For 
computations with high-latency operations such a divisions, we 
can easily see expected performance when such operations are 
pipelined versus when they are not.  

Table 2 depicts the latencies of the individual operations used 
in our approach. In this instance, the latencies were selected to 
closely match that of a MIPS R10000 processor [12]. However, 
these latencies can be parameterized to reflect any system - real or 
imagined - allowing for architecture exploration that would oth-
erwise be difficult to accomplish without cycle-level simulation.  
Using these parameters, the processor designer can easily "im-
plement" any type of specialized hardware she wants (e.g. scatter-
gather, very fast memory access, pipelined divides, etc.).   

In order to validate our approach, we ran the CG code on a 
MIPS R10000 machine.  Using the Performance Application Pro-
gramming Interface (PAPI) [11], we were able to instrument the 
core of CG and determine a per-iteration cycle count of the code 
in the loop nest given in figure 3.  Because of the sampling nature 
of hardware performance counters, two measurements were taken.  
The first sampled outside the matvec function call and dividing by 
the total number of iterations of the inner loop (all iterations).  
The second sampled inside the outer loop.  Results for both opti-
mized (compiler switch -O3) and non-optimized versions are 
shown in Figure 4.  With operation latencies similar to the 
R10000 architecture as shown in Table 2, our predicted perform-
ance is consistent with the observed performance of the non-
optimized version of the code. 

These results show the programmer that regardless of a par-
ticular architectural configuration, performance is likely to be 
bounded by memory latency.  That allows the programmer to 
select transformations that better mask memory latency, and in-
forms the architecture designer as to which architectural features 
to choose. 

Figure 4.  Validation results of CG on a MIPS R10000 machine 



3.4 Discussion and Future Work 

The architectural model developed in the current implementation 
is rather simple (but not simplistic) in several respects.  It assumes 
a zero overhead instruction scheduling. This is clearly not the case 
although pipelining execution techniques can emulate this aspect.  
It does not yet take into account advanced execution techniques 

such as software pipelining and multi-threading. Ignoring these 
techniques and compiler optimizations clearly leads to quantita-
tive results that might differ, perhaps substantially, from current 
high-end machines.  

Nevertheless this approach allows the development of quanti-
tative architectural performance trends and hence allows architec-
ture designers to make informed decisions about how to most 

Figure 5. Cycle time for an iteration of CG with varying architectural configurations 

Figure 6. Cycle time for an iteration of the core of CG, unrolled 8 times, with various architectural configurations 



efficiently allocate transistors.  In the above case, a determination 
could be made between the complexity and power consumption 
(for example) of having more load/store units versus increasing 
bandwidth to memory. This information also allows developers to 
predict what the performance trend increases will be on a pro-
posed "future" machine for a given code.   

Future work will focus on the following:  1) A more compre-
hensive validation, using other codes, such as UMT2K [2] as well 
as other architectures, such as the IBM Power5.  2) Refinements 
to the register allocation and scheduling techniques.  3) A more 
accurate data-reuse model, such as given in [14].  4)  Using per-
formance skeletons [13] and code instrumentation to automate the 
gathering of run-time data such as loop bounds and trip counts.  
These enhancements are currently being developed. 

4. Conclusion 

We have described an Open64-based system for performance 
prediction and architecture sensitivity analysis.   Using source-
level program analysis and scheduling techniques, the approach 
presented here provides a very fast qualitative analysis of the per-
formance of a given kernel code. We have experimented with a 
real scientific code engineers and scientists use in practice.  The 
results yield important qualitative performance sensitivity infor-
mation that can be used when allocating computing resources to 
the computation in a judiciously fashion for maximum resource 
efficiency and/or help guide the application of compiler transfor-
mations such as loop unrolling. 
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