

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CGO’08 April 6–9, 2008, Boston, MA, USC.
Copyright © 2008 ACM

An Open64-based Compiler Approach to Performance
Prediction and Performance Sensitivity Analysis for Scientific

Codes

Jeremy Abramson
University of Southern California / Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, Ca 90292

abramson@isi.edu

Pedro C. Diniz
Instituto Superior Técnico / INESC-ID

Tagus Park
2780-990 Oeiras

Portugal
pedro.diniz@tagus.ist.utl.pt

Abstract
The lack of tools that provide performance feedback at a level of
abstraction programmers can relate to makes the problem of per-
formance prediction and portability extremely difficult. Pro-
grammers have no simple way of knowing what programming
constructs significantly effect performance in today’s machines,
much less in machines that are under development and are not
readily available. We describe an Open64-based compiler ap-
proach to the problem of performance prediction and architecture
sensitivity analysis done at a source-level. Our analysis tool ex-
tracts the computation’s high-level dataflow-graph from the
code’s WHIRL representation, and uses source-level data access
patterns information as well as register needs to derive perform-
ance bounds for the program under various architectural scenar-
ios. The end result is a very fast performance prediction as well as
insight into where performance bottlenecks are. We have experi-
mented with a real code engineers and scientists use in practice –
a sparse matrix-vector multiplication kernel. The results correlate
very well with the execution of the code on a real machine and
allow programmers to understand the performance bottlenecks
without having to engage in very low-level instrumentation analy-
sis.

Categories and Subject Descriptors C.4.3 [Performance of
Systems]: Measurement techniques, modeling techniques, per-
formance attributes

General Terms: Measurement, Performance.

Keywords performance prediction and modeling; program
analysis; architecture modeling; Open64

1. Introduction and Background
Modern high-end computers present a complex execution envi-
ronment that makes performance understanding and performance
portability extremely difficult. Programmers go to extreme lengths
to manually apply various high-level transformations (most nota-

bly loop-unrolling) in an attempt to expose more Instruction-Level
Parallelism (ILP). Exploiting ILP allows the compiler to take
advantage of micro architecture features such as pipelining, super-
scalar and multi-core characteristics. The lack of performance
prediction and analysis tools that can provide meaningful per-
formance feedback leave the programmer in an unfortunate situa-
tion. Without understanding why the performance is what it is, the
programmer is forced to search for the best possible transforma-
tion sequences by trial and error. At best, existing performance
understanding tools provide feedback at a very low level of ab-
straction – such as cache miss rates – that provide no clue as to
what architectural bottlenecks, if any, lead to such results.

Earlier approaches to performance modeling and understand-
ing were purely empirical. Researchers developed representative
kernel codes of large-scale applications such as the NAS Parallel
[8] and the SPEC [9] benchmarks. By observing the performance
of these kernels on a given machine one could extrapolate in a
qualitative fashion the performance behavior of a real application.
More recently researchers have developed models for the per-
formance of parallel applications by examining their memory
behavior [5,6]. Other work has focused on modeling the behavior
of an application by first accurately characterizing the running
time of the sequential portions of the application. This is done by
using analytical modeling, based on intimate knowledge of the
application's mathematics, in addition to empirical observations to
extract the corresponding parameter values [7]. On the other end
of the spectrum, cycle-level simulators for architecture perform-
ance understanding at a very low level are simply too slow for
realistic workloads. As a result the simulations tend to focus on a
minute subset of the instruction stream or use sampling techniques
and are thus limited to very focused architectural analyses.

This paper describes an alternative approach to the problem of
performance prediction and architecture sensitivity analysis using
source level program analysis and scheduling techniques. An
architectural overview of the tool is given in Figure 1. Our ap-
proach looks at the High-Level (HL) WHIRL tree and isolates the
basic blocks of the input source program. It then extracts the
corresponding high-level data-flow graph (DFG) information.
Using high-level information about the data access patterns of
array references, it determines the expected latency of memory
operations. Once the DFG of each basic block - most notably the
ones in the body of nested loops - is extracted, the compiler tool
uses a list-scheduling algorithm to determine the execution time
of the computation. This scheduling makes use of the DFG as well
as a number of other tunable architecture parameters, such as the

number of load/store or arithmetic units, the number of available
registers and specific operation latency values.

We have developed our tool based on the Open64 compiler in-
frastructure [3], and experimented with this approach using the
CG sparse matrix-vector multiplication kernel, a synthetic kernel
from the original NAS benchmark set. Using this computational
kernel our tool determines qualitatively that in the absence of loop
unrolling no more than three functional load/store units are
needed to attain a level of performance that is consistent with the
critical path of the computation (see figure 5). When the core is
unrolled by a factor of 8 no more than four functional load/store
units are needed (figure 6). In the context of a multi-core architec-
ture, this information would allow a compiler to adjust the
concurrency in the generated code to match the target architecture
resources, in some cases even by dynamically adapting its run-
time execution strategy to unroll just the required amount depend-
ing on the available units.

The remainder of this paper is organized as follows. In the next
section we describe in more detail the technical approach of our
tool and how it provides performance predictions and architectural
sensitivity analysis. Section 3 presents the experimental results for
our case study application - the NAS CG kernel code. We present
concluding remarks in section 4.

2. Technical Approach
We now describe the details of our technical approach to the prob-
lem of performance prediction and sensitivity analysis. Using
high-level WHIRL source code information, static compiler data
and control- dependence analysis techniques, we can determine
performance bounds and performance sensitivity in a fraction of
the time it takes to run the actual code.

2.1 Basic Analyses: Data-Flow Graph (DFG)

This analysis tool extracts the basic blocks at the source code
level by inspection of the compiler intermediate representations in
WHIRL. Because the front-end of the compiler does perform
some deconstruction of high-level constructs, most notably while-
loops, it is not always possible to map the intermediate representa-
tion constructs back to source code constructs. Despite some of
these shortcomings the front-end does keep track of line number
information that allows the tool to provide reasonably accurate
feedback to the programmer.

For each basic block the compiler extracts a data-flow graph,
accurately keeping track of dependencies (true-, anti-, input- and
output-dependencies) via scalar variables and conservatively as-
sume that any reference to an array variable may induce a de-
pendency. In some cases, the compiler uses data dependence
analysis techniques (see e.g., [4]) to disambiguate the references
to arrays and thus eliminate false dependences in the DFG. In the
current implementation we make the optimistic assumption that
arrays with distinct symbolic names are unaliased. While this
assumption is clearly not realistic in the general case, it holds for
the Fortran kernel code in our controlled experimental results.
Future revisions will handle cases where symbols can be aliased.

Figure 2 shows the dataflow graph resulting from the WHIRL
representation of the innermost loop nest of CG. Each node in the
DFG corresponds to a line of WHIRL from the abstract syntax
tree. The operational latencies are given by the edge-weights of
the graph (see table 2). Because of the high level intermediate
representation, array references are not lowered, and can be easily
reconstructed from their corresponding array nodes in the DFG.
This allows the programmer to gain important insight to which
operations most affect performance. The original Fortran code is
shown in Figure 3, where the critical computation is performed
using an indirect access to the y array variable.

Figure 1. Analysis tool architectural block diagram

Finally, we identify the loops of the code across the various
basic blocks of a procedure to uncover basic and derived induc-
tion variables. This information is vital in determining array ac-
cess stride information as explained below.

2.2 Data Access Pattern Analysis

In this analysis the compiler extracts the affine relations between
scalar variables in the array indexing functions, taking into ac-
count the basic and derived induction variables whenever possi-
ble. For example, knowing that scalar variables i and j are loop
induction variables, the array reference a[i][j+1] has array sub-
scripts with affine coefficients (1,0,0) and (0,1,1) respectively.
The last element in each tuple corresponds to the constants 0 and
1 in the expressions i+0 and j+1. Using this access information
and the layout of the array (i.e., either column-wise and row-wise)
the analysis determines the stride information for each access and
estimates the latency of the corresponding memory operations.
We use the assumptions that regular memory access are very
likely to hit the cache or reside in registers as a result of an ag-
gressive pre-fetching algorithm [1] whereas an irregular or ran-
dom memory reference is very likely to miss the cache. The
construction of the DFG uses this knowledge to decorate the la-

tency of the individual array accesses as either regular or irregular
thus taking into account, to some extent, the effects of the mem-
ory hierarchy. Future work will focus on refining the array data-
reuse model, adopting a strategy such as that given in [14].

2.3 Memory Hierarchy Effects

Given a DFG whose nodes are decorated with data access pattern
information the next step is to assess the latency of the various
load/store operations. Our analysis tackles the memory hierarchy
efforts by modeling cache effects as well as register allocation for
the various symbolic variables the computation manipulates. As
described in Table 1 we use a cost model based on the stride and
observed range of the various data references during execution.
The table also includes a column to show that in cases where pre-
fetching is being modeled, the cost of a load operation is zero at
the expense of an additional register. This prefetching is not used
when the data access pattern is irregular, as the address cannot be
computed before the load is executed. Note that some of the range
analysis requires profiling knowledge of the computation that is
obtained by source-level instrumentation that is fairly lightweight
as described in [10].

Figure 2. Data-flow graph for the core of CG

In limited cases the compiler can uncover self- and group-
reuse opportunities. These are important when exploring cache-
line size reuse (also known as spatial reuse). When an array data
reference exhibits reuse across iterations of an outermost loop of a
nest, if the range of locations visited in a previous invocation of
the innermost loops overlaps with the current invocation, then we
consider all the overlapped locations to be still residing in cache
as long as the reused data is smaller than the cache size (capacity
reuse). When the range of reused data items is simply too big,
irrespective of the type of stride, then we consider the addressed
location not to reside in cache. This capacity argument is used for
both L1 and L2 caches.

Finally, we use a register allocation strategy for the symbolic
variables the code manipulates. The first time a symbol is refer-
enced in the DFG, it will pay a miss penalty, as given by table 1.
It then resides in a register and incurs latency of 0, until it is
spilled. Both the overall number of registers and the method to
choose which register to spill are modular, and can be changed to
see the effect different schemes have on performance. Initially,
we choose a scheme whereby the symbol with the fewest number
of [future] uses is evicted from the register file. This is similar to
the "top-down" register allocation algorithm given in [15].

2.4 Hardware Resources and Scheduling Analysis

We develop our own operation scheduler for determining the
latency of execution of each basic block, given its DFG. In this
scheduler we can program the latencies of the individual opera-
tions, taking into account the memory hierarchy effects as de-
scribed above, as well as if they are executed in a pipelined
fashion or not. Our scheduler also allows us to specify the number
of functional units for either each individual type of operations or
for a generic functional unit. For example we can segregate the
arithmetic and floating-point operations in a single functional
units or allow all of them to be executed in a generic functional
unit with both integer and floating-point operations. We can also
specify multiple load and store units thus modeling the available
bandwidth of the target architecture. Finally, we assume the
scheduler is an on-line as-soon-as-possible scheduling algorithm
with zero-time overhead in scheduling of the various operations in
the functional units.

This analysis allows us to derive upper bounds for the ex-
pected performance of the computation at an intermediate level of
representation and thus provide meaningful feedback to both the
programmer and the architecture designer. By considering an
infinite number of registers and infinite number of functional units
or memory bandwidth, the programmer can quickly determine
which statements at the source-code level contribute to the critical
path of the computation. These inherent dependencies thus con-
strain the maximum achievable performance. For more realistic
scenarios the critical path is determined by the need to reload
values in registers or by the limited available memory bandwidth.
The approach can determine for each computation, possibly trans-
formed at the source code level, where the performance bottle-
necks are. In addition, by varying the architectural parameters, the
architecture designer can quickly determine what architectural
configuration can best realize performance gains. For example, a
computation whose critical path is made up of many high-latency
arithmetic operations (such as floating-point divide or square root)
will likely realize performance improvements when run on a ma-
chine in which these operations are pipelined (versus a machine
with more load/store units, for example). Our approach allows
these scenarios to be quickly tested and analyzed, without having
to actually run the code on such a machine.

Our scheduler, though simple, allows us to anticipate the com-
pletion time of the operations corresponding to a given basic
block along with various efficiency metrics such as the number of
clock cycles a given computation was stalled awaiting an avail-
able functional unit or awaiting a data dependency to be satisfied.

do 200 j = 1, n

xj = x(j)
do 100 k = colstr(j) , colstr(j+1)-1

 // DFG shown in fig. 2
y(rowidx(k)) = y(rowidx(k)) + a(k) + xj

100 continue
200 continue

Figure 3. Fortran source for the core of CG

3. A Case Study
We now present preliminary experimental results of the perform-

Stride

 Short (less than L1 cache

line)

Long (larger than L1 cache

line)

Prefetched /in register

Regular L1 hit latency on all but

first of K accesses to each

line

L1 miss latency

0

Irregular L1 miss latency L1 miss latency ---

 Table 1. Modeling Caching and Data Reuse Behavior for Array Data References (K is ratio of cache line size
over stride)

Load

(cache miss)

Load

Address

32-bit int.

Add

32-bit Int.

Multiply

32-bit FP

Multiply

32-bit FP

Divide

Array Address

Calculation

(Non-affine)

Array Address

Calculation

(Affine)

20 2 1 2 2 12 29 9

Table 2. Selected operation latencies

ance expectation and sensitivity analysis for a synthetic code,
NAS CG. The NAS CG kernel is written in FORTRAN and im-
plements the conjugate-gradient iterative refinements method for
a positive-definite input sparse-matrix. At the core of this kernel is
a sparse-matrix vector multiplication. We first describe the meth-
odology followed in these experiments and then present and dis-
cuss our findings using our analysis approach.

3.1 Methodology

We have built the basic analyses described in Section 2 using the
Open64 compilation infrastructure. Our implementation takes an
input source program file and focuses on the computationally
generate performance expectation metrics for various combina-
tions of architectural elements. We also applied manual unrolling
to the significant loops in the kernel code as a way to compare the
expected performance of different code variants given the poten-
tial increase in instruction-level parallelism.

3.2 The Kernel Code

The computationally intensive section of the CG code is located in
the matvec subroutine. This basic block, executed at each iteration
of the loop, is the "core" of the computation, with the critical
computation being an indirect access to the y array variable (see
figure 3).

In the next section we review some of the experimental results
for this basic block in an unmodified form, as well as manually
unrolled versions in order to explore the performance impact of
data dependences and the number of arithmetic and load/store
units on the projected performance.

3.3 Experiments

These experiments focus on two major aspects of performance
analysis: varying the number of floating point units and varying
the number of load/store units. The main goal of these experi-
ments is to understand which aspect of the computation is limiting

the performance of its execution, i.e. if the computation is mem-
ory- or performance bound and how many units should be allo-
cated to its execution in the most profitable fashion. For
computations with high-latency operations such a divisions, we
can easily see expected performance when such operations are
pipelined versus when they are not.

Table 2 depicts the latencies of the individual operations used
in our approach. In this instance, the latencies were selected to
closely match that of a MIPS R10000 processor [12]. However,
these latencies can be parameterized to reflect any system - real or
imagined - allowing for architecture exploration that would oth-
erwise be difficult to accomplish without cycle-level simulation.
Using these parameters, the processor designer can easily "im-
plement" any type of specialized hardware she wants (e.g. scatter-
gather, very fast memory access, pipelined divides, etc.).

In order to validate our approach, we ran the CG code on a
MIPS R10000 machine. Using the Performance Application Pro-
gramming Interface (PAPI) [11], we were able to instrument the
core of CG and determine a per-iteration cycle count of the code
in the loop nest given in figure 3. Because of the sampling nature
of hardware performance counters, two measurements were taken.
The first sampled outside the matvec function call and dividing by
the total number of iterations of the inner loop (all iterations).
The second sampled inside the outer loop. Results for both opti-
mized (compiler switch -O3) and non-optimized versions are
shown in Figure 4. With operation latencies similar to the
R10000 architecture as shown in Table 2, our predicted perform-
ance is consistent with the observed performance of the non-
optimized version of the code.

These results show the programmer that regardless of a par-
ticular architectural configuration, performance is likely to be
bounded by memory latency. That allows the programmer to
select transformations that better mask memory latency, and in-
forms the architecture designer as to which architectural features
to choose.

Figure 4. Validation results of CG on a MIPS R10000 machine

3.4 Discussion and Future Work

The architectural model developed in the current implementation
is rather simple (but not simplistic) in several respects. It assumes
a zero overhead instruction scheduling. This is clearly not the case
although pipelining execution techniques can emulate this aspect.
It does not yet take into account advanced execution techniques

such as software pipelining and multi-threading. Ignoring these
techniques and compiler optimizations clearly leads to quantita-
tive results that might differ, perhaps substantially, from current
high-end machines.

Nevertheless this approach allows the development of quanti-
tative architectural performance trends and hence allows architec-
ture designers to make informed decisions about how to most

Figure 5. Cycle time for an iteration of CG with varying architectural configurations

Figure 6. Cycle time for an iteration of the core of CG, unrolled 8 times, with various architectural configurations

efficiently allocate transistors. In the above case, a determination
could be made between the complexity and power consumption
(for example) of having more load/store units versus increasing
bandwidth to memory. This information also allows developers to
predict what the performance trend increases will be on a pro-
posed "future" machine for a given code.

Future work will focus on the following: 1) A more compre-
hensive validation, using other codes, such as UMT2K [2] as well
as other architectures, such as the IBM Power5. 2) Refinements
to the register allocation and scheduling techniques. 3) A more
accurate data-reuse model, such as given in [14]. 4) Using per-
formance skeletons [13] and code instrumentation to automate the
gathering of run-time data such as loop bounds and trip counts.
These enhancements are currently being developed.

4. Conclusion

We have described an Open64-based system for performance
prediction and architecture sensitivity analysis. Using source-
level program analysis and scheduling techniques, the approach
presented here provides a very fast qualitative analysis of the per-
formance of a given kernel code. We have experimented with a
real scientific code engineers and scientists use in practice. The
results yield important qualitative performance sensitivity infor-
mation that can be used when allocating computing resources to
the computation in a judiciously fashion for maximum resource
efficiency and/or help guide the application of compiler transfor-
mations such as loop unrolling.

[1] T. Mowry, Tolerating Latency in Multiprocessors through Compiler-

Inserted Prefetching, ACM Transactions on Computer Systems,
16(1), pp. 55-92, Feb. 1998.

[2] The ASCII Purple Benckmark Codes
(https://asc.llnl.gov/i/platforms/purple/rfp/benchmarks/).

[3] The Open64 Compiler and Tools. (http://www.open64.net)
[4] U. Banerjee, R. Eigenmann, A. Nicolau and D. Padua, Automatic

Program Parallelization, In Proc. of the IEEE, 1993. ‘

[5] A.Snavely, L.Carrington, N.Wolter, J.Labarta, R.Badia,
A.Purkayastha, "A Framework for Application Performance Model-
ing and Prediction", In Proc. of the 2002 ACM/IEEE SuperComput-
ing Conference (SC'02), 2002.

[6] R.H. Saavedra and A.J. Smith, "Measuring Cache and TLB Perform-
ance and Their Effect on Benchmark Run Times", IEEE Transactions
on Computers, vol. 44:10

[7] D.J. Kerbyson, A. Hoisie, and H.J. Wasserman, "Modeling the Per-
formance of Large-Scale Systems", Keynote paper, UK Performance
Engineering Workshop (UKPEW03), July, 2003..

[8] D. Bailey, J. Barton, T. Lasinski, H. Simon, "The NAS parallel
benchmarks", International Journal of Supercomputer Applications,
1991.

[9] SPEC, http://www.spec.org/
[10] P. Dinz and T. Khrisna, "A Compiler-guided Instrumentation for

Application Behavior Understanding", in CTWatch Quarterly (on-
line journal at www.ctwatch.org),, Vol.2, Number 4B, p.27-34, Nov.
2006.

[11] Performance Application Programming Interface (PAPI),
http://icl.cs.utk.edu/papi/

[12] Yeager, K. C. 1996. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro 16, 2 (Apr. 1996), 28-40. DOI=
http://dx.doi.org/10.1109/40.491460

[13] Sodhi, S. and Subhlok, J. 2005. Automatic Construction and Evalua-
tion of Performance Skeletons. In Proceedings of the 19th IEEE in-
ternational Parallel and Distributed Processing Symposium
(Ipdps'05) - Papers - Volume 01 (April 04 - 08, 2005). IPDPS. IEEE
Computer Society, Washington, DC, 88.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.117

[14] Wolf, M. E. 1992 Improving Locality and Parallelism in Nested
Loops. Doctoral Thesis. UMI Order Number: UMI Order No.
GAX93-02340., Stanford University.

[15] Keith D. Cooper and Linda Torczon. Engineering a Compiler.
Morgan-Kaufmann Publishers, 2003.T. Mowry, Tolerating Latency
in Multiprocessors through Compiler-Inserted Prefetching, ACM
Transactions on Computer Systems, 16(1), pp. 55-92, Feb. 1998.

