
Feedback-Directed Optimizations with Estimated Edge Profiles
from Hardware Event Sampling

Vinodha Ramasamy Robert Hundt

Google Inc.

vinodha,rhundt@google.com

Dehao Chen Wenguang Chen

Tsinghua University

danielcdh@gmail.com, cwg@tsinghua.edu.cn

Abstract
Traditional feedback-directedoptimization (FDO) uses static
instrumentation to collect profiles. This method has shown
good application performance gains, but is not commonly
used in practice due to the high runtime overhead of pro-
file collection, the tedious dual-compile usage model, and
difficulties in generating representative training data sets. In
this paper, we show that edge frequency estimates can be
successfully constructed with heuristics using profile data
collected by sampling of hardware events, incurring low run-
time overhead (e.g., less then 2%), and requiring no instru-
mentation, yet achieving competetive performance gains.
Our initial results show a 3-4% performance gain on the
SPEC C benchmarks.

Keywords Compiler, Profiling, Sampling

1. Introduction
Compilers use execution profiles consisting of basic block
and edge frequency counts to guide optimizations such as
instruction scheduling, procedure inlining, and registerallo-
cation. The traditional method of execution profile collection
involves the following steps:

1. Build an instrumented version of the program.

2. Run the instrumented version with representative training
data to collect the execution profile. These runs typically
incur significant overhead (reported as 9% to 105% (Ball
and Larus 1996) (Ball and Larus 1994), but observed to
be much higher, often in the order of 50% to 200% in our
experience) due to the additional instrumentation code
that is executed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Open64 Workshop at CGO’0804/06/2008, Boston.
Copyright c© 2008 ACM . . . $5.00

3. Build an optimized version of the program by using the
collected execution profile to guide the optimizations
(FDO build).

The instrumentation builds are usually restricted to lower
optimization levels or are tightly coupled with the FDO
compilations in most compilers. For example, the profile
data that is fed back to the open64 compiler must have
been collected by an open64 instrumented binary. Addition-
ally, open64 requires that both the instrumentation and FDO
builds use the same inline decisions and similar optimiza-
tion flags (such as with or without the-ipa option) to en-
sure that the control-flow graph (CFG) that is instrumented
in the instrumentation build matches the CFG that is anno-
tated with the profile data in the FDO build.

Besides complete execution profiles gathered by static in-
strumentation, researchers have used profiles gathered us-
ing hardware support (Merten et al. 1999) and statistical
sampling in guiding code optimizations. These approaches
typically have much lower overheads (less then 5%). So
far, the profiles collected via hardware support have either
been used to augment instrumented run profiles with flow
and context-sensitive information (Ammons et al. 1997) or
machine-specific information such as cache misses in online
optimization systems (Schneider et al. 2007), or used sepa-
rately for specific optimizations (Froyd et al. 2005) that do
not encompass the wide range of optimizations enabled by
complete basic block and edge frequency profiles.

Our approach is to use sampling of the Instruction Re-
tired (INST RETIRED) hardware event, which is available
on performance monitoring units of modern processors (e.g.,
Intel Core-2, AMD Opteron) toreplace, rather thanaug-
ment, the traditional instrumentation methods to obtain basic
block and edge frequency counts. This approach enables dif-
ferent usage models:

1. Profile collection can occur on production systems (e.g.,
in internet companies) using the default binaries, with the
sampled profile data being stored in a profile repository.
The profiles shall therefore be readily available for FDO
builds without the need for any special instrumentation

build and run. Moreover, there is no discrepancy between
training run input data and real usage data in this case.

2. In cases where representative training data sets are avail-
able, the profile collection could be done using debug
or un-optimized binaries. The profile data thus collected
during the testing and development phase can then be
used to build the optimized binary.

3. The traditional FDO model using instrumented runs to
collect profile data is not suitable for cases where exe-
cution of the instrumented code changes the behavior of
time critical code such as operating system kernel code.
Profile collection using hardware event sampling can be
used in such cases without perturbing the run-time be-
havior.

The sampled profile data does not contain any informa-
tion on the intermediate representation (IR) used by the com-
piler. Instead, source position information is used to corre-
late the profile data to specific basic blocks during the FDO
build. This method thereforeeliminates the tight coupling
between profile collection and profile feedback builds. In
fact, the binary used for profile collection can be built by
one compiler, and the profile data thus collected can be fed
to another compiler. To make the case, in our experiments,
we use gcc built -O0 and -O2 binaries for profile collection
and open64 for FDO builds and performance experiments.

In general, deriving exact basic block and edge frequency
counts from sample profiles is not always feasible. We use
heuristics to derive relative basic block and edge frequency
count estimates from the sampled profiles. Increasing the
sampling rate will in general increase the quality of the sam-
pled profile at the expense of increasing the overhead of pro-
file collection. Our experiments show we can get sampled
profiles with reasonable quality with overheads of less than
2%. We use a sample “goodness” measure derived from the
weighted difference in branch biases between execution pro-
files collected from instrumented runs and sampled profiles
as an indicator of the quality of the sampled profile. How-
ever, the definitive measure of the sample profile quality is
ascertained only from the performance gains obtained in us-
ing the sampled profile for feedback-directed optimizations.

We use the Intel Core-2 platform for both profile collec-
tion and for our performance runs. Note that the profile met-
rics collected are platform independent, so the profile data
can be used to build a binary optimized for another platform
than the one used for profile collection. Since the profile
data is stored by samples per source line, it will not mat-
ter if the profile collection is done using optimized or un-
optimized binaries. Our heuristics depend on the correctness
of the source position information present in the binaries to
correlate the samples to the corresponding basic blocks.1

1 We ran into a couple of gcc issues - source information is at times lost
during transformations in optimization builds. These issues are being fixed,

On the SPEC2000int and SPEC2006 C benchmarks, we
currently obtain an average performance gain of approxi-
mately 3% using FDO with sampled profiles collected using
-O2 binaries, as compared to an average of approximately
6% using traditional FDO runs. We expect to get improved
results with better source correlation in gcc. Using -O0 bi-
naries for profile collection, we are able to achieve approxi-
mately 85% of the performance gains seen using traditional
FDO on Spec2006 C benchmarks (3.59% vs 4.23%).

The rest of the paper is organized as follows: Section 2
gives a background of the hardware event counters used and
the modes of operation. Section 3 describes the high-level
design and methodology for sampled profile support in the
open64 compiler. Section 4 describes the heuristics and im-
plementation details of deriving basic block and edge fre-
quency counts from the sampled profiles. Section 5 describes
the experimental evaluation of using FDO with sampled pro-
files. Finally, sections 6 and 7 discuss related work and con-
clusions.

2. Hardware Event Sampling
2.1 Time-based vs Frequency-based Sampling

Most modern microprocessors support hardware event sam-
pling, which works as follows: The Instruction Pointer and
other register contents are recorded whenever a specified
number of a specified hardware event has occurred. This
helps to identify the program locations, i.e., the instruc-
tion addresses incurring the measured hardware event. For
example, the DCPI tool (Anderson et al.) samples on the
event CPUCYCLES to determine performance bottlenecks
in programs.

Events can be differentiated by whether they indicate
execution time or execution frequency, i.e., whether they
are time-based or frequency-based (Zhang et al. 1997). The
CPU CYCLES is a time-based event, so program locations
that take a relatively longer time to execute will incur more
CPU CYCLES event samples. To obtain an execution count
from such time-based samples, one must scale by the in-
struction latency, which necessitates knowing the individual
instruction execution latencies and latencies incurred due to
TLB misses, cache misses and branch misprediction, as well
as other pipeline stalls, which are micro-architecture spe-
cific. Additional hardware events (such as cache and TLB
misses) will therefore need to be sampled for this purpose,
thereby increasing the sampling overhead and making the
determination of execution counts from time-based event
samples more complex. Most modern microprocessors also
support sampling of frequency-based events such as the in-
struction retired (INSTRETIRED) event, which correlates
directly to instruction and basic block execution count. We

which will help to improve the accuracy of sample attribution when using
optimized binaries for profile collection.

therefore use sampling of the INSTRETIRED event for our
execution profile estimation.

2.2 Perfmon

We use perfmon2, the hardware-based performance moni-
toring interface for Linux, and pfmon, the command-line-
interface tool to gather INSTRETIRED samples on the In-
tel Core-2 platform (Intel 2007). Intel Core-2 machines sup-
port two modes of sampling: Precise Event-Based Sampling
(PEBS) and the regular sampling mode, which we will re-
fer to as non-PEBS. PEBS mode accurately identifies the
next instruction address following the instruction incurring
the sampled event. Moreover, PEBS incurs less overhead
since the CPU collects event samples on its own using a mi-
crocode routine and stores them into a buffer supplied by the
operating system (OS) kernel module. An interrupt is gener-
ated and the OS is involved only when the buffer becomes
full. A drawback of PEBS-based sampling is that the hard-
ware does not support randomization of every sample - a
feature that helps to reduce sampling skews due to program
synchronization with the sampling interval. We expected the
use of the randomization feature to improve the quality of the
sampling profiles and for samples collected in PEBS mode
to yield better results than samples collected in non-PEBS
mode. However our experiments (see section 5) show that
all three modes (PEBS, non-PEBS with randomization, and
non-PEBS without randomization) yield comparable perfor-
mance gains when used for FDO with sampled profiles.

We determined the sampling rate of the INSTRETIRED
events in PEBS and non-PEBS mode which will give a max-
imum overhead of 2%. When sampling everyn INST RE-
TIRED event,n should be chosen to be a prime number, to
mitigate the possibility of program synchronization with the
sampling interval (for example, in the presence of loops).

An issue with the current implementation of perfmon2
is that it uses a single buffer to record samples, which re-
sults in lost program samples whenever the OS processes
the samples on buffer overflow. We overcome this problem
by using the--overflow-blockoption in pfmon, which
blocks the program execution on buffer overflow. As this
method incurs considerable overhead, this is only a tem-
porary workaround until perfmon2 implements dual-buffer
support.

3. High-Level Design
The INSTRETIRED event samples are recorded on the
granularity of instruction addresses and attributed to thecor-
responding program source filename and line number using
the source position information present in unstripped bina-
ries. Since source lines with larger number of instructions
will have correspondingly larger total number of samples at-
tributed, the total number of samples attributed per source
line is divided by the number of contributing instructions to

FB_Sample_Hdr
PU_Sample_Hdr for PU 1
Pu_Sample_Hdr for PU 2
...
Pu_Sample_Hdr for PU NUM_PU
Pu_Sample_Hdr for Inline 1
...

Pu_Sample_Hdr for Inline NUM_INLINE
STRING TABLE
Fb_Info_Freq 1 for PU 1
...
Fb_Info_Freq N for PU 1
Fb_Info_Freq 1 to N for PU 2
...
Fb_Info_Freq 1 to N for PU NUM_PU
Fb_Info_Freq for Inline 1 to NUM_INLINE

Figure 2. Feedback data file format

derive the average number of samples per source line, which
is stored in the feedback data file.

The feedback file is read into the open64 compiler and
is used to annotate the WHIRL statements for the current
program unit with the relative execution counts of the cor-
responding source position information. This is done in the
VHO phase for both profile feedback data collected from
open64 instrumented runs and for profile data collected us-
ing sampling. The VHO phase belongs to the IPF phase un-
der-ipa compiles and to the backend without-ipa. Fig-
ure 1 shows the phases where the profile data annotation is
done for builds with and without inter-procedural optimiza-
tions. In our experiments, we do not use inter-procedural op-
timizations.

The basic block sample counts are calculated from the
samples attributed to the individual WHIRL statements in
each block. The counts are then used to derive edge fre-
quency counts using heuristics which are described in detail
in the next section.

The derived edge frequency estimates are used to con-
struct the feedback data structures associated with each pro-
gram unit. At the end of this phase, the feedback data struc-
tures will be initialized in a manner consistent with the ini-
tialization of these structures when using instrumented feed-
back data. This allows us to leverage the existing support
in open64 for feedback-directed optimizations and for main-
taining valid feedback information in later phases through
the propagation and verification of the feedback information.

4. Implementation Details
4.1 Feedback Data File Format

The design of the sample profile feedback data file format is
based on the file format used to store profile data collected
from instrumented runs. The layout of the sample profile
data file is given in figure 2.
Fb Sample Hdr is the file header. The data structure

Pu Sample Hdr holds the header information pertain-

FE IPL IPA AS
LNO/WOPT/

CG
Source Executable

Without IPA

Without IPA With IPA

Feedback from Instrumentation or Sampling

Figure 1. Open64 Modules and Flow

ing to each program unit. A program unit corresponds to
a function. This format supports the aggregation of sam-
ples for inlined functions by caller function. If a func-
tion A has 3 inlined functions B, C and D with sam-
ples, the program header corresponding to A will have the
pu num inline entries set to 3 and assign the offset
of the inline program header topu inline hdr offset
(which shares the same structure asPu Sample Hdr) cor-
responding to the inlined instance of B within function A.
The inline headers for the inlined instances of functions C
and D within function A will be stored consecutively follow-
ing the inline header for B. The samples attributed to each
inlined function can then be handled in a manner similar to
non-inlined functions.

The data structureFb Info Freq is used to store the
sample count associated with each source line within a
function. TheFb Info Freq data associated with a func-
tion will be stored consecutively. ThePu Sample Hdr
for the function has the offset of the firstFb Freq Info
data in thepu freq offset field and the number of
Fb Freq Info associated with its function.

4.2 Basic Block Annotation

The sample count corresponding to each WHIRL statement
(IR.count) is obtained from the sample count of its associ-
ated source line. The basic block sample count (BB.count)
is then computed from its associated WHIRL statements as
shown below:

BB.count =

∑Nstatements

i=1
IR.counti

Nstatements

(1)

When scaling the basic block count, all statements are
given the same weight - i.e., we do not differentiate the
WHIRL statements by the type of operator. If different feed-
back data files collected with different sampling rates are
used, the BB.count should be normalized to a fixed sam-
pling rate. Note that different heuristics from the one used
here can be employed to derive basic block sample counts
from source code correlated samples.

BB.countnorm = BB.count ∗
fixed sampling rate

sampling rate
(2)

1
0
0

1
0
0
0

0

1
0
0
0

Figure 3. A loop with imprecise basic block sample counts

4.3 Edge Profiles from Sample Data

The derivation of edge frequencies and branch biases from
the sampled basic block counts is a core component of our
methodology.Our initial attempts at deriving edge frequency
estimates based solely on the structure of the CFG yielded
poor results. Take the loop in Figure 3 for example. We
want to adjust the basic block samples counts to ensure
consistency - i.e., the sum of the incoming edge counts
should be equal to the sum of the outgoing edge counts
for each basic block after this operation, which we shall
refer to as “smoothing”. If we try to adjust the basic block
counts solely based on the CFG structure (i.e., by setting
the basic block counts to the sum of their incoming edge
counts), we may increase the basic block counts within the
loop indefinitely, or to a very high value based on the number
of iterations executed in the smoothing algorithm for such
non-converging values.

To identify and overcome such inherent problems with
CFG-based smoothing algorithms, we decided to take into
account the higher level program structure, such as IF and
LOOP statements, and handle each case separately. This is
consistent with the current model in open64, where the pro-
file data is stored by higher level program structure. While
building the CFG, extra information is stored in the ENTRY
nodes of IF statements to easily identify the first node in the
taken and not-taken paths, and a JOIN node is added explic-
itly. The detailed algorithm is shown in Figure 4.

For example, consider the C code shown in Figure 5. The
CFG with basic block counts before applying the smoothing

IF statements:

1. Determine maximum sample count in ENTRY and JOIN blocks (to-
tal sample)

2. Determine maximum basic block sample count for taken and not-
taken paths (takensample and not-takensample). This will require a
recursive traversal if any of the basic blocks themselves contain nested
IF statements.

3. Compute the corrected totalsample count from takencount and not-
takencount

4. Call routine Adjust Freq to set all the basic block sample
counts belonging to the IF statement to the appropriate total sample,
takensample or not-takensample count.

LOOP statements:

1. Determine maximum sample count in ENTRY and JOIN blocks (to-
tal sample)

2. Determine maximum basic block sample count for the loop body
(body sample). This will require a recursive traversal if any of the basic
blocks contain IF statements or nested LOOP statements.

3. Call routineAdjust Freq to set all the basic block sample counts
belonging to the loop body to bodysample.

Figure 4. Algorithm to smooth the basic block count for
different structures

int foo(int total) {

int *array = Get_Array(); //4000

int count = 0; //5000
if (total > 0) { //6000
int i = 0; //500
while (i < total) {

if (array[i] > 0) { //7954
count += array[i]; //7875
array[i] *= 3; //7969

}
else {

count -= array[i]; //34
array[i] *= -3; //27

}
i++; //8011

}
printf ("%d", i); //420

}
}

Figure 5. Code snippet with comments as sampling counts

heurisitics is shown in Figure 6. After smoothing, the basic
block counts in the CFG are as shown in Figure 7.

The outer branch is hardly taken in the profile collection
runs. As there is no ”else” branch for the if statement, we
don’t have the count for the branch-not-taken basic block.
The smoothing algorithm uses the count outside the branch
and the branch-taken count to adjust the branch-not-taken
count.

An important function of theAdjust Freq routine is
to detect cases which are inherently unreliable (in terms
of source code correlated samples) and not annotate the

Figure 6. Basic block counts before applying the smoothing
heuristics

branches in these cases. The following are some of the spe-
cial cases to be considered:

1. if (cond) continue; If there are no samples for
both taken and not-taken paths, and the JOIN node has
only one predecessor, set sampling count of predecessor
to sampling count of the JOIN node.

2. If the sum of the takensample and not-takensample
differs greatly from totalsample, then don’t annotate the
branch.

4.4 Open64 Limitations

We could improve the quality of the edge profiles estimated
by augmenting the heuristics to use static edge profile prob-
abilities (Levin et al. 2008). However, the static heuristics
functionality is currently implemented in the code gener-

Figure 7. Basic block counts after applying the smoothing heuristics

ation (CG) phase in open64. Therefore, it is not straight-
forward, implementation-wise, to obtain edge probabilities
from static heuristics to aid in edge frequency estimation
during CFG annotation, which is done right after the FE
phase.

Open64 uses the profile feedback data in the LNO phase
to identify loops with short trip counts in order to skip ag-
gressive loop transformations for such loops. In the WOPT
phase, the frequency information is incorporated into its ba-
sic block structure, and is used in addition to other informa-
tion to decide when it is advantageous to perform specula-
tive code motion. In the VHO phase, the profile data is used
to determine the best way to handle case statments. Under
-ipa option for inter-procedural builds, inlining is done in
the IPA phase, and the profile information is used for inlin-
ing decisions. However, without the-ipa option, the profile
data cannot be used for inlining decisions. Currently early
inlining is done before the instrumentation/annotation phase

in the traditional FDO model. With the use of sampling pro-
files, there is no requirement for tight coupling between the
profile collection and FDO builds. We are investigating us-
ing the profile data (separated by caller functions for inlined
function instances) for making inlining decisions during the
FDO build.

4.5 Source Correlation Issues

Since we use source position information to correlate sam-
ples with their corresponding source lines, it is important
that the source position information is accurate and complete
in the binaries used for profile collection. We ran into a few
gcc source correlation issues with optimized (-O2) binaries
- an example is shown here. Consider the following samples
attributed to a hot basic block in procedurenew dbox() in
the SPEC benchmark 300.twolf. Sample counts are shown
as comments.

93 if(netptr->flag == 1) { //31366

94 newx = netptr->newx ; //3000
95 netptr->flag = 0 ; //37000
96 } else {
97 newx = oldx ;
98 }

No samples are attributed to lines 96 and 97, so our
heuristics predict the branch at line 93 as always taken.
However, instrumented runs show that the “if statement” on
line 93 is taken only 19% of the time.

The reason for no samples being attributed to lines 96 and
97, is the following transformations during optimization in
gcc.

1. Initial basic block corresponding to line 97:

<bb 7>:
[dimbox.c : 97] newx_25 = oldx_22;
<bb 8>:
newx_3=PHI<newx_24(6), newx_25(7)

2. After copy propagation into the PHI node:

<bb 7>:
[dimbox.c : 97] newx_25 = oldx_22;
<bb 8>:
newx_3=PHI<newx_24(6), oldx_22(7)>

3. Now the copy in bb7 is dead and therefore eliminated
during the dead code elimination phase.

4. The bb7 is then regenerated from the PHI node when
transitioning out of SSA. However, the corresponding
source position information is lost at this stage.

<bb 7>:
newx = oldx;
goto <bb 9>;

We see a similar problem in the 175.vpr binary compiled
with -O2 -g in functionget non updateable bb().
gcc is currently being enhanced to maintain source position
information across copy propagation into PHI nodes and
regeneration from PHI nodes in order to fix this issue.

4.6 Measures for Edge Profile Quality

The quality of the estimated edge profiles depend both on
the quality of the sample profiles and the effectiveness of the
heuristics. We use the term branch bias to denote a branch’s
taken probability. For example, if a branch is taken 30% of
the time, then it’s branch bias is 0.3, and if a branch is taken
85% of the time, it’s branch bias is 0.85. As a measure of
the estimated edge profile quality, we compare each branch
bias obtained by sample profiling with the corresponding
branch bias of the real run (obtained by instrumentation
based profiling). We define the Weighted Difference (WD)
measurement as follows:

Benchmark -O2 P -O2 NP -O2 NP/NR

164.gzip 0.15 0.12 0.13
175.vpr 0.28 0.31 0.27
176.gcc 0.17 0.38 0.22
181.mcf 0.25 0.39 0.25

186.crafty 0.27 0.25 0.27
197.parser 0.28 0.45 0.28

253.perlbmk 0.22 0.23 0.22
254.gap 0.31 0.39 0.34

255.vortex 0.25 0.21 0.24
256.bzip2 0.20 0.16 0.19
300.twolf 0.22 0.24 0.10

Figure 8. Weighted Differences (WD) using -O2 binaries
and different sampling modes for profile collection, P =
PEBS, NP = Non-PEBS with randomization, NP/NR = Non-
PEBS without randomization.

WD =

∑
n

i=1
abs(samp biasi − instr biasi) ∗ counti∑n

i=1
counti

(3)
The WD measurements for the Spec2000int C bench-

marks are shown in Figure 8. We also define the Simple
Weighted Difference (SWD) measurement, where the dif-
ference between the sample and instrumented branch bias is
set to 0 if the branch biases are in the same direction (i.e.,
taken or not-taken), and set to 1 if the branch biases are in
opposite directions.

SWD =

∑
n

i=1
diffi ∗ counti∑n

i=1
counti

(4)

In both the WD and the SWD measurements, the differ-
ences in branch biases are weighted by the execution count
of the branch. The SWD measurements for the Spec2000int
C benchmarks are shown in Figure 9.

Lower WD and SWD measures imply better branch bias
estimates. A random branch bias prediction is a random as-
signment of branch biases, without using any information
about the branch. The WD measurement using sample pro-
files is less than 0.25 in most cases for the SPEC2000int
C benchmarks used, which is much better than the the av-
erage WD measurement of 0.33 using random branch bias
predictions. Similarly, the SWD measurement is less than
0.35 in most cases which is much better than the aver-
age SMD measurement of 0.50 using random branch bias
predictions. However, benchmarks such as 186.crafty and
197.parser show much larger average WD and SWD mea-
sures with sample profiles. These benchmarks have short
code sequences (1 or less source code lines) in the body of
the taken and nottaken paths. Such short code sequences
expose source code correlation issues (incorrect source po-
sition information in the binaries, or incorrect attribution of

Benchmark -O2 P -O2 NP -O2 NP/NR

164.gzip 0.15 0.21 0.20
175.vpr 0.35 0.39 0.37
176.gcc 0.14 0.39 0.19
181.mcf 0.13 0.27 0.28

186.crafty 0.41 0.34 0.54
197.parser 0.31 0.50 0.31

253.perlbmk 0.25 0.28 0.27
254.gap 0.39 0.51 0.44

255.vortex 0.24 0.22 0.29
256.bzip2 0.07 0.15 0.19
300.twolf 0.28 0.36 0.19

Figure 9. Simple Weighted Differences (SWD) using -O2
binaries and different sampling modes for profile collection,
P = PEBS, NP = Non-PEBS with randomization, NP/NR =
Non-PEBS without randomization.

samples to the source lines due to sampling skew), resulting
in bad branch bias estimation by the smoothing heuristics.

5. Experimental Evaluation
Our experiments were carried out using 64-bit binaries of the
SPEC2000int and SPEC2006 C benchmarks on Intel Core-
2 machines. We compare the performance gains of open64
FDO using sample profiles collected in PEBS mode (sam-
pling every 202001 INSTRETIRED events) and non-PEBS
mode (sampling rate 280001, using randomization between
0 to 255 for every sample) using gcc-built -O2 binaries
vs. open64 FDO using profiles collected from instrumented
runs. All performance gains are compared against default
open64 -O2 runs without FDO. We also show the perfor-
mance results of FDO on 32-bit platforms using samples
collected with gcc built -O0 -g binaries for comparision to
highlight the potential performance gains possible for FDO
using sampled profiles in the absence of source correlation
issues.

In open64’s support for traditional FDO, the instrumen-
tation and annotation is done after early inlining, so that
the profile data collected for inlined functions can be cor-
rectly matched during annotation. We are currently enhanc-
ing our heurisitics to use sample profiles for inlining deci-
sions. Since this is work in progress, we have focused on
the set of C benchmarks for this paper, omitting C++ bench-
marks with inlined functions.

5.1 Results

The first set of results (Figure 10 and Figure 11) is for sam-
pled profiles collected using -O2 binaries. FDO runs us-
ing sample profiles collected in 3 different modes (PEBS,
non-PEBS with randomization and non-PEBS without ran-
domization) are compared with the base -O2 run, and tradi-
tional FDO run, which uses profile data collected from in-
strumented runs.

Figure 10 shows that the average % gain for the Spec2000int
C benchmarks using -O2 binaries for profile collection is as
follows: PEBS - 2.42%, Non-PEBS with randomization -
1.44%, Non-PEBS without randomization - 1.62%, Instru-
mented - 7.29%. In PEBS mode, 175.vpr and 300.twolf show
performance degration due to the source correlation issues
discussed in section 4.5. Omitting these two benchmarks,
the average % gain for PEBS mode rises to 3.33%. The av-
erage % gain using PEBS mode is higher than the average
% gain using non-PEBS mode, as expected. However, when
comparing the % gains for the non-PEBS modes with and
without randomization, we see that the % gain is higher
without randomization (1.62% and 2.14% vs. 1.44% and
1.59%), which is contrary to our expectations.

Figure 11 shows the average % gain for the Spec2006 C
benchmarks using -O2 binaries for sample profile collection:
PEBS = 2.04%, non-PEBS (with randomization) = 2.66%,
Instrumented = 4.48%. Here the non-PEBS mode yields
better performance gains compared to the PEBS mode.

We do not find much correlation between the WD/SWD
measurements shown in the previous section and the perfor-
mance gains using the same feedback data files shown in
Figure 10. This is reasonable as the performance gains can
be attributed to the following:

1. Quality of basic block count annotation

2. Quality of branch bias annotation

3. Quality of loop annotation

4. Relative importance of the annotations for each of the
above. For example, even if we predict the biases of 99
of the 100 branches correctly, we might still not get the
expected performance gains if the single branch that is
incorrectly predicted is the most important one in terms
of performance impact.

Of the 4 items mentioned above, WD and SMD only
model the branch bias annotation quality. A metric to ac-
curately model the performance gains will have to take into
account all of the 4 items mentioned above.

The results for 32-bit Spec2006 FDO runs, using -O0 bi-
naries for profile collection are shown in Figure 12. This
shows an average % gain of 3.59% for PEBS mode, 3.07%
for non-PEBS mode with randomization, and 4.23% for
FDO using instrumented runs. We see that when -O0 bina-
ries are used for profile collection, the performance gains of
FDO using sampled profiles collected in PEBS mode is com-
parable to performance gains with traditional FDO, achiev-
ing approximately 85% (3.59% vs. 4.23%) of the perfor-
mance gains.

From our experimental results, there is no clear win-
ner among the three different sampling modes (PEBS, non-
PEBS with/without randomization) to collect sample pro-
files. We would recommend using the PEBS mode since it
allows a higher sampling rate then using non-PEBS mode
for a given sampling overhead.

Benchmark Base PEBS Non-PEBS NP/NR Instr P gain NP gain NP/NR gain I gain

164.gzip 1274 1313 1315 1308 1305 3.06 3.22 2.67 2.43
175.vpr∗ 1450 1424 1460 1448 1483 -1.79 0.69 -0.14 2.28
176.gcc 1740 1778 1761 1800 1862 2.18 1.21 3.45 7.01
181.mcf 1431 1691 1574 1488 1681 18.17 9.99 3.98 17.47

186.crafty 2224 2255 2177 2262 2220 1.39 -2.11 1.71 -0.09
197.parser 1118 1142 1125 1123 1334 2.24 0.63 0.45 19.32

253.perlbmk 2050 2107 2136 2209 2292 2.78 4.20 7.76 11,80
254.gap 1786 1776 1781 1791 1847 -0.56 -0.28 0.28 3.42

255.vortex 2039 2051 2020 1991 2204 0.59 -0.93 -2.35 8.09
256.bzip2 1622 1624 1595 1643 1674 0.12 -1.66 1.29 3.21

300.twolf∗ 2241 2207 2260 2212 2271 -1.52 0.85 -1.29 1.39

Mean 2.42 1.44 1.62 7.29
Mean w/o∗ 3.33 1.59 2.14 8.65

Figure 10. Runtime comparision for 64-bit Spec2000INT (Numbers are SPEC scores, higher is better). Sampled Profiles
were collected with -O2 binaries. Mode of profile collection: P - PEBS, NP - Non-PEBS, NR - No Randomization, I -
Instrumentation. Arithmetic mean used for average %gain. *Source correlation issues for 175.vpr and 300.twolf are explained
in section 4.5.

Benchmark Base PEBS Non-PEBS Instr P % gain NP % gain I % gain

400.perlbench 13.9 14.8 14.9 16.8 6.47 7.19 20.86
401.bzip2 12.4 12.1 12.1 12.9 2.42 -2.42 4.03

403.gcc 12.2 12.3 12.4 12.3 0.82 1.64 0.82
429.mcf 12.1 12.6 13.4 12.7 4.13 10.74 4.96

445.gobmk 12.2 12.4 12.4 31.1 1.64 1.64 7.38
456.hmmer 14.6 14.6 14.4 14.7 0.00 -1.40 0.68

458.sjeng 13.6 13.9 13.9 14.0 2.21 2.21 2.94
464.h264ref 19.3 19.2 19.2 19.6 -0.52 -0.52 1.55

433.milc 10.0 10.5 10.5 10.0 4.76 4.76 0.00
470.lbm 13.8 14.2 14.2 14.3 2.90 2.90 3.62

482.sphinx3 16.1 16.5 16.5 16.5 2.48 2.48 2.48
Mean 2.04 2.66 4.48

Figure 11. 64-bit Spec2006 results. Sample profiles collected using -O2 binaries. Mode of profile collection: P - PEBS, NP -
Non-PEBS, I - Instrumentation. Arithmetic mean used for average % gain.

Benchmark Base PEBS Non-PEBS I P(%) NP(%) I(%)

400.perlbench 13.2 14.6 14.4 16.1 10.61 9.09 21.97
401.bzip2 11.1 11.1 11.1 11.6 0 0 4.5
403.gcc*
429.mcf 16.3 17.9 17.3 16.7 9.82 6.13 2.45

445.gobmk 12.1 12.3 12.5 12.7 1.65 3.31 4.96
456.hmmer 11.9 11.8 11.8 11.7 -0.84 -0.84 -1.68

458.sjeng 12.2 12.9 12.9 12.7 5.74 5.74 4.1
464.h264ref 18.6 18.8 19.1 18.9 1.08 2.69 1.61

433.milc 8.57 8.63 8.76 8.55 0.12 0.93 -0.23
470.lbm 11.6 12.1 12.1 11.9 4.31 4.31 2.59

482.sphinx3 14.8 15.1 14.7 15.1 3.38 -0.68 2.03
Mean 3.59 3.07 4.23

Figure 12. 32-bit SPEC2006 results. Sample profiles collected using -O0 binaries. Mode of profile collection: P - PEBS, NP
- Non-PEBS, I - Instrumentation. *403.gcc had runtime failures when built with FDO so results are not available.

6. Related Work
In a recent paper, Roy Levin, Ilan Newman, and Gadi
Haber (Levin et al. 2008) use sampled profiles of the
INST RETIRED hardware event to construct edge profiles
for FDO in IBM’s FDPR-Pro,post-link timeoptimizer. The
samples are directly correlated to the corresponding basic
blocks without the need to use any source position infor-
mation, as this is done post-link time. The problem of con-
structing a full edge profile from basic block sample counts
is formalized as a Minimum Cost Circulation problem. Here,
the flow conservation rule is that for each vertex in the CFG,
the sum of the incoming edge frequency counts should be
equal to the sum of the outgoing edge frequency counts.The
idea is that by ensuring the flow conservation rule, and at
the same time, limiting the amount of weighted change from
the initial edge weights predicted by static profiles (Wu and
Larus 1994) to a mininum, a near approximation to actual
edge counts obtained via instrumentation can be achieved.

An algorithm to solve the above Minimum Cost Circula-
tion problem is described in (Goldberg and Tarjan 1989) and
is based on repeatedly finding a residual cycle with negative
cost and canceling it by pushing enough flow through the cy-
cle to saturate an arc. While this is a higher order polynomial
time algorithm, the compile time was found to be within ac-
ceptable levels for the SPEC benchmarks. Experimental re-
sults (Levin et al. 2008) show that -O3 FDO runs using edge
profiles from sampling profiles are able to achieve nearly
100% of the performance gains of -O3 FDO runs using exact
edge profiles from instrumented runs. An interesting obser-
vation is that a large percentage of the performance benefits
(70% to 80%) can be obtained using the initial edge profile
estimation predicted by static profiles and the sampled basic
block counts alone. The gcc compiler already has support for
using static heuristics and its implementation model makesit
easier for us to experiment with using this algorithm. Please
note the differences between the approach of Levin et. al.,
and what is described in this paper.

1. We are working on source level, whereas the work by
Levin et. al., is on the binary level.

2. The platforms used are different - Out-of-order x86 vs.
IBM’s POWER4/AIX platforms.

3. Our approach allows using binaries built by any compiler
for the purpose of profile collection.

Another hardware-based profiling technique (Conte et al.
1996) is to sample the contents of the branch-prediction
hardware, namely

1. The target address, i.e., the destination of the edge,

2. The buffer tag, i.e., the source of the edge, and

3. The prediction information, i.e., the edge’s weight

using kernel-mode instructions. This mechanism requires
the program to be compiled with a special identity token in-

dicating that it contains a table of CFG edges. During ex-
ecution, the kernel periodically reads the hardware branch-
prediction buffer and updates the edge table stored in the ex-
ecutable. The profiling overhead is estimated to be between
0.4% and 4.6%. The basic block counts are then estimated
from the sampled edge weights.

Other methods of edge profile estimation build on ideas
from both program instrumentation and statistical sampling.
In (Traub et al.), an approach for estimation of traditional
edge profiles using ephemeral instrumentation is described.
A branch’s bias is sampled by periodically inserting instru-
mentation code to capture a small and fixed number of the
branch’s executions. A post-processing step is used to derive
traditional edge profiles from the ephemeral branch biases
collected. The problem of obtaining a weighted CFG from a
CFG annotated with branch biases is equivalent to the prob-
lem of finding the limiting probabilities on an irreducible,
finite-state Markov chain. Their experimental results show
that the ephemeral profiles show competitive performance
gains when compared with using complete edge profiles to
drive a superblock scheduler.

A similar framework for performing instrumentation
sampling with low overhead is described in (Gloy et al.).
Their sampling technique does not rely on any hardware
or operating system support, but performs code duplica-
tion and uses compiler-inserted counter-based sampling to
switch between instrumented and non-instrumented code in
a controlled, fine-grained manner.

The Morph system (Zhang et al. 1997) is a framework
for automatic collection of profiles via statistical sampling
of the program counter on clock interrupts. It also pro-
vides a framework for profile data management and dy-
namic profile-driven optimizations. Since optimizations are
applied without the use of source code, the Morph system
requires the executable to also contain the extra informa-
tion pertaining to the compiler intermediate representation,
which is used to map the instruction-level samples to their
corresponding basic blocks. This solution has a major draw-
back in that it requires new software standards and standards
compliances across the software industry. Their use of a
time-based sampling also skews the basic block counts to-
wards higher latency instructions, which is mitigated in our
method of sampling the INSTRETIRED event.

Stack sampling has been used, without the use of any in-
strumentation, to implement a low-overhead call path pro-
filer (Froyd et al. 2005). This method requires marking a
stack frame with a sentinal to reduce the overhead of con-
structing the call paths from the stack samples. This method
could be used to augment the sample profiles collected by
INST RETIRED event sampling.

7. Conclusions
We presented a new methodology of using INSTRETIRED
hardware event sampling to construct basic block and edge

frequency profiles that are used to guide feedback directed
optimizations at compile-time. This method overcomes the
many shortcomings of the traditional FDO usage model,
and initial experimental results show promising performance
gains. We expect to get further improvements in perfor-
mance by continued tuning and enhancement of the heuris-
tics described in this paper.

Acknowledgments
We would like to thank Brad Chen for providing us with
machine resources, Stephane Eranian for enthusiastically
helping us resolve perfmon related issues, Martin Thuresson
for bringing to our attention the very relevant research by
Roy Levin et. al., Seongbae Park for help in analysis of GCC
source correlation issues, and our colleagues Preston Briggs,
Mark Heffernan, and David Li, as well as the anonymous
reviewers for their very valuable review feedback.

References
Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting

hardware performance counters with flow and context sensi-
tive profiling. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 85–96, 1997. URL
citeseer.../ammons97exploiting.html.

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Le-
ung, D. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl.
Continuous profiling: Where have all the cycles gone. Technical
report.

Thomas Ball and James R. Larus. Optimally profiling and
tracing programs. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1319–1360, July 1994. URL
citeseer.../ball94optimally.html.

Thomas Ball and James R. Larus. Efficient path
profiling. In International Symposium on Mi-
croarchitecture, pages 46–57, 1996. URL
citeseer.ist.psu.edu/ball96efficient.html.

Thomas M. Conte, Burzin A. Patel, Kishore N. Menezes, and
J. Stan Cox. Hardware-based profiling: An effective tech-
nique for profile-driven optimization. International Jour-
nal of Parallel Programming, 24(2):187–206, 1996. URL
citeseer.ist.psu.edu/30422.html.

Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-
overhead call path profiling of unmodified, optimized code.
In ICS ’05: Proceedings of the 19th annual international
conference on Supercomputing, pages 81–90, New York,
NY, USA, 2005. ACM. ISBN 1-59593-167-8. doi:
http://doi.acm.org/10.1145/1088149.1088161.

N. Gloy, Z. Wang, C. Zhang, B. Chen, and M. Smith. Profile-based
optimization with statistical profiles. Technical report.

Andrew V. Goldberg and Robert E. Tarjan. Finding
minimum-cost circulations by canceling negative cycles.
J. ACM, 36(4):873–886, 1989. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/76359.76368.

Intel. Ia-32 Intel Architecture Software Developer’s Manual, Vol-
ume 3: System Programming. Intel Press, 2007.

Roy Levin, Ilan Newman, and Gadi Haber. Complementing miss-
ing and inaccurate profiling using a minimum cost circulation
algorithm. InHiPEAC, pages 291–304, 2008.

Matthew C. Merten, Andrew R. Trick, Christopher N. George,
John C. Gyllenhaal, and Wen mei W. Hwu. A hardware-driven
profiling scheme for identifying program hot spots to support
runtime optimization. InISCA, pages 136–147, 1999. URL
citeseer.../merten99hardwaredriven.html.

Florian T. Schneider, Mathias Payer, and Thomas R. Gross.
Online optimizations driven by hardware performance
monitoring. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementation, pages 373–382, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-633-2. doi:
http://doi.acm.org/10.1145/1250734.1250777.

O. Traub, S. Schechter, and M. Smith. Ephemeral instrumentation
for lightweight program profiling. Technical report.

Youfeng Wu and James R. Larus. Static branch frequency and
program profile analysis. Technical Report CS-TR-1994-1248,
1994. URLciteseer.../wu94static.html.

Catherine Xiaolan Zhang, Zheng Wang, Nicholas C. Gloy,
J. Bradley Chen, and Michael D. Smith. System support
for automated profiling and optimization. InSymposium
on Operating Systems Principles, pages 15–26, 1997. URL
citeseer.ist.psu.edu/zhang97system.html.

