Feedback-Directed Optimizations with Estimated Edge Profes
from Hardware Event Sampling

Vinodha Ramasamy Robert Hundt

Google Inc.
vinodha,rhundt@google.com

Abstract
Traditional feedback-directed optimization (FDO) usesist

Dehao Chen = Wenguang Chen

Tsinghua University
danielcdh@gmail.com, cwg@tsinghua.edu.cn

3. Build an optimized version of the program by using the
collected execution profile to guide the optimizations
(FDO build).

instrumentation to collect profiles. This method has shown
good application performance gains, but is not commonly
used in practice due to the high runtime overhead of pro- The instrumentation builds are usually restricted to lower
file collection, the tedious dual-compile usage model, and optimization levels or are tightly coupled with the FDO
difficulties in generating representative training dats.s@ compilations in most compilers. For example, the profile
this paper, we show that edge frequency estimates can bedata that is fed back to the open64 compiler must have
successfully constructed with heuristics using profileadat been collected by an open64 instrumented binary. Addition-
collected by sampling of hardware events, incurring lowrun ally, open64 requires that both the instrumentation and FDO
time overhead (e.g., less then 2%), and requiring no instru- builds use the same inline decisions and similar optimiza-
mentation, yet achieving competetive performance gains.tion flags (such as with or without thé pa option) to en-

Our initial results show a 3-4% performance gain on the sure that the control-flow graph (CFG) that is instrumented
SPEC C benchmarks. in the instrumentation build matches the CFG that is anno-
tated with the profile data in the FDO build.

Besides complete execution profiles gathered by static in-
strumentation, researchers have used profiles gathered us-
1. Introduction ing hgrdV\{are s.u.pport (Merte.n gt a_\l. 1999) and statistical

) .] o) sampling in guiding code optimizations. These approaches
Compilers use execution profiles f:on3|st!ng of.baS|c block typically have much lower overheads (less then 5%). So
and edge frequency counts to guide optimizations such asgyy the profiles collected via hardware support have either
instruction scheduling, procedure inlining, and regisiéo- been used to augment instrumented run profiles with flow
cation. The traditional method of execution profile colieat and context-sensitive information (Ammons et al. 1997) or
involves the following steps: machine-specific information such as cache misses in online
optimization systems (Schneider et al. 2007), or used sepa-
rately for specific optimizations (Froyd et al. 2005) that do
2. Run the instrumented version with representative tngini not encompass the wide range of optimizations enabled by

data to collect the execution profile. These runs typically complete basic block and edge frequency profiles.

incur significant overhead (reported as 9% to 105% (Ball ~ Our approach is to use sampling of the Instruction Re-

and Larus 1996) (Ball and Larus 1994), but observed to tired (INST.RETIRED) hardware event, which is available

be much higher, often in the order of 50% to 200% in our on performance monitoring units of modern processors,(e.g.
experience) due to the additional instrumentation code Intel Core-2, AMD Opteron) taeplace rather thanaug-

that is executed. ment the traditional instrumentation methods to obtain basic

block and edge frequency counts. This approach enables dif-
ferent usage models:

Keywords Compiler, Profiling, Sampling

1. Build an instrumented version of the program.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Open64 Workshop at CGO’0804/06/2008, Boston.
Copyright(© 2008 ACM ... $5.00

1. Profile collection can occur on production systems (e.g.,
in internet companies) using the default binaries, with the
sampled profile data being stored in a profile repository.
The profiles shall therefore be readily available for FDO
builds without the need for any special instrumentation

build and run Moreover, there is no discrepancy between On the SPEC2000int and SPEC2006 C benchmarks, we
training run input data and real usage data in this case. currently obtain an average performance gain of approxi-

2. In cases where representative training data sets afe avaj Mately 3% using FDO with sampled profiles collected using
able, the profile collection could be done using debug ~“O2 Pinaries, as compared to an average of approximately
or un-optimized binaries. The profile data thus collected 8% Using traditional FDO runs. We expect to get improved

during the testing and development phase can then per€sults with better source correlation in gcc. Using -O0 bi-
used to build the optimized binary. naries for profile collection, we are able to achieve approxi

B T mately 85% of the performance gains seen using traditional
3. The traditional FDO model using instrumented runs to pg on Spec2006 C benchmarks (3.59% vs 4.23%).

col!ect profilg data is not suitable for cases where €Xe- The rest of the paper is organized as follows: Section 2
cution of the instrumented code changes the behavior of 65 4 hackground of the hardware event counters used and
time critical code such as operating system kernel code. ihe modes of operation. Section 3 describes the high-level

Profllg collection using hardware event sampllng_can be design and methodology for sampled profile support in the
used in such cases without perturbing the run-time be- onan64 compiler. Section 4 describes the heuristics and im-

havior. plementation details of deriving basic block and edge fre-
])) guency counts from the sampled profiles. Section 5 describes

The sampled profile data does not contain any informa- he experimental evaluation of using FDO with sampled pro-

tion on the intermediate representation (IR) used by the.com fijes. Finally, sections 6 and 7 discuss related work and con-
piler. Instead, source position information is used to@orr | sions.

late the profile data to specific basic blocks during the FDO
build. This method thereforeliminates the tight coupling
between profile collection and profile feedback builts 2. Hardware Event Sampling
fact, the binary used for profile collection can be built by
one compiler, and the profile data thus collected can be fed
to another compiler. To make the case, in our experiments,Most modern microprocessors support hardware event sam-
we use gcce built -O0 and -O2 binaries for profile collection Pling, which works as follows: The Instruction Pointer and
and open64 for FDO builds and performance experiments. Other register contents are recorded whenever a specified

In generaL deriving exact basic block and edge frequency number of a specified hardware event has occurred. This
counts from sample profiles is not always feasible. We use helps to identify the program locations, i.e., the instruc-
heuristics to derive relative basic block and edge frequenc tion addresses incurring the measured hardware event. For
count estimates from the sampled profiles. Increasing the€xample, the DCPI tool (Anderson et al.) samples on the
sampling rate will in general increase the quality of thesam event CPUCYCLES to determine performance bottlenecks
pled profile at the expense of increasing the overhead of pro-in programs.
file collection. Our experiments show we can get sampled Events can be differentiated by whether they indicate
profiles with reasonable quality with overheads of less than €xecution time or execution frequency, i.e., whether they
2%. We use a sample “goodness” measure derived from theare time-based or frequency-based (Zhang et al. 1997). The
weighted difference in branch biases between execution pro CPU.CYCLES is a time-based event, so program locations
files collected from instrumented runs and sampled profiles that take a relatively longer time to execute will incur more
as an indicator of the qua"ty of the samp|ed prof”e_ How- CPU.CYCLES event samples. To obtain an execution count
ever, the definitive measure of the sample profile quality is from such time-based samples, one must scale by the in-
ascertained only from the performance gains obtained in us-struction latency, which necessitates knowing the indisid
ing the sampled profile for feedback-directed optimization ~ instruction execution latencies and latencies incurresitdu

We use the Intel Core-2 platform for both profile collec- TLB misses, cache misses and branch misprediction, as well
tion and for our performance runs. Note that the profile met- @s other pipeline stalls, which are micro-architecture- spe
rics collected are platform independent, so the profile data Cific. Additional hardware events (such as cache and TLB
can be used to build a binary optimized for another platform misses) will therefore need to be sampled for this purpose,
than the one used for profile collection. Since the profile thereby increasing the sampling overhead and making the
data is stored by samples per source line, it will not mat- determination of execution counts from time-based event
ter if the profile collection is done using optimized or un- samples more complex. Most modern microprocessors also
optimized binaries. Our heuristics depend on the correstne support sampling of frequency-based events such as the in-
of the source position information present in the binares t ~ struction retired (INSTRETIRED) event, which correlates
correlate the samples to the corresponding basic bldcks. directly to instruction and basic block execution count. We

2.1 Time-based vs Frequency-based Sampling

1We ran into a couple of gcc issues - source information isnagsi lost which will help to improve the accuracy of sample attribatiwhen using
during transformations in optimization builds. These éssare being fixed, optimized binaries for profile collection.

therefore use sampling of the INSRETIRED event for our Eg_inp: e-ﬁr tor PU 1
. i . .) Sanpl e_Hdr for
execution profile estimation. Pu_Sanpl e_Hdr for PU 2

Pu_Sanpl e_Hdr for PU NUM PU
Pu_Sanple_Hdr for Inline 1

We use perfmon2, the hardware-based performance moni- - - .

toring interface for Linux, and pfmon, the command-line- g#alsang'Tiétkér
interface tool to gather INSRETIRED samples on the In- Fb_Info Freq 1 for PU 1

tel Core-2 platform (Intel 2007). Intel Core-2 machines-sup

port two modes of sampling: Precise Event-Based SamplingFb_I nfo_Freq N for PU 1

(PEBS) and the regular sampling mode, which we will re- Fo-!nfo_Freq 1 to Nfor PU 2

fer to as non-PEBS. PEBS mode accurately identifies the gy | no Freq 1 to N for PU NUM PU

next instruction address following the instruction incugr Fb_Info_Freq for Inline 1 to NUMINLINE
the sampled event. Moreover, PEBS incurs less overhead

since the CPU collects event samples on its own using a mi-
crocode routine and stores them into a buffer supplied by the
operating system (OS) kernel module. An interrupt is gener-

ated and the OS is involved only when the buffer becomes yejye the average number of samples per source line, which
full. A drawback of PEBS-based sampling is that the hard- 5 siored in the feedback data file.

ware does not support randomization of every sample - a = 1 feedback file is read into the open64 compiler and
feature that helps to reduce sampling skews due to programis ;seq to annotate the WHIRL statements for the current
synchronization with the sampling interval. We expected th - .4ram unit with the relative execution counts of the cor-
use of the randomization feature to improve the quality efth e5p0nding source position information. This is done in the
sampling profiles and for samples collected in PEBS mode \; 5 phase for both profile feedback data collected from
to yield better results than samples collected in non-PEBS 4664 instrumented runs and for profile data collected us-
mode. However our experiments (see section 5) show thating sampling. The VHO phase belongs to the IPF phase un-
all three modes (PEBS, non-PEBS with randomization, and yq,_ pa compiles and to the backend withotitpa. Fig-
non-PEBS without randomization) yield comparable perfor- e 1 shows the phases where the profile data annotation is

mance gains when used for FDO with sampled profiles. done for builds with and without inter-procedural optimiza
We determined the sampling rate of the INEETIRED tions. In our experiments, we do not use inter-procedural op
events in PEBS and non-PEBS mode which will give a max- timizations.

imum overhead of 2%. When sampling everyNST. RE- The basic block sample counts are calculated from the
TIRED event,n should be chosen to be a prime number, t0 g3 mpjes attributed to the individual WHIRL statements in
mitigate the possibility of program synchronization wifet g4ch piock. The counts are then used to derive edge fre-
sampling interval (for example, in the presence of l00ps). 4yency counts using heuristics which are described inldetai
An issue with the current implementation of perfmon2 i, ihe next section.
is tha.t it uses a single buffer to record samples, which re- 114 gerived edge frequency estimates are used to con-
sults in lost program samples whenever the OS processesgyct the feedback data structures associated with eaeh pr
the samples on buffer overflow. We overcome this problem 4.5 ynit. At the end of this phase, the feedback data struc-
by using the - over f | ow- bl ock optionin pfmon, which 4,5 will be initialized in a manner consistent with the-ini
blocks the program execution on buffer overflow. As this igjization of these structures when using instrumented+e
method incurs considerable overhead, this is only & tem-p .y gata. This allows us to leverage the existing support
porary workaround until perfmon2 implements dual-buffer i, gneng4 for feedback-directed optimizations and for main
support. taining valid feedback information in later phases through
the propagation and verification of the feedback infornmatio

2.2 Perfmon

for Inline NUM INLINE

Figure 2. Feedback data file format

3. High-Level Design

4. Implementation Details
The INSTRETIRED event samples are recorded on the .
granularity of instruction addresses and attributed tatite ~ 4-1 Feedback Data File Format
responding program source filename and line number usingThe design of the sample profile feedback data file format is
the source position information present in unstripped bina based on the file format used to store profile data collected
ries. Since source lines with larger number of instructions from instrumented runs. The layout of the sample profile
will have correspondingly larger total number of samples at data file is given in figure 2.
tributed, the total number of samples attributed per source Fb_Sanpl e_Hdr is the file header. The data structure
line is divided by the number of contributing instructionst Pu_Sanpl e_Hdr holds the header information pertain-

Without IPA

FE [IPL [IPA >

LNO/WOPT/

—» AS

CG

A

I
|
L

With IPA

Executable

Without IPA i

e '

Feedback from Instrumentation or Sampling

Figure 1. Open64 Modules and Flow

ing to each program unit. A program unit corresponds to
a function. This format supports the aggregation of sam-
ples for inlined functions by caller function. If a func-
tion A has 3 inlined functions B, C and D with sam-
ples, the program header corresponding to A will have the
pu_numi nl i ne_entri es setto 3 and assign the offset
of the inline program header fou_i nl i ne_hdr _of f set
(which shares the same structurePasSanpl e _Hdr) cor-
responding to the inlined instance of B within function A.
The inline headers for the inlined instances of functions C
and D within function A will be stored consecutively follow-
ing the inline header for B. The samples attributed to each
inlined function can then be handled in a manner similar to
non-inlined functions.

The data structur€b_|I nf o_Fr eq is used to store the
sample count associated with each source line within a
function. TheFb_I nf o_Fr eq data associated with a func-
tion will be stored consecutively. ThBu_Sanpl e_Hdr
for the function has the offset of the firBb_Fr eq_l nf o
data in thepu_f req_of f set field and the number of
Fb_Fr eq_l nf o associated with its function.

4.2 Basic Block Annotation

The sample count corresponding to each WHIRL statement
(IR.count) is obtained from the sample count of its associ-
ated source line. The basic block sample count (BB.count)
is then computed from its associated WHIRL statements as

shown below:

Nstatewnents

21

IR.count;

Nstatements

BB.count = (1)

When scaling the basic block count, all statements are
given the same weight - i.e., we do not differentiate the
WHIRL statements by the type of operator. If different feed-
back data files collected with different sampling rates are
used, the BB.count should be normalized to a fixed sam-
pling rate. Note that different heuristics from the one used
here can be employed to derive basic block sample count
from source code correlated samples.

ired. ling_rat
BB.count,orm = BB.count * Jized sampling rate

sampling_rate @)

S

100
1000 1000

NS

Figure 3. A loop with imprecise basic block sample counts

4.3 Edge Profiles from Sample Data

The derivation of edge frequencies and branch biases from
the sampled basic block counts is a core component of our
methodology. Our initial attempts at deriving edge frequen
estimates based solely on the structure of the CFG yielded
poor results. Take the loop in Figure 3 for example. We
want to adjust the basic block samples counts to ensure
consistency - i.e., the sum of the incoming edge counts
should be equal to the sum of the outgoing edge counts
for each basic block after this operation, which we shall
refer to as “smoothing”. If we try to adjust the basic block
counts solely based on the CFG structure (i.e., by setting
the basic block counts to the sum of their incoming edge
counts), we may increase the basic block counts within the
loop indefinitely, or to a very high value based on the number
of iterations executed in the smoothing algorithm for such
non-converging values.

To identify and overcome such inherent problems with
CFG-based smoothing algorithms, we decided to take into
account the higher level program structure, such as IF and
LOOP statements, and handle each case separately. This is
consistent with the current model in open64, where the pro-
file data is stored by higher level program structure. While
building the CFG, extra information is stored in the ENTRY
nodes of IF statements to easily identify the first node in the
taken and not-taken paths, and a JOIN node is added explic-
itly. The detailed algorithm is shown in Figure 4.

For example, consider the C code shown in Figure 5. The
CFG with basic block counts before applying the smoothing

IF statements:

1. Determine maximum sample count in ENTRY and JOIN blocks (t
tal_.sample)

2. Determine maximum basic block sample count for taken aotd n
taken paths (takesample and not-takesample). This will require a
recursive traversal if any of the basic blocks themselvesaio nested
IF statements.

3. Compute the corrected tatshmple count from takeoount and not-
takencount

4. Call routine Adj ust Freq to set all the basic block sample
counts belonging to the IF statement to the appropriaté_sataple,
takensample or not-takeisample count.

LOOP statements:

1. Determine maximum sample count in ENTRY and JOIN blocks (t
tal_.sample)

2. Determine maximum basic block sample count for the loodybo
(body_sample). This will require a recursive traversal if any & basic
blocks contain IF statements or nested LOOP statements.

3. Call routineAdj ust _Fr eq to set all the basic block sample counts
belonging to the loop body to bodsample.

Figure 4. Algorithm to smooth the basic block count for
different structures

int foo(int total) {

int rarray = Get_Array(); /14000
int count = O; /15000
if (total > 0) { /16000
int i =0; /1500
while (i < total) {
if (array[i] > 0) { /17954
count += array[i]; /17875
array[i] *= 3; /17969
el se {
count -= array[i]; /134
array[i] *= -3; /127
i ++; /18011
}
printf ("%l", i); /1420

Figure 5. Code snippet with comments as sampling counts

heurisitics is shown in Figure 6. After smoothing, the basic
block counts in the CFG are as shown in Figure 7.

The outer branch is hardly taken in the profile collection
runs. As there is no "else” branch for the if statement, we

don’t have the count for the branch-not-taken basic block.
The smoothing algorithm uses the count outside the branch
and the branch-taken count to adjust the branch-not-take

count.
An important function of theddj ust _Fr eq routine is

Function_Entry (4500)

h 4
Branch_Entry (6000)|

|Branch_Taken (500)'

A 4

Loop_Entry (0)

h 4

|Loop_Bocy Q1))

F N

v
|Branch_Not_Taken (0)| |Branch_Entry (7954)'

|Loop_Back (0)| |Bramch_Not_Takem (30)' |Branch_Takem (7922)

Branch_Join (4ZU)|

A 4

Branch_Join (0)|

Figure 6. Basic block counts before applying the smoothing
heuristics

branches in these cases. The following are some of the spe-
cial cases to be considered:

1.if (cond) continue; If there are no samples for
both taken and not-taken paths, and the JOIN node has
only one predecessor, set sampling count of predecessor
to sampling count of the JOIN node.

2. If the sum of the takesample and not-takesample
differs greatly from totaksample, then don’t annotate the
branch.

r?-4 Open64 Limitations

We could improve the quality of the edge profiles estimated
by augmenting the heuristics to use static edge profile prob-

to detect cases which are inherently unreliable (in terms abilities (Levin et al. 2008). However, the static heudsti
of source code correlated samples) and not annotate thdunctionality is currently implemented in the code gener-

Function_Entry (6000)

A 4
|Branch,En1ry (6000)
Branch_Taken (SUU)I

h 4

h 4

|L00p,Body (771954)

v
Branch_Not_Taken (SSUU)l

Branch_Entry (7954)

{

[Loop_Back (7954)| [Branch_Not_Taken (32)| [Branch_Taken (7922)

Branch_Join (7954)

A 4

|Loop,ExﬁL (SUU)l

Branch_Join (6000)

Figure 7. Basic block counts after applying the smoothing heuristics

ation (CG) phase in open64. Therefore, it is not straight- in the traditional FDO model. With the use of sampling pro-
forward, implementation-wise, to obtain edge probaktiti files, there is no requirement for tight coupling between the
from static heuristics to aid in edge frequency estimation profile collection and FDO builds. We are investigating us-
during CFG annotation, which is done right after the FE ing the profile data (separated by caller functions for din
phase. function instances) for making inlining decisions durihg t

Open64 uses the profile feedback data in the LNO phaseFDO build.
to identify loops with short trip counts in order to skip ag-
gressive loop transformations for such loops. In the WOP
phase, the frequency information is incorporated intods b Since we use source position information to correlate sam-
sic block structure, and is used in addition to other informa ples with their corresponding source lines, it is important
tion to decide when it is advantageous to perform specula-that the source position information is accurate and cotaple
tive code motion. In the VHO phase, the profile data is used in the binaries used for profile collection. We ran into a few
to determine the best way to handle case statments. Undegcc source correlation issues with optimized (-O2) birsarie
- i pa option for inter-procedural builds, inlining is done in - an example is shown here. Consider the following samples
the IPA phase, and the profile information is used for inlin- attributed to a hot basic block in procedmew_dbox () in
ing decisions. However, without the pa option, the profile the SPEC benchmark 300.twolf. Sample counts are shown
data cannot be used for inlining decisions. Currently early as comments.
inlining is done before the instrumentation/annotatioaggh .

93 if(netptr->flag == 1) { //31366

745 Source Correlation Issues

94 newx = netptr->newx ; //3000 | Benchmark] -O2P | -O2NP | -O2 NP/NR|
95 netptr->flag = 0 ; /137000 164.9zip]] 0.15| 0.12 0.13
96 } else { 175.vpr|| 0.28 0.31 0.27
97 new< = ol dx ; 176.gcc|| 0.17| 0.38 0.22
98 } 181.mcf| 0.25| 0.39 0.25

No samples are attributed to lines 96 and 97, so our 186.crafty| 0.27 0.25 0.27
heuristics predict the branch at line 93 as always taken. 197.parsen) 0.28 0.45 0.28
However, instrumented runs show that the “if statement” on 253.perlomk| 0.22 0.23 0.22
line 93 is taken only 19% of the time. 254.gap|| 031 0.39 0.34

The reason for no samples being attributed to lines 96 and 255.vortex| 0.25 0.21 0.24
97, is the following transformations during optimization i 256.bzip2| 0.20 0.16 0.19
gec. 300.twolf | 0.22 0.24 0.10

Figure 8. Weighted Differences (WD) using -O2 binaries
and different sampling modes for profile collection, P =
PEBS, NP = Non-PEBS with randomization, NP/NR = Non-
PEBS without randomization.

1. Initial basic block corresponding to line 97:

<bb 7>:
[di mbox. c :
<bb 8>:
newx_3=PHI <newx_24(6),

97] newx_25 = ol dx_22;
newx_25(7)

. After copy propagation into the PHI node: S | abs(samp_bias; — instr_bias;) * count;

WD = .
<bb 7>: 2im Count; 3)
[<g|bn‘ggx ¢ i 97] newx_25 = oldx_22; The WD measurements for the Spec2000int C bench-

marks are shown in Figure 8. We also define the Simple
Weighted Difference (SWD) measurement, where the dif-
ference between the sample and instrumented branch bias is
set to O if the branch biases are in the same direction (i.e.,
taken or not-taken), and set to 1 if the branch biases are in
opposite directions.

newx_3=PHl <newx_24(6), ol dx_22(7)>

. Now the copy in bbr is dead and therefore eliminated
during the dead code elimination phase.

. The bh7 is then regenerated from the PHI node when
transitioning out of SSA. However, the corresponding

source position information is lost at this stage. SWD — >ic1 illiffi * count)
<bb 7> > i, count;
newx = ol dx; In both the WD and the SWD measurements, the differ-
goto <bb 9>; ences in branch biases are weighted by the execution count

of the branch. The SWD measurements for the Spec2000int
We see a similar problem in the 175.vpr binary compiled C benchmarks are shown in Figure 9.
with -O2 -g in functionget _-non_updat eabl e_bb(). Lower WD and SWD measures imply better branch bias
gcc is currently being enhanced to maintain source position estimates. A random branch bias prediction is a random as-
information across copy propagation into PHI nodes and signment of branch biases, without using any information
regeneration from PHI nodes in order to fix this issue. about the branch. The WD measurement using sample pro-
)] files is less than 0.25 in most cases for the SPEC2000int
4.6 Measures for Edge Profile Quality C benchmarks used, which is much better than the the av-
The quality of the estimated edge profiles depend both onerage WD measurement of 0.33 using random branch bias
the quality of the sample profiles and the effectiveness@f th predictions. Similarly, the SWD measurement is less than
heuristics. We use the term branch bias to denote a branch’€.35 in most cases which is much better than the aver-
taken probability. For example, if a branch is taken 30% of age SMD measurement of 0.50 using random branch bias
the time, then it's branch bias is 0.3, and if a branch is taken predictions. However, benchmarks such as 186.crafty and
85% of the time, it's branch bias is 0.85. As a measure of 197.parser show much larger average WD and SWD mea-
the estimated edge profile quality, we compare each branchsures with sample profiles. These benchmarks have short
bias obtained by sample profiling with the corresponding code sequences (1 or less source code lines) in the body of
branch bias of the real run (obtained by instrumentation the taken and ndiaken paths. Such short code sequences
based profiling). We define the Weighted Difference (WD) expose source code correlation issues (incorrect source po
measurement as follows: sition information in the binaries, or incorrect attritariiof

| Benchmark]| -O2P] -O2 NP | -O2 NP/NR | Figure 10 shows that the average % gain for the Spec2000int

164.9zip]] 0.15 0.21 0.20 C benchmarks using -O2 binaries for profile collection is as
175.vpr|| 0.35 0.39 0.37 follows: PEBS - 2.42%, Non-PEBS with randomization -
176.gcc|| 0.14 0.39 0.19 1.44%, Non-PEBS without randomization - 1.62%, Instru-
181.mcfll 0.13 0.27 0.28 mented - 7.29%. In PEBS mode, 175.vprand 300.twolf show
186.crafty| 0.41 0.34 0.54 performance degration due to the source correlation issues
197.parser| 0.31 0.50 0.31 discussed in section 4.5. Omitting these two benchmarks,
253.perlbmk|| 0.25 0.28 0.27 the average % gain for PEBS mode rises to 3.33%. The av-
254.gap|| 0.39 051 0.44 erage % gain using PEBS mode is higher than the average
255 vortex|| 0.24 0.22 0.29 % gain using non-PEBS mode, as expected. However, when
256.bzip2|| 0.07 0.15 0.19 comparing the % gains for the non-PEBS modes with and
300.twolf || 0.28 0.36 0.19 without randomization, we see that the % gain is higher

: : : : : without randomization (1.62% and 2.14% vs. 1.44% and
Figure 9. Simple Weighted Differences (SWD) using -O2 1.59%), which is contrary to our expectations.

binaries and different sampling_modes for_pro_file collettio Figure 11 shows the average % gain for the Spec2006 C
P = PEBS, NP = Non-PEBS with randomization, NP/NR = penchmarks using -O2 binaries for sample profile collection
Non-PEBS without randomization. PEBS = 2.04%, non-PEBS (with randomization) = 2.66%,

Instrumented = 4.48%. Here the non-PEBS mode yields
better performance gains compared to the PEBS mode.

We do not find much correlation between the WD/SWD
measurements shown in the previous section and the perfor-
. . mance gains using the same feedback data files shown in
5. Experimental Evaluation Figure 10. This is reasonable as the performance gains can
Our experiments were carried out using 64-bit binaries@fth be attributed to the following:

SPEC2000int and SPEC2006 C benchmarks on Intel Core- 1. Quality of basic block count annotation

2 machines. We compare the performance gains of open64™" y
FDO using sample profiles collected in PEBS mode (sam- 2. Quality of branch bias annotation
pling every 202001 INSTRETIRED events) and non-PEBS 3. Quality of loop annotation

mode (sampling rate 280001, using randomization between
0 to 255 for every sample) using gcc-built -O2 binaries
vs. open64 FDO using profiles collected from instrumented
runs. All performance gains are compared against default
open64 -0O2 runs without FDO. We also show the perfor-
mance results of FDO on 32-bit platforms using samples
collected with gcc built -O0 -g binaries for comparision to
highlight the potential performance gains possible for FDO Of the 4 items mentioned above, WD and SMD only
using sampled profiles in the absence of source correlationmodel the branch bias annotation quality. A metric to ac-
issues. curately model the performance gains will have to take into

In open64’s support for traditional FDO, the instrumen- account all of the 4 items mentioned above.
tation and annotation is done after early inlining, so that The results for 32-bit Spec2006 FDO runs, using -O0 bi-
the profile data collected for inlined functions can be cor- naries for profile collection are shown in Figure 12. This
rectly matched during annotation. We are currently enhanc- shows an average % gain of 3.59% for PEBS mode, 3.07%
ing our heurisitics to use sample profiles for inlining deci- for non-PEBS mode with randomization, and 4.23% for
sions. Since this is work in progress, we have focused on FDO using instrumented runs. We see that when -OO0 bina-
the set of C benchmarks for this paper, omitting C++ bench- ries are used for profile collection, the performance gains o

samples to the source lines due to sampling skew), resulting
in bad branch bias estimation by the smoothing heuristics.

4. Relative importance of the annotations for each of the
above. For example, even if we predict the biases of 99
of the 100 branches correctly, we might still not get the
expected performance gains if the single branch that is
incorrectly predicted is the most important one in terms
of performance impact.

marks with inlined functions. FDO using sampled profiles collected in PEBS mode is com-
parable to performance gains with traditional FDO, achiev-
5.1 Results ing approximately 85% (3.59% vs. 4.23%) of the perfor-

The first set of results (Figure 10 and Figure 11) is for sam- mance gains.

pled profiles collected using -O2 binaries. FDO runs us- From our experimental results, there is no clear win-
ing sample profiles collected in 3 different modes (PEBS, ner among the three different sampling modes (PEBS, non-
non-PEBS with randomization and non-PEBS without ran- PEBS with/without randomization) to collect sample pro-
domization) are compared with the base -O2 run, and tradi- files. We would recommend using the PEBS mode since it
tional FDO run, which uses profile data collected from in- allows a higher sampling rate then using non-PEBS mode
strumented runs. for a given sampling overhead.

| Benchmark|| Base| PEBS| Non-PEBS| NP/NR | Instr | P gain| NP gain| NP/NR gain| I gain |

164.gzip| 1274| 1313 1315 1308 | 1305| 3.06 3.22 2.67| 2.43
175.vpr || 1450 | 1424 1460 1448 | 1483 | -1.79 0.69 -0.14| 2.28
176.gcc| 1740 1778 1761 1800 | 1862 | 2.18 1.21 3.45| 7.01
181.mcf| 1431| 1691 1574 1488 | 1681 | 18.17 9.99 3.98 | 17.47
186.crafty|| 2224 | 2255 2177 2262 | 2220| 1.39 -2.11 1.71| -0.09
197.parsen 1118| 1142 1125 1123| 1334| 2.24 0.63 0.45| 19.32
253.perlbmk|| 2050 | 2107 2136 2209 | 2292| 2.78 4.20 7.76 | 11,80
254.gap|| 1786| 1776 1781 1791 | 1847 | -0.56 -0.28 0.28| 3.42
255.vortex|| 2039 | 2051 2020 1991 | 2204| 0.59 -0.93 -2.35| 8.09
256.bzip2| 1622 | 1624 1595 1643 | 1674| 0.12 -1.66 1.29| 3.21
300.twolf* || 2241 | 2207 2260 2212| 2271| -1.52 0.85 -1.29| 1.39
Mean 2.42 1.44 1.62| 7.29
Mean w/o* 3.33 1.59 2.14| 8.65

Figure 10. Runtime comparision for 64-bit Spec2000INT (Numbers ar&GRcores, higher is better). Sampled Profiles
were collected with -O2 binaries. Mode of profile collectidh - PEBS, NP - Non-PEBS, NR - No Randomization, | -
Instrumentation. Arithmetic mean used for average %g&ource correlation issues for 175.vpr and 300.twolf ardadxed

in section 4.5.

| Benchmark|| Base| PEBS| Non-PEBS] Instr | P % gain| NP % gain| | % gain |

400.perlbench| 13.9| 14.8 149 16.8 6.47 7.19 20.86
401.bzip2| 12.4| 12.1 12.1] 12.9 2.42 -2.42 4.03
403.gcc|| 12.2| 12.3 12.4| 12.3 0.82 1.64 0.82
429.mcf|| 12.1| 12.6 13.4| 12.7 4.13 10.74 4.96
445.gobmk|| 12.2| 12.4 124 31.1 1.64 1.64 7.38
456.hmmer|| 14.6| 14.6 14.4| 14.7 0.00 -1.40 0.68
458.sjeng|| 13.6| 13.9 13.9| 14.0 2.21 221 2.94
464.h264ref|| 19.3| 19.2 19.2| 19.6 -0.52 -0.52 1.55
433.milc || 10.0(105 10.5| 10.0 4.76 4.76 0.00
470.lbom| 13.8| 14.2 14.2| 14.3 2.90 2.90 3.62
482.sphinx3|| 16.1| 16.5 16.5| 16.5 2.48 2.48 2.48
Mean 2.04 2.66 4.48

Figure 11. 64-bit Spec2006 results. Sample profiles collected usirigbi@aries. Mode of profile collection: P - PEBS, NP -
Non-PEBS, | - Instrumentation. Arithmetic mean used forrage % gain.

| Benchmark| Base| PEBS| Non-PEBS| | [P(%) | NP(%) | 1(%)]
400.perlbench| 13.2| 14.6 14.4| 16.1| 10.61 9.09| 21.97
401.bzip2|| 11.1| 11.1 111 11.6 0 0 4.5

403.gcc*
429.mcf || 16.3| 17.9 17.3] 16.7| 9.82 6.13| 2.45
445.gobmk| 12.1| 12.3 125] 12.7| 1.65 3.31| 4.96
456.hmmer|| 11.9| 11.8 11.8| 11.7| -0.84| -0.84| -1.68
458.sjeng|| 12.2| 12.9 12.9] 12.7| 5.74 5.74 4.1
464.h264ref| 18.6| 18.8 19.1| 189 | 1.08 269| 1.61
433.milc || 8.57| 8.63 8.76 | 8.55| 0.12 0.93| -0.23
470.lbm | 11.6| 12.1 121 11.9| 431 431 2.59
482.sphinx3|| 14.8| 15.1 14.7| 15.1| 3.38| -0.68| 2.03
Mean 3.59 3.07| 4.23

Figure 12. 32-bit SPEC2006 results. Sample profiles collected usifigbi@aries. Mode of profile collection: P - PEBS, NP
- Non-PEBS, | - Instrumentation. *403.gcc had runtime fi@@kiwhen built with FDO so results are not available.

6. Related Work dicating that it contains a table of CFG edges. During ex-
ecution, the kernel periodically reads the hardware branch

Haber (Levin et al. 2008) use sampled profiles of the prediction buffer and updates the edge table stored in the ex

INST_RETIRED hardware event to construct edge profiles ecutable. The profiling overhead is estimated to be between
for FDO in IBM’'s FDPR-Pro post-link timeoptimizer. The 0.4% and 4.6%. The basic block counts are then estimated

from the sampled edge weights.
Other methods of edge profile estimation build on ideas
from both program instrumentation and statistical sangplin

In a recent paper, Roy Levin, llan Newman, and Gadi

samples are directly correlated to the corresponding basic
blocks without the need to use any source position infor-
mation, as this is done post-link time. The problem of con-

structing a full edge profile from basic block sample counts " (Traub et al.), an approach for estimation of traditional
is formalized as a Minimum Cost Circulation problem. Here, edge profiles using ephemeral instrumentation is described

the flow conservation rule is that for each vertex in the CFG, A Pranch’s bias is sampled by periodically inserting instru

the sum of the incoming edge frequency counts should pe Mentation code to capture a small and fixed number of the

equal to the sum of the outgoing edge frequency counts. ThePranch’s executions. A post-processing step is used toederi
idea is that by ensuring the flow conservation rule, and at traditional edge profiles from the ephemeral branch biases

the same time, limiting the amount of weighted change from cellécted. The problem of obtaining a weighted CFG from a
the initial edge weights predicted by static profiles (Wu and CFG annotated with branch biases is equivalent to the prob-

Larus 1994) to a mininum, a near approximation to actual I_er_n of finding the Iimiti_ng propabilitieg on an ireducible,
edge counts obtained via instrumentation can be achieved. [INite-state Markov chain. Their experimental results show
An algorithm to solve the above Minimum Cost Circula- that the ephemeral profiles show competitive performance
tion problem is described in (Goldberg and Tarjan 1989) and 92ins when compared with using complete edge profiles to
is based on repeatedly finding a residual cycle with negative d"Ve @ superblock scheduler. o ,
cost and canceling it by pushing enough flow through the cy- A s_|m|Iaf framework for _performl_ng |r_1$trumentat|on
cle to saturate an arc. While this is a higher order polynbmia sam_pllng W'Fh low ov_erhead is described in (Gloy et al.).
time algorithm, the compile time was found to be within ac- 1 h€il sampling technique does not rely on any hardware
ceptable levels for the SPEC benchmarks. Experimental re-C' OP€rating system support, but performs code duplica-
sults (Levin et al. 2008) show that -O3 FDO runs using edge ion @nd uses compiler-inserted counter-based sampling to
profiles from sampling profiles are able to achieve nearly switch betwegn mstrgmented and non-instrumented code in
100% of the performance gains of -O3 FDO runs using exact controlled, fine-grained manner. .
edge profiles from instrumented runs. An interesting obser- 11e Morph system (Zhang et al. 1997) is a framework
vation is that a large percentage of the performance benefitsfor automatic collection of profiles via statistical sanngi
(70% to 80%) can be obtained using the initial edge profile © the program counter on clock interrupts. It also pro-
estimation predicted by static profiles and the sampledtbasi V'de‘? a fre_lmevv_ork for _prf’f""f data _manage_mgnt _and dy-
block counts alone. The gcc compiler already has support for "aMic pro_flle-drlven optimizations. Since optimizatiome a
using static heuristics and its implementation model mékes apph_ed without the use of source cod_e, the Morph_ system
easier for us to experiment with using this algorithm. Réeas requires the executable to also contain the extra informa-

note the differences between the approach of Levin et. al.,ion Pertaining to the compiler intermediate represeotai
and what is described in this paper. which is used to map the instruction-level samples to their

. corresponding basic blocks. This solution has a major draw-
1. We are working on source level, whereas the work by back in that it requires new software standards and stasdard

Levin et. al., is on the binary level. compliances across the software industry. Their use of a
2. The platforms used are different - Out-of-order x86 vs. time-based sampling also skews the basic block counts to-
IBM’s POWERA4/AIX platforms. wards higher latency instructions, which is mitigated im ou

method of sampling the INSRETIRED event.
Stack sampling has been used, without the use of any in-
strumentation, to implement a low-overhead call path pro-
Another hardware-based profiling technique (Conte et al. filer (Froyd et al. 2005). This method requires marking a
1996) is to sample the contents of the branch-prediction stack frame with a sentinal to reduce the overhead of con-

3. Our approach allows using binaries built by any compiler
for the purpose of profile collection.

hardware, namely structing the call paths from the stack samples. This method
, o could be used to augment the sample profiles collected by
1. The target address, i.e., the destination of the edge, INST_RETIRED event sampling.

2. The buffer tag, i.e., the source of the edge, and
3. The prediction information, i.e., the edge’s weight 7. Conclusions

using kernel-mode instructions. This mechanism requires We presented a new methodology of using INSETIRED
the program to be compiled with a special identity token in- hardware event sampling to construct basic block and edge

frequency profiles that are used to guide feedback directedRoy Levin, llan Newman, and Gadi Haber. Complementing miss-

optimizations at compile-time. This method overcomes the
many shortcomings of the traditional FDO usage model,
and initial experimental results show promising perforoean

gains. We expect to get further improvements in perfor-

mance by continued tuning and enhancement of the heuris-

tics described in this paper.

Acknowledgments
We would like to thank Brad Chen for providing us with

machine resources, Stephane Eranian for enthusiastically

helping us resolve perfmon related issues, Martin Thuresso
for bringing to our attention the very relevant research by
Roy Levin et. al., Seongbae Park for help in analysis of GCC

ing and inaccurate profiling using a minimum cost circulatio
algorithm. INnHIPEAC, pages 291-304, 2008.

Matthew C. Merten, Andrew R. Trick, Christopher N. George,

John C. Gyllenhaal, and Wen mei W. Hwu. A hardware-driven
profiling scheme for identifying program hot spots to suppor
runtime optimization. INISCA pages 136-147, 1999. URL
citeseer.../nerten99%hardwaredriven. htni.

Florian T. Schneider, Mathias Payer, and Thomas R. Gross.

Online optimizations driven by hardware performance
monitoring. In PLDI '07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementatipnpages 373-382, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-633-2. doi:
http://doi.acm.org/10.1145/1250734.1250777.

source correlation issues, and our colleagues Prestog®rig 0. Traub, S. Schechter, and M. Smith. Ephemeral instrurtienta

Mark Heffernan, and David Li, as well as the anonymous
reviewers for their very valuable review feedback.

References

Youfeng Wu and James R. Larus.

for lightweight program profiling. Technical report.

Static branch frequency and
program profile analysis. Technical Report CS-TR-19948]124
1994. URLci teseer.../wi94static. htm .

Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting Catherine Xiaolan Zhang, Zheng Wang, Nicholas C. Gloy,

hardware performance counters with flow and context sensi-
tive profiling. In SIGPLAN Conference on Programming Lan-
guage Design and Implementatigoages 85-96, 1997. URL
citeseer.../amons97expl oi ting. htnl.

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. HenzingereS. L
ung, D. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl.
Continuous profiling: Where have all the cycles gone. Tezini
report.

Thomas Ball and James R. Larus. Optimally profiling and
tracing programs. ACM Transactions on Programming Lan-
guages and Systemd6(4):1319-1360, July 1994. URL
citeseer.../ball94optinmally. htm.

Thomas Ball and James R.
profiling. In International Symposium on Mi-
croarchitecture pages 46-57, 1996. URL
citeseer.ist.psu.edu/ball96efficient.htm .

Thomas M. Conte, Burzin A. Patel, Kishore N. Menezes, and
J. Stan Cox. Hardware-based profiling: An effective tech-
nique for profile-driven optimization. International Jour-
nal of Parallel Programming 24(2):187-206, 1996. URL
citeseer.ist.psu.edu/30422. htm .

Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-
overhead call path profiling of unmodified, optimized code.
In ICS '05: Proceedings of the 19th annual international
conference on Supercomputingpages 81-90, New York,
NY, USA, 2005. ACM. ISBN 1-59593-167-8. doi:
http://doi.acm.org/10.1145/1088149.1088161.

N. Gloy, Z. Wang, C. Zhang, B. Chen, and M. Smith. Profile-base
optimization with statistical profiles. Technical report.

Andrew V. Goldberg and Robert E. Tarjan. Finding
minimum-cost circulations by canceling negative cycles.
J. ACM 36(4):873-886, 1989. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/76359.76368.

Intel. 1a-32 Intel Architecture Software Developer’'s Manual, Vol
ume 3: System Programmintntel Press, 2007.

Larus. Efficient path

J. Bradley Chen, and Michael D. Smith. System support
for automated profiling and optimization. I8ymposium
on Operating Systems Principlepages 15-26, 1997. URL
citeseer.ist.psu.edu/ zhang97system htni .

