
Extending Open64 with Transactional Memory Features
Jiaqi Zhang Wenguang Chen Weimin Zheng

Tsinghua University
zhang-jq06@mails.tsinghua.edu.cn, {cwg, zwm-dcs}@tsinghua.edu.cn

Abstract

The fast development of parallel platforms is
demanding more parallelism in modern
applications. However, the manipulation of
mutual-excluded memory accesses is obstructing
the way towards high productivity in parallel
software development for shared memory system.
Transactional Memory (TM) is a promising
paradigm that helps abstract the complexity of
concurrency while keeping the scalability. And
the compilers for TM are needed in order to
facilitate both parallel programmers and TM
researchers. This paper describes the design,
detailed implementation, and optimization of our
extension of TM features in Open64. The
preliminary experimental results show that our
optimized implementation of the compiler,
together with a high performance TM runtime,
have the potential to be competitive for parallel
programs with fine grained locks.

1. Introduction

With the dominance of multi-core computers,
parallel programming models have been a hot
topic. In order to better utilize the ever
increasing cores, efforts are made to explore
concurrency in real world applications. Message
passing interface emphasizes the isolation
between the data in each process. However, it
needs the programmers to organize all the
communications including timing, content,
targets etc. and is therefore difficult to program.
The shared memory interface is much more
intuitive as all the working threads work on the
same contents. Nevertheless, the use of locks to

insure exclusive access tends to be problematic.
Coarse-grain locks may prohibit possible
concurrency and produces serialized code; on
the other hand, fine-grain locks introduce
complexity in their management, and thus may
incur software engineering problems such as
deadlock. In addition, lock based applications
are difficult to exhibit composability, which is
the major way to perform code reuse in order to
increase productivity.

Transactional Memory (TM) is a promising
paradigm that helps produce a composable[11]
parallel program. It simplifies the manipulation
of critical regions by abstracting away the
complicated lock acquirement and release, and
providing a clear interface that marks the atomic
blocks. The isolation property of transaction
permits the same memory location to be
appeared in different transactions without the
programmers’ annotation. To bring the
parallelism, TM deploys an optimistic strategy
that allows concurrent accesses to the shared
memory, and aborts the transactions on conflicts.
Thus there are opportunities that all the
transactions are successfully executed even
when they are updating the same chunk of
memory, only if different parts are accessed.

There are several Software Transactional
Memory implementations available, for example,
DracoSTM[1], TinySTM[2], TL2[3], and
LibLTX, etc.. However, they are all provided as
libraries, and it is obviously difficult to manually
instrument all the accesses to shared locations,
especially when the transactions are large. Thus
automatic transformation tools or compilers are
needed to facilitate the use of STM.

Some experimental STM compilers are also

available, such as the Mercurium OpenMP
compiler[4], the Intel C++ STM compiler[5],
OpenTM compiler[6], and TANGER[7]. The
Intel C++ STM compiler is the first production
level STM compiler. It is based on the high
performance Intel Compiler, and it implements
the transactional memory algorithms and
translation techniques described in [8] and [9]. It
supports atomic blocks in both Pthreads and
OpenMP by the generic directive #pragma
tm_atomic, and is heavily optimized to reduce
the transactional memory overhead. The most
recent version of the compiler also supports user
specified transactional memory library
implementation in binary form. However, the
source code of the compiler is inaccessible as it
is based on a commercial product. Therefore,
while it is very useful for the parallel
programmers to apply TM to their applications,
the TM runtime developers are unable to
understand the corresponding compiler
infrastructure. Since it is impossible to modify
the code of the compiler, it also limits the
runtime developers to the existing interface,
which might obstruct the features of the
innovative underlying runtime. The OpenTM
compiler focuses on extending OpenMP with
Transactional Memory semantics. It provides
extensions to the directives so that the OpenMP
programs could utilize TM seamlessly. For
example, they proposed the basic transaction
boundary #pragma omp transaction, and also
#pragma omp tranfor to indicate that the
parallelized iteration bodies to be executed as
transactions. The Mercurium OpenMP compiler
performs similar work, with several further
extensions to the attributes of the atomic block.
TANGER supports TM instrumentation based on
the LLVM compiler. It targets on the LLVM
intermediate representation language, and
provides TM semantics in both the word-based
and object-based manner[12]. During the
preparation of this paper, we have found a
similar work just published in GCC[10]. As we

have not accessed their code, and the paper is
mainly about the research highlights instead of
implementation and design details, we have
insufficient information to perform a comparison
here.

Our aim is to provide an open-sourced
research infrastructure for transactional memory
on the base of Open64, which could facilitate
both the TM runtime developers by providing
opportunities to integrate their implementations
to the compiler seamlessly, and the parallel
programmers by presenting a clear transactional
memory interface. This aim leads us to
implement a uniform interface for both Pthreads
and OpenMP, and to perform automatic
optimizations as much as possible.

The paper is organized as follows: Section2
describes our design of the compiler. Section3
introduces our implementation and optimization,
together with the open issues in the
corresponding parts. Section4 presents the
results of our preliminary experiments. Section5
concludes the paper and highlights possible
future works.

2. Design
2.1. Programming Interface

The basic components of transactional
memory semantics are the atomic regions. The
atomic regions ensure that all the inner
statements are executed atomically, that is,
executed all together or not executed at all. Our
implementation supports the atomic region by
means of Implicit Transactions. The users only
specify the boundaries of the transactions instead
of annotating any memory access, and all the
statements within the boundaries are implicitly
executed as a transaction, with the atomicity and
isolation being guaranteed automatically. This
approach could greatly benefit the programming
productivity by easing the programmers the
burden of utilizing transactional memory
semantics, and also make the target programs
clear to read. It also enables easy reuse of library

functions, since the programmers do not need to
consider inserting barriers to them in the new
context.

To achieve this goal, we introduce the atomic
construct to mark the boundaries of atomic
regions. The syntax is

#pragma tm atomic [clause]
structured block

where clause is optional, and can be one of
the following: readonly, shared (list), or
private (list). The structured block could include
any possible statement, including function calls.
The compiler automatically instruments the code
by replacing memory access operations with
function calls to read/write barriers. The
underlying transactional memory library
validates the read/written data and rolls back to
the beginning of the block on conflicts. The
programmers are allowed to optionally mark the
variables that need or are free of transactional
instrumentations by specifying the shared or
private clauses. The compiler does not perform
transactional bookkeeping for private variables.
And if the shared clause is specified, only the
listed variables are to be watched. As some STM
runtime, for example, TL2 and TinySTM,
provide particular optimizations for read only
transactions, the compiler also provides an
opportunity for the programmers to specify the
readonly clause to indicate that there is no write
to shared memory in the transaction. The intent
of these clauses is to help decrease function calls
and thus increase performance. But the
programmers should make it in their own risk as
data races on them could not be detected.

While the conflicts between transactions can
be handled by the runtime, our system does not
support isolation between transactional accesses
and non-transactional accesses. Thus it is a weak
isolation system, which means the memory
accesses out of transactions are not logged and
thus its conflicts, even with transactional
accesses, cannot be detected. So the design
requires the programmers to make sure that all

the accesses to shared memory are included into
atomic regions, otherwise the consistency cannot
be guaranteed. This approach is chosen because
the transactional bookkeeping of
non-transactional accesses is too expensive for
STM implementations. All single accesses
outside the transactions should be marked as a
micro transaction if strong isolation should be
guaranteed. However, the overhead is
unacceptable. And the optimizations discussed in
Section3.3 are not always feasible given the
complex nature of unmanaged code. Many
unsolved problems, alias analysis for example,
have obstructed the success of automatic
detections of shared data.

During the execution of a transaction, the
user could abort the transaction at any time by
the abort construct:

#pragma tm abort

It rolls back the current thread to the entry of
the transaction and re-executes it. This construct
is specifically useful when the transaction is
waiting for certain statuses such as flags.

Two more constructs are introduced to mark
the functions that could be called inside
transactions. Their syntaxes are:

#pragma tm function
function-declaration
#pragma tm waiver
function-declaration

A function that is marked with tm function
could be invoked in atomic regions with
guaranteed consistency. These functions are
referred to as transactional functions. The
memory accesses within a transactional function
are also instrumented with read/write barriers,
and the runtime keeps transactional bookkeeping
for all the shared variables the function accesses.
When the validation fails inside the transactional
function, the thread rolls back to the entry of the
enclosing transaction and re-executes it.

A function that is marked as tm waiver could
also be invoked in atomic regions. However,
there is no instrumentation for the inner memory

Table1 The Transactional Memory interface provided by TL2

Interface Description
Thread* TxNewThread() Allocate a new Thread structure to keep logs

TxStart(Thread* Self, jmp_buf* buf, int flags) Start a new transaction for current thread

TxCommit(Thread* Self) Commit the current transaction

TxLoad(Thread* Self, void* addr) Perform synchronized load from given memory address

TxStore(Thread* Self, void* addr, intptr_t val) Perform synchronized store to given memory address

TxStoreLocal(Thread* Self, void* addr, intptr_t val) Perform locally logged store to given memory address

TxAbort(Thread* Self) Abort the current transaction and re-execute

accesses, even those of shared variables. While
the compiler would issue warnings on the
memory access to possible shared variables, the
programmers should not purely rely on it. We
refer to these functions as transaction-free
functions. It is similar to the pause semantic.
When the transaction invokes these functions, all
the transaction related behaviors such as logging
and validations pauses, and they resumes when
the function returns. It could be used in order to
avoid unnecessary calls to runtime libraries
when the programmers are aware of the risk of
data races.

Only transactional functions and
transaction-free functions are allowed to be
invoked in atomic regions. Calls to any other
functions, including legacy code (for example,
the binary library functions), would issue
compilation errors, as they may bring data races
without the programmers’ awareness. To utilize
the legacy code in compiled libraries, binary
instrumentations may be performed. [7] and [14]
make attempts to achieve the goal by either
applying Dynamic Binary Rewriting or
disassembling the binary code. An insight
discussion is out of the scope of this paper.

2.2. STM runtime library

The implementation targets on word-based
STM libraries, and it currently adopts TL2 as the
underlying runtime library. TL2 is a fast STM
library with concise interfaces, which are shown
in Table1 together with their descriptions. It is
originally developed by SUN, and is ported to
i386 and X86_64 platforms by Stanford. A

detailed description of the library could be found
in [3].

While most of the functions are typical
transactional memory interfaces, TxStoreLocal is
an assistant function that aims to optimize the
programs. It targets on thread local variables that
only need to be rolled back on transaction
abortion, but not to be synchronized.

Note that while TL2 is used in the current
implementation, the runtime library could be
replaced with slight or even no modifications to
the compiler if the interfaces are similar. The
compiler is designed to be loosely coupled with
the runtime library, and a set of wrapper
functions are provided to adapt to different
interfaces. Therefore, it is much easier for STM
library developers to integrate their innovative
implementations to the compiler. For example,
TinySTM library could be integrated with only
slight modifications to the wrapper functions
instead of the inside of compiler. And it is also
easy to further extend the compiler to support
extra features of TinySTM such as registration of
event handlers, given the existing infrastructure.

2.3. Optimization Opportunities

Unlike exclusive regions protected by locks
which need to be as small as possible,
transactions tend to be large and composable in
order to better facilitate the programmers. Thus
while it is much slower than hardware
implementation of TM, STM is a hot topic given
its much lower cost in development and
unbounded nature. Since it is very possible that
there are numerous statements in a single

Fig.1. The phases for lowering TM in the backend of Open64

transaction, one of the main overhead for STM
programs is the calls to synchronized read and
write. It is especially true for automatically
generated code, where there are lots of
unnecessary calls to the STM runtime library. So
the main purpose of our optimization is to
eliminate them as much as possible. However,
when dealing with indirect accesses via pointers,
a conservative design is adopted as it is difficult
to determine whether it is accessing shared data
due to alias problems.

3. Implementation
3.1 General Transformation

The transformation of the original program to
TM code is implemented as a standalone
lowering phase in the backend of Open64 as
illustrated in Figure 1, which presents the related
or remarkable phases in Open64, and marks the
relative position of the TM lowering. The main
transformation takes part in the LOWER TM
phase, and the TM function processing clones
the transactional functions described in
Section3.2.

In order to perform rollback, the runtime
requires a jump_buf being set on the entry of the
transaction. At the beginning of the atomic
region, the compiler generates the call to set the
jump_buf and passes it to TxStart(). After that,
all the statements in the block are checked one
by one, including their kids, and are replaced by
STM runtime library functions if necessary. Note
that WHIRL does not permit nested statements,
and thus simple replacement of leaf node such as
LDID with library functions would not produce
a legal WHIRL tree. In our implementation, the

call is performed in a generated statement node,
and the returning value is stored via the mapping
mechanism, so that the ancestor could get it by
generating new LDID to it. The result of an
assignment statement is presented by Figure 2,
where the right column is the rough WHIRL tree
representing the left statement.

The transformation of expressions is similar
to the process with the exception that the
returning value of TxRead should be saved to
another register, as there might be multiple
leaves which require the synchronized read.

For conditional jump control flow statements
such as IF, their bodies are processed in the same
way as above. However, to correctly handle their
boolean expressions, the synchronized read
should be performed ahead of the IF statement.
For loop structures such as WHILE_DO, besides
the above process, the read barrier of loop
variant should also be inserted to the end of the
loop bodies so that the loop condition could be
validated in every iteration. To ensure the
correctness of nested control flow statements, a
stack is used to save the generated synchronized
read of loop variants, and is popped at the end of
loop bodies.

While structured statement block is adopted
for a transaction in our design in order to keep
the atomic block clear, jump statements are
allowed. If a statement such as break jumps out
of the transaction, it incurs a transaction commit.
And the transaction is re-executed instead of
escaped if it fails to commit.

The result of a general transformation of
original TM marked code is shown in Figure 3.
The left column is a code segment in a parallel

a = b; LDA
PARM

VCALL <TxRead> #synchronized read of b
LDID <return_offset>

 PARM
LDA <a>

 PARM
VCALL <TxWrite> #synchronized write to a

Fig.2. The transformed WHIRL tree for a single assignment statement

task, where result is a global shared variable that
is expected to be accumulated in each thread. In
order to be concise and clear, a psudo-code is
listed instead of the actual WHIRL tree. The Self
variable in the right column is used to
manipulate the execution information of the
transaction, and is generated by library function
TxNewThread at the entry of the thread. For
OpenMP, the function is automatically invoked
at the stage of forking threads. For Pthreads, the
programmers currently would have to manually
invoke a wrapping function tm_thread_start at
the start of the parallel task, which needs no
argument and handles all the initializations of
the thread local logging.

3.2 Functions

To support function calls in transactions, two
directives are introduced as described in
Section2.1. The front end marks the functions
with corresponding attributes when the
directives are seen. And as illustrated in Figure 1,
the transactional functions are processed at the
early stage of the backend processing. For the
transactional ones, the compiler clones the whole
function, gives the cloned function a mangled
name which is the original name preceded with
fixed prefix that would not incur confusions, and
records it in the transactional function table. The
cloned function is lowered right after the original
one, and is instrumented with read/write barriers
in the same way as the atomic regions, with the
exception that it doesn’t have to start the
transaction or set up the jump buffer itself. For
the transaction free functions, except for setting
up the corresponding attributes in its ST, no
special treatment is performed.

When a call to function is seen in an atomic
block, the compiler first checks its attributes. If

it is a transaction free function, the lowering
phase continues. If it is a transactional function,
the compiler checks the transactional function
table with the mangled name. If it fails to find
the function, an error is issued. Otherwise, the
function call is replaced with the call to the
cloned function. The original function is only
used when called outside of the atomic blocks.

The transactional and transaction free
functions could call each others. However, any
unmarked function, including legacy function, is
not allowed to be invoked inside them. If a
transaction free function is called inside a
transactional function, it behaves exactly like
when it is called inside an atomic block.
However, on the other hand, when a
transactional function is called inside a
transaction free one, instead of the cloned
function, the original one without
instrumentation is invoked, and thus the
transaction semantic is not guaranteed.

Note that currently we are cloning and
instrumenting all the transactional functions,
despite whether they are actually called inside
any transaction or not. While it does not hurt the
correctness or performance of the program, it
increases the size of the executable. To achieve
the goal of only cloning necessary transactional
functions, an inter-procedural analysis is needed,
and this work is left for our future work. Another
issue is the handling of function calls in indirect
manners such as via function pointers. It
involves alias problems and is not handled in the
current implementation. [8] has solved this
problem by marking transactional functions and
recording the cloned functions’ address at a fixed
offset from the target address of the function
pointer. We are planning to implement it in the
future versions.

1.1 int i = 0;
1.2 #pragma tm atomic

{
1.3 int j = 0;
1.4 for(i=0;i<20;i++)
 {
1.5 for(j=0;j<10;j++)
 {
1.6 result++;
 }
 }
 }

2.1 int i = 0;
2.2 jmpbuf jbuf;
2.3 _setjmp(jbuf);
2.4 TxStart(Self, jbuf);
2.5 TxStore(Self, &j, 0);
2.6 for (; TxLoad(Self, &i)<20;

TxStore(Self, &i, TxLoad(Self, &i)+1)){
 2.7 for(TxStore(Self, &j, 0); TxLoad(Self, &j)<10;
 TxStore(Self, &j, TxLoad(Self, &j)+1)){
 2.8 TxStore(Self, &result, TxLoad(Self, &result)+1);
 }}
 2.9 TxCommit(Self);

Fig.3. The transformation result of a code segment

3.3 Optimizations

As described in Section2.3, the major goal of
our optimization work is to eliminate
unnecessary calls to runtime library calls. By
observing the programs, there are two kinds of
memory accesses that could be optimized with
the efforts of both the compiler and the runtime
library. Note that except for the following
discussed automatic approach to unnecessary
function call elimination, programmers could
also specify the variables that do not need
read/write barriers via the shared/private clauses
as described in Section2.1.

The first one is the variables that do not need
to be recorded at all. These variables are often the
ones that are declared and used inside the atomic
blocks. For example, the variable j in line1.3 of
Figure 3 does not need any instrumentation. It is
not seen anywhere outside the atomic block, thus
the success or failure of the transaction has no
effect on them. We refer to these variables as
transaction-local variables. While they are
uncommon in traditional lock-based critical
regions, which need to be kept tiny to ensure
concurrency, they are very likely to occur in
programs with largetransactions. The compiler
automatically detects transaction-local variables
in the front end, when parsing the atomic block,
and marks the corresponding attributes, which
could be retrieved from its ST in the LOWER
TM phase. And the backend would not
instrument the memory accesses to these
variables. Taking the instrumented code in

Figure3 as an example, the recognition of j would
help eliminate the TxStore in Line2.5, as well as
all the four runtime library calls in Line2.7. The
optimized code is shown in the left column of
Figure 4.

The second one may not be obvious at the
first glance. But they are more common than the
transaction-local variables. They are the thread
local variables that are updated in the transaction,
which means they only need to be rolled back
when the transaction fails, but don’t need to be
synchronized among all the threads. We refer to
these variables as barrier-free variables. In fact,
for the parallel model of Pthreads, most of the
variables that are in the same PU as the
transaction and could be seen outside of the
transactions are barrier-free variables. For
example, the variable i in Line1.1 of Figure3 is a
barrier-free variable. The variables that are
specified by the clause private described in
Section2.1 are also treated as barrier-free
variables. Given the nature of these variables,
they are detected via their storage classes. Instead
of instrumenting write barrier to the relevant
store operation, the compiler uses TxStoreLocal,
which only logs necessary information for
rollback without recording them to the write-set.
In addition, the read accesses to these variables
are free of any record. In the program of Figure3,
the recognition of i as a barrier-free variable
helps eliminate the two TxLoad in Line2.6, and
replaces the TxStore with light-weight
TxStoreLocal. The optimized code is shown in

1.1 int i = 0;
1.2 jmpbuf jbuf;
1.3 _setjmp(jbuf);
1.4 TxStart(Self, jbuf);
1.5 for (; TxLoad(Self, &i)<20;

TxStore(Self, &i, TxLoad(Self, &i)+1)){
 1.6 for(j=0; j<10;j++){
 1.7 TxStore(Self, &result,

TxLoad(Self, &result)+1);
 }}
 1.8 TxCommit(Self);

2.1 int i = 0;
2.2 jmpbuf jbuf;
2.3 _setjmp(jbuf);
2.4 TxStart(Self, jbuf);
2.5 for (; i<20;TxStoreLocal(Self, &i, i+1)){

 2.6 for(j=0; j<10;j++){
 2.7 TxStore(Self, &result,

TxLoad(Self, &result)+1);
 }}
 2.8 TxCommit(Self);

Fig.4.The optimized code of Figure3. The left column is the one with transaction-local variables eliminated. The
right column is the one with barrier-free variables recognized.

the right column of Figure 4.
However, while the recognition of barrier-free

variables decreased synchronizations, there are
still redundancies. For example, as illustrated by
the right column of Figure4, i is logged each time
in the iteration, which is actually not needed as it
just needs to be reversed back to the original
value when the transaction restarts. Therefore, in
the future, we plan to checkpoint these variables
at the entry of the transaction instead of logging
each of their updates.

The automatic detection strategy of
transaction-local and barrier-free variables is
varied in different contexts. When the compiler is
processing Pthreads parallel tasks, since the
threads don’t share variables declared in the
parallel function, the variables that are “AUTO”,
which means they are on stack, are identified as
barrier-free. And only variables that are declared
in the atomic block belong to transaction-local
variables. For the cloned transactional functions
however, all the variables (excluding PSTATIC
ones) declared in the PU, which means having the
storage class of AUTO, are identified as
transaction-local as they are implicitly declared in
transactions. And there is no barrier-free variable
for the cloned function since it could not access
the caller which might have those variables. For
the transactions in OpenMP parallel regions, the
optimization relies on its implementation. In
Open64, the parallel tasks are created as nested
functions that are called micro tasks, and thus it
is obvious that the variables declared in PU scope
of the micro tasks are barrier-free ones. However,

the variables declared in the enclosing PU, while
are also in stack, are shared by default, and thus
should be also instrumented with both read and
write barriers. Note that all the variables that are
specified to be private in the OpenMP clause have
local copies generated by the implementation of
OpenMP, so they are automatically identified as
barrier-free variables.

Besides optimizing the variable accesses, the
compiler also helps detect read-only transactions
by recursively checking all the statements. And if
all the store operations are performed on either
transaction-local or barrier-free variables, the
whole transaction is identified to be read-only.

Note that although we have put efforts in the
automatic optimization, the conservative design
has led to false positives when trying to identify
variables that need instrumentations. For example,
all indirect memory accesses are instrumented
with read/write barriers by default even when it
points to the memory that is allocated in the
enclosing thread. In these situations, the
programmers could simply specify them as
private, and performance increase is expected as
they are also treated as barrier-free variables. The
same happens to the detection of read-only
transactions: none of the transactions that contain
indirect stores to memory is identified as
read-only transactions. Therefore, while we are
exploring more chances for optimization, the
programmers’ annotations via the directive
clauses are still very important to improve the
performance as much as possible, especially for
the applications dealing a lot with indirect

Fig.5. Speedup of fluidanimate with both locks and TM using the workload of simmedium, simlarge, and native.

load/stores, as illustrated in section 4.

4. Preliminary Experimental Results

Our preliminary experiment is carried out on
an Intel Core2 Quad-Core CPU. The target
application are the fluidanimate benchmark in
PARSEC1.0[13] and the kmeans benchmark in
STAMP[15]. fluidanimate simulates an
incompressible fluid for interactive animation
purposes with an extension of the Smoothed
Particle Hydrodynamics method. It is a
fine-grained parallel application with a large
working set, and is constituted by five individual
kernels. The K-means is a well known data mining
algorithm that groups objects in an N-dimensional
space into K clusters. We use fluidanimate to
compare our implementation with fine-grain lock
program, and kmeans to compare our compiler
generated code with the manually instrumented
TM program.

Figure 5 shows the comparison between the
speedup of the original lock based program and the
transactional memory one. Both of them are
compiled by Open64. The experiments are done
with 3 different input sets provided by PARSEC:
the simmedium, simlarge, and native, which
contain 100,000 particles, 300,000 particles, and
500,000 particles separately. The speedup is
computed over the running time of the serial
version of the application.

From the figures, we can conclude that the
TM version is not incurring unbearable overhead
as it is not slowed down much when running with
single thread. At the same time, it resembles the
speedup of the original parallel program especially
when the input set is larger. More importantly, it
helps to largely simplify the concurrency

management, especially when it is parallelized in a
fine grained manner. For example, when running 4
threads with the input set of simlarge, the original
program creates 308224 locks in a two-dimension
lock array.

Fig.6. speedup of kmeans

Figure 6 shows the speedup of kmeans in three
situations: the original manually instrumented
version in STAMP, and the Open64 compiled
version with/without manual optimizations. Here
the manual optimization refers to the user specified
clauses discussed in Section 2. The speedup is
calculated based on the execution time of the
STAMP version with single thread. It shows that
without the user specified clause, the performance
could be significantly decreased. The following
figure illustrates the related code segment.

#pragma tm atomic private(feature)
{ int j;
 *new_centers_len[index] ++;

for(j=0;j<nfeatures;j++){
 new_centers[index][j]+=feature[i][j];
}}

Fig.7. Code segment of kmeans

Figure 7 is a core transaction that costs a lot of
time during the execution of kmeans. During its
compilation, the variables j and nfeatures are
recognized as transaction local and barrier-free
separately, and therefore the related runtime
invocations are eliminated. According to the whole
program, feature array is read only and doesn’t

need to be synchronized either. However, the
compiler is unable to recognize it, and since it is a
pointer, the compiler performs full instrumentation
to it, which is fatal to the overall performance.

To deal with this problem, the programmer
could make use of a simple private(feature) clause
as in Figure7. It enables the elimination of
instrumentations to feature, which makes the
program perform almost the same with the
manually instrumented one, as illustrated in
Figure6.

5. Conclusion and Future Work

In this paper, we present the design and
implementation of Transactional Memory
extension of the Open64 compiler, which supports
replaceable underlying runtime library and several
optimizations. We have performed a preliminary
experiment, which shows that it is possible for the
TM program compiled by our compiler to have a
similar scalability with the original one with
fine-grained locks.

Due to the time limit, only two applications
are used in our tests. We are planning to perform
more extensive experiments to verify our
conclusions in the future. Regarding the design
and implementation of the compiler, besides the
problems that are discussed in each section, there
are also other open issues. For example, we would
like to provide mechanisms to allow programmers
to register handlers for certain events such as
abortion, function call, etc., in order to facilitate
the programmers, and also offer opportunities to
deal with I/Os in transactions. It is also critical to
appropriately handle the conditional wait
semantics. For instance, a literal analysis shows
that 20 out of 55 critical regions in the whole
PARSEC suites need signal processing. It is also
very common to have signals within critical
regions in commercial softwares. For example, the
number is 28 out of 75 for FastDB. In addition,
handling legacy code in the binary form in
transactions, and whether supporting open nested
or close nested transactions, are also open issues.

References
1. Justin E. Gottschlich and Daniel A. Connors,
“Optimizing Consistency Checking for Memory-Intensive
Transactions”, Proceedings of the 2008 ACM
SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC)
2. Pascal Felber, Christof Fetzer, and Torvald Riegel,
“Dynamic Performance Tuning of Word-Based Software
Transactional Memory”, Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2008
3. Dave Dice, Ori Shalev, and Nir Shavit, “Transactional
Locking II”, In Proceedings of the 20th Intl. Symposium on
Distributed Computing, 2006
4. Milos Milovanovoc, et al. “Transactional Memory and
OpenMP”, In proceedings of the International Workshop on
OpenMP (IWOMP), 2007
5. Intel C++ STM compiler prototype edition
3.0, http://software.intel.com, last modified on Dec 24, 2008
6. Woongki Baek, et al. “The OpenTM Transactional
Application Programming Interface”, In proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT), September 2007.
7. Pascal Felber, et al. Transactifying applications using an
open compiler framework, The Second ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT07),
August, 2007
8. Cheng Wang, et al. “Code Generation and Optimization
for Transactional Memory Constructs in an Unmanaged
Language”, In proceedings of 2007 International Symposium
on Code Generation and Optimization
9. Yang Ni, et al. “Design and Implementation of
Transactional Constructs for C/C++”, In proceedings of The
International Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA), 2009
10. Martin Schindewolf, et al. “Towards Transactional
Memory Support for GCC”, First International Workshop on
GCC Research Opportunities, 2009
11. Tim Harris, Simon Marlow, Simon Peyton-Jones, Mauice
Herlihy, “Composable Memory Transactions”, In Proceedings
of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2005
12. Torvald Riegel and Diogo Becker de Brum, “Making
Object-Based STM Practical in Unmanaged Environments”,
The Third ACM SIGPLAN Workshop on Transactional
Computing (TRANSACT08), 2008
13. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh
and Kai Li, “The PARSEC Benchmark Suite: Characterization
and Architectural Implications”, In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, October 2008.
14. Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan,
“JudoSTM: A Dynamic Binary-Rewriting Approach to
Software Transactional Memory”, In Proceedings of The
International Conference on Parallel Architectures and
Compilation Techniques (PACT), September, 2007.
15. Chi Cao Minh, et al. “STAMP: Stanford Transactional
Applications for Multi-Processing”, In Proceedings of The
IEEE International Symposium on Workload Characterization
(IISWC), Sept. 2008.

http://wwwse.inf.tu-dresden.de/ABSTRACTS/felber2008tinystm.html
http://wwwse.inf.tu-dresden.de/ABSTRACTS/felber2008tinystm.html
http://software.intel.com/
http://www.unine.ch/transact08/papers/Riegel-Making.pdf
http://www.unine.ch/transact08/papers/Riegel-Making.pdf

	1. Introduction
	2. Design
	2.1. Programming Interface
	2.2. STM runtime library
	2.3. Optimization Opportunities

	3. Implementation
	3.1 General Transformation
	3.2 Functions
	3.3 Optimizations

	4. Preliminary Experimental Results
	5. Conclusion and Future Work
	References

