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Abstract 

The fast development of parallel platforms is 
demanding more parallelism in modern 
applications. However, the manipulation of 
mutual-excluded memory accesses is obstructing 
the way towards high productivity in parallel 
software development for shared memory system. 
Transactional Memory (TM) is a promising 
paradigm that helps abstract the complexity of 
concurrency while keeping the scalability. And 
the compilers for TM are needed in order to 
facilitate both parallel programmers and TM 
researchers. This paper describes the design, 
detailed implementation, and optimization of our 
extension of TM features in Open64. The 
preliminary experimental results show that our 
optimized implementation of the compiler, 
together with a high performance TM runtime, 
have the potential to be competitive for parallel 
programs with fine grained locks. 

1. Introduction 

With the dominance of multi-core computers, 
parallel programming models have been a hot 
topic. In order to better utilize the ever 
increasing cores, efforts are made to explore 
concurrency in real world applications. Message 
passing interface emphasizes the isolation 
between the data in each process. However, it 
needs the programmers to organize all the 
communications including timing, content, 
targets etc. and is therefore difficult to program. 
The shared memory interface is much more 
intuitive as all the working threads work on the 
same contents. Nevertheless, the use of locks to 

insure exclusive access tends to be problematic. 
Coarse-grain locks may prohibit possible 
concurrency and produces serialized code; on 
the other hand, fine-grain locks introduce 
complexity in their management, and thus may 
incur software engineering problems such as 
deadlock. In addition, lock based applications 
are difficult to exhibit composability, which is 
the major way to perform code reuse in order to 
increase productivity. 

Transactional Memory (TM) is a promising 
paradigm that helps produce a composable[11] 
parallel program. It simplifies the manipulation 
of critical regions by abstracting away the 
complicated lock acquirement and release, and 
providing a clear interface that marks the atomic 
blocks. The isolation property of transaction 
permits the same memory location to be 
appeared in different transactions without the 
programmers’ annotation. To bring the 
parallelism, TM deploys an optimistic strategy 
that allows concurrent accesses to the shared 
memory, and aborts the transactions on conflicts. 
Thus there are opportunities that all the 
transactions are successfully executed even 
when they are updating the same chunk of 
memory, only if different parts are accessed.  

There are several Software Transactional 
Memory implementations available, for example, 
DracoSTM[1], TinySTM[2], TL2[3], and 
LibLTX, etc.. However, they are all provided as 
libraries, and it is obviously difficult to manually 
instrument all the accesses to shared locations, 
especially when the transactions are large. Thus 
automatic transformation tools or compilers are 
needed to facilitate the use of STM.  

Some experimental STM compilers are also 



available, such as the Mercurium OpenMP 
compiler[4], the Intel C++ STM compiler[5], 
OpenTM compiler[6], and TANGER[7]. The 
Intel C++ STM compiler is the first production 
level STM compiler. It is based on the high 
performance Intel Compiler, and it implements 
the transactional memory algorithms and 
translation techniques described in [8] and [9]. It 
supports atomic blocks in both Pthreads and 
OpenMP by the generic directive #pragma 
tm_atomic, and is heavily optimized to reduce 
the transactional memory overhead. The most 
recent version of the compiler also supports user 
specified transactional memory library 
implementation in binary form. However, the 
source code of the compiler is inaccessible as it 
is based on a commercial product. Therefore, 
while it is very useful for the parallel 
programmers to apply TM to their applications, 
the TM runtime developers are unable to 
understand the corresponding compiler 
infrastructure. Since it is impossible to modify 
the code of the compiler, it also limits the 
runtime developers to the existing interface, 
which might obstruct the features of the 
innovative underlying runtime. The OpenTM 
compiler focuses on extending OpenMP with 
Transactional Memory semantics. It provides 
extensions to the directives so that the OpenMP 
programs could utilize TM seamlessly. For 
example, they proposed the basic transaction 
boundary #pragma omp transaction, and also 
#pragma omp tranfor to indicate that the 
parallelized iteration bodies to be executed as 
transactions. The Mercurium OpenMP compiler 
performs similar work, with several further 
extensions to the attributes of the atomic block. 
TANGER supports TM instrumentation based on 
the LLVM compiler. It targets on the LLVM 
intermediate representation language, and 
provides TM semantics in both the word-based 
and object-based manner[12]. During the 
preparation of this paper, we have found a 
similar work just published in GCC[10]. As we 

have not accessed their code, and the paper is 
mainly about the research highlights instead of 
implementation and design details, we have 
insufficient information to perform a comparison 
here. 

Our aim is to provide an open-sourced 
research infrastructure for transactional memory 
on the base of Open64, which could facilitate 
both the TM runtime developers by providing 
opportunities to integrate their implementations 
to the compiler seamlessly, and the parallel 
programmers by presenting a clear transactional 
memory interface. This aim leads us to 
implement a uniform interface for both Pthreads 
and OpenMP, and to perform automatic 
optimizations as much as possible. 

The paper is organized as follows: Section2 
describes our design of the compiler. Section3 
introduces our implementation and optimization, 
together with the open issues in the 
corresponding parts. Section4 presents the 
results of our preliminary experiments. Section5 
concludes the paper and highlights possible 
future works. 

2. Design 
2.1. Programming Interface 

The basic components of transactional 
memory semantics are the atomic regions. The 
atomic regions ensure that all the inner 
statements are executed atomically, that is, 
executed all together or not executed at all. Our 
implementation supports the atomic region by 
means of Implicit Transactions. The users only 
specify the boundaries of the transactions instead 
of annotating any memory access, and all the 
statements within the boundaries are implicitly 
executed as a transaction, with the atomicity and 
isolation being guaranteed automatically. This 
approach could greatly benefit the programming 
productivity by easing the programmers the 
burden of utilizing transactional memory 
semantics, and also make the target programs 
clear to read. It also enables easy reuse of library 



functions, since the programmers do not need to 
consider inserting barriers to them in the new 
context.  

To achieve this goal, we introduce the atomic 
construct to mark the boundaries of atomic 
regions. The syntax is  

#pragma tm atomic [clause] 
structured block 

where clause is optional, and can be one of 
the following: readonly, shared (list), or 
private (list). The structured block could include 
any possible statement, including function calls. 
The compiler automatically instruments the code 
by replacing memory access operations with 
function calls to read/write barriers. The 
underlying transactional memory library 
validates the read/written data and rolls back to 
the beginning of the block on conflicts. The 
programmers are allowed to optionally mark the 
variables that need or are free of transactional 
instrumentations by specifying the shared or 
private clauses. The compiler does not perform 
transactional bookkeeping for private variables. 
And if the shared clause is specified, only the 
listed variables are to be watched. As some STM 
runtime, for example, TL2 and TinySTM, 
provide particular optimizations for read only 
transactions, the compiler also provides an 
opportunity for the programmers to specify the 
readonly clause to indicate that there is no write 
to shared memory in the transaction. The intent 
of these clauses is to help decrease function calls 
and thus increase performance. But the 
programmers should make it in their own risk as 
data races on them could not be detected.  

While the conflicts between transactions can 
be handled by the runtime, our system does not 
support isolation between transactional accesses 
and non-transactional accesses. Thus it is a weak 
isolation system, which means the memory 
accesses out of transactions are not logged and 
thus its conflicts, even with transactional 
accesses, cannot be detected. So the design 
requires the programmers to make sure that all 

the accesses to shared memory are included into 
atomic regions, otherwise the consistency cannot 
be guaranteed. This approach is chosen because 
the transactional bookkeeping of 
non-transactional accesses is too expensive for 
STM implementations. All single accesses 
outside the transactions should be marked as a 
micro transaction if strong isolation should be 
guaranteed. However, the overhead is 
unacceptable. And the optimizations discussed in 
Section3.3 are not always feasible given the 
complex nature of unmanaged code. Many 
unsolved problems, alias analysis for example, 
have obstructed the success of automatic 
detections of shared data. 

During the execution of a transaction, the 
user could abort the transaction at any time by 
the abort construct: 

#pragma tm abort 

It rolls back the current thread to the entry of 
the transaction and re-executes it. This construct 
is specifically useful when the transaction is 
waiting for certain statuses such as flags.  

Two more constructs are introduced to mark 
the functions that could be called inside 
transactions. Their syntaxes are: 

#pragma tm function 
function-declaration 
#pragma tm waiver 
function-declaration 

A function that is marked with tm function 
could be invoked in atomic regions with 
guaranteed consistency. These functions are 
referred to as transactional functions. The 
memory accesses within a transactional function 
are also instrumented with read/write barriers, 
and the runtime keeps transactional bookkeeping 
for all the shared variables the function accesses. 
When the validation fails inside the transactional 
function, the thread rolls back to the entry of the 
enclosing transaction and re-executes it. 

A function that is marked as tm waiver could 
also be invoked in atomic regions. However, 
there is no instrumentation for the inner memory 



Table1 The Transactional Memory interface provided by TL2 

Interface Description 
Thread* TxNewThread() Allocate a new Thread structure to keep logs 

TxStart(Thread* Self, jmp_buf* buf, int flags) Start a new transaction for current thread 

TxCommit(Thread* Self) Commit the current transaction 

TxLoad(Thread* Self, void* addr) Perform synchronized load from given memory address 

TxStore(Thread* Self, void* addr, intptr_t val) Perform synchronized store to given memory address 

TxStoreLocal(Thread* Self, void* addr, intptr_t val) Perform locally logged store to given memory address 

TxAbort(Thread* Self) Abort the current transaction and re-execute 

accesses, even those of shared variables. While 
the compiler would issue warnings on the 
memory access to possible shared variables, the 
programmers should not purely rely on it. We 
refer to these functions as transaction-free 
functions. It is similar to the pause semantic. 
When the transaction invokes these functions, all 
the transaction related behaviors such as logging 
and validations pauses, and they resumes when 
the function returns. It could be used in order to 
avoid unnecessary calls to runtime libraries 
when the programmers are aware of the risk of 
data races.  

Only transactional functions and 
transaction-free functions are allowed to be 
invoked in atomic regions. Calls to any other 
functions, including legacy code (for example, 
the binary library functions), would issue 
compilation errors, as they may bring data races 
without the programmers’ awareness. To utilize 
the legacy code in compiled libraries, binary 
instrumentations may be performed. [7] and [14] 
make attempts to achieve the goal by either 
applying Dynamic Binary Rewriting or 
disassembling the binary code. An insight 
discussion is out of the scope of this paper. 

2.2. STM runtime library 

The implementation targets on word-based 
STM libraries, and it currently adopts TL2 as the 
underlying runtime library. TL2 is a fast STM 
library with concise interfaces, which are shown 
in Table1 together with their descriptions. It is 
originally developed by SUN, and is ported to 
i386 and X86_64 platforms by Stanford. A 

detailed description of the library could be found 
in [3].  

While most of the functions are typical 
transactional memory interfaces, TxStoreLocal is 
an assistant function that aims to optimize the 
programs. It targets on thread local variables that 
only need to be rolled back on transaction 
abortion, but not to be synchronized. 

Note that while TL2 is used in the current 
implementation, the runtime library could be 
replaced with slight or even no modifications to 
the compiler if the interfaces are similar. The 
compiler is designed to be loosely coupled with 
the runtime library, and a set of wrapper 
functions are provided to adapt to different 
interfaces. Therefore, it is much easier for STM 
library developers to integrate their innovative 
implementations to the compiler. For example, 
TinySTM library could be integrated with only 
slight modifications to the wrapper functions 
instead of the inside of compiler. And it is also 
easy to further extend the compiler to support 
extra features of TinySTM such as registration of 
event handlers, given the existing infrastructure. 

2.3. Optimization Opportunities 

Unlike exclusive regions protected by locks 
which need to be as small as possible, 
transactions tend to be large and composable in 
order to better facilitate the programmers. Thus 
while it is much slower than hardware 
implementation of TM, STM is a hot topic given 
its much lower cost in development and 
unbounded nature. Since it is very possible that 
there are numerous statements in a single 



 
Fig.1. The phases for lowering TM in the backend of Open64 

transaction, one of the main overhead for STM 
programs is the calls to synchronized read and 
write. It is especially true for automatically 
generated code, where there are lots of 
unnecessary calls to the STM runtime library. So 
the main purpose of our optimization is to 
eliminate them as much as possible. However, 
when dealing with indirect accesses via pointers, 
a conservative design is adopted as it is difficult 
to determine whether it is accessing shared data 
due to alias problems. 

3. Implementation 
3.1 General Transformation 

The transformation of the original program to 
TM code is implemented as a standalone 
lowering phase in the backend of Open64 as 
illustrated in Figure 1, which presents the related 
or remarkable phases in Open64, and marks the 
relative position of the TM lowering. The main 
transformation takes part in the LOWER TM 
phase, and the TM function processing clones 
the transactional functions described in 
Section3.2. 

In order to perform rollback, the runtime 
requires a jump_buf being set on the entry of the 
transaction. At the beginning of the atomic 
region, the compiler generates the call to set the 
jump_buf and passes it to TxStart(). After that, 
all the statements in the block are checked one 
by one, including their kids, and are replaced by 
STM runtime library functions if necessary. Note 
that WHIRL does not permit nested statements, 
and thus simple replacement of leaf node such as 
LDID with library functions would not produce 
a legal WHIRL tree. In our implementation, the 

call is performed in a generated statement node, 
and the returning value is stored via the mapping 
mechanism, so that the ancestor could get it by 
generating new LDID to it. The result of an 
assignment statement is presented by Figure 2, 
where the right column is the rough WHIRL tree 
representing the left statement. 

The transformation of expressions is similar 
to the process with the exception that the 
returning value of TxRead should be saved to 
another register, as there might be multiple 
leaves which require the synchronized read.  

For conditional jump control flow statements 
such as IF, their bodies are processed in the same 
way as above. However, to correctly handle their 
boolean expressions, the synchronized read 
should be performed ahead of the IF statement.  
For loop structures such as WHILE_DO, besides 
the above process, the read barrier of loop 
variant should also be inserted to the end of the 
loop bodies so that the loop condition could be 
validated in every iteration. To ensure the 
correctness of nested control flow statements, a 
stack is used to save the generated synchronized 
read of loop variants, and is popped at the end of 
loop bodies.  

While structured statement block is adopted 
for a transaction in our design in order to keep 
the atomic block clear, jump statements are 
allowed. If a statement such as break jumps out 
of the transaction, it incurs a transaction commit. 
And the transaction is re-executed instead of 
escaped if it fails to commit. 

The result of a general transformation of 
original TM marked code is shown in Figure 3. 
The left column is a code segment in a parallel 



a = b;    LDA <b>
PARM 

VCALL <TxRead>      #synchronized read of b 
LDID <return_offset> 

  PARM 
LDA <a> 

  PARM 
VCALL <TxWrite>      #synchronized write to a 

Fig.2. The transformed WHIRL tree for a single assignment statement 

task, where result is a global shared variable that 
is expected to be accumulated in each thread. In 
order to be concise and clear, a psudo-code is 
listed instead of the actual WHIRL tree. The Self 
variable in the right column is used to 
manipulate the execution information of the 
transaction, and is generated by library function 
TxNewThread at the entry of the thread. For 
OpenMP, the function is automatically invoked 
at the stage of forking threads. For Pthreads, the 
programmers currently would have to manually 
invoke a wrapping function tm_thread_start at 
the start of the parallel task, which needs no 
argument and handles all the initializations of 
the thread local logging. 

3.2 Functions 

To support function calls in transactions, two 
directives are introduced as described in 
Section2.1. The front end marks the functions 
with corresponding attributes when the 
directives are seen. And as illustrated in Figure 1, 
the transactional functions are processed at the 
early stage of the backend processing. For the 
transactional ones, the compiler clones the whole 
function, gives the cloned function a mangled 
name which is the original name preceded with 
fixed prefix that would not incur confusions, and 
records it in the transactional function table. The 
cloned function is lowered right after the original 
one, and is instrumented with read/write barriers 
in the same way as the atomic regions, with the 
exception that it doesn’t have to start the 
transaction or set up the jump buffer itself. For 
the transaction free functions, except for setting 
up the corresponding attributes in its ST, no 
special treatment is performed. 

When a call to function is seen in an atomic 
block, the compiler first checks its attributes. If 

it is a transaction free function, the lowering 
phase continues. If it is a transactional function, 
the compiler checks the transactional function 
table with the mangled name. If it fails to find 
the function, an error is issued. Otherwise, the 
function call is replaced with the call to the 
cloned function. The original function is only 
used when called outside of the atomic blocks. 

The transactional and transaction free 
functions could call each others. However, any 
unmarked function, including legacy function, is 
not allowed to be invoked inside them. If a 
transaction free function is called inside a 
transactional function, it behaves exactly like 
when it is called inside an atomic block. 
However, on the other hand, when a 
transactional function is called inside a 
transaction free one, instead of the cloned 
function, the original one without 
instrumentation is invoked, and thus the 
transaction semantic is not guaranteed. 

Note that currently we are cloning and 
instrumenting all the transactional functions, 
despite whether they are actually called inside 
any transaction or not. While it does not hurt the 
correctness or performance of the program, it 
increases the size of the executable. To achieve 
the goal of only cloning necessary transactional 
functions, an inter-procedural analysis is needed, 
and this work is left for our future work. Another 
issue is the handling of function calls in indirect 
manners such as via function pointers. It 
involves alias problems and is not handled in the 
current implementation. [8] has solved this 
problem by marking transactional functions and 
recording the cloned functions’ address at a fixed 
offset from the target address of the function 
pointer. We are planning to implement it in the 
future versions. 



1.1  int i = 0; 
1.2  #pragma tm atomic 

{ 
1.3     int j = 0; 
1.4     for(i=0;i<20;i++) 
       { 
1.5         for(j=0;j<10;j++) 
           { 
1.6             result++; 
           } 
       } 
    } 

2.1  int i = 0; 
2.2   jmpbuf  jbuf; 
2.3   _setjmp(jbuf); 
2.4   TxStart(Self, jbuf); 
2.5   TxStore(Self, &j, 0); 
2.6   for (; TxLoad(Self, &i)<20; 

TxStore(Self, &i, TxLoad(Self, &i)+1)){ 
 2.7     for(TxStore(Self, &j, 0); TxLoad(Self, &j)<10; 
           TxStore(Self, &j, TxLoad(Self, &j)+1)){ 
 2.8         TxStore(Self, &result, TxLoad(Self, &result)+1);
        }} 
 2.9   TxCommit(Self); 

Fig.3. The transformation result of a code segment

3.3 Optimizations 

As described in Section2.3, the major goal of 
our optimization work is to eliminate 
unnecessary calls to runtime library calls. By 
observing the programs, there are two kinds of 
memory accesses that could be optimized with 
the efforts of both the compiler and the runtime 
library. Note that except for the following 
discussed automatic approach to unnecessary 
function call elimination, programmers could 
also specify the variables that do not need 
read/write barriers via the shared/private clauses 
as described in Section2.1. 

The first one is the variables that do not need 
to be recorded at all. These variables are often the 
ones that are declared and used inside the atomic 
blocks. For example, the variable j in line1.3 of 
Figure 3 does not need any instrumentation. It is 
not seen anywhere outside the atomic block, thus 
the success or failure of the transaction has no 
effect on them. We refer to these variables as 
transaction-local variables. While they are 
uncommon in traditional lock-based critical 
regions, which need to be kept tiny to ensure 
concurrency, they are very likely to occur in 
programs with largetransactions. The compiler 
automatically detects transaction-local variables 
in the front end, when parsing the atomic block, 
and marks the corresponding attributes, which 
could be retrieved from its ST in the LOWER 
TM phase. And the backend would not 
instrument the memory accesses to these 
variables. Taking the instrumented code in 

Figure3 as an example, the recognition of j would 
help eliminate the TxStore in Line2.5, as well as 
all the four runtime library calls in Line2.7. The 
optimized code is shown in the left column of 
Figure 4. 

The second one may not be obvious at the 
first glance. But they are more common than the 
transaction-local variables. They are the thread 
local variables that are updated in the transaction, 
which means they only need to be rolled back 
when the transaction fails, but don’t need to be 
synchronized among all the threads. We refer to 
these variables as barrier-free variables. In fact, 
for the parallel model of Pthreads, most of the 
variables that are in the same PU as the 
transaction and could be seen outside of the 
transactions are barrier-free variables. For 
example, the variable i in Line1.1 of Figure3 is a 
barrier-free variable. The variables that are 
specified by the clause private described in 
Section2.1 are also treated as barrier-free 
variables. Given the nature of these variables, 
they are detected via their storage classes. Instead 
of instrumenting write barrier to the relevant 
store operation, the compiler uses TxStoreLocal, 
which only logs necessary information for 
rollback without recording them to the write-set. 
In addition, the read accesses to these variables 
are free of any record. In the program of Figure3, 
the recognition of i as a barrier-free variable 
helps eliminate the two TxLoad in Line2.6, and 
replaces the TxStore with light-weight 
TxStoreLocal. The optimized code is shown in  



1.1   int i = 0; 
1.2   jmpbuf  jbuf; 
1.3   _setjmp(jbuf); 
1.4   TxStart(Self, jbuf); 
1.5   for (; TxLoad(Self, &i)<20; 

TxStore(Self, &i, TxLoad(Self, &i)+1)){ 
 1.6     for(j=0; j<10;j++){ 
 1.7         TxStore(Self, &result,  

TxLoad(Self, &result)+1); 
        }} 
 1.8   TxCommit(Self); 

2.1   int i = 0; 
2.2   jmpbuf  jbuf; 
2.3   _setjmp(jbuf); 
2.4   TxStart(Self, jbuf); 
2.5   for (; i<20;TxStoreLocal(Self, &i, i+1)){ 

 2.6     for(j=0; j<10;j++){ 
 2.7         TxStore(Self, &result,  

TxLoad(Self, &result)+1); 
        }} 
 2.8   TxCommit(Self); 

Fig.4.The optimized code of Figure3. The left column is the one with transaction-local variables eliminated. The 
right column is the one with barrier-free variables recognized. 

the right column of Figure 4. 
However, while the recognition of barrier-free 

variables decreased synchronizations, there are 
still redundancies. For example, as illustrated by 
the right column of Figure4, i is logged each time 
in the iteration, which is actually not needed as it 
just needs to be reversed back to the original 
value when the transaction restarts. Therefore, in 
the future, we plan to checkpoint these variables 
at the entry of the transaction instead of logging 
each of their updates. 

The automatic detection strategy of 
transaction-local and barrier-free variables is 
varied in different contexts. When the compiler is 
processing Pthreads parallel tasks, since the 
threads don’t share variables declared in the 
parallel function, the variables that are “AUTO”, 
which means they are on stack, are identified as 
barrier-free. And only variables that are declared 
in the atomic block belong to transaction-local 
variables. For the cloned transactional functions 
however, all the variables (excluding PSTATIC 
ones) declared in the PU, which means having the 
storage class of AUTO, are identified as 
transaction-local as they are implicitly declared in 
transactions. And there is no barrier-free variable 
for the cloned function since it could not access 
the caller which might have those variables. For 
the transactions in OpenMP parallel regions, the 
optimization relies on its implementation. In 
Open64, the parallel tasks are created as nested 
functions that are called micro tasks, and thus it 
is obvious that the variables declared in PU scope 
of the micro tasks are barrier-free ones. However, 

the variables declared in the enclosing PU, while 
are also in stack, are shared by default, and thus 
should be also instrumented with both read and 
write barriers. Note that all the variables that are 
specified to be private in the OpenMP clause have 
local copies generated by the implementation of 
OpenMP, so they are automatically identified as 
barrier-free variables. 

Besides optimizing the variable accesses, the 
compiler also helps detect read-only transactions 
by recursively checking all the statements. And if 
all the store operations are performed on either 
transaction-local or barrier-free variables, the 
whole transaction is identified to be read-only.  

Note that although we have put efforts in the 
automatic optimization, the conservative design 
has led to false positives when trying to identify 
variables that need instrumentations. For example, 
all indirect memory accesses are instrumented 
with read/write barriers by default even when it 
points to the memory that is allocated in the 
enclosing thread. In these situations, the 
programmers could simply specify them as 
private, and performance increase is expected as 
they are also treated as barrier-free variables. The 
same happens to the detection of read-only 
transactions: none of the transactions that contain 
indirect stores to memory is identified as 
read-only transactions. Therefore, while we are 
exploring more chances for optimization, the 
programmers’ annotations via the directive 
clauses are still very important to improve the 
performance as much as possible, especially for 
the applications dealing a lot with indirect 



   
Fig.5. Speedup of fluidanimate with both locks and TM using the workload of simmedium, simlarge, and native. 

load/stores, as illustrated in section 4. 

4. Preliminary Experimental Results 

Our preliminary experiment is carried out on 
an Intel Core2 Quad-Core CPU. The target 
application are the fluidanimate benchmark in 
PARSEC1.0[13] and the kmeans benchmark in 
STAMP[15]. fluidanimate simulates an 
incompressible fluid for interactive animation 
purposes with an extension of the Smoothed 
Particle Hydrodynamics method. It is a 
fine-grained parallel application with a large 
working set, and is constituted by five individual 
kernels. The K-means is a well known data mining 
algorithm that groups objects in an N-dimensional 
space into K clusters. We use fluidanimate to 
compare our implementation with fine-grain lock 
program, and kmeans to compare our compiler 
generated code with the manually instrumented 
TM program. 

Figure 5 shows the comparison between the 
speedup of the original lock based program and the 
transactional memory one. Both of them are 
compiled by Open64. The experiments are done 
with 3 different input sets provided by PARSEC: 
the simmedium, simlarge, and native, which 
contain 100,000 particles, 300,000 particles, and 
500,000 particles separately. The speedup is 
computed over the running time of the serial 
version of the application. 

From the figures, we can conclude that the 
TM version is not incurring unbearable overhead 
as it is not slowed down much when running with 
single thread. At the same time, it resembles the 
speedup of the original parallel program especially 
when the input set is larger. More importantly, it 
helps to largely simplify the concurrency 

management, especially when it is parallelized in a 
fine grained manner. For example, when running 4 
threads with the input set of simlarge, the original 
program creates 308224 locks in a two-dimension 
lock array. 

 
Fig.6. speedup of kmeans  

Figure 6 shows the speedup of kmeans in three 
situations: the original manually instrumented 
version in STAMP, and the Open64 compiled 
version with/without manual optimizations. Here 
the manual optimization refers to the user specified 
clauses discussed in Section 2. The speedup is 
calculated based on the execution time of the 
STAMP version with single thread. It shows that 
without the user specified clause, the performance 
could be significantly decreased. The following 
figure illustrates the related code segment. 

 

#pragma tm atomic private(feature) 
{  int j; 
   *new_centers_len[index] ++; 

for(j=0;j<nfeatures;j++){ 
      new_centers[index][j]+=feature[i][j]; 
}} 

Fig.7. Code segment of kmeans 

Figure 7 is a core transaction that costs a lot of 
time during the execution of kmeans. During its 
compilation, the variables j and nfeatures are 
recognized as transaction local and barrier-free 
separately, and therefore the related runtime 
invocations are eliminated. According to the whole 
program, feature array is read only and doesn’t 



need to be synchronized either. However, the 
compiler is unable to recognize it, and since it is a 
pointer, the compiler performs full instrumentation 
to it, which is fatal to the overall performance.  

To deal with this problem, the programmer 
could make use of a simple private(feature) clause 
as in Figure7. It enables the elimination of 
instrumentations to feature, which makes the 
program perform almost the same with the 
manually instrumented one, as illustrated in 
Figure6. 

5. Conclusion and Future Work 

In this paper, we present the design and 
implementation of Transactional Memory 
extension of the Open64 compiler, which supports 
replaceable underlying runtime library and several 
optimizations. We have performed a preliminary 
experiment, which shows that it is possible for the 
TM program compiled by our compiler to have a 
similar scalability with the original one with 
fine-grained locks. 

Due to the time limit, only two applications 
are used in our tests. We are planning to perform 
more extensive experiments to verify our 
conclusions in the future. Regarding the design 
and implementation of the compiler, besides the 
problems that are discussed in each section, there 
are also other open issues. For example, we would 
like to provide mechanisms to allow programmers 
to register handlers for certain events such as 
abortion, function call, etc., in order to facilitate 
the programmers, and also offer opportunities to 
deal with I/Os in transactions. It is also critical to 
appropriately handle the conditional wait 
semantics. For instance, a literal analysis shows 
that 20 out of 55 critical regions in the whole 
PARSEC suites need signal processing. It is also 
very common to have signals within critical 
regions in commercial softwares. For example, the 
number is 28 out of 75 for FastDB. In addition, 
handling legacy code in the binary form in 
transactions, and whether supporting open nested 
or close nested transactions, are also open issues. 
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