
OpenMP 3.0 Tasking Implementation in OpenUH∗

Cody Addison
Texas Instruments Incorporated, Stafford TX 77477, USA

James LaGrone Lei Huang Barbara Chapman
University of Houston, Houston TX 77004, USA

Abstract
As multicore technology dominates the processor
market, new methodologies are being explored to
exploit the parallelism inherent to these architec-
tures and shared memory programming models
are gaining in popularity. The ratification of the
OpenMP 3.0 API has provided compiler develop-
ers with another challenge as the multicore rev-
olution reshapes the landscape in scientific com-
puting. The introduction of explicit tasking in this
latest revision of the de facto standard for shared
memory programming introduces new capabili-
ties for parallel programming. Tasking abilities
in OpenMP now allow irregular applications with
pointer based data and recursive algorithms to be
executed in parallel, as well as providing alter-
native parallelization techniques for traditional
loop-centric codes. This paper outlines the im-
plementation of OpenMP 3.0 tasking features in
OpenUH, a branch of Open64 compiler suite.

1 Introduction
Multicore architectures have brought parallel program-
ming to the masses. Parallel programming was previ-
ously the domain of scientific applications running on
large clusters. Multicore technology is now providing at
least two cores in laptops and dozens of cores per proces-
sor in research systems. Hundreds of cores per processor
will be available in the near future. Mainstream appli-
cations are moving to the parallel world, which prompts
the reevaluation of current parallel programming models.
Developers must apply a parallel programming model to
applications to exploit the available parallelism. However,

∗This work was supported by DOE Pmodels project under grant DE-
FC02-06ER25759 and the National Science Foundation under contracts
CCF-0833201 and CCF-0702775.

most parallel programming models for shared memory ar-
chitectures have focused on scientific applications using
large arrays and loop-level parallelism. While this class
of applications is prevalent in high performance comput-
ing, they are not representative of applications expected to
be useful on multicore architectures.

OpenMP is the de facto standard in shared memory
programming, which originally targeted scientific appli-
cations. However, it does not apply well to applica-
tions which employ certain types of irregular parallelism
such as, recursion, pointer chasing, or large load imbal-
ances. The OpenMP Architecture Review Board’s recent
release of the OpenMP 3.0 API [15] shifts its paradigm
with the adoption of a new tasking model. Where the
previous standards relied on worksharing constructs and
loop-centric programming to exploit parallelism, the new
standard allows the developer to dynamically create asyn-
chronous units of work to be scheduled by the runtime.
This is a powerful feature that has the potential to allow
OpenMP to be used to write parallel code for a wide vari-
ety of applications.

In the new model, it is the programmer’s responsibility
to expose the opportunities for parallelism by denoting the
tasks and their synchronization points. It is the system’s
responsibility to manage and schedule the tasks to exploit
the maximum amount of parallelism and therefore perfor-
mance. This allows the developer to focus on the higher
level components of parallel programming, such as pro-
gram decomposition, without being concerned with lower
level constructs like threads and locks.

The focus of this work is the integration the new
OpenMP tasking model into the OpenUH compiler frame-
work. We focus on the three major components — com-
piler frontend support for tasks, compiler translation of
tasks, and extensions to the runtime library. After an
overview of tasking features in OpenMP 3.0 (Section 2)
and some related work (Section 3), we present our imple-

1



mentation (Section 4), evaluate it (Section 5), and con-
clude with ideas for future work (Section 6).

2 OpenMP 3.0 Tasking
The OpenMP Architecture Review Board ratified the lat-
est standard of its shared memory programming model in
May of last year. The acceptance of this new standard
is evident by the numerous commercial compilers touting
compliance within months of ratification. Recognizing
that OpenMP already supports implicit tasks in the form
of parallel regions, the new standard extends the program-
ming model by allowing explicit tasks. This new task-
ing capability addresses the previous difficulties in par-
allelizing applications employing recursive algorithms or
pointer based data structures. The new constructs, omp
task and omp taskwait allow the designation and syn-
chronization of tasks.

OpenMP defines a task as a specific instance of ex-
ecutable code and its data environment. A task region
consists of all the code encountered during the execution
of a task and is created when a thread executes the task.
When a parallel construct is encountered, a set of im-
plicit tasks is created, one task per thread. When a thread
encounters a task construct, an explicit task is created.
The execution of an explicit task may be immediate or
delayed. By default, the execution of a task is tied to a
thread, whereby its execution cannot resume on another
thread if suspended. Alternatively, explicit tasks may be
untied, whereby its execution may be suspended and later
resumed by any thread in the current thread team. An if
clause may be used to enforce immediate execution of an
explicit task.

int fib(int n) {
int x, y;
if (n < 2)

return n;
else {

#pragma omp task shared(x)
x = fib(n - 1);

#pragma omp task shared(y)
y = fib(n - 2);

#pragma omp taskwait
return x + y;

}
}

Figure 1: C Source for Fibonacci kernel

A task construct may appear anywhere within a
parallel region in a program, including another task
construct. However, worksharing, barrier, and master
constructs may not be closely nested within a task
construct. The task construct accepts the private,

firstprivate, shared, and default clauses to influ-
ence the data environment. To avoid complications of
data going out of scope, variables are firstprivate
by default, and their values are captured at task cre-
ation time. Synchronization is achieved using the omp
barrier and omp taskwait constructs. The taskwait
construct causes the encountering task region to suspend
and wait for all of its child tasks to complete before re-
suming execution. When a barrier is encountered, all
threads must wait until all other threads reach the barrier
and all tasks created prior to the barrier are completed.
Figure 1 shows the Fibonacci kernel with two task direc-
tives with shared clauses.

3 Related work
The Mercurium compiler, utilizing the Nanos runtime li-
brary (RTL), contains the first prototype implementation
of OpenMP 3.0 tasks [2]. The Nanos RTL is an imple-
mentation of the nano-threads programming model [14].
Nano-threads are implemented using a modified version
of the QuickThreads [10] library. The Nanos RTL, uses
assembly language to implement user-level thread switch-
ing and supports the x86, IA-64, PowerPC, and Alpha ar-
chitectures. The runtime library maintains a global queue,
team queues, one for each team of threads, and local
queues for each thread. At the start of execution a team
of kernel-level threads is created. These threads execute
an idle function looking for work. When a parallel region
is encountered, a single nano-thread is created for each
kernel-level thread and placed in the team queue where
they are removed by the slave threads. The compiler ex-
tends the original Nanos runtime to support tasks. Tasks
are represented as nano-threads. The first implementation
used the same three-tiered queue organization as the orig-
inal library. A task was placed on the team queue at cre-
ation. A thread searched for work in order of local queue,
team queue, and finally global queue. However, they have
recently implemented several different scheduling algo-
rithms using local queues and work stealing [5]. When a
task is suspended, it is placed back in a queue, and marked
as suspended. When a thread accesses a queue for work it
must iterate through the queue searching for a task that is
ready to run. They also implement several cutoffs in order
to limit the number of tasks created.

Cilk [6] is a language and runtime system developed at
MIT to express task-level parallelism in a multithreaded
environment. The runtime system uses a work steal-
ing scheduling algorithm, where each thread maintains a
ready queue of tasks. When a thread runs out of tasks, it
attempts to steal a task from another thread in the system.

2



Work stealing algorithms resolve the tension between load
balance and contention. A task is executed immediately
upon creation while the current task is suspended. This
achieves a “breadth-first theft, depth-first work” schedul-
ing policy with minimal overhead and good data local-
ity. Intel’s Threading Building Blocks [17] uses a similar
scheduling algorithm.

In Cilk and Intel’s workqueueing model [18], a task’s
state is saved using a data structure to store local variables.
When a task is suspended, all local variables are saved to
the structure, and a flag is marked to indicate the position
in the code where the task was suspended. Upon resump-
tion, the flag is evaluated, and a goto statement is used to
jump to the suspension point. This approach has difficul-
ties if a task can be suspended inside a function call. This
would require that a task’s call stack be traversed upon
its resumption. Cilk and Intel’s workqueuing model get
around this by not allowing tasks to be suspended within
a function call. OpenMP 3.0 has no such restrictions, and
therefore requires a more flexible method.

4 OpenMP 3.0 Implementation in
OpenUH

In this section we will first describe the OpenUH com-
piler and its implementation of OpenMP 2.5. Then we
will discuss the implementation of the OpenMP 3.0 task-
ing model; specifically the frontend, runtime library, and
transaltion of the tasking constructs.

4.1 The OpenUH Compiler

The OpenUH [12] compiler is a branch of the open source
Open64 compiler suite for C, C++, and Fortran 95 de-
veloped at the University of Houston. OpenUH contains
a variety of state-of-the-art analyses and transformations,
sometimes at multiple levels. Its interprocedural array re-
gion analysis uses the linear constraint-based technique
proposed by Triolet [19] to create a DEF/USE region for
each array access which are merged and summarized at
the statement and basic block levels, and for an entire
procedure. Dependence analysis uses array regions and
procedure summarization to eliminate false or assumed
dependencies in the loop nest dependence graph. Both
the array region and dependence analyses use the sym-
bolic analyzer, based on the Omega integer test [16]. We
have enhanced the original interprocedural analysis mod-
ule [20], designing and implementing a new call graph
algorithm that provides exact call chain information. We
have also created a graphical tool called Dragon [7] that

provides the ability to request and view information on
a submitted program and its data structures, typically in
the form of graphs or text along with the corresponding
source code.

OpenUH is compliant to OpenMP 2.5 for all three in-
put languages in OpenUH, and we have designed and im-
plemented novel extensions that provide greater flexibil-
ity and scalability when mapping work to many cores [4].
OpenMP is usually lowered relatively early in the transla-
tion process to enable optimization of the explicitly par-
allel code. The output makes calls to our PThreads-based
runtime library. We are currently implementing the recent
changes in OpenMP 3.0 and an explicit cost model for
OpenMP in the compiler. OpenUH provides native code
generation for IA-32, IA-64 and Opteron architectures. It
has a source-to-source translator that translates OpenMP
code into optimized portable C code with calls to the run-
time library, which enables OpenMP programs to run on
other platforms. Its portable, multithreading runtime li-
brary includes a built-in performance monitoring capabil-
ity. Moreover, OpenUH has been coupled with external
performance tools to support the analysis and visualiza-
tion of a program’s performance [8]. It is directly and
freely available via the web (http://www.cs.uh.edu/
˜openuh).

Most OpenMP compilers translate OpenMP into mul-
tithreaded code with calls to a custom runtime library in
a straightforward manner, via outlining [3], inlining [12],
or an SPMD scheme [9] for clusters. Since many details
of execution, such as the number of iterations in a loop
nest to be distributed to the threads and the number of
threads that will participate in the work of a parallel re-
gion, are often not known in advance, much of the actual
work of assigning computations must be performed dy-
namically. Part of the implementation complexity lies in
ensuring that the presence of OpenMP constructs does not
unduly impede sequential optimization in the compiler.
An efficient runtime library to manage program execution
is essential.

4.2 Frontend

In a compiler, the frontend is responsible for parsing the
source program and creating an intermediate representa-
tion (IR) for the compiler to manipulate. This phase gen-
erally consists of lexical analysis, syntactic analysis, and
semantic analysis. Lexical analysis is responsible for di-
viding the source into tokens for later use by the frontend.
During this phase, illegal character sequences can be de-
tected. The syntactic analysis phase actually generates the
IR and symbol table from the tokens. This level uses a

3



grammar to parse the token string and is able to detect
syntactic errors, such as a lastprivate clause on an omp
task construct. Semantic analysis is used to detect static
errors in the source, such as an omp for construct closely
nested within an omp task region.

The intermediate representation used is WHIRL, con-
sisting of five levels, from Very High to Very Low, each
pertaining to a different phase in the compiler. Frontends
for C, C++, and Fortran generate Very High level WHIRL
nodes, which are later lowered in subsequent phases of
the compiler. In this work, we have fully extended the
C frontend to support tasks and all related constructs and
clauses. The Fortran frontend has been extended to accept
the omp task and omp taskwait constructs, but does not
yet accept any clauses.

In OpenUH, OpenMP constructs are represented
as a REGION in WHIRL. REGION nodes consist of
three kid blocks: REGION EXITS, REGION PRAGMAS, and
REGION BODY. The task pragma and any clauses associ-
ated with it are added to the REGION PRAGMAS section
and the body of the task resides in the REGION BODY.
To illustrate the WHIRL representation, Figure 2 shows a
piece of an ASCII representation of the WHIRL after pars-
ing the Fibonacci kernel (Figure 1). The example shows
the first task in the Fibonacci code. For illustration pur-
poses, the task construct contains an untied clause. The
REGION PRAGMAS section contains a block with PRAGMA
nodes representing the task construct, untied clause,
and shared clause. The shared clause contains an en-
try to ‘x’ into the symbol table.

REGION 1 (kind=4)
REGION EXITS
BLOCK
END_BLOCK

REGION PRAGMAS
BLOCK
PRAGMA 2 184 <null-st> 0 (0x0) # BEGIN_TASK
PRAGMA 2 187 <null-st> 0 (0x0) # UNTIED
PRAGMA 2 54 <2,2,x> 0 (0x0) # SHARED
END_BLOCK

REGION BODY
BLOCK

LOC 1 7
BLOCK

I4I4LDID 0 <2,1,n> T<4,.predf_I4,4>
I4INTCONST -1 (0xfffffffffffffff)
I4ADD

I4PARM 2 T<4,.predef_I4,4> # by_value
I4CALL 126 <1,41,fib> # flags 0x7e
END_BLOCK
I4I4LDID -1 <1,40,.preg_return_val> T<4,.predef_I4,4>
I4COMMA

I4STID 0 <2,2,x> T<4,.predef_I4,4>
END_BLOCK

END_REGION 1

Figure 2: WHIRL representation of the first task con-
struct in the Fibonacci kernel

4.3 Runtime
OpenMP runtime library in OpenUH not only provides
the OpenMP library calls specified in the API but also a
layer of abstraction between the compiler and the underly-
ing POSIX Thread API. The RTL is responsible for man-
aging threads with responsibilities such as thread creation,
synchronization, and scheduling. With the introduction
of tasks, the OpenMP RTL now plays an important role
in task management and is now responsible for task cre-
ation, switching, and scheduling as well as enforcing task
dependencies.

Task Scheduling Our implementation uses a dis-
tributed, work-stealing task scheduler in the OpenUH
RTL. The distributed queue organization is in line with
our goals of keeping synchronization to a minimum and
promoting data locality. Work stealing is used to pro-
vide load balance to the system. The queues are doubly-
ended queues, or deques (pronounced like “decks”), to al-
low a maximum amount of flexibility when developing a
scheduling algorithm. We chose a doubly-linked list to
implement our deques.

Ideally, we would like to allow concurrent accesses to
the head and tail of the queue, but without synchroniza-
tion, this can potentially result in a data race. Presently
we use locks around the entire queue to guarantee mutual
exclusion. This results in a slight increase in overheads,
but since we expect few steals the contention should be
low.

The scheduling strategy used in our runtime is inspired
by the Cilk scheduler. As mentioned above Cilk uses a
work stealing scheduler, where each thread maintains a
single ready queue. When a task is created in Cilk, it is
immediately executed and its parent is placed on the tail
of the queue, resulting in a depth-first creation and exe-
cution of tasks. This can potentially benefit data locality
and runtime overheads. The OpenMP 3.0 tasking model
differs from Cilk; therefore deviations must be made from
the Cilk scheduling algorithm in an OpenMP implemen-
tation. The OpenMP standard requires support for tied
tasks. The use of a single queue per thread would re-
quire, during work stealing, that a thread iterate through
the tasks in a victim’s queue until a task that is eligible
to be stolen was found. This greatly increases the theft
time and, subsequently, the contention on a queue. Two
queues, one public and one private, as shown in Figure 3,
were chosen to separate tied versus untied tasks. The or-
der of task creation and execution was also changed with
respect to Cilk. The depth-first creation and execution are
incompatible with tied OpenMP tasks. If this approach
were used for tied tasks in OpenMP, all tasks would re-

4



main tied to a single thread.
In order to remedy this situation, we create tasks in a

breadth-first manner, meaning that a task will execute,
creating child tasks, until it reaches a synchronization
construct. At that time it will be suspended and begin exe-
cution of its children. To maintain a depth-first execution,
the tasks are placed on the queues in LIFO order. This
process performs a breadth-first creation and a depth-first
execution of tasks in the task graph, which allows child
tasks to be stolen by other threads. Without this creation
strategy, no parallelism would be achieved. With this ap-
proach, we can benefit from the data locality property of
a depth-first traversal, but we require more memory than
the Cilk scheduler, since we have more created tasks at
any given time. This is not a problem unless large num-
bers of tasks are generated.

When looking for work, a thread first checks its private
queue for work. If no work is found, it checks its pub-
lic queue. If still no work is found, it attempts to steal
work from another random queue. In the event the vic-
tim’s queue is empty, the thread resumes execution of its
implicit parallel task.

We first look at the private queue in order to finish exe-
cution of any tasks that have been started and allow more
opportunities for other threads to steal tasks for better load
balancing. Our experimental results show that attempting
to steal only once per thread results in the best perfor-
mance. We do not enqueue the implicit parallel task, but
instead only switch back to it when no other work can be
found. The reasoning behind this decision is that in the
case of tasking, the parallel tasks will be at the root of the
task graph and therefore should be executed last anyway.
Furthermore, in the applications we tested, the parallel re-
gions do not perform much work and are mainly respon-
sible for generating more tasks.

In a tasking model, the system can quickly become
overloaded with tasks. For instance, the Fibonacci kernel
generates nearly three million tasks when computing the
thirtieth term in the Fibonacci sequence. This puts consid-
erable strain on the runtime library, especially regarding
memory usage. To remedy this, the Nanos runtime library
has used a cutoff [5] to serialize parts of the execution.
Before a task is created, the runtime library is queried to
determine whether the task should be created or executed
immediately within the context of the current task.

We have adopted a similar technique in our implemen-
tation. In addition to the num tasks and depth conditions
introduced in the Nanos RTL, we have implemented two
other conditions: depthmod and queue. The depthmod
condition uses the depth of the current task modulo N to
determine if the new task should be created. For an N = 2,

every other depth will be skipped. The queue condition
places an upper and lower limit on each queue and only
creates a new task if the number of tasks in the queue are
outside of the range. This effectively fills up the queue,
depletes it, and repeats.

Figure 3: OpenUH queue organization

Task Synchronization In OpenMP, task synchroniza-
tion is achieved through the use of the omp taskwait and
omp barrier constructs. When a taskwait construct
is encountered, a task must wait for all of its immediate
children to complete before it can continue. This requires
keeping track of the parent/child dependencies in the task
graph. To accomplish this, each child maintains a pointer
to its parent, with the root tasks’ parent being null. The
parent keeps track of the number of children it has created.
A child decrements its parent’s counter by one upon com-
pletion. Atomic operations are used to reduce contention.
A task waiting on a taskwait construct is placed in a sus-
pended state. It is the responsibility of the task’s last com-
pleted child to place the task on queue. In the case of a
tied task, it is placed on its starting thread’s private queue.
If the task is untied, we can place the task in any public
queue. The two most intuitive choices are on the queue
of the thread it was executing on, or the queue on which
the child is executing. In our experiments we found that
placing the task on the public queue of the child resulted
in better performance. An overview of this algorithm is
shown in Figure 4.

The omp barrier construct requires that all tasks cre-
ated before the construct is reached be completed be-
fore any thread can continue. To accomplish this, each
thread team maintains a counter denoting the number of
incomplete tasks for that team. Upon entering a barrier,
each thread decrements the counter by one and enters into

5



Figure 4: Flow of a task through the system

the scheduling algorithm discussed previously. When the
counter reaches zero, each thread increments the counter
and resumes execution.

Task Switching For simplicity and flexibility, we chose
to implement task switching using a user-level thread
library by building our implementation on top of the
Portable Coroutines Library (PCL) [13]. The library uses
either the setjump/longjmp or ucontext interfaces de-
pending on the support of the system. We extended the
library to make it thread safe as well as the basic data
structure used to represent a coroutine to maintain the in-
formation needed for OpenMP tasks.

4.4 Translation

The translation of OpenMP constructs occurs in the
LOWER MP phase of compilation. This phase of the com-
piler is responsible for transforming code with OpenMP
directives into multithreaded code that uses the runtime
library. It takes a WHIRL tree as input with OpenMP con-
structs represented similarly as in Figure 2 and produces
a WHIRL tree restructured to use the runtime library API.

The omp taskwait is directly translated into a func-
tion call, similar to the omp barrier. Other constructs,
including omp task require much more complex trans-
formations. The body of a task must be encapsulated in
a procedure, its data environment must be setup, and the
code to create the task must be inserted.

We are currently extending the OpenMP translation in
OpenUH to support tasks. We have completed the transla-
tion of omp taskwait and are working on the translation
of omp task. In the meantime, we are translating appli-
cations by hand to obtain performance results. Figure 5
shows how the OpenUH compiler will likely translate the
Fibonacci kernel (Figure 1).

Any benefits of inlining tasks diminish as most vari-
ables will be firstprivate by default. The benefits of
implicitly shared variables is lost and the data environ-
ment of a task must be captured at the time of a task’s
creation. Since the execution may be deferred, a copy of
the variable at the time of task creation, not execution, is
made. For simplicity, we have chosen to use the outlining
approach with regard to tasks in our manual translation.
As we implement the translation in OpenUH, we will in-
vestigate both inlining and outlining methods.

In the translation, the body of the task is copied into
an independent function taking a void pointer as an ar-
gument. The data environment is created by defining a
structure which contains all firstprivate and shared
variables. Values of firstprivate variables are copied
into the structure while the address of shared variables
is copied and passed into the function. When the task is
executed, all variables are copied from the structure into
local variables. Originally we created two versions of ev-
ery task function, one for serial execution and the other
for parallel execution. This required a structure to be cre-
ated regardless of whether ompc task create cond()

6



struct omp_task_1_args_ty{
int n;
int *x;

};

void __ompc_task_1(void *fp){
struct omp_task_1_args_ty *args;
int n, *x;

args = (struct omp_task_1_args_ty *) fp;
n = args->n;
x = args->x;
*x = fib( n - 1 );
__ompc_task_exit();

}

int fib(int n){
int x, y, sum;
if (n < 2)

return n;

if (__ompc_task_create_cond() ){
struct omp_task_1_args_ty *__omp_task_args_1;
__omp_task_args_1 =

malloc( sizeof(struct omp_task_1_args));
__omp_task_args_1 -> n = n;
__omp_task_args_1 -> x = &x;
__ompc_task_create( __ompc_task_1,

(void*)omp_task_1_args, 1 );
}else{

int __omp_local_n;
__omp_local_n = n;
fib(__omp_local_n - 1);

}
.....
__ompc_task_wait();
return x + y;

}

Figure 5: Translation of the Fibonacci kernel

returned true or false. By only using the structure to pass
arguments to the function in the case it returns true, we
were able to reduce overheads. If false, we set up the
data environment by creating temporary variables to store
firstprivate variables and execute the code sequen-
tially.

5 Evaluation
Testing of the implementation involved four applications
originally written using either Cilk or Intel’s Workqueue-
ing model. The NQueens algorithm is a recursive depth-
first backtracking algorithm to find all arrangements of N
queens on an N ×N chess board such that no queen can
attack any other. The Multisort benchmark is a variation
of a merge sort algorithm which recursively divides an
array into four parts, sorting each one in parallel. The
SparseLU benchmark performs an LU matrix factoriza-
tion on a sparse matrix. The Strassen benchmark performs
a matrix multiplication using recursion.

Our experiments consisted of comparisons to Cilk 5.4.6
and the Nanos 4.2 implementation of OpenMP 3.0. All re-

sults from the Nanos runtime used their default schedul-
ing policy, the three tier queue organization discussed pre-
viously. For all benchmarks, except for NQueens, no
task create condition was used. The depth condition was
used for NQueens due to the large number of tasks cre-
ated, which slowed down every implementation. All tests
were performed on two machines. The first is a Profes-
sional Service Super Computers (PSSC) Labs Octo server
with eight dual core Opteron processors (total of sixteen
cores), each running at 2.6 GHz and 64GB of main mem-
ory. The second is an SGI Altix 350 consisting of eight
nodes. Each node is an SMP with two Itanium2 proces-
sors running at 1.6 GHz with 16GB of main memory (128
GB total). All implementations were compiled with GCC
4.2.3 using O2 optimization levels.

We used the Nanos compiler for a source-to-source
translation with OpenUH as the backend compiler on both
machines. Cilk used GCC 4.2.3 as its native compiler on
the Opteron server and GCC 4.1.2 on the Altix. All ap-
plications were compiled with the O3 optimization level.
All measurements of speedup are with respect to the se-
quential versions without language extensions. In our
NQueens comparison with Cilk, we inserted a depth cut-
off into the Cilk source code in order to generate a similar
number of tasks. The Nanos library was only evaluated on
the Altix due to a lack of support for x86 64 architectures.

NQueens and SparseLU benchmarks serve as good in-
dicators of the performance overheads caused by task
management. In both applications there is little com-
munication between tasks. Therefore, the less than lin-
ear speedup can be attributed to the tasking implementa-
tion. The Multisort (Figure 8), and Strassen (Figure 9)
benchmarks are more data intensive than the previous two
benchmarks leading to reduced performance. Significant
performance degradation realized on the Opteron dual
core system for all implementations when all cores were
used, likely caused by increased cache pressure due to
shared L2 caches. The Altix machine does not show this
behavior, although we still see a less than linear speedup.

As can be seen in the graphs, the OpenUH implemen-
tation of tasks performs comparably with Cilk, and con-
sistently outperforms the default Nanos implementation.
The performance differences between Cilk and OpenUH
are most likely due to less overhead in the Cilk implemen-
tation. This is mainly attributed to Cilk’s more efficient
memory allocation. The Nanos implementation evaluated
uses a single queue implementation, which accounts for
the performance gap.

An important observation is the differences between
tied and untied tasks. In principal, untied tasks should
provide better load balancing, which leads one to expect

7



(a) PSSC Labs Octo (b) SGI Altix

Figure 6: NQueens Speedup

(a) PSSC Labs Octo (b) SGI Altix

Figure 7: SparseLU Speedup

better performance. However, in the Multisort bench-
mark, tied tasks performed better. The reasons for this
are not yet known, but most likely due to decreased con-
tention on the task queues. When using tied tasks, the
number of queues in the system is doubled, with work
stealing only occurring among the public queues.

6 Conclusion and Future Work

The new OpenMP 3.0 standard provides the programmer
with a new tasking interface. This new model allows for a
more flexible environment in which the programmer can
parallelize irregular algorithms. It can also significantly
simplify the transition of algorithmic design to implemen-
tation due to a higher level of abstraction than threads pro-
vide. The new model, however, places more responsibility
on the runtime library, like task management and schedul-
ing.

The culmination of this work is a portable implemen-
tation of the OpenMP 3.0 tasking model. The frontends

of the OpenUH compiler are being extended to accept the
new constructs and generate IR that represents these con-
structs. The OpenUH runtime library was extended to fa-
cilitate the creation, scheduling, and synchronization of
tasks. In particular, our scheduling algorithm utilizes a
distributed queue organization with work stealing. The
scheduler honors the tied restriction on tasks by using
public and private queues. An outline for the translation of
the OpenMP tasking construct has been presented to aid
future compiler development in implementing the transla-
tion.

We have compared our implementation to the Nanos
implementation of OpenMP 3.0 as well as Cilk. In this
comparison we have shown good speedups as compared
with the other implementations.

With the tasking model being new to OpenMP, much
work needs to be done to investigate the implications for
programmers, as well as exploring new techniques for
implementation in order to achieve optimal performance.
With regard to our implementation, the compiler trans-
lation must be completed. We are currently investigat-

8



(a) PSSC Labs Octo (b) SGI Altix

Figure 8: Multisort Speedup

(a) PSSC Labs Octo (b) SGI Altix

Figure 9: Strassen Speedup

ing better options in regard to inlining versus outlining
and hope to complete the translation and the rest of the
OpenMP 3.0 API in the coming months. The results pre-
sented in this paper show that new scheduling techniques
must be developed for multicore architectures. Static and
runtime analysis and performance data can be used to
achieve better performance on these architectures. In par-
ticular, the shared resources of the cores, namely caches
and memory buses, must be taken into account. To in-
crease data locality on NUMA architectures, it might be
possible to design a more intelligent work stealing pol-
icy in which threads are more likely to steal work from a
thread which is “close” with respect to latency. Our im-
plementation has focused on the scheduling of tied tasks.
It treats tied and untied tasks the same at task creation and
when scheduling. It could be advantageous to take Cilk’s
approach of executing a task immediately and placing its
parent on the task pool when creating untied tasks.

A major benefit of OpenUH is it is an optimizing com-
piler. Its analysis capabilities could allow for compile
time optimizations to be applied to tasking programs. The

cost model [11] must be extended to account for multicore
technologies as well as tasks. With this extension we can
assign computational weights to tasks. This can lead to a
partial static scheduling of tasks at compile time, as well
as passing this information to the runtime library to allow
it to make more intelligent scheduling decisions.

References
[1] C. Addison. Implementing the OpenMP 3.0 task-

ing model in the OpenUH compiler suite. Master’s
thesis, University of Houston, August 2008.

[2] E. Ayguadé, A. Duran, J. Hoeflinger, F. Massaioli,
and X. Teruel. An Experimental Evaluation of the
New OpenMP Tasking Model. In Proceedings of
the 20th International Workshop on Languages and
Compilers for Parallel Computing, October 2007.

[3] C. Brunschen and M. Brorsson. OdinMP/CCp - a
portable implementation of OpenMP for C. Concur-

9



rency - Practice and Experience, 12(12):1193–1203,
2000.

[4] B. M. Chapman, L. Huang, H. Jin, G. Jost, and B. R.
de Supinski. Toward enhancing OpenMP’s work-
sharing directives. In Europar 2006, pages 645–654,
2006.

[5] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation
of OpenMP task scheduling strategies. In Proceed-
ings of the 4th International Workshop on OpenMP
(IWOMP ’08), pages 101–110, May 2008.

[6] M. Frigo, C. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded lan-
guage. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 212–
233, 1998.

[7] O. Hernandez, C. Liao, and B. Chapman. Dragon:
A static and dynamic tool for OpenMP. In Work-
shop on OpenMP Applications and Tools (WOMPAT
2004), Houston, TX, 2004. University of Houston.

[8] O. Hernandez, F. Song, B. Chapman, J. Don-
garra, B. Mohr, S. Moore, and F. Wolf. Perfor-
mance instrumentation and compiler optimizations
for MPI/OpenMP applications. In Second Interna-
tional Workshop on OpenMP, 2006.

[9] L. Huang, B. Chapman, and Z. Liu. Towards a more
efficient implementation of OpenMP for clusters via
translation to Global Arrays. Parallel Computing,
31(10-12), 2005.

[10] D. Keppel. Tools and techniques for building
fast portable threads packages. Technical Report
UWCSE 93-05-06, University of Washington De-
partment of Computer Science and Engineering,
May 1993.

[11] C. Liao and B. Chapman. Invited paper: A compile-
time cost model for OpenMP. In Proceedings of the
12th International Workshop on High-Level Parallel
Programming Models and Supportive Environment,
March 2007.

[12] C. Liao, O. Hernandez, B. Chapman, W. Chen,
and W. Zheng. OpenUH: An optimizing, portable
OpenMP compiler. In 12th Workshop on Compilers
for Parallel Computers, 2006.

[13] D. Libenzi. Portable coroutine library. http://
www.xmailserver.org/libpcl.html.

[14] X. Martorell, J. Labarta, N. Navarro, and
E. Ayguadé. Nano-threads library design, im-
plementation and evaluation. Technical report,
DAC/UPC, September 1995.

[15] OpenMP ARB. OpenMP Application Program In-
terface, 3.0 edition, May 2008.

[16] W. Pugh. The Omega test: a fast and practical in-
teger programming algorithm for dependence analy-
sis. Communications of the ACM, 35:102–114, Au-
gust 1992.

[17] J. Reinders. Intel Threading Building Blocks: Out-
fitting C++ for Multi-Core Processor Parallelism.
O’Reilly, 2007.

[18] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, and
P. Petersen. Compiler support of the workqueueing
execution model for intel SMP architectures. In Eu-
ropean Workshop on OpenMP (EWOMP’02), 2002.

[19] R. Triolet, F. Irigoin, and P. Feautrier. Direct paral-
lelization of call statements. In SIGPLAN ’86: Pro-
ceedings of the 1986 SIGPLAN symposium on Com-
piler contruction, pages 176–185, New York, NY,
USA, 1986. ACM Press.

[20] T. Weng. Translation of OpenMP to Dataflow Exe-
cution Model for Data locality and Efficient Paral-
lel Execution. PhD thesis, Department of Computer
Science, University of Houston, 2003.

10


