Problem 1 (20 points)

(a) 3219300464
(b) -1075666832
(c) 0011 0010 0001 1001 0000 0000 0100 0110 0100
 3 2 1 9 3 0 0 4 6 4

Problem 2 (20 points)

(a) 613566756
(b) 613566756
(c) 6.34413 × 10⁻¹⁷
(d) addiu $a0, $s2, 18724

Problem 3 (20 points)

(a) Invert every bit in the binary format of X, then add 1 to the result.
(b) The binary format of a positive integer, X is represented as:

\[X = b_{n-1}b_{n-2}...b_1b_0 \]

in which, \(b_i \) is 0 or 1, where \(b_0 \) is the least significant bit and \(b_{n-1} \) is the most significant bit. Therefore:

\[X = b_{n-1} \times 2^{n-1} + ... + b_i \times 2^i + ... + b_1 \times 2^1 + b_0 \times 2^0 \]
According to the definition of two’s complement, the negation of \(X \) is represented as:

\[
\bar{b}_{n-1}\bar{b}_{n-2}\ldots \bar{b}_1\bar{b}_0 + 1
\]

in which \(\bar{b}_i = 1 - b_i \). So, the value of negative \(X \) in two’s complement is:

\[
-2^{n-1} \times (1 - b_{n-1}) + 2^{n-2} \times (1 - b_{n-2}) + \ldots + 2^{1} \times (1 - b_{1}) + 2^{0} \times (1 - b_{0}) + 1
\]

Add these two numbers:

\[
X + (-X) = -2^{n-1} \times (1 - b_{n-1}) + 2^{n-1} \times b_{n-1} + 2^{n-2} + \ldots + 2^{1} + 2^{0} + 1
\]

Notice that:

\[
-2^{n-1} \times (1 - b_{n-1}) + 2^{n-1} \times b_{n-1} = -2^{n-1} + 2^{n-1} \times 2 \times b_{n-1}
\]

So for the case \(b_{n-1} = 0 \):

\[
-2^{n-1} + (2^{n-2} + 2^{n-3} + \ldots + 2^{1} + 2^{0} + 1) = -2^{n-1} + 2^{n-1} = 0
\]

And for the case \(b_{n-1} = 1 \):

\[
-2^{n-1} + 2^{n-1} \times 2 \times b_{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^{1} + 2^{0} + 1 =
\]

\[
2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^{1} + 2^{0} + 1
\]

which equals to:

\[
2^n
\]

Because the carry out of the most significant bit will be lost, this value is equivalent to 0. So, the two’s complement representation of negative \(X \) follows the definition of the negative number. Therefore, it is correct.

Problem 4 (20 points)

(a) 0000 0111 and 1111 1011

(b) If the most significant bit of the number is 0, fill the remaining higher bits with zero; if the most significant bit of the number is 1, fill the remaining higher bits with one.

(c) If the number is positive, the principle is self-evident. Let’s consider the case where the number is negative, i.e. the most significant bit is 1.

First we represent an i-bit field as:
\begin{align*}
 b_{i-1}b_{i-2}...b_1b_0 &= b_{i-1} \times -2^{i-1} + b_{i-2} \times 2^{i-2} ... b_1 \times 2^1 + b_0 \times 2^0
\end{align*}

Remember \(b_{i-1} = 1 \)

Now we represent the i-bit field in a j-bit field using the principle of sign extension described in the previous section.

\[-2^{j-1} + 2^{j-2} + 2^{j-3} ... 2^{i-1} + b_{i-2} \times 2^{i-2} ... b_1 \times 2^1 + b_0 \times 2^0\]

Now if \(X_i - X_j = 0 \) then \(X_i = X_j \):

\begin{align*}
 b_{i-1} \times -2^{i-1} + b_{i-2} \times 2^{i-2} ... b_1 \times 2^1 + b_0 \times 2^0 - (-2^{j-1} + 2^{j-2} + 2^{j-3} ... 2^{i-1})
\end{align*}

Notice all terms below i-1 cancel out, giving us:

\[-2^{i-1} - (-2^{j-1} + 2^{j-2} + 2^{j-3} ... 2^{i-1}) = -2^{i-1} + 2^{j-1} - 2^{j-2} - 2^{j-3} ... -2^{i-1}\]

We use the principle that \(-2^k + -2^k = -2^{k+1}\) for any \(k \) recursively until we arrive at:

\[2^{j-1} - 2^{j-1} = 0\]

Problem 5 (20 points)

(a) When transforming a positive number to the two’s complement negative number, you will first invert every bit in the number and add 1 to the result. The carry-in of the least significant bit is used to perform this addition.

(b) For the worst case scenario, there are no generate signals, in which case, the 4-bit adders still must ripple. Thus the gate delay is \(2^*N+1 \) for the ripple adder plus the CLA unit requires \(2^*(N/4) \) delays. But in the best case, there is a generate signal for every unit, in which case, all units can operate in parallel. Thus the delay is \(2^*(N/4)+1+2 \) for the CLA.

(c) Simply add 4 to the subscripts for each iteration.