Compiler Techniques for Optimizing Dense Matrix Multiplication on a Many-Core Architecture

Elkin Garcia1 Ioannis E. Venetis2 Rishi Khan3 Kelly Livingston1 Guang R. Gao1

Computer Architecture and Parallel Systems Laboratory
Department of Electrical and Computer Engineering
University of Delaware, Newark 19716, U.S.A.
\{egarcia,ggao\}@capsl.udel.edu

Department of Computer Engineering and Informatics
University of Patras, Rion 26500, Greece
venetis@ceid.upatras.gr

ET International, Newark 19711, U.S.A.
rishi@etinternational.com

November 3rd, 2010
Outline

Introduction
- Motivation
- Objectives

Background
- IBM Cyclops-64
- Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
- Work Distribution
- Compiler Optimizations

Experimental Evaluation
- Results

Conclusions
Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions
Traditional Parallel Programming Methodologies

Goal: Improve performance.

Assumptions: Cache based parallel systems.

Strategies: Cache tiling techniques exploit temporal locality.

- Tile size selection and padding.

- Data location and replacement in the cache is controlled by HW making fine control of these parameters difficult.

- Power consumption and chip die area constraints make increasing on-chip cache an untenable solution to the memory wall problem.
Traditional Parallel Programming Methodologies

Goal: Improve performance.
Assumptions: Cache based parallel systems.
Strategies: Cache tiling techniques exploit temporal locality.
- Tile size selection and padding.

- Data location and replacement in the cache is controlled by HW making fine control of these parameters difficult.
- Power consumption and chip die area constraints make increasing on-chip cache an untenable solution to the memory wall problem.
New many-core-on-a-chip Systems

- Software managed memory hierarchy.
 - The programmer has the control of data movement.
 - Save die area of hardware cache controllers and over-sized caches.
 - More flexibility and opportunities to improve performance.
 - The programming at this moment is more complicated.

- Example: IBM Cyclops-64 (C64).
New many-core-on-a-chip Systems

- Software managed memory hierarchy.
 - The programmer has the control of data movement.
 - Save die area of hardware cache controllers and over-sized caches.
 - More flexibility and opportunities to improve performance.
 - The programming at this moment is more complicated.

- Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed
What has been done?

Many well-known algorithms has been ported and optimized for many-core architectures applying and adapting strategies of cache-based parallel systems.

- Matrix Multiplication, LU Decomposition, FFT, etc.

- The optimizations for improving performance on cache-based parallel system are not necessarily feasible or convenient on software managed memory hierarchy systems.
- Memory access patterns reached by appropriate tiling substantially increase the performance of applications.
What has been done?

Many well-known algorithms has been ported and optimized for many-core architectures applying and adapting strategies of cache-based parallel systems.

- Matrix Multiplication, LU Decomposition, FFT, etc.

<table>
<thead>
<tr>
<th>The optimizations for improving performance on cache-based parallel system are not necessarily feasible or convenient on software managed memory hierarchy systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory access patterns reached by appropriate tiling substantially increase the performance of applications.</td>
</tr>
</tbody>
</table>
Objectives

Propose a general methodology that provides a mapping of applications to software managed memory hierarchies. 3 strategies for increasing performance:

1. Balanced distribution of work among threads.

We used MM on C64 as a case of study because:

- It is simple: A basic MM is described by 3 for loops.
- It is memory and computational intensive: The basic MM is $O(m^3)$.
Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions
The IBM Cyclops-64 Architecture

- The complete C64 system is built out of tens of thousands of C64 processing nodes arranged in a 3-D mesh topology.
- Each processing node consists of a C64 chip, external DRAM, and a small amount of external interface logic.
- Execution on a C64 chip is non-preemptive and there is no hardware virtual memory manager.
Classical Matrix Multiplication Algorithms

- Decrease the naïve complexity of $O(m^3)$: No architecture dependent (at all)
 - Strassen’s algorithm: $O(m^{\log_2 7})$.
 - Coppersmith–Winograd algorithm: $O(m^{2.376})$.
- Efficient implementations: Architecture dependent.
 - Blocking Algorithms.
 - Explore the Architecture design space.
 - Example: Cannon’s Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in detail.
Classical Matrix Multiplication Algorithms

- Decrease the naïve complexity of $O(m^3)$: No architecture dependent (at all)
 - Strassen’s algorithm: $O(m^{\log_7})$.
 - Coppersmith–Winograd algorithm: $O(m^{2.376})$.
- Efficient implementations: Architecture dependent.
 - Blocking Algorithms.
 - Explore the Architecture design space.
 - Example: Cannon’s Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in detail.
Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions
Dense Matrix Multiplication

- $A \times B = C$ each of size $m \times m$ using algorithms of running time $O(m^3)$ using P Processors.
- Related sources that cause poor performance in many-core architectures:
 1. Inefficient or unnecessary synchronizations.
 2. Unbalanced work between threads.
 3. Latency due to accessing slower memory levels or other kind of instructions.
 4. Stalls due to arbitration of shared resources.
- There is a trade-off between synchronization and work-balanced.
Work Distribution

• For MM, each element $c_{i,j} \in C$ can be calculated independently.
 • Synchronizations are not needed.

• Optimal partition.
 Blocks size: $\frac{m^2}{P}$.

• Constrains:
 • Number of elements in each block has to be integer.
 • Blocks are rectangular.
Optimal Work Distribution

Matrix C divided in P blocks C'. $q_1 \cdot q_2 = P$

- Minimize the difference between:
 - Maximum tile size $\left\lceil \frac{m}{q_1} \right\rceil \cdot \left\lceil \frac{m}{q_2} \right\rceil$ AND Optimal tile size $\frac{m^2}{P}$.
 - Optimum is reached when $q_1 = q_2 = \sqrt{P}$.
- In practice, we can turn off some processors if the maximum tile size can be decreased.
 - Example: P is prime.
High Cost Memory Operations

- High bandwidth of on-chip memory in many-core architectures is not enough.
- Programmer can take advantage of the new opportunities provided by software-managed memory hierarchies.
- Goal: Minimize the number of memory operations (LD and ST) between a bigger but slower memory level (SRAM) and a faster but smaller one (Registers).
- That may are function of:
 - The problem (Λ).
 - The number of processors (P).
 - The tile parameters (L).
 - The sequence of traversing tiles (S).
 - The size of the faster memory R_{max}
Optimization Problem Formulation

\[
\min_{L,S} \quad LD(\Lambda, P, L, S) + ST(\Lambda, P, L, S)
\]

s.t. \quad R(\Lambda, P, L, S) \leq R_{\text{max}}

- \Lambda = MM.
- \(1 \leq P \leq P_{\text{max}}\).
- \(L = \{L_1, L_2\}\).
- \(S = \{S_1, S_2, S_3, S_4, S_5, S_6\}\)
Optimization Problem Formulation

\[
\min_{L, S} \quad LD (\Lambda, P, L, S) + ST (\Lambda, P, L, S) \\
\text{s.t.} \quad R (\Lambda, P, L, S) \leq R_{\text{max}}
\]

- \(\Lambda = MM \).
- \(1 \leq P \leq P_{\text{max}} \).
- \(L = \{L_1, L_2\} \).
- \(S = \{S_1, S_2, S_3, S_4, S_5, S_6\} \)
Matrices A, B and C are partitioned in blocks A', B' and C' of sizes $n \times m$, $m \times n$ and $n \times n$.

A', B' and C' are divided in tiles $A'_{i,j}$, $B'_{i,j}$ and $C'_{i,j}$ of sizes $L_2 \times L_1$, $L_1 \times L_2$ and $L_2 \times L_2$.

Proposed Matrix Multiplication Algorithm

```plaintext
for i=1 to n/L2
    for j=1 to n/L2
        for k=1 to m/L1
            C'_{i,j} += A'_{i,k} * B'_{k,j}
```

```plaintext
MM for a block C'
```
6 possible schemes of traversing tiles that produce 2 sequences.

- Case 1: Reuse tile $C'_{i,j}$.
- Case 2: Reuse tile $A'_{i,j}$ (or $B'_{i,j}$).
Optimization Problem for MM

\[
\begin{align*}
\min_{L \in \{L_1, L_2\}, S \in \{S_1, S_2\}} & \quad f(m, P, L, S) = \begin{cases}
\frac{2}{L_2} m^3 + m^2 & \text{if } S = S_1 \\
\left(\frac{2}{L_1} + \frac{1}{L_2}\right) m^3 + \left(\sqrt{P} - 1\right) m^2 & \text{if } S = S_2
\end{cases} \\
\text{s.t.} & \quad 2L_1 L_2 + L_2^2 \leq R_{\text{max}}
\end{align*}
\]

Analytical solution if \(P \geq 4 \) using KKT multipliers. Solution was found by branch and bound (1 iter.):

\[L_1 = 1, \quad L_2 = \left[\sqrt{1 + R_{\text{max}}} - 1\right] \]
Optimization Problem for MM

\[
\min_{L \in \{L_1, L_2\}, S \in \{S_1, S_2\}} f(m, P, L, S) = \begin{cases} \frac{2}{L_2} m^3 + m^2 & \text{if } S = S_1 \\ \left(\frac{2}{L_1} + \frac{1}{L_2}\right) m^3 + \left(\sqrt{P} - 1\right) m^2 & \text{if } S = S_2 \end{cases}
\]

s.t. \quad 2L_1L_2 + L_2^2 \leq R_{\text{max}}

Analytical solution if \(P \geq 4 \) using KKT multipliers. Solution was found by branch and bound (1 iter.):
\[
L_1 = 1, \quad L_2 = \left\lfloor \sqrt{1 + R_{\text{max}}} - 1 \right\rfloor
\]

\[\text{m=12; P=4; Rmax=15} \quad \text{n=6} \quad \text{L1=1; L2=3}\]
Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

<table>
<thead>
<tr>
<th>Memory Operations</th>
<th>Inner Product</th>
<th>Square</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loads</td>
<td>$2m^3/m^2$</td>
<td>$\frac{1}{2}m^3/m^2$</td>
<td>$\frac{1}{3}m^3/m^2$</td>
</tr>
<tr>
<td>Stores</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

<table>
<thead>
<tr>
<th>Memory Operations</th>
<th>Inner Product</th>
<th>Square</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2m^3$</td>
<td>$\frac{1}{2}m^3$</td>
<td>$\frac{1}{3}m^3$</td>
</tr>
<tr>
<td>Loads</td>
<td>m^2</td>
<td>m^2</td>
<td>m^2</td>
</tr>
<tr>
<td>Stores</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

<table>
<thead>
<tr>
<th>Memory Operations</th>
<th>Inner Product</th>
<th>Square</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loads</td>
<td>$2m^3$</td>
<td>$\frac{1}{2}m^3$</td>
<td>$\frac{1}{3}m^3$</td>
</tr>
<tr>
<td>Stores</td>
<td>m^2</td>
<td>m^2</td>
<td>m^2</td>
</tr>
</tbody>
</table>
Keep in mind for a Register Tiling Design

1. Goal: Maximize Reuse of data in registers (Diminish Memory Operations)
2. Register Allocation.
 - Spilling.
 - Scratchpad Memory.
Instruction Selection and Instruction Scheduling

Multiple Load (ldm) and Multiple Store (stm)
- Normal load instruction issues one data transfer request per element while the special one issues one request each 64-byte boundary.
- Useful for load tiles of A (6x1) and B (1x6) with A in column-major order and B in row-major order.

Instruction Scheduling
- Interleaving of independent instruction to alleviate stalls.
 - Memory Operations.
 - Data Operations.
 - Floating point Operations.
 - Integer Operations.
Diminish/Hide Latencies of Instructions

- Data dependencies imposes partial ordering on execution.
- Instruction Scheduling hides or diminishes the cost of stalls produces by large latencies. (e.g. ldm, divs, rems, mull).
 - It could require Register Reallocation.
- Data Prefetching and Loop Unrolling.
 - Partial hiding of latencies will still hurt the performance. We cannot reach peak performance if we don’t hide ALL latencies.
 - It definitely requires Retiling, Reallocation, Rescheduling.
Data Prefetching and Loop Unrolling

- Guarantee total hiding of latencies.

\[S1: \ c[1..L_1][1..L_2] = 0 \]
\[S2: \ for \ k = 1 \ \text{to} \ m, \ k \ + \ + \]
\[S3: \ a[1..L_1][1] = A[i..i + L_1][k] \]
\[S4: \ b[1][1..L_2] = B[k][j..j + L_2] \]
\[S5: \ c[1..L_1][1..L_2] + = a[1..L_1][1] \times b[1][1..L_2] \]
\[S : \ \text{end for} \]
\[S6: \ C[i..i + L_1][j..j + L_2] = c[1..L_1][1..L_2] \]

\(C \) tile calculation of size \(L_1 \times L_2 \) without loop unrolling

\[S1 : \ c[1..L_1][1..L_2] = 0 \]
\[S2 : \ a[1..L_1][1] = A[i..i + L_1][k] \]
\[S3 : \ b[1][1..L_2] = B[k][j..j + L_2] \]
\[S4 : \ for \ k = 1 \ \text{to} \ m, \ k \ + \ + \]
\[S5 : \ a[1..L_1][2] = A[i..i + L_1][k + 1] \]
\[S6 : \ b[2][1..L_2] = B[k + 1][j..j + L_2] \]
\[S7 : \ c[1..L_1][1..L_2] + = a[1..L_1][1] \times b[1][1..L_2] \]
\[S7 : \ k \ + \ +, \ \text{if} \ k = = m \ \text{then break} \]
\[S9 : \ a[1..L_1][1] = A[i..i + L_1][k + 1] \]
\[S10 : \ b[1][1..L_2] = B[k + 1][j..j + L_2] \]
\[S11 : \ c[1..L_1][1..L_2] + = a[1..L_1][2] \times b[2][1..L_2] \]
\[S : \ \text{end for} \]
\[S12 : \ C[i..i + L_1][j..j + L_2] = c[1..L_1][1..L_2] \]

\(C \) tile calculation of size \(L_1 \times L_2 \) with loop unrolling

The price is to increase the register pressure.
Introduction
 Motivation
 Objectives

Background
 IBM Cyclops-64
 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
 Work Distribution
 Compiler Optimizations

Experimental Evaluation
 Results

Conclusions
Partitioning

Matrix Size 100×100

- **Partition1**: Tile size is around the optimum $\left\lfloor \frac{m}{q_1} \right\rfloor \cdot \left\lfloor \frac{m}{q_2} \right\rfloor$ but it does **NOT** minimize the maximum tile size.

- **Partition2**: Minimize the maximum tile size but it does **NOT** distribute sizes uniformly.

- **Partition3**: Optimum partitioning and distribution.

Matrix Size 488×488
Impact of each optimization on the performance

$m_{SRAM} = 488$, $m_{DRAM} = 5280$

1. Base Parallel Version.
2. +Optimized partitioning.
4. +Multiple load/store inst. (Man.).
5. +Instruction Sched.(Man.).
6. +Dynamic Scheduling (Man.).
7. +Data Prefetching (Man.).
8. +Instruction Prefetching (Man.).
9. +Operands on DRAM.
10. +Dynamic Percolation (Man.)
11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption: 66W → 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W (Nov’09).
- Top 1-3: 773.38 MFLOPS/W
- Top 4-5: 458.33 MFLOPS/W
- Top 4: 492.64 MFLOPS/W (Jun’10).
Impact of each optimization on the performance

$m_{SRAM} = 488, m_{DRAM} = 5280$

1. Base Parallel Version.
2. +Optimized partitioning.
4. +Multiple load/store inst. (Man.).
5. +Instruction Sched.(Man.).
6. +Dynamic Scheduling (Man.).
7. +Data Prefetching (Man.).
8. +Instruction Prefetching (Man.).
9. +Operands on DRAM.
10. +Dynamic Percolation (Man.)
11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:
66W \rightarrow 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W
- Top 4-5: 458.33 MFLOPS/W (Nov’09).
- Top 1-3: 773.38 MFLOPS/W
- Top 4: 492.64 MFLOPS/W (Jun’10).
Impact of each optimization on the performance

\[m_{SRAM} = 488, \quad m_{DRAM} = 5280 \]

1. Base Parallel Version.
2. +Optimized partitioning.
4. +Multiple load/store inst. (Man.).
5. +Instruction Sched.(Man.).
6. +Dynamic Scheduling (Man.).
7. +Data Prefetching (Man.).
8. +Instruction Prefetching (Man.).
9. +Operands on DRAM.
10. +Dynamic Percolation (Man.)
11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:

66W → 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W (Nov’09).
- Top 1-3: 773.38 MFLOPS/W
- Top 4-5: 458.33 MFLOPS/W
- Top 4: 492.64 MFLOPS/W (Jun’10).
Introduction
 Motivation
 Objectives

Background
 IBM Cyclops-64
 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
 Work Distribution
 Compiler Optimizations

Experimental Evaluation
 Results

Conclusions
Conclusions

- Software-managed memory hierarchies provide more flexibility and opportunities for increasing performance that have not been explored at all.
- Compiler Optimizations at register level are essential for increasing performance. Most of them are highly correlated.
- Compiler optimizations applied provide evidence of the power efficiency of C64: power consumption measurements show a maximum efficiency of 993 MFLOPS/W for the problem under consideration.
- Dynamic strategies deserve more attention. This case of study has inspired promising techniques such as the codelet model.
Future work

- Apply this methodology to other linear algebra algorithmic problems like matrix inversion and linear solver (Linpack). Expand to multiple chips.
- How can we apply these optimizations for increasing energy efficiency? Does maximum performance imply maximum energy efficiency?
Thank you