Contemporary Compilers

LLVM

= Formally “Low Level Virtual Machine”

= A Compiler written in C++ (no exceptions or RTTI) — see
Started in 2000 at University of lllinois at Urbana—Champaign.
BSD-Style License (not a Copyleft license: no restrictions on how code is used)
Started by Chris Lattner (now at Apple)
Compiles IR into target ASM (or Machine Code)
* No linking though — yet: must use a separate linker (gnu Id, msvc link.exe, gold, OSX Linker, MCLinker).
® Primary compiler for OSX user-land and 10S (OSX Kernel is still GCC)

Apple took interest for a number of reasons:
* LLVM has a less restictive license than GCC.
* Objective-C: low priority for gcc - stagnant.

e GCC more difficult to hack.

CAPSL 3/14/2012 2

http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-undesirable

Clang

= Compiler Front end for LLVM.
= Compiles C, C++, Objective-C, and Objective-C++ into LLVM IR.
= Using Clang in conjunction with LLVM replaces the GCC stack.

CAPSL 3/14/2012 3

Why use LLVM?

= Modern Compiler (with an arguably modular design).
= Language Agnostic.

= Better documentation (compared to alternatives).

= Less restrictive license.

= Easier to extend, add optimizations, add new targets, etc.

CAPSL

3/14/2012

4

— \
v
S - 4 :

v

_ Front-end
Compiler

CAPSL 3/14/2012 5

LLVM ASM (Intermediate Representation)

= A Static Single Assignment (SSA) based representation that provides type
safety, low-level operations, flexibility, and the capability of representing 'all’

high-level languages cleanly.
= Contains many instructions normally found in target assemblies:
Binary operations:
* ret, br, add, sub, mul, udiv, sdiv, urem, srem, fadd, fsub, fmul, fdiv.
Bitwise operations:
* shl, Ishr(logical), ashr (arithmetic), and, or, xor
Comparisons
* icmp, fcmp (perhaps, ASMs don’t normally have this form).
Memory operations

* |oad, store, cmpxchg

CAPSL 3/14/2012

6

Other Instructions in the LLVM IR

= Contains many other operations:

phi, select, call, va_arg, fence, getelementptr, switch, et cetera.
= Conversion operations:
trunct, zext, sext, fptrunc, fpext, fptoui, fptosi, uitofp, sitofp, ptrtoint, inttoptr, bitcast

® |ntrinsic functions

memcpy, cos, sin, log, exp, pow, et cetera.

CAPSL 3/14/2012 7

IR Type System

= The IR is strongly typed .

= |nstructions use these types:

Integer
i1,i2,i3, ...i8, ... 116, ... 32, ... i64, ...

Float
* Half, float, double,
* fpl128 (128-bit floating point value (112-bit mantissa)),
* x86 _fp80 (80-bit floating point value (X87)),
* ppc_fp128 (128-bit floating point value (two 64-bits))

Pointer, vector, structure, array, label, meta data.

Others...

CAPSL

3/14/2012

8

LLVM IR Closer to High Level

The IR supports global variables, functions, aliases, linkage types.

; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\OA\00"

; External declaration of the puts function
declare i32 @puts(i8* nocapture) nounwind

; Definition of main function
define i32 @main() { ;i32()*
; Convert [13 xi8]* to i8 *...
%cast210 = getelementptr [13 x i8]* @.str, 164 0, 164 0

; Call puts function to write out the string to stdout.
call i32 @puts(i8* %cast210)
reti320

}

CAPSL

Has more in common with a high level language than a normal assembly
language. Organized into modules that can be linked together:

3/14/2012

LLVM IR Example Module (Using ExampleOne)

= How to compile into LLVM IR:

clang -03 -emit-llvm -S exampleOne.c -o exampleOne.ll
= OR

View the exampleOne.c and exampleOne.ll files in the additional materials.

CAPSL 3/14/2012 10

LLVM Infrastructure at a Low Level View

= Different Sections to be explained...

y

IR Passes o 4

Scheduling SSA-based
— and e 4 Machine Code

Formation Optimizations

Instruction
Selection

Late Machine Prolog/Epilog

e Code Code .
Emission ..) Allocation
Optimizations Insertion

Code Register

CAPSL 3/14/2012 11

LLVM Passes

CCCCC 3/14/2012

LLVM Analysis and Transform Passes

= Passes perform transformations and optimizations that make up the compiler.
= Perform analysis (to aid other transformations, or to aid the programmer).

= They can operate in two distinct phases:
Before instruction selection (Operating on the LLVM IR).
* For applying machine independent optimizations and transformations.
After Instruction Selection and Scheduling and Formation
* Operating on the Machine dependent Representation.
Three types: SSA-based/Pre-RA, RA, non-SSA/Post-RA.

* For applying machine specific optimizations and transformations.

Support for different types of passes: function, basic block, loop, regions, call
graph, etc.

Mechanisms to handle pipelining passes, dependencies and interactions.

CAPSL 3/14/2012 13

Pass Phases

One that operates on the high level IR.

One that operates on the machine representation (Machine Passes).

IR Passes

Code
Emission

Machine
post-RA Machine RA

Code Passes Code Passes

Scheduling
and
Formation

Instruction
Selection

Late Machine Prolog/Epilog
Code Code
Optimizations Insertion

CAPSL

Machine
Pre-RA Code
Passes

SSA-based
Machine Code
Optimizations

Register
Allocation

3/14/2012 14

Example Pass (using exampleTwo and

exampleThree)
1.
2.

clang -emit-llvm exampleTwo.c -S -o exampleTwo.ll

Demo CFG

As a Loadable Module (AKA Not in Windows ;-)) — See
* opt-load /path/to/llvm/lib/LLVMAViewCFG.so - a-view-cfg exampleTwo.ll > /dev/null

Integrated into Opt:
* opt-a-view-cfg exampleTwo.ll > /dev/null
Demo Dom
opt -view-dom exampleTwo.ll > /dev/null
Demo phi nodes
clang -0O1 -emit-llvm exampleThree.c -S -0 exampleThree.ll

opt -a-print-phi exampleThree.ll > /dev/null

CAPSL

3/14/2012

15

http://edll.sourceforge.net/

Example Pass (using exampleTwo and
exampleThree) Cont.

= View the additional materials:

exampleTwo_CFG.dot — Control Flow Graph.
exampleTwo_DOM.dot — Dominator Tree.
exampleThree_PHI.txt — Phi Nodes.

Additionally, look at the corresponding .ll files for the llvm IR.

CAPSL 3/14/2012 16

LLVM Target Independent Code
Generator

CCCCC 3/14/2012 17

LLVM Target Independent Code Generator

= A framework that provides a suite of reusable components for translating
the LLVM internal representation to the machine code for a specified target.

Instruction Scheduling SSA-based
IR Passes > and e 4 Machine Code

Selection : .
Formation Optimizations

Late Machine Prolog/Epilog

e Code Code .
Emission . . Allocation
Optimizations [=1gdle]p

Code Register

CAPSL 3/14/2012

18

Instruction Selection

= |nstruction Selection is the process of translating LLVM code presented to
the code generator into target-specific machine instructions.

= LLVM uses a SelectionDAG based instruction selector.

The nodes are of type SDNode (e.g. specialized classes inheriting from it).

* e.g. LoadSDNode, StoreSDNode, ...

Instruction Selection is done programmatically and with pattern matching.

CAPSL 3/14/2012 19

Example SelectionDAG (Uses exampleOne)

= View the additional materials:
exampleOne_DAG.dot

= Programmatically:
cgdb --args llc exampleOne.ll
b DAGCombiner.cpp:Run
run

call DAG.viewGraph()

CAPSL 3/14/2012 20

Phases that Use the SelectionDAG

= Only two phases operate on the Selection DAG.

y

IR Passes |mmmmmmmee -

Scheduling SSA-based
— and e 4 Machine Code

Formation Optimizations

Instruction
Selection

Code Late Machine Prolog/Epilog
o — Code Code

Emission o .. ,
Optimizations Insertion

Register
Allocation

CAPSL 3/14/2012 21

Instruction Selection Cont.

= Build initial DAG

Simple translation into a DAG from the input IR (Contains illegal Ops).

= Optimize SelectionDAG
Simplify the DAG. Programmatically done (and ad-hoc)
See CodeGen/SelectionDAG/DAGCombiner.cpp

= |egalize SelectionDAG Types
Eliminate any types that are not supported by the target.
E.g. if the target doesn’t support 32 bit types, it may promote them to 64 bit types.
See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp

CAPSL

3/14/2012

22

Instruction Selection Cont. 2

= Optimize SelectionDAG
= |egalize SelectionDAG Ops

Eliminate operations not natively supported by the target.

See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp
= Optimize SelectionDAG

m Select instructions from the DAG

Takes a legal Target-independent SelectionDAG as input and outputs a Target
SelectionDAG.

Done via Pattern Matching (mostly).

In some cases it is easier to eliminate non-native operations during this phase.

See lib/Target/TARGETNAME/* .td files.

CAPSL

3/14/2012

23

Scheduling and Formation

= This phase takes a Target SelectionDAG and assigns an order to the
operations.

The scheduler can pick an order depending on various constraints of the machines.

= Once the order is established, the SelectionDAG is converted into a list of
Machine Instructions.

CAPSL 3/14/2012 24

LLVM Infrastructure at a Low Level View

= Where we are next...

Instruction Scheduling SSA-based
IR Passes > —> and = 1 Vachine Code

Selection : .
Formation Optimizations

Late Machine Prolog/Epilog :
Code : Code Code Reglstgr
Allocation

Emission o .. ,
Optimizations Insertion

CAPSL 3/14/2012

25

SSA-based Machine Code Optimizations

= Modulo-scheduling® and peephole optimizations.
= |mplemented as machine passes.
= See lib/CodeGen/PeepholeOptimizer.cpp

= This stage is where targets can and have implemented their own SSA-
based/pre-register allocation machine passes.

= * Doesn’t exist anymore — The original implementation was SPARC specific
and eventually was clobbered.

CAPSL 3/14/2012 26

LLVM Infrastructure at a Low Level View

= Where we are next...

Instruction Scheduling SSA-based
IR Passes > —> and = 4 Vachine Code

Selection : o
Formation Optimizations

Late Machine Prolog/Epilog :
Code : Code Code Reglstgr
Allocation

Emission o .. ,
Optimizations Insertion

CAPSL 3/14/2012

27

Register Allocation

= Transform the code from using an infinite virtual register file in SSA form to a
concrete register file used by the target.

= Introduces register spilling (including spill code).
= Removed unnecessary copy instructions and replaces Phi instructions.
= Implemented as machine passes.

= Register Allocators
Fast — for debug builds, keeps values in registers and reuses registers as appropriate.
Basic — Uses live ranges per register one at a time.
Greedy — Highly tuned version of Basic that incorporates global live range spilling. (default)
PBQP (Partitioned Boolean Quadratic Programming) — Uses a PBQP solver?
Linear Scan — Old default register allocator (pre LLVM 3.0).
See Lib/CodeGen/PhiElimination.cpp & lib/CodeGen/RegAlloc*.cpp

CAPSL 3/14/2012 28

LLVM Infrastructure at a Low Level View

= Where we are next...

Instruction Scheduling SSA-based
IR Passes > —> and = 4 Vachine Code

Selection : o
Formation Optimizations

Late Machine Prolog/Epilog :
Code : Code Code Reglstgr
Allocation

Emission o .. :
Optimizations Insertion

CAPSL 3/14/2012

29

Prolog/Epilog Code Insertion

= At this point the machine code has been generated for functions and the
amount of stack pass required is known.

= The compiler inserts the prolog and epilog code for functions.
= Frame-pointer elimination and stack packing optimizations are done here.

= See lib/Target/TARGETNAME/TARGETNAMEFrameLowering.cpp

CAPSL 3/14/2012 30

LLVM Infrastructure at a Low Level View

= Where we are next...

Instruction Scheduling SSA-based
IR Passes > —> and = 4 Vachine Code

Selection : o
Formation Optimizations

Late Machine Prolog/Epilog :
Code : Code Code Reglstgr
Allocation

Emission .. ,
Optimizations Insertion

CAPSL 3/14/2012

31

Late Code Optimizations

= Optimizations that operate on the final machine code go here.
= Spill code scheduling and peephole optimizations.

" |mplemented by the Target in lib/Target/TARGETNAME/* in different files
as machine passes.

= This stage is where targets can and have implemented their own non-SSA
based/post-register allocation machine passes.

CAPSL 3/14/2012 32

LLVM Infrastructure at a Low Level View

= Where we are next...

Instruction Scheduling SSA-based
IR Passes > —> and = 4 Vachine Code

Selection : o
Formation Optimizations

Late Machine Prolog/Epilog :
Code : Code Code Reglstgr
Allocation

Emission o .. ,
Optimizations Insertion

CAPSL 3/14/2012

33

Code Emission

= The stage where the code is emitted as either assembly or machine code.
= See lib/Target/TARGETNAME/TARGETNAMEASMPrinter.cpp (for asm)

= See lib/Target/TARGETNAME/TARGETNAMEMCInstLower.cpp (for obj)

= See lib/Codegen/TargetLoweringObjectFilelmpl.cpp

= Etc.

CAPSL 3/14/2012

34

LLVM Testing

3333333333333333

LLVM Testing

= Contains two types:

Regression
* Found under the test directory and organized under many different categories.
* Target specific tests are under test/CodeGen/TARGETNAME/*

* Can be run individually using llvm-lit or to check all tests run “make check”.

Whole Program
e Uses the llvm test-suite.
* Found in a separate SVN.
* Programs written in C or C++.
Single source, multisource, and external benchmarks (SPEC2000, etc).

* The suite contains reference outputs of the programs.

CAPSL 3/14/2012 36

Regression Test Format

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {

entry:
: CHECK: sub1:
; CHECK: subl
%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %V)
ret void
}

CAPSL 3/14/2012 37

Regression Test Format

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s
define void @sub1(i32* %p, i32 %v) {
entry:
: CHECK: sub1:
; CHECK: subl
%0 = tail call 32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %V)
ret void
} \

Normal LLVM IR

CAPSL 3/14/2012 38

Regression Test Format

; RUN: [lvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {

entry:
; CHECK: subl:
; CHECK: subl
60 = tail call i32 @Illvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void
}

Check statements that the output

generated from the IR checked
against.

CAPSL 3/14/2012 39

Regression Test Format

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define vojd @sub1(i32* %p, i32 %v) {

CAPSL 3/14/2012 40

Close to the end

CCCCC 3/14/2012

LLVM Tools

= clang

Frontend for c, c++, obj-c, obj-c++.

= lc

Backend —i.e. LLVM.
= opt

Tool to run and debug passes.
= |lvm-lit

Tool to run tests.

CAPSL

3/14/2012

42

Building LLVM (and Clang)

1. Choose a wise location for your source since it cannot be moved after compilation.

2. Install g++ and cmake (from a package manager).
2, Checkout LLVM
svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

4. Checkout Clang

cd llvm/tools

svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

5. Create a build directory (not inside of the src directory)
mkdir build_dir
cd build_dir

6. Run cmake from the build directory

cmake -DCMAKE_BUILD_TYPE:STRING=Debug /path/to/llvm/src

Ve Compile
make all
make check
8. There should now be bin and lib directories (found in the main directory).

Add the bin and lib directories to your PATH and LD_LIBRARY_PATH variables.

CAPSL

3/14/2012

43

Explanation about Building LLVM (and Clang)

= Why ‘make all’?
We want llvm-lit to run individual tests and other developer tools.

Normally the internal utils are not built by [lvm which means you would manually have to
install python modules and tools to get llvm-lit to work.

Trust me, you don’t want to have to do that.

= Why ‘make check’?

This generates a configuration file for [lvm-lit.

You technically don’t even need to wait for this command to complete beyond the first few
steps.

= Why NOT ‘make install’?

None of the utils will install and only the stuff needed for running llvm will.

So you would need to add the bin and lib directories to your path variables anyway.

CAPSL 3/14/2012

44

What to take away

= A contemporary compiler infrastructure eases programmer burden for
newbies and seasoned veterans alike.

= Through providing well-defined mechanisms to
Implement new targets (target description (td, c++)).
Implement transformations and optimizations (passes).
Implement new reg schedulers (register as pass, see lib/CodeGen/RegAllocBasic.cpp)
Test regressions (llvm-lit) and whole programs (test-suite).
Visualize data (CFGs, DAGS, Dom trees).
= Documentation

This gives you structure and methodology.

= You can too!

CAPSL 3/14/2012 45

Bibliography

= http://llvm.org/docs/
= http://llvm.org/docs/Passes.html
= http://llvm.org/pubs/2002-08-09-LLVMCompilationStrategy.html

= http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-
undesirable

= http://edll.sourceforge.net/
= Jirgen Ributzka
= Ryan Taylor

CAPSL 3/14/2012 46

