
Contemporary Compilers
by Aaron Myles Landwehr

1 3/14/2012 CAPSL

LLVM

 Formally “Low Level Virtual Machine”

 A Compiler written in C++ (no exceptions or RTTI) – see here.

 Started in 2000 at University of Illinois at Urbana–Champaign.

 BSD-Style License (not a Copyleft license: no restrictions on how code is used)

 Started by Chris Lattner (now at Apple)

 Compiles IR into target ASM (or Machine Code)

• No linking though – yet: must use a separate linker (gnu ld, msvc link.exe, gold, OSX Linker, MCLinker).

 Primary compiler for OSX user-land and IOS (OSX Kernel is still GCC)

 Apple took interest for a number of reasons:

• LLVM has a less restictive license than GCC.

• Objective-C: low priority for gcc - stagnant.

• GCC more difficult to hack.

2 3/14/2012 CAPSL

http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-undesirable

Clang

 Compiler Front end for LLVM.

 Compiles C, C++, Objective-C, and Objective-C++ into LLVM IR.

 Using Clang in conjunction with LLVM replaces the GCC stack.

3 3/14/2012 CAPSL

Why use LLVM?

 Modern Compiler (with an arguably modular design).

 Language Agnostic.

 Better documentation (compared to alternatives).

 Less restrictive license.

 Easier to extend, add optimizations, add new targets, etc.

4 3/14/2012 CAPSL

LLVM Toolchain at a High-Level

3/14/2012 5 CAPSL

C

Haskell

C++

Obj-C

…

Python

Ruby

LLVM
IR

Front-end
Compiler

llvm

Target
ASM Code

Target
Obj Code

Assembler

Linker

Target
ASM Code

Target
Obj Code

Executable
or Library

LLVM ASM (Intermediate Representation)

 A Static Single Assignment (SSA) based representation that provides type
safety, low-level operations, flexibility, and the capability of representing 'all'
high-level languages cleanly.

 Contains many instructions normally found in target assemblies:

 Binary operations:

• ret, br, add, sub, mul, udiv, sdiv, urem, srem, fadd, fsub, fmul, fdiv.

• Bitwise operations:

• shl, lshr(logical), ashr (arithmetic), and, or, xor

• Comparisons

• icmp, fcmp (perhaps, ASMs don’t normally have this form).

• Memory operations

• load, store, cmpxchg

6 3/14/2012 CAPSL

Other Instructions in the LLVM IR

 Contains many other operations:

 phi, select, call, va_arg, fence, getelementptr, switch, et cetera.

 Conversion operations:

 trunct, zext, sext, fptrunc, fpext, fptoui, fptosi, uitofp, sitofp, ptrtoint, inttoptr, bitcast

 Intrinsic functions

 memcpy, cos, sin, log, exp, pow, et cetera.

7 3/14/2012 CAPSL

IR Type System

 The IR is strongly typed .

 Instructions use these types:

 Integer

i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ...

 Float

• Half, float, double,

• fp128 (128-bit floating point value (112-bit mantissa)),

• x86_fp80 (80-bit floating point value (X87)),

• ppc_fp128 (128-bit floating point value (two 64-bits))

 Pointer, vector, structure, array, label, meta data.

 Others…

8 3/14/2012 CAPSL

LLVM IR Closer to High Level

 The IR supports global variables, functions, aliases, linkage types.

 Has more in common with a high level language than a normal assembly
language. Organized into modules that can be linked together:

; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function
declare i32 @puts(i8* nocapture) nounwind

; Definition of main function
define i32 @main() { ; i32()*
 ; Convert [13 x i8]* to i8 *...
 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0

 ; Call puts function to write out the string to stdout.
 call i32 @puts(i8* %cast210)
 ret i32 0
}

9 3/14/2012 CAPSL

LLVM IR Example Module (Using ExampleOne)

 How to compile into LLVM IR:

 clang -O3 -emit-llvm -S exampleOne.c -o exampleOne.ll

 OR

 View the exampleOne.c and exampleOne.ll files in the additional materials.

10 3/14/2012 CAPSL

LLVM Infrastructure at a Low Level View

 Different Sections to be explained…

3/14/2012 11 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

LLVM Passes

For Optimizations, Analysis, and Transformations

3/14/2012 12 CAPSL

LLVM Analysis and Transform Passes

 Passes perform transformations and optimizations that make up the compiler.

 Perform analysis (to aid other transformations, or to aid the programmer).

 They can operate in two distinct phases:

 Before instruction selection (Operating on the LLVM IR).

• For applying machine independent optimizations and transformations.

 After Instruction Selection and Scheduling and Formation

• Operating on the Machine dependent Representation.

• Three types: SSA-based/Pre-RA, RA, non-SSA/Post-RA.

• For applying machine specific optimizations and transformations.

 Support for different types of passes: function, basic block, loop, regions, call
graph, etc.

 Mechanisms to handle pipelining passes, dependencies and interactions.

3/14/2012 13 CAPSL

Pass Phases

 One that operates on the high level IR.

 One that operates on the machine representation (Machine Passes).

3/14/2012 14 CAPSL

Normal
Passes

Machine
Pre-RA Code

Passes

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR
Machine
post-RA

Code Passes

Machine RA
Code Passes

Example Pass (using exampleTwo and
exampleThree)
1. clang -emit-llvm exampleTwo.c -S -o exampleTwo.ll

2. Demo CFG

 As a Loadable Module (AKA Not in Windows ;-)) – See here.

• opt -load /path/to/llvm/lib/LLVMAViewCFG.so - a-view-cfg exampleTwo.ll > /dev/null

 Integrated into Opt:

• opt -a-view-cfg exampleTwo.ll > /dev/null

3. Demo Dom

 opt -view-dom exampleTwo.ll > /dev/null

4. Demo phi nodes

1. clang -O1 -emit-llvm exampleThree.c -S -o exampleThree.ll

 opt -a-print-phi exampleThree.ll > /dev/null

3/14/2012 15 CAPSL

http://edll.sourceforge.net/

Example Pass (using exampleTwo and
exampleThree) Cont.
 View the additional materials:

 exampleTwo_CFG.dot – Control Flow Graph.

 exampleTwo_DOM.dot – Dominator Tree.

 exampleThree_PHI.txt – Phi Nodes.

 Additionally, look at the corresponding .ll files for the llvm IR.

3/14/2012 16 CAPSL

LLVM Target Independent Code
Generator

The Bulk of LLVM

3/14/2012 17 CAPSL

LLVM Target Independent Code Generator

 A framework that provides a suite of reusable components for translating
the LLVM internal representation to the machine code for a specified target.

18 3/14/2012 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Instruction Selection

 Instruction Selection is the process of translating LLVM code presented to
the code generator into target-specific machine instructions.

 LLVM uses a SelectionDAG based instruction selector.

 The nodes are of type SDNode (e.g. specialized classes inheriting from it).

• e.g. LoadSDNode, StoreSDNode, …

 Instruction Selection is done programmatically and with pattern matching.

19 3/14/2012 CAPSL

Example SelectionDAG (Uses exampleOne)

 View the additional materials:

 exampleOne_DAG.dot

 Programmatically:

• cgdb --args llc exampleOne.ll

• b DAGCombiner.cpp:Run

• run

• call DAG.viewGraph()

3/14/2012 20 CAPSL

Phases that Use the SelectionDAG

 Only two phases operate on the Selection DAG.

21 3/14/2012 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Instruction Selection Cont.

 Build initial DAG

 Simple translation into a DAG from the input IR (Contains illegal Ops).

 Optimize SelectionDAG

 Simplify the DAG. Programmatically done (and ad-hoc)

 See CodeGen/SelectionDAG/DAGCombiner.cpp

 Legalize SelectionDAG Types

 Eliminate any types that are not supported by the target.

 E.g. if the target doesn’t support 32 bit types, it may promote them to 64 bit types.

 See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp

3/14/2012 22 CAPSL

Instruction Selection Cont. 2

 Optimize SelectionDAG

 Legalize SelectionDAG Ops

 Eliminate operations not natively supported by the target.

 See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp

 Optimize SelectionDAG

 Select instructions from the DAG

 Takes a legal Target-independent SelectionDAG as input and outputs a Target
SelectionDAG.

 Done via Pattern Matching (mostly).

 In some cases it is easier to eliminate non-native operations during this phase.

 See lib/Target/TARGETNAME/*.td files.

3/14/2012 23 CAPSL

Scheduling and Formation

 This phase takes a Target SelectionDAG and assigns an order to the
operations.

 The scheduler can pick an order depending on various constraints of the machines.

 Once the order is established, the SelectionDAG is converted into a list of
Machine Instructions.

3/14/2012 24 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 25 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

SSA-based Machine Code Optimizations

 Modulo-scheduling* and peephole optimizations.

 Implemented as machine passes.

 See lib/CodeGen/PeepholeOptimizer.cpp

 This stage is where targets can and have implemented their own SSA-
based/pre-register allocation machine passes.

 * Doesn’t exist anymore – The original implementation was SPARC specific
and eventually was clobbered.

3/14/2012 26 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 27 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

 Transform the code from using an infinite virtual register file in SSA form to a
concrete register file used by the target.

 Introduces register spilling (including spill code).

 Removed unnecessary copy instructions and replaces Phi instructions.

 Implemented as machine passes.

 Register Allocators

 Fast – for debug builds, keeps values in registers and reuses registers as appropriate.

 Basic – Uses live ranges per register one at a time.

 Greedy – Highly tuned version of Basic that incorporates global live range spilling. (default)

 PBQP (Partitioned Boolean Quadratic Programming) – Uses a PBQP solver?

 Linear Scan – Old default register allocator (pre LLVM 3.0).

 See Lib/CodeGen/PhiElimination.cpp & lib/CodeGen/RegAlloc*.cpp

3/14/2012 28 CAPSL

Register Allocation

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 29 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Prolog/Epilog Code Insertion

 At this point the machine code has been generated for functions and the
amount of stack pass required is known.

 The compiler inserts the prolog and epilog code for functions.

 Frame-pointer elimination and stack packing optimizations are done here.

 See lib/Target/TARGETNAME/TARGETNAMEFrameLowering.cpp

3/14/2012 30 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 31 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Late Code Optimizations

 Optimizations that operate on the final machine code go here.

 Spill code scheduling and peephole optimizations.

 Implemented by the Target in lib/Target/TARGETNAME/* in different files
as machine passes.

 This stage is where targets can and have implemented their own non-SSA
based/post-register allocation machine passes.

3/14/2012 32 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 33 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Code Emission

 The stage where the code is emitted as either assembly or machine code.

 See lib/Target/TARGETNAME/TARGETNAMEASMPrinter.cpp (for asm)

 See lib/Target/TARGETNAME/TARGETNAMEMCInstLower.cpp (for obj)

 See lib/Codegen/TargetLoweringObjectFileImpl.cpp

 Etc.

3/14/2012 34 CAPSL

LLVM Testing

3/14/2012 35 CAPSL

LLVM Testing

 Contains two types:

 Regression

• Found under the test directory and organized under many different categories.

• Target specific tests are under test/CodeGen/TARGETNAME/*

• Can be run individually using llvm-lit or to check all tests run “make check”.

 Whole Program

• Uses the llvm test-suite.

• Found in a separate SVN.

• Programs written in C or C++.

• Single source, multisource, and external benchmarks (SPEC2000, etc).

• The suite contains reference outputs of the programs.

3/14/2012 36 CAPSL

Regression Test Format

3/14/2012 37 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Regression Test Format

3/14/2012 38 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Normal LLVM IR

Regression Test Format

3/14/2012 39 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Check statements that the output
generated from the IR checked

against.

Regression Test Format

3/14/2012 40 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Run Line.

Close to the end

3/14/2012 41 CAPSL

LLVM Tools

 clang

 Frontend for c, c++, obj-c, obj-c++.

 llc

 Backend – i.e. LLVM.

 opt

 Tool to run and debug passes.

 llvm-lit

 Tool to run tests.

3/14/2012 42 CAPSL

Building LLVM (and Clang)
1. Choose a wise location for your source since it cannot be moved after compilation.

2. Install g++ and cmake (from a package manager).

3. Checkout LLVM

 svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

4. Checkout Clang

 cd llvm/tools

 svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

5. Create a build directory (not inside of the src directory)

 mkdir build_dir

 cd build_dir

6. Run cmake from the build directory

 cmake -DCMAKE_BUILD_TYPE:STRING=Debug /path/to/llvm/src

7. Compile

 make all

 make check

8. There should now be bin and lib directories (found in the main directory).

1. Add the bin and lib directories to your PATH and LD_LIBRARY_PATH variables.

3/14/2012 43 CAPSL

Explanation about Building LLVM (and Clang)

 Why ‘make all’?

 We want llvm-lit to run individual tests and other developer tools.

 Normally the internal utils are not built by llvm which means you would manually have to
install python modules and tools to get llvm-lit to work.

 Trust me, you don’t want to have to do that.

 Why ‘make check’?

 This generates a configuration file for llvm-lit.

 You technically don’t even need to wait for this command to complete beyond the first few
steps.

 Why NOT ‘make install’?

 None of the utils will install and only the stuff needed for running llvm will.

 So you would need to add the bin and lib directories to your path variables anyway.

3/14/2012 44 CAPSL

What to take away

 A contemporary compiler infrastructure eases programmer burden for
newbies and seasoned veterans alike.

 Through providing well-defined mechanisms to

 Implement new targets (target description (td, c++)).

 Implement transformations and optimizations (passes).

 Implement new reg schedulers (register as pass, see lib/CodeGen/RegAllocBasic.cpp)

 Test regressions (llvm-lit) and whole programs (test-suite).

 Visualize data (CFGs, DAGS, Dom trees).

 Documentation

 This gives you structure and methodology.

 You can too!

3/14/2012 45 CAPSL

Bibliography

 http://llvm.org/docs/

 http://llvm.org/docs/Passes.html

 http://llvm.org/pubs/2002-08-09-LLVMCompilationStrategy.html

 http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-
undesirable

 http://edll.sourceforge.net/

 Jürgen Ributzka

 Ryan Taylor

3/14/2012 46 CAPSL

