
2012/3/20

\course\cpeg421-10F\Topic-

2b.ppt 1

Topic 2c

 Basic Back-End

Optimization

Register allocation

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 2

Reading List

• Dragon book: chapter 10

• S. Cooper: Chapter 13

• S. Muchnick: Chapter 16

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 3

Focus of This Topic

• We focus on “scalar register allocation”

• Local register is straightforward (read Cooper’s Section 13.3)

• This global register allocation problem is essentially solved by graph

coloring techniques:

• Chaitin et. al. 1981, 82 (IBM)

• Chow, Hennesy 1983 (Stanford)

• Briggs, Kennedy 1992 (Rice)

• Register allocation for array variables in loops -- subject not

discussed here

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 4

Interprocedural Analysis and Optimization

Loop Nest Optimization and Parallelization

Global Optimization

Code Generation

Front end

Good IR

High-Level Compiler

Infrastructure Needed – A

Modern View

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 5

• Good IPO

• Good LNO

• Good global optimization

• Good integration of
IPO/LNO/OPT

• Smooth information
passing between FE and
CG

• Complete and flexible
support of inner-loop
scheduling (SWP),
instruction scheduling and
register allocation

Inter-Procedural
Optimization (IPO)

Loop Nest
Optimization (LNO)

Global Optimization
(OPT)

Source

Innermost
Loop

scheduling

Global inst
scheduling

Reg alloc

Local inst
scheduling

Executable

Arch

Models

CG

ME

General Compiler Framework

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 6

A Map of Modern Compiler Platforms

GNU Compilers

IMPACT Compiler

Cydra
VLIW

Compiler

Multiflow
VLIW

Compiler

Ucode Compiler
Chow/Hennessy

HP Research
Compiler

 SGI Pro Compiler
 - Designed for ILP/MP
 - Production quality
 - Open Source

Trimaran
Compiler

SUIF Compiler

1980 1985 1990 1995 2000 2005 2010

RISC VLIW/SuperScalar EPIC/MP CMP/MT

LLVM Compiler

Open64 Compiler
(PathScale, ORC, Osprey)

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 7

Register Allocation

Motivation

Live ranges and interference graphs

Problem formulation

Solution methods

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 8

Motivation

• Registers much faster than memory
• Limited number of physical registers
• Keep values in registers as long as possible

(minimize number of load/stores executed)

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 9

Goals of Optimized

Register Allocation

1 Pay careful attention to allocating

registers to variables that are more

profitable to reside in registers

2 Use the same register for multiple

variables when legal to do so

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 10

Brief History of Register

Allocation

Chaitin: Coloring Heuristic.

 Use the simple stack heuristic for

ACM register allocation. Spill/no-spill

SIGPLAN decisions are made during the

Notices stack construction phase of the

1982 algorithm

Briggs: Finds out that Chaitin’s algorithm

PLDI spills even when there are available

1989 registers. Solution: the optimistic

 approach: may-spill during stack

 construction, decide at spilling time.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 11

Brief History of Register

Allocation (Con’t)

Callahan: Hierarchical Coloring Graph,

PLDI register preference,

1991 profitability of spilling.

Chow-Hennessy: Priority-based coloring.

SIGPLAN Integrate spilling decisions in the

1984 coloring decisions: spill a variable

ASPLOS for a limited life range.

1990 Favor dense over sparse use regions.

 Consider parameter passing convention.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 12

Assigning Registers to more

Profitable Variables (example)

c = ‘S’ ;

sum = 0 ;

i = 1 ;

while (i <= 100) {

 sum = sum + i ;

 i = i + 1 ;

}

square = sum * sum;

print c, sum, square;

Source code fragment:

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 13

[105] sum := sum + i
[106] i := i + 1
[107] goto L1

[100] c = ‘S’
[101] sum := 0
[102] i := 1

[103] label L1:
[104] if i > 100 goto L2

[108] label L2:
[109] square = sum * sum
[110] print c, sum, square

The Control Flow Graph

of the Example

c = ‘S’ ;

sum = 0 ;

i = 1 ;

while (i <= 100) {

 sum = sum + i ;

 i = i + 1 ;

}

square = sum * sum;

print c, sum, square;

true

false

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 14

Desired Register Allocation

for Example

 Assume that there are only two non-reserved registers

available for allocation ($t2 and $t3). A desired register

allocation for the above example is as follows:

Variable Register

c no register

sum $t2

i $t3

square $t3

c = ‘S’ ;

sum = 0 ;

i = 1 ;

while (i <= 100) {

 sum = sum + i ;

 i = i + 1 ;

}

square = sum * sum;

print c, sum, square;

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 15

1. Pay careful attention to assigning registers to
variables that are more profitable

 The number of defs (writes) and uses (reads) to the
variables in this sample program is as follows:

Register Allocation Goals

Variable #def’s #use’s
 c 1 1
 sum 101 103
 i 101 301
 square 1 1

 variables sum and i should
get priority over variable c for
register assignment.

c = ‘S’ ;

sum = 0 ;

i = 1 ;

while (i <= 100) {

 sum = sum + i ;

 i = i + 1 ;

}

square = sum * sum;

print c, sum, square;

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 16

2. Use the same register for multiple variables when
legal to do so

 Reuse same register ($t3) for variables I and

square since there is no point in the program where
both variables are simultaneously live.

Register Allocation Goals

Variable Register

c no register

sum $t2

i $t3

square $t3

c = ‘S’ ;

sum = 0 ;

i = 1 ;

while (i <= 100) {

 sum = sum + i ;

 i = i + 1 ;

}

square = sum * sum;

print c, sum, square;

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 17

Register Allocation vs.

Register Assignment

Register Allocation – determining which
values should be kept in registers. It
ensures that the code will fit the target
machine’s register set at each
instruction.

Register Assignment – how to assign the
allocated variables to physical registers.
It produces the actual register names
required by the executable code.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 18

Local and Global Register

Allocation

Local register allocation (within a basic
block): algorithms are generally
straightforward – but implementation
needs care [Cooper: 13.3]

Global register allocation – graph coloring
method

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 19

Liveness

Intuitively a variable v is live if it holds a value that

may be needed in the future. In other words, v is

live at a point pi if:

(i) v has been defined in a statement that

 precedes pi in any path, and

(ii) v may be used by a statement sj,

 and there is a path from pi to sj..

(iii) v is not killed between pi and sj.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 20

Live Variables

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

A variable v is live between

the point pi that succeeds

its definition and the point

pj that succeeds its last use.

The interval [pi, pj] is the

live range of the variable v.

Variables s1 and s2 have a live range

of four statements.

Which variables have the longest

live range in the example?

s2

s1

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 21

Register Allocation

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

How can we find out

what is the minimum number

of registers required by this

basic block to avoid

spilling values to memory?

We have to compute the live

range of all variables and find

the “fattest” statement (program

 point).

Which program points have the most

variables that are live simultaneously?

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 22

Register Allocation

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

s7

s6

s5

s4

s3

s2

s1

At statement e variables

s1, s2, s3, and s4 are live,

and during statement f

variables s2, s3, s4,

and s5 are live.

But we have to use some math:

our choice is liveness analysis.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 23

Live-in and Live-out

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

s7

s6

s5

s4

s3

s2

s1 live-in(r): set of variables

that are live at the point

that immediately precedes

statement r.

live-out(r): set of variables

variables that are live at the

point that immediately

succeeds r.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 24

Live-in and Live-out:

Program Example

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

s7

s6

s5

s4

s3

s2

s1

What are live-in(e) and live-out(e)?

live-in(e) = {s1,s2, s3, s4} live-out(e) = {s2, s3, s4, s5}

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 25

Live-in and Live-out in

Control Flow Graphs

live-in(B): set of variables that are live at the
 point that immediately precedes
 the first statement of the basic
 block B.

live-out(B): set of variables that are live at the
 point that immediately succeeds
 the last statement of the basic
 block B.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 26

Live-in and Live-out of

basic blocks

• live-in(B1)={b,c,d,f}

• live-in(B2)={a,c,d,e}

• live-in(B3)={a,c,d,f}

• live-in(B4)={c,d,f}

a := b + c

d := d - b

e := a + f

b := d + c

b := d + f

e := a - c

f := a - d

B4

B3 B2

B1

• live-out(B1)={a,c,d,e,f}

• live-out(B2)={c,d,e,f}

• live-out(B3)={b,c,d,e,f}

• live-out(B4)={b,c,d,e,f}

b, d, e, f live

b, c, d, e, f live

(Aho-Sethi-Ullman, pp. 544)

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 27

Register-Interference Graph

 A register-interference graph is an undirected graph

that summarizes live analysis at the variable level as

follows:

• A node is a variable/temporary that is a candidate for

register allocation (exceptions are volatile variables

and aliased variables)

• An edge connects nodes V1 and V2 if there is some

program point in the program where variables V1 and

V2 are live simultaneously. (Variables V1 and V2 are

said to interfere, in this case).

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 28

Register Interference

Graph: Program Example

a: s1 = ld(x)

b: s2 = s1 + 4

c: s3 = s1 8

d: s4 = s1 - 4

e: s5 = s1/2

f: s6 = s2 * s3

g: s7 = s4 - s5

h: s8 = s6 * s7

s7

s6

s5

s4

s3

s2

s1

s1

s2

s3

s4 s5

s7

s6

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 29

Local Register Allocation vs.

Global Register Allocation

Local Register Allocation (basic block level)
• Allocate for a single basic block - using liveness

information

• generally straightforward

• may not need graph coloring

Global Register Allocation (CFG)
• Allocate among basic blocks

• graph coloring method

• Need to use global liveness information

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 30

Register Allocation

by Graph Coloring

 Background: A graph is said to be k-colored if each

node has been assigned one of k colors in such a

way that no two adjacent nodes have the same color.

 Basic idea: A k-coloring of the interference graph can

be directly mapped to a legal register allocation by

mapping each color to a distinct register. The coloring

property ensures that no two variables that interfere

with each other are assigned the same register.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 31

 The basic idea behind register allocation by

graph coloring is to

 1. Build the register interference graph,

 2. Attempt to find a k-coloring for the

 interference graph.

Register Allocation by

Graph Coloring

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 32

Complexity of the Graph

Coloring Problem

• The problem of determining if an

undirected graph is k-colorable is

NP-hard for k >= 3.

• It is also hard to find approximate

solutions to the graph coloring

problem

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 33

Question: What to do if a register-interference graph

is not k-colorable? Or if the compiler cannot

efficiently find a k-coloring even if the graph is k-

colorable?

Answer: Repeatedly select less profitable variables

for “spilling” (i.e. not to be assigned to registers)

and remove them from the interference graph till

the graph becomes k-colorable.

Register Allocation

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 34

Estimating Register

Profitability

. variable to

 assigned as register w a if , block basic

in ns instructio store and load of number

 reduced a to due saved be uld that wo

 cycles processor of number estimated :

 analysis), static by or profiling by (obtained

block basic of frequency execution estimated :

: by estimated is variable of ity profitabil register The

v

i

, i) savings (v

i

freq(i)

, i) savings(v freq(i) ity(v) profitabil

v

i

 ´ =

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 35

Example of Estimating

Register Profitability

Basic block frequencies for previous example:
 B freq(B)

 [100] 1

 [101] 1

 [102] 1

 [103] 101

 [104] 101

 [105] 100

 [106] 100

 [107] 100

 [108] 1

 [109] 1

 [110] 1

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 36

Estimation of Profitability

 (Assume that load and store instructions take 1 cycle each on the target

processor)

Profitability(c) = freq ([100]) * (1 - 0) + freq([110]) * (1 - 0)

 = 2

Profitability(sum)= freq ([101]) * (1 - 0) + freq([105]) * (2 - 0)

 + freq([109]) * (2 - 0)

 = 1 * 1 + 100 * 2 + 1 * 2 = 203

Profitability(i) = freq ([102]) * (1 - 0) + freq([104]) * (1 - 0)

 + freq([105]) * (1 - 0) + freq([106]) * (2 - 0)

 = 1 * 1 + 101 * 1 + 100 * 1 + 100 * 2 = 402

Profitability = freq ([109]) * (1 - 0) + freq([110]) * (1 - 0)

 (square) = 2

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 37

Heuristic Solutions

Key observation:

 G G’

.

Remove a node x
with degree < k

From G, and all
associated edges

What do we know about k-colorability of G if we know G’ is k-
colorable ?

 Answer: If G’ is k-colorable => So is G!

Why ?

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 38

A 2-Phase Register

Allocation Algorithm

Build

IG
Simplify

Select

and

 Spill

Forward pass Reverse pass

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 39

/* Build step */
Build the register-interference
 graph, G;

/* Forward pass */
Initialize an empty stack;
repeat
 while G has a node v such that
 |neighbor(v)| < k do
 /* Simplify step */
 Push (v, no-spill)
 Delete v and its edges from G
 end while

 if G is non-empty then
 /* Spill step */
 Choose “least profitable” node v
 as a potential spill node;
 Push (v, may-spill)
 Delete v and its edges from G
 end if
until G is an empty graph;

Heuristic “Optimistic”

Algorithm

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 40

/* Reverse Pass */
while the stack is non-empty do
 Pop (v, tag)

 N := set of nodes in neighbors(v);
 if (tag = no-spill) then
 /* Select step */
 Select a register R for v such that
 R is not assigned to nodes in N;
 Insert v as a new node in G;
 Insert an edge in G
 from v to each node in N;
 else /* tag = may-spill */

 if v can be assigned a register R

 such that R is not assigned

 to nodes in N then

 /* Optimism paid off: need not spill */

 Assign register R to v;

 Insert v as a new node in G;

 Insert an edge in G

 from v to each node in N;

 else

 /* Need to spill v */

 Mark v as not being allocated a register

 end if

end if

end while

Heuristic “Optimistic”

Algorithm

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 41

Remarks

The above register allocation algorithm based

on graph coloring is both efficient (linear

time) and effective.

It has been used in many industry-strength

compilers to obtain significant improvements

over simpler register allocation heuristics.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 42

Extensions

• Coalescing

• Live range splitting

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 43

Coalescing

In the sequence of intermediate level instructions with a copy

statement below, assume that registers are allocated to both

variables x and y.

x := …
. . .
y := x
. . .
… := y

There is an opportunity for further
optimization by eliminating the copy
statement if x and y are assigned the
same register.

 The constraint that x and y receive the same register can be

modeled by coalescing the nodes for x and y in the interference
graph i.e., by treating them as the same variable.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 44

Simplify
Build

IG

Select

and

 Spill

Coalesce

An Extension with

Coalesce

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 45

Register Allocation with

Coalescing

2. Simplify: one at a time, remove non-move-related

 nodes of low (< K) degree from G.

1. Build: build the register interference graph G and

 categorize nodes as move-related

 or non-move-related.

3. Coalesce: conservatively coalesce G: only coalesce

 nodes a and b if the resulting a-b node has

 less than K neighbors.

4. Freeze: If neither coalesce nor simplify works, freeze a

 move-related node of low degree, making it

 non-move-related and available for simplify.

(Appel, pp. 240)

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 46

Register Allocation with

Coalescing

5. Spill: if there are no low-degree nodes, select a

 node for potential spilling.

6. Select: pop each element of the stack assigning

 colors.

(re)build coalesce freeze simplify

select
potential

spill

actual

spill

(Appel, pp. 240)

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 47

Example:

Step 1: Compute Live Ranges

LIVE-IN: k j

 g := mem[j+12]

 h := k -1

 f := g + h

 e := mem[j+8]

 m := mem[j+16]

 b := mem[f]

 c := e + 8

 d := c

 j := b

 k := m + 4

LIVE-OUT: d k j

m

e

f

h

g

k j

b

c

d

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 48

Example:

Step 3: Simplify (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(h,no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 49

Example:

Step 3: Simplify (K=4)

b m k j

g

d

c

e

f

(Appel, pp. 237)

(g, no-spill)

(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 50

Example:

Step 3: Simplify (K=4)

b m k j

d

c

e

f

(Appel, pp. 237)

(k, no-spill)

(g, no-spill)

(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 51

Example:

Step 3: Simplify (K=4)

b m j

d

c

e

f

(Appel, pp. 237)

(f, no-spill)

(k, no-spill)

(g, no-spill)

(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 52

Example:

Step 3: Simplify (K=4)

b m j

d

c

e

(Appel, pp. 237)

(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 53

Example:

Step 3: Simplify (K=4)

b m j

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 54

Example:

Step 3: Coalesce (K=4)

b j

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

Why we cannot simplify?

Cannot simplify move-related nodes.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 55

Example:

Step 3: Coalesce (K=4)

b j

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 56

Example:

Step 3: Simplify (K=4)

b j

c-d

(Appel, pp. 237)

(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 57

Example:

Step 3: Coalesce (K=4)

b j

(Appel, pp. 237)

(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 58

Example:

Step 3: Simplify (K=4)

b-j

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 59

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 60

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 61

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 62

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 63

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 64

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 65

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 66

Example:

Step 3: Select (K=4)

b m k j

g h

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 67

Live Range Splitting

 The basic coloring algorithm does not
consider cases in which a variable can be
allocated to a register for part of its live
range.

 Some compilers deal with this by splitting live
ranges within the iteration structure of the
coloring algorithm i.e., by pretending to split
a variable into two new variables, one of
which might be profitably assigned to a
register and one of which might not.

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 68

Length of Live Ranges

 The interference graph does not contain information of
where in the CFG variables interfere and what the
lenght of a variable’s live range is. For example, if we
only had few available registers in the following
intermediate-code example, the right choice would be to
spill variable w because it has the longest live range:

 x = w + 1

 c = a - 2

 …..

 y = x * 3

 z = w + y

2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 69

Effect of Instruction

Reordering on Register

Pressure

 The coloring algorithm does not take into account the

fact that reordering IL instructions can reduce

interference. Consider the following example:

 Original Ordering Optimized Ordering
 (needs 3 registers) (needs 2 registers)

 t1 := A[i] t2 ;= A[j]

 t2 := A[j] t3 := A[k]

 t3 := A[k] t4 := t2 * t3

 t4 := t2 * t3 t1 := A[i]

 t5 := t1 + t4 t5 := t1 + t4

