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Topic 2c 

  Basic Back-End 

Optimization 

Register allocation 
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Reading List 

• Dragon book: chapter 10 

• S. Cooper: Chapter 13 

• S. Muchnick: Chapter 16 



2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 3 

Focus of This Topic 

• We focus on “scalar register allocation” 

• Local register is straightforward (read Cooper’s Section 13.3) 

• This global register allocation problem is essentially solved by graph 

coloring techniques: 

• Chaitin et. al. 1981, 82  (IBM) 

• Chow, Hennesy 1983 (Stanford) 

• Briggs, Kennedy 1992 (Rice) 

• Register allocation for array variables in loops -- subject not 

discussed here 
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Interprocedural Analysis and Optimization 

Loop Nest Optimization and Parallelization 

Global Optimization 

Code Generation 

Front end 

Good IR 

High-Level Compiler 

Infrastructure Needed – A 

Modern View 
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• Good IPO 

• Good LNO 

• Good global optimization 

• Good integration of 
IPO/LNO/OPT 

• Smooth information 
passing between FE and 
CG 

• Complete and flexible 
support of inner-loop 
scheduling (SWP), 
instruction scheduling and 
register allocation  

Inter-Procedural 
Optimization (IPO) 

Loop Nest 
Optimization (LNO) 

Global Optimization 
(OPT) 

Source 

Innermost 
Loop 

scheduling 

Global inst 
scheduling 

Reg alloc 

Local inst 
scheduling 

Executable 

Arch 

Models 

CG 

ME 

General Compiler Framework 
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A Map of Modern Compiler Platforms 

GNU Compilers 

IMPACT Compiler 

Cydra  
VLIW 

Compiler 

Multiflow  
VLIW  

Compiler 

Ucode Compiler 
Chow/Hennessy 

HP Research 
Compiler 

   SGI Pro Compiler 
 - Designed for ILP/MP 
 - Production quality 
 - Open Source 

Trimaran 
Compiler 

SUIF Compiler 

1980 1985 1990 1995 2000 2005 2010 

RISC VLIW/SuperScalar EPIC/MP CMP/MT 

LLVM Compiler 

Open64 Compiler 
(PathScale, ORC, Osprey) 
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Register Allocation 

Motivation 

Live ranges and interference graphs 

Problem formulation 

Solution methods 
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Motivation 

•  Registers much faster than memory 
•  Limited number of physical registers 
•  Keep values in registers as long as possible 

(minimize number of load/stores executed) 
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Goals of Optimized  

Register Allocation 

1  Pay careful attention to allocating 

registers to variables that are more 

profitable to reside in registers 

2  Use the same register for multiple 

variables when legal to do so 
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Brief History of Register 

Allocation 

Chaitin:    Coloring Heuristic. 

                        Use the simple stack heuristic for 

ACM    register allocation. Spill/no-spill 

SIGPLAN   decisions are made during the 

Notices   stack construction phase of the 

1982    algorithm 

Briggs:    Finds out that Chaitin’s algorithm 

PLDI    spills even when there are available 

1989    registers. Solution: the optimistic 

    approach: may-spill during stack 

    construction, decide at spilling time. 
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Brief History of Register 

Allocation (Con’t) 

Callahan:         Hierarchical Coloring Graph, 

PLDI         register preference, 

1991         profitability of spilling. 

Chow-Hennessy: Priority-based coloring. 

SIGPLAN        Integrate spilling decisions in the 

1984         coloring decisions: spill a variable 

ASPLOS        for a limited life range.  

1990         Favor dense over sparse use regions. 

         Consider parameter passing convention. 
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Assigning Registers to more 

Profitable Variables (example) 

c = ‘S’ ; 

sum = 0 ; 

i = 1 ; 

while ( i <= 100 ) { 

      sum =  sum + i ; 

      i = i + 1 ; 

} 

square = sum * sum; 

print c, sum, square; 

Source code fragment: 
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[105]  sum  :=  sum  +  i 
[106] i  :=  i  +  1 
[107] goto L1 

[100]   c  =  ‘S’ 
[101] sum  :=  0 
[102] i  :=  1 

[103] label  L1: 
[104] if  i  >  100 goto  L2 

[108] label  L2: 
[109] square  =  sum  *  sum 
[110] print c, sum, square 

The Control Flow Graph  

of the Example 

c = ‘S’ ; 

sum = 0 ; 

i = 1 ; 

while ( i <= 100 ) { 

      sum =  sum + i ; 

      i = i + 1 ; 

} 

square = sum * sum; 

print c, sum, square; 

true 

false 
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Desired Register Allocation  

for Example 

 Assume that there are only two non-reserved registers 

available for allocation ($t2 and $t3). A desired register 

allocation for the above example is as follows: 

    

Variable Register 

c  no register 

sum  $t2 

i  $t3 

square $t3 

c = ‘S’ ; 

sum = 0 ; 

i = 1 ; 

while ( i <= 100 ) { 

      sum =  sum + i ; 

      i = i + 1 ; 

} 

square = sum * sum; 

print c, sum, square; 
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1. Pay careful attention to assigning registers to 
variables that are more profitable 

 The number of defs (writes) and uses (reads) to the 
variables in this sample program is as follows: 

  
 
  

Register Allocation Goals 

Variable #def’s  #use’s 
      c      1      1 
      sum 101  103 
      i  101  301 
      square     1      1 

 variables sum and i should 
get priority over variable c for 
register assignment. 
 

c = ‘S’ ; 

sum = 0 ; 

i = 1 ; 

while ( i <= 100 ) { 

      sum =  sum + i ; 

      i = i + 1 ; 

} 

square = sum * sum; 

print c, sum, square; 
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2. Use the same register for multiple variables when 
legal to do so 

 
   Reuse same register ($t3) for variables I and 

square since there is no point in the program where 
both variables are simultaneously live. 

Register Allocation Goals 

Variable  Register 

c   no register 

sum   $t2 

i   $t3 

square  $t3 

c = ‘S’ ; 

sum = 0 ; 

i = 1 ; 

while ( i <= 100 ) { 

      sum =  sum + i ; 

      i = i + 1 ; 

} 

square = sum * sum; 

print c, sum, square; 
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Register Allocation vs. 

Register Assignment 

Register Allocation – determining which 
values should be kept in registers. It 
ensures that the code will fit the target 
machine’s register set at each 
instruction. 

Register Assignment – how to assign the 
allocated variables to physical registers. 
It produces the actual register names 
required by the executable code. 
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Local and Global Register 

Allocation 

Local register allocation (within a basic 
block):  algorithms are generally 
straightforward – but implementation 
needs care [Cooper: 13.3] 

Global register allocation – graph coloring 
method 
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Liveness 

Intuitively a variable v is live if it holds a value that 

may be needed in the future. In other words, v is 

live at a point pi if: 

(i) v has been defined in a statement that 

    precedes pi in any path, and  

(ii) v may be used by a statement sj,  

     and there is a path from pi to sj.. 

(iii) v is not killed between pi and sj. 
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Live Variables 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

A variable v is live between 

the point pi that succeeds  

its definition and the point 

pj that succeeds its last use. 

The interval [pi, pj] is the 

live range of the variable v. 

Variables s1 and s2 have a live range 

of four statements. 

Which variables have the longest 

live range in the example? 

s2 

s1 



2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 21 

Register Allocation 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

How can we find out 

what is the minimum number 

of registers required by this  

basic block to avoid  

spilling values  to memory?  

We have to compute the live 

range of all variables and find 

the “fattest” statement (program 

 point). 

Which program points have the most 

variables that are live simultaneously? 
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Register Allocation 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

s7 

s6 

s5 

s4 

s3 

s2 

s1 

At statement e variables  

s1, s2, s3, and s4 are live,  

and during statement f 

variables s2, s3, s4,  

and s5 are live. 

But we have to use some math: 

our choice is liveness analysis.  
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Live-in and Live-out 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

s7 

s6 

s5 

s4 

s3 

s2 

s1 live-in(r): set of variables  

that are live at the point  

that immediately precedes  

statement r. 

live-out(r): set of variables 

variables that are live at the 

point that immediately 

succeeds r. 
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Live-in and Live-out: 

Program Example 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

s7 

s6 

s5 

s4 

s3 

s2 

s1 

What are live-in(e) and live-out(e)? 

live-in(e) = {s1,s2, s3, s4}  live-out(e) = {s2, s3, s4, s5} 
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Live-in and Live-out in 

Control Flow Graphs 

live-in(B):  set of variables that are live at the 
  point that immediately precedes  
  the first statement of the basic  
  block B. 
 
live-out(B):  set of variables that are live at the 
  point that immediately succeeds  
  the last statement of the basic  
  block B. 
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Live-in and Live-out of 

basic blocks 

• live-in(B1)={b,c,d,f} 

• live-in(B2)={a,c,d,e} 

• live-in(B3)={a,c,d,f} 

• live-in(B4)={c,d,f} 

a := b + c 

d := d - b 

e := a + f 

b := d + c 

b := d + f 

e := a - c 

f := a - d 

B4 

B3 B2 

B1 

• live-out(B1)={a,c,d,e,f} 

• live-out(B2)={c,d,e,f} 

• live-out(B3)={b,c,d,e,f} 

• live-out(B4)={b,c,d,e,f} 

b, d, e, f live 

b, c, d, e, f live 

(Aho-Sethi-Ullman, pp. 544) 
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Register-Interference Graph 

 A register-interference graph is an undirected graph 

that summarizes live analysis at the variable level as 

follows: 
 

• A node is a variable/temporary that is a candidate for 

register allocation (exceptions are volatile variables 

and aliased variables) 

• An edge connects nodes V1 and V2 if there is some 

program point in the program where variables V1 and 

V2 are live simultaneously. (Variables V1 and V2 are 

said to interfere, in this case). 
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Register Interference 

Graph: Program Example 

a: s1 = ld(x) 

b: s2 = s1 + 4 

c: s3 = s1  8 

d: s4 = s1 -  4 

e: s5 = s1/2 

f: s6 = s2 * s3 

g: s7 = s4 - s5 

h: s8 = s6 * s7 

s7 

s6 

s5 

s4 

s3 

s2 

s1 

s1 

s2 

s3 

s4 s5 

s7 

s6 
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Local Register Allocation vs. 

Global Register Allocation 

Local Register Allocation (basic block level)    
• Allocate for a single basic block - using liveness 

information  

• generally straightforward 

• may not need graph coloring 

Global Register Allocation (CFG) 
• Allocate among basic blocks 

• graph coloring method 

• Need to use global liveness information 
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Register Allocation  

by Graph Coloring 

 Background: A graph is said to be k-colored if each 

node has been assigned one of k colors in such a 

way that no two adjacent nodes have the same color. 
 

 Basic idea: A k-coloring of the interference graph can 

be directly mapped to a legal register allocation by 

mapping each color to a distinct register. The coloring 

property ensures that no two variables that interfere 

with each other are assigned the same register. 
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 The basic idea behind register allocation by 

graph coloring is to 

 1. Build the register interference graph,   

 2. Attempt to find a k-coloring for the  

       interference graph. 

Register Allocation by  

Graph Coloring 
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Complexity of the Graph  

Coloring Problem 

• The problem of determining if an 

undirected graph is k-colorable is 

NP-hard for k >= 3. 

• It is also hard to find approximate 

solutions to the graph coloring 

problem 
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Question: What to do if a register-interference graph 

is not k-colorable? Or if the compiler cannot 

efficiently find a k-coloring even if the graph is k-

colorable? 
 

Answer: Repeatedly select less profitable variables 

for “spilling” (i.e. not to be assigned to registers) 

and remove them from the interference graph till 

the graph becomes k-colorable. 

Register Allocation 
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Estimating Register 

Profitability 

.    variable    to                       

  assigned   as register w   a   if   , block    basic                           

in   ns instructio   store   and   load   of number                            

  reduced   a    to due   saved   be   uld    that wo                       

  cycles processor    of number    estimated   : 

  analysis),   static by  or    profiling by    (obtained                  

block   basic   of frequency  execution    estimated   :   

: by   estimated   is       variable of ity  profitabil register    The 

v 

i 

, i) savings (v 

i 

freq(i) 

, i)  savings(v freq(i)     ity(v)  profitabil 

v 

i 

 ´ = 
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Example of Estimating  

Register Profitability 

Basic block frequencies for previous example: 
  B   freq(B) 

  [100]       1 

  [101]       1 

  [102]       1 

  [103]   101 

  [104]   101 

  [105]   100 

  [106]   100 

  [107]   100 

  [108]       1 

  [109]       1 

  [110]       1 
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Estimation of Profitability 

 (Assume that load and store instructions take 1 cycle each on the target 

processor) 
 

Profitability(c) = freq ([100]) * (1 - 0) + freq([110]) * (1 - 0) 

   = 2 

Profitability(sum)= freq ([101]) * (1 - 0) + freq([105]) * (2 - 0) 

    + freq([109]) * (2 - 0) 

   = 1 * 1 + 100 * 2 + 1 * 2 = 203 

Profitability(i) = freq ([102]) * (1 - 0) + freq([104]) * (1 - 0) 

       + freq([105]) * (1 - 0) + freq([106]) * (2 - 0) 

   = 1 * 1 + 101 * 1 + 100 * 1 + 100 * 2 = 402 

Profitability = freq ([109]) * (1 - 0) + freq([110]) * (1 - 0) 

   (square) = 2 
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Heuristic Solutions 

Key observation: 

 

 

 G        G’ 

 

 

 

. 

Remove a node x 
with degree < k 

From G, and all 
associated edges 

What do we know about k-colorability of G if we know G’ is k-
colorable ? 

 Answer:  If G’ is k-colorable => So is G! 

Why ? 
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A 2-Phase Register  

Allocation Algorithm 

Build 

IG 
Simplify 

Select 

and 

 Spill 

Forward pass Reverse pass 
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/* Build step */ 
Build the register-interference  
 graph, G; 
 
/* Forward pass */ 
Initialize an empty stack; 
repeat 
    while G has a node v such that 
        |neighbor(v)| < k do 
        /* Simplify step */ 
        Push (v, no-spill) 
        Delete v and its  edges from G 
    end while 

    if G is non-empty then 
      /* Spill step */ 
      Choose “least profitable” node v  
                as a  potential spill node; 
      Push (v, may-spill) 
      Delete v and its edges from G 
    end if 
until G is an empty graph; 

Heuristic “Optimistic” 

Algorithm 
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/* Reverse Pass */ 
while the stack is non-empty do 
    Pop (v, tag) 

    N := set of nodes in neighbors(v); 
    if (tag = no-spill) then 
       /* Select step */ 
       Select a register R for v such that 
          R is not assigned to nodes in N; 
       Insert v as a new node in G; 
       Insert an edge in G  
          from v to each node in N; 
    else /* tag = may-spill */ 

 

   if v can be assigned a register R  

        such that R is not assigned  

        to nodes in N then 

        /* Optimism paid off: need not spill */ 

        Assign register R to v; 

        Insert v as a new node in G; 

        Insert an edge in G  

           from v to each node in N; 

   else 

      /* Need to spill v */ 

     Mark v as not being allocated a register 

   end if 

end if 

end while 

Heuristic “Optimistic” 

Algorithm 
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Remarks 

The above register allocation algorithm based 

on graph coloring is both efficient (linear 

time) and effective.  
 

It has been used in  many industry-strength 

compilers to obtain significant improvements 

over simpler register allocation heuristics. 
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Extensions 

• Coalescing 

 

• Live range splitting 
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Coalescing 

In the sequence of intermediate level instructions with a copy 

statement below, assume that registers are allocated to both 

variables x and y.  

x    := … 
. . . 
y    :=  x 
. . . 
…  :=  y 

There is an opportunity for further 
optimization by eliminating the copy 
statement if x and y are assigned the 
same register. 

 
 The constraint that x and y receive the same register can be 

modeled by coalescing the nodes for x and y in the interference 
graph i.e., by treating them as the same variable. 
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Simplify 
Build 

IG 

Select 

and 

 Spill 

Coalesce 

An Extension with 

Coalesce 
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Register Allocation with 

Coalescing 

2. Simplify: one at a time, remove non-move-related 

                     nodes of low (< K) degree from G. 

1. Build: build the register interference graph G and  

              categorize nodes as move-related  

              or non-move-related. 

3. Coalesce: conservatively coalesce G: only coalesce 

                    nodes a and b if the resulting a-b node has 

                    less than K neighbors.  

4. Freeze: If neither coalesce nor simplify works, freeze a  

                 move-related node of low degree, making it  

                 non-move-related and available for simplify.  

(Appel, pp. 240) 
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Register Allocation with 

Coalescing 

5. Spill: if there are no low-degree nodes, select a 

              node for potential spilling.  

6. Select: pop each element of the stack assigning 

                 colors. 

(re)build coalesce freeze simplify 

select 
potential 

spill 

actual 

spill 

(Appel, pp. 240) 
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Example: 

Step 1: Compute Live Ranges 

LIVE-IN: k  j 

 g := mem[j+12] 

 h := k -1 

 f := g + h 

 e := mem[j+8] 

 m := mem[j+16] 

 b := mem[f] 

 c := e + 8 

 d := c 

 j := b 

 k := m + 4 

LIVE-OUT: d  k  j 

m 

e 

f 

h 

g 

k j 

b 

c 

d 
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Example: 

Step 3: Simplify (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(h,no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b m k j 

g 

d 

c 

e 

f 

(Appel, pp. 237) 

(g, no-spill) 

(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b m k j 

d 

c 

e 

f 

(Appel, pp. 237) 

(k, no-spill) 

(g, no-spill) 

(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b m j 

d 

c 

e 

f 

(Appel, pp. 237) 

(f, no-spill) 

(k, no-spill) 

(g, no-spill) 

(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b m j 

d 

c 

e 

(Appel, pp. 237) 

(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b m j 

d 

c 

(Appel, pp. 237) 

(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Coalesce (K=4) 

b j 

d 

c 

(Appel, pp. 237) 

(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

Why we cannot simplify? 

Cannot simplify move-related nodes. 
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Example: 

Step 3: Coalesce (K=4) 

b j 

d 

c 

(Appel, pp. 237) 

(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b j 

c-d 

(Appel, pp. 237) 

(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Coalesce (K=4) 

b j 

(Appel, pp. 237) 

(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Simplify (K=4) 

b-j 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 



2012/3/20 \course\cpeg421-10F\Topic-2b.ppt 60 

Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Example: 

Step 3: Select (K=4) 

b m k j 

g h 

d 

c 

e 

f 

(Appel, pp. 237) 

(b-j, no-spill) 
(c-d, no-spill) 
(m, no-spill) 
(e, no-spill) 
(f, no-spill) 
(k, no-spill) 
(g, no-spill) 
(h, no-spill) 

stack 

R1 

R2 

R3 

R4 
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Live Range Splitting 

 The basic coloring algorithm does not 
consider cases in which a variable can be 
allocated to a register for part of its live 
range. 

 

 Some compilers deal with this by splitting live 
ranges within the iteration structure of the 
coloring algorithm i.e., by pretending to split 
a variable into two new variables, one of 
which might be profitably assigned to a 
register and one of which might not. 
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Length of Live Ranges 

 The interference graph does not contain information of 
where in the CFG variables interfere and what the 
lenght of a variable’s live range is. For example, if we 
only had few available registers in the following 
intermediate-code example, the right choice would be to 
spill variable w because it has the longest live range: 

   x  =  w  +  1 

   c  =   a   -  2 

   ….. 

   y  =   x  *  3 

   z  =  w  +  y 
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Effect of Instruction 

Reordering on Register 

Pressure 

 The coloring algorithm does not take into account the 

fact that reordering IL instructions can reduce 

interference. Consider the following example: 
 
  Original Ordering  Optimized Ordering 
    (needs 3 registers)      (needs 2 registers) 
 

           t1  :=  A[i]                t2  ;=  A[j] 

          t2  :=  A[j]                t3  :=  A[k] 

              t3  :=  A[k]                t4  :=  t2  * t3 

                t4  := t2  *  t3                t1  := A[i]        

         t5  := t1  +  t4               t5  := t1  +  t4  


