Dependence Analysis and Loop Transformations

CPEG421/621

A More Formal Framework for Dependence Analysis

A Few Definitions
Dependence in Loops
Dependences and Transformations
Distance and Direction Vectors
Loop-Carried and Loop-Independent Dependences

Dependence Testing

Loop Transformations

CPEG421/621: Compiler Design

University of Delaware
A Quick Overview

We already talked a bit about dependence in the context of instruction scheduling. However dependence analysis provides a more general framework to perform program transformation. It is useful to provide information on:

- How and where to move a given (group of) statement(s)
- How efficient a given transformation will be (i.e. how profitable it is)
- If a transformation is legal in general

Dependence analysis is the instrument of choice to perform loop transformations.
Reading List

- The Dragon Book (Chapter 11, esp. Sections 11.3, 11.5, 11.6)
- S. Muchnick’s book on advanced compiler technology (Chapter XXX)
- R. Allen’s and K. Kennedy’s book (esp. Chapters 2,3 for dependence theory; Chapters 5,6 for loop transformations).

This lecture is mainly using the book by Allen & Kennedy.
A Few Definitions

Data Dependence

There is a *data dependence* from statement \(S_1 \) to statement \(S_2 \), denoted \(S_1 \rightarrow S_2 \), and which reads “statement \(S_2 \) depends on statement \(S_1 \)” if and only if

1. Both statements access the same memory location \(M \), and at least one of them stores into it, and
2. There is a feasible run-time execution path from \(S_1 \) to \(S_2 \).
They relate closely with read/write dependence used in computer architecture books (such as Hennesy’s and Patterson’s):

- True (or flow) dependence: $S_1 \delta S_2$ (also written as $S_1 \delta^f S_2$)
- Anti-dependence: $S_1 \delta^{-1} S_2$ (also written as $S_1 \delta^a S_2$)
- Output dependence: $S_1 \delta^o S_2$
Types of Dependences: illustrations (2/2)

True dependence: $S_1 \delta S_2$

- $x = /*$ some source $*/$
- /* some destination */ = x

Anti-dependence: $S_1 \delta^{-1} S_2$

- /* some destination */ = x
- x = /* some source */

Output dependence: $S_1 \delta^0 S_2$

- x = /* some source */
- x = /* some other source */
Dependence in Loops

How do we apply our previous definitions to loops?

Dependence in Loops

How do we apply our previous definitions to loops?

Some parameterization is necessary to describe loop dependences. Considering regular loops, we say a loop always has three components: a lower bound L, an upper bound U, and a step S:

$$\text{for } (\text{int } i = L; i < U; i += S)$$

{loop body here}
Dependence in Loops

How do we apply our previous definitions to loops?

```c
for (int i = 0; i < N; ++i) {
    /* S1 */ a[i+1] = a[i] + b[i];
}
```
How do we apply our previous definitions to loops?

```c
for (int i = 0; i < N; ++i) {
    /* S1 */ a[i+1] = a[i] + b[i];
}
```

```c
for (int i = 0; i < N; ++i) {
    /* S1 */ a[i+2] = a[i] + b[i];
}
```
Dependence in Loops

How do we apply our previous definitions to loops?

```c
for (int i = 0; i < N; ++i) {
    /* S1 */ a[i+1] = a[i] + b[i];
}
```

```c
for (int i = 0; i < N; ++i) {
    /* S1 */ a[i+2] = a[i] + b[i];
}
```

Some parameterization is necessary to describe loop dependences. Considering regular loops, we say a loop always has three components: a lower bound \(L \), an upper bound \(U \), and a step \(S \):

```c
for (int i = L; i < S; i += S) {
    /* loop body here */
}
```
Iteration Number and Vector (1/2)

Normalized iteration number

For an arbitrary, regular loop in which the loop index I runs from L to S in steps of S, we define the (normalized) iteration number i of a specific iteration as: $(I - L + S)/S$, where I is the value of the index on that iteration.

Iteration Vector

Given a nest of n loops, the iteration vector \vec{i} of a particular iteration of the innermost loop is defined as: $\vec{i} = [i_1, i_2, \cdots, i_n]$, where n is the innermost loop in the loop nest.
Iteration Number and Vector

(2/2)

For an n-level loop: $\vec{i} = [i_1, i_2, \cdots, i_n]$

```c
for (int i1 = L1; i1 < N1; i1 += S1) {
    for (int i2 = L2; i2 < N2; i2 += S2) {
        /* ... Other loops go here */
        for (int in = Ln; i < Nn; in += Sn) {
            /* S */ /* innermost loop body */
        }
    }
}
```
Iteration Number and Vector

(2/2)

For an n-level loop: $\vec{i} = [i_1, i_2, \cdots, i_n]$

For (int $i_1 = L_1; i_1 < N_1; i_1 += S_1$) {
 for (int $i_2 = L_2; i_2 < N_2; i_2 += S_2$) {
 /* ... Other loops go here */
 for (int $in = L_n; i < N_n; in += S_n$) {
 /* S */ /* innermost loop body */
 }
 }
}

What does $S[(1, 0)]$ represent in the following snippet?

for (int $i = 0; i < 2; ++i$) {
 for (int $j = 0; j < 2; ++j$) {
 S;
 }
}
Another Example

```c
#include <string.h>
void matvec(int M, int N, double *C, double *A, double *v)
{
    double (*c)[N] = (double (*)(*)[N]) C;
    double (*a)[N] = (double (*)(*)[N]) A;
    memset(C, 0, sizeof(double)*M*N);
    for (int i = 0; i < M; ++i)
        for (int j = 0; j < N; ++j)
            c[i][j] += a[i][j] * v[j];
}
```
Another Example

```c
#include <string.h>
void matvec(int M, int N, double *C, double *A, double *v)
{
    double (*c)[N] = (double (*)(*)[N]) C;
    double (*a)[N] = (double (*)(*)[N]) A;
    memset(C, 0, sizeof(double)*M*N);

    for (int i = 0; i < M; ++i)
        for (int j = 0; j < N; ++j)
            c[i][j] += a[i][j] * v[j];
}
```

What is the state of the computation in the loop when \(\vec{i} = [3, 5] \)? When \(\vec{i} = [0, 4] \)?
Theorem: Loop Dependence

Definition

Iteration \(\vec{i} \) precedes iteration \(\vec{j} \), denoted \(\vec{i} < \vec{j} \) if and only if the statements in \(\vec{i} \) are all executed before the statements executed in \(\vec{j} \). More formally:

\[
\vec{i} < \vec{j} \iff \begin{cases}
1. & \vec{i}[1:n-1] < \vec{j}[1:n-1], \text{ or} \\
2. & \vec{i}[1:n-1] = \vec{j}[1:n-1] \land \vec{i}_n < \vec{j}_n
\end{cases}
\] (1)

Theorem

In a common \(n \)-level loop nest \(L_n \), with two vectors \(\vec{i}, \vec{j} \) in it, and a common memory location \(M \) and \(\delta^* \) some dependence:

\[
\exists \delta^* : S_1 \delta^* S_2 \iff \begin{cases}
1. & \vec{i} < \vec{j} \lor \vec{i} = \vec{j} \land \exists \text{path}(S_1 \to S_2) \in L_n \\
2. & \text{access}(S_1 \to M)_{\vec{i}} \land \text{access}(S_2 \to M)_{\vec{j}} \\
3. & \text{write} = \text{access}(S_1 \to M)_{\vec{i}} \lor \text{write} = \text{access}(S_2 \to M)_{\vec{j}}
\end{cases}
\] (2)
Definition: Equivalence

Two computations are *equivalent* if, on the same input, they produce identical values for output variables at the time output statements are executed and the output statements are executed in the same order.

Definition: Reordering Transformation

A reordering transformation \mathcal{T}_R is any program transformation that merely changes the order of execution of the code, without adding or deleting any execution of any statements.
Example of Reordering Transformations

The original code:

```c
1  for (int i = 0; i < N; ++i) {
2       S1: x = a[i];
3               for (int j = 0; j < P; ++j) {
4                 S2: b[i][j] = x + 3 * b[i][j];
5               }
6       S3: a[i] = b[i][P-1];
7  }
```

The modified code:

```c
1  for (int i = 0; i < N; ++i) {
2       S3: a[i] = b[i][P-1];
3       for (int j = 0; j < P; ++j) {
4                 S2: b[i][j] = x + 3 * b[i][j];
5               }
6       S1: x = a[i];
7  }
```
Example of Reordering Transformations

The original code:

```
for (int i = 0; i < N; ++i) {
    S1: x = a[i];
    for (int j = 0; j < P; ++j) {
        S2: b[i][j] = x + 3 * b[i][j];
    }
    S3: a[i] = b[i][P-1];
}
```

The modified code:

```
for (int i = 0; i < N; ++i) {
    S3: a[i] = b[i][P-1];
    for (int j = 0; j < P; ++j) {
        S2: b[i][j] = x + 3 * b[i][j];
    }
    S1: x = a[i];
}
```

A reordering transformation can produce incorrect code!
Reordering Transformations

Definition
A reordering transformation T_R preserves a dependence if it preserves the relative execution order of the source and sink of that dependence.
Reordering Transformations

Definition
A reordering transformation \mathcal{T}_R preserves a dependence if it preserves the relative execution order of the source and sink of that dependence.

Fundamental Theorem of Dependence
Any reordering transformation \mathcal{T}_R that preserves every dependence in a program preserves the meaning of that program.
Reordering Transformations

Definition
A reordering transformation \mathcal{T}_R preserves a dependence if it preserves the relative execution order of the source and sink of that dependence.

Fundamental Theorem of Dependence
Any reordering transformation \mathcal{T}_R that preserves every dependence in a program preserves the meaning of that program.

Definition
A transformation is said to be valid for the program to which it applies if it preserves all dependences in the program.
A Summarizing Example

L0: for (int i = 0; i < N; ++i) {
 L1: for (int j = 0; j < 2; ++j) {
 S0: a[i][j] = a[i][j] + B;
 }
 S1: t = a[i][0];
 S2: a[i][0] = a[i][1];
 S3: a[i][1] = t;
 }

• There is a dependence from S0 to S1, S2 and S3.
 → A dependence-based compiler could not accept to reorder loop L1
 with the block {S1, S2, S3}
A More Formal Framework for Dependence Analysis

A Few Definitions

Dependence in Loops
Dependences and Transformations
Distance and Direction Vectors
Loop-Carried and Loop-Independent Dependences

Dependence Testing
Loop Transformations

A Summarizing Example

L0: \textbf{for} (\texttt{int} i = 0; i < N; ++i) {
L1: \hspace{1em} \textbf{for} (\texttt{int} j = 0; j < 2; ++j) {
S0: \hspace{2em} a[i][j] = a[i][j] + B;
S1: \hspace{2em} t = a[i][0];
S2: \hspace{2em} a[i][0] = a[i][1];
S3: \hspace{2em} a[i][1] = t;
}

• There is a dependence from S_0 to S_1, S_2 and S_3.
 \rightarrow A dependence-based compiler could not accept to reorder loop L_1
 with the block $\{S_1, S_2, S_3\}$

• However, the interchange leaves the same values in the array a.
 \rightarrow $a[i][0]$ and $a[i][1]$ receive an identical update (B).

• Although there is no dependence between L_1 and block $\{S_1, S_2, S_3\}$
 (and thus could be executed in parallel), there is no way to tell it from our current dependence framework.
A Summarizing Example

L0: \textbf{for} (\texttt{int} \ i = 0; \ i < N; \ ++i) \{ \\
L1: \quad \textbf{for} (\texttt{int} \ j = 0; \ j < 2; \ ++j) \{ \\
S0: \quad \ a[i][j] = a[i][j] + B; \\
}\} \\
S1: \quad t = a[i][0]; \\
S2: \quad a[i][0] = a[i][1]; \\
S3: \quad a[i][1] = t; \\
\}

- There is a dependence from S_0 to S_1, S_2 and S_3.
 \rightarrow A dependence-based compiler could not accept to reorder loop L_1 with the block $\{S_1, S_2, S_3\}$

- However, the interchange leaves the same values in the array a.
 \rightarrow $a[i][0]$ and $a[i][1]$ receive an identical update (B).

- Although there is no dependence between L_1 and block $\{S_1, S_2, S_3\}$ (and thus could be executed in parallel), there is no way to tell it from our current dependence framework.

 \rightarrow Our definition of valid transformation is stronger than our definition of computation equivalence.
Distance and Direction Vectors (1/2)

Definition: Distance Vector

Let S_1 on iteration vector \vec{i} and S_2 on iteration vector \vec{j} be two statements so that there is some dependence $S_1 \delta^* S_2$ on the loop nest L_n. Then the dependence distance vector \vec{d} of length n is defined as:

$$\vec{d}_{i,j} = \vec{d}(\vec{i}, \vec{j}) = \vec{j} - \vec{i}$$

(3)

i.e.

$$d(i,j)_k = j_k - i_k, \forall k : 1 \leq k \leq n$$

(4)

Definition: Direction Vector

Let S_1 on iteration vector \vec{i} and S_2 on iteration vector \vec{j} be two statements so that there is some dependence $S_1 \delta^* S_2$ on the loop nest L_n. Then the dependence direction vector \vec{D} of length n is defined as:

$$D_{i,j} = \begin{cases} < & \text{if } d(i,j)_k > 0 \\ = & \text{if } d(i,j)_k = 0 \\ > & \text{if } d(i,j)_k < 0 \end{cases}$$

(5)
Distance and Direction Vectors (1/2)

Definition: Distance Vector

Let S_1 on iteration vector \vec{i} and S_2 on iteration vector \vec{j} be two statements so that there is some dependence $S_1 \delta^* S_2$ on the loop nest L_n. Then the dependence distance vector \vec{d} of length n is defined as:

$$\vec{d}_{i,j} = \vec{d}(\vec{i}, \vec{j}) = \vec{j} - \vec{i}$$

i.e.

$$d(\vec{i}, \vec{j})_k = j_k - i_k, \forall k : 1 \leq k \leq n$$

(3)

(4)

Definition: Direction Vector

Let S_1 on iteration vector \vec{i} and S_2 on iteration vector \vec{j} be two statements so that there is some dependence $S_1 \delta^* S_2$ on the loop nest L_n. Then the dependence direction vector \vec{D} of length n is defined as:

$$D(\vec{i}, \vec{j})_k = \begin{cases} "<" & \text{if } d(\vec{i}, \vec{j})_k > 0 \\ "=" & \text{if } d(\vec{i}, \vec{j})_k = 0 \\ ">" & \text{if } d(\vec{i}, \vec{j})_k < 0 \end{cases}$$

(5)
Example for Distance and Direction Vectors

Consider the following code:

```c
for (int i = 0; i < N; ++i) {
    for (int j = 0; i < M; ++j) {
        for (int k = 0; i < L; ++k) {
            S1:  a[i+1][j][k-1] = a[i][j][k] + 10;
        }
    }
}
```

What are the distance and direction vectors?
Example for Distance and Direction Vectors

Consider the following code:

```c
for (int i = 0; i < N; ++i) {
    for (int j = 0; i < M; ++j) {
        for (int k = 0; i < L; ++k) {
            S1: a[i+1][j][k-1] = a[i][j][k] + 10;
        }
    }
}
```

What are the distance and direction vectors?

\[\vec{d} = [1 \ 0 \ -1] \]

\[\vec{D} = [< \ = \ >] \]
Direction Vector Transformation

Let \mathcal{T} be a transformation that is applied to a loop nest and that does not rearrange the statements in the body of the loop. Then the transformation is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-“=” that is “>”.

What are the distance and direction vectors for the following loop?

```c
for (int i = 0; i < 10; ++i) {
    for (int j = 0; j < 100; ++j) {
        S1: a[i][j] = b[i][j] + X;
        S2: c[i][j] = a[i][99-j] + Y;
    }
}
```
Distance and Direction Vectors (2/2)

Direction Vector Transformation
Let \mathcal{T} be a transformation that is applied to a loop nest and that does not rearrange the statements in the body of the loop. Then the transformation is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-“=” that is “>”.

What are the distance and direction vectors for the following loop?

```c
for (int i = 0; i < 10; ++i) {
    for (int j = 0; j < 100; ++j) {
        S1: a[i][j] = b[i][j] + X;
        S2: c[i][j] = a[i][99-j] + Y;
    }
}
```

From $j = 0$ to 48 \(\vec{D} = [= <] \)

When $j = 49$ \(\vec{D} = [= ==] \)

From $j = 50$ to 99 \(\vec{D} = [= >] \)
Loop-Carried and Loop-Independent Dependences

If we consider two statements, S_1 and S_2, in a loop nest L_n, and assuming there is a dependence $S_1 \delta^* S_2$ over a memory location M, then we have one of:

- Loop-Carried Dependence: S_1 accesses M in one iteration, and S_2 accesses M in a subsequent iteration.
- Loop-Independent Dependence: S_1 and S_2 both access M on the same iteration, but S_1 precedes S_2 during execution of the loop iteration.
Loop-Carried Dependences (1/2)

A simple example:

```c
for (int i = 0; i < N; ++i) {
    S1: a[i+1] = f[i];
    S2: f[i+1] = a[i];
}
```
Loop-Carried Dependences (1/2)

A simple example:

```c
for (int i = 0; i < N; ++i) {
    S1:  a[i+1] = f[i];
    S2:  f[i+1] = a[i];
}
```

Definition: Loop-Carried Dependence
Let \(\vec{i} \) and \(\vec{j} \) be two iteration vectors. Let \(S_1 \) and \(S_2 \) be two statements. Then \(S_1 \delta^* S_2 \) is a *loop-carried dependence* on memory location \(M \) if

\[
\begin{align*}
\text{1. } & S_1 \text{ accesses } M \text{ on } \vec{i} \\
\text{2. } & S_2 \text{ accesses } M \text{ on } \vec{j} \\
\text{3. } & \vec{d} > 0
\end{align*}
\]

(Remember: \(\vec{d} > 0 \iff \vec{D} \) contains a “<” as the left-most non-“=” component.)
Loop-Carried Dependences (2/2)

Definition: Backward and Forward Dependencies
Let $S_1 \delta^* S_2$ be a loop-carried dependence. It is said to be \textit{backward} if S_2 appears before S_1 in the loop body or if S_1 and S_2 appear in the same statement. If S_2 appears after S_1 in the loop body it is a \textit{forward} dependence.

Definition: Level of a Loop-Carried Dependence
The \textit{level} of a loop-carried dependence is the index of the leftmost non-“=” of \vec{D} for the dependence.
Example for Loop-Carried Dependences

What is the direction vector and level of the following loop?

```c
for (int i = 0; i < 10; ++i) {
    for (int j = 0; j < 10; ++j) {
        for (int k = 0; k < 10; ++k) {
            S1: a[i][j][k+1] = a[i][j][k];
        }
    }
}
```

\[\vec{D} = \begin{vmatrix} \end{vmatrix} \]

Level = 3.
Example for Loop-Carried Dependences

What is the direction vector and level of the following loop?

```c
for (int i = 0; i < 10; ++i) {
    for (int j = 0; j < 10; ++j) {
        for (int k = 0; k < 10; ++k) {
            S1: a[i][j][k+1] = a[i][j][k];
        }
    }
}
```

\[\vec{D} = [\geq \geq <] \]

Level = 3.
Dependence Preservation

Definition
A dependence is said to be \textit{satisfied} if transformations that fail to preserve it are precluded. In other words: if we only keep transformations that preserve the initial dependences in a program, then the dependence is satisfied.

Theorem
A reordering transformation \mathcal{T}_R preserves all level-k dependences if and only if

- The iteration order of the level-k loop is preserved
- No loop is interchanged at level $< k$ to a position inside the level-k loop
- Not loop is interchanged at level $> k$ to a position outside the level-k loop
Is this transformation (on the right) legal?

for (int i = 0; i < N; ++i) {
 S2: f[i+1] = a[i];
 S1: a[i+1] = f[i];
}

Back to our example:

for (int i = 0; i < N; ++i) {
 S2: f[i+1] = a[i];
 S1: a[i+1] = f[i];
}

Applying All This to Loops

(1/3)
Applying All This to Loops

(1/3)

Back to our example:

```c
for (int i = 0; i < N; ++i) {
    S1: a[i+1] = f[i];
    S2: f[i+1] = a[i];
}
```

```c
for (int i = 0; i < N; ++i) {
    S2: f[i+1] = a[i];
    S1: a[i+1] = f[i];
}
```

Is this transformation (on the right) legal? Yes.
Applying All This to Loops

(2/3)

A more complicated example. What loops can we legally interchange?

for (int i = 0; k < 10; ++i)
 for (int j = 0; j < 10; ++j)
 for (int k = 0; k < 10; ++k)
 a[k+3][j+2][i+1] = a[k][j][i] + B;
Applying All This to Loops (2/3)

A more complicated example. What loops can we legally interchange?

\[
\text{for} \ (\text{int } i = 0; k < 10; ++i) \\
\text{for} \ (\text{int } j = 0; j < 10; ++j) \\
\text{for} \ (\text{int } k = 0; k < 10; ++k) \\
\quad a[k+3][j+2][i+1] = a[k][j][i] + B;
\]

\[
\vec{d} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \\
\vec{D} = \begin{bmatrix} < & < & < \end{bmatrix}
\]
A more complicated example. What loops can we legally interchange?

```c
for (int i = 0; k < 10; ++i)
    for (int j = 0; j < 10; ++j)
        for (int k = 0; k < 10; ++k)
            a[k+3][j+2][i+1] = a[k][j][i] + B;

\vec{d} = [3 2 1]
\vec{D} = [< < < ]
```

/* Look at the dependences once we unroll the loop */
for (int i = 0; k < 10; ++i) {
 for (int j = 0; j < 10; ++j) {
 for (int k = 0; k < 10; k += 2) {
 a[k+3][j+2][i+1] = a[k][j][i] + B;
 a[k+4][j+3][i+2] = a[k+1][j+1][i+1] + B;
 }
 }
}
Applying All This to Loops (3/3)

\[\vec{d} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \]
\[\vec{D} = \begin{bmatrix} < & < & < \end{bmatrix} \]

```c
for (int i = 0; k < 10; ++i)
    for (int j = 0; j < 10; ++j)
        for (int k = 0; k < 10; ++k)
            a[k+3][j+2][i+1] = a[k][j][i] + B;
```
Applying All This to Loops

(3/3)

\[\vec{d} = [3 \ 2 \ 1] \]
\[\vec{D} = [< \ < \ <] \]

```
for (int i = 0; k < 10; ++i)
    for (int j = 0; j < 10; ++j)
        for (int k = 0; k < 10; ++k)
            a[k+3][j+2][i+1] = a[k][j][i] + B;
```
A dependence is loop-independent if it arises as a result of relative statement position.

Definition: Loop-Independent Dependence

Let \(\vec{i} \) and \(\vec{j} \) be two iteration vectors. Let \(S_1 \) and \(S_2 \) be two statements. Then \(S_1 \delta S_2 \) is a *loop-independent dependence* on memory location \(M \)

\[
\Leftrightarrow \begin{cases}
1. \quad S_1 \text{ accesses } M \text{ on } \vec{i}, \ S_2 \text{ accesses } M \text{ on } \vec{j}, \text{ and } \vec{i} = \vec{j} \\
2. \quad \exists \text{ path}(S_1 \rightarrow S_2) \in \vec{i}
\end{cases}
\]
Loop-Independent Dependences (2/3)

```c
for (int i = 0; i < 10; ++i) {
    S1: a[i] = /* some value */
    S2: /* some value */ = a[i];
}
```

```c
for (int i = 0; i < 10; ++i) {
    S1: a[i] = /* some value */
    S2: /* some value */ = a[9-i];
}
```
Theorem

Let S_1 and S_2 two statements. If $S_1 \delta^* S_2$ is loop-independent, any reordering transformation T_R that does not move statement instances between iterations and preserves the relative order of S_1 and S_2 in the loop body preserves that dependence.

Original code:

```c
/* Original code */
for (i = 0; i < N; ++i)
{
S1: a[i] = b[i] + C;
S2: d[i] = a[i] + E;
}
```

Transformed code:

```c
/* Transformed code */
d[0] = a[0] + E;
for (i = 1; i < N; ++i)
{
S1: a[i-1] = b[i-1] + C;
S2: d[i] = a[i] + E;
}
a[n-1] = b[n-1] + C;
```

Is this transformation valid?
Loop-Independent Dependences

Theorem
Let S_1 and S_2 two statements. If $S_1 \delta^* S_2$ is loop-independent, any reordering transformation T_R that does not move statement instances between iterations and preserves the relative order of S_1 and S_2 in the loop body preserves that dependence.

```
/* Original code */
for (i = 0; i < N; ++i)
{
    S1:    a[i] = b[i] + C;
    S2:    d[i] = a[i] + E;
}

/* Transformed code */
d[0] = a[0] + E;
for (i = 1; i < N; ++i)
{
    S1:    a[i-1] = b[i-1] + C;
    S2:    d[i] = a[i] + E;
}
    a[n-1] = b[n-1] + C;
```

Is this transformation valid? No.
Theorem: Iteration Reordering

A transformation \mathcal{T} that reorders the iterations of a level-k loop, without making any other changes, is valid if the loop carries no dependence.
Simple Dependence Testing

Theorem

Let \(\vec{\alpha} \) and \(\vec{\beta} \) be iteration vectors within the iteration space of the following loop nest:

\[
\begin{align*}
&\text{for} \ (i_1 = L_1; \ i_1 < U_1; \ i_1 += S_1) \{ \\
&\quad \text{for} \ (i_2 = L_2; \ i_2 < U_2; \ i_2 += S_2) \{ \\
&\quad\quad /* \ \ldots \ */ \\
&\quad\quad \text{for} \ (i_n = L_n; \ i_n < U_n; \ i_n += S_n) \{ \\
&\quad\quad\quad \text{S1:} \ a[f_1(i_1,i_2,\ldots,i_n)][f_2(i_1,i_2,\ldots,i_n)][\ldots][f_n(i_1,i_2,\ldots,i_n)] = \ldots; \\
&\quad\quad\quad \text{S2:} \ \ldots = a[g_1(i_1,i_2,\ldots,i_n)][g_2(i_1,i_2,\ldots,i_n)][\ldots][g_n(i_1,i_2,\ldots,i_n)]; \\
&\quad\quad\} \\
&\quad\} \\
&\exists \ S_1 \delta^* S_2 \iff \exists \vec{\alpha}, \vec{\beta} : \left\{ \\
&\quad 1. \ \vec{\alpha} < \vec{\beta} \text{ lexicographically} \\
&\quad 2. \ f_i(\vec{\alpha}) = g_i(\vec{\beta}) \forall i, \ 1 \leq i \leq m \\
&\right\}
\end{align*}
\]
Example with a Single Subscript

```cpp
for (i = 0; i < N; ++i) {
S:  a[i+1] = a[i] + B;
}
```

To test for true dependence on this loop:

- Assume that the left-hand side of statement S accesses memory location M on iteration I_0.
- Assume that the right-hand side accesses the same location ΔI iterations later.

$$a[I_0 + 1]$$ and $$a[I_0 + \Delta I]$$ must both refer to the same M.

$$I_0 + 1 = I_0 + \Delta I$$

$$\Delta I = 1$$

If we assume that $N > 0$, and since $\Delta I > 0$ then

$$\vec{D} = \left[<1> \right]$$
Example with a Single Subscript

```
for (i = 0; i < N; ++i) {
    S: a[i+1] = a[i] + B;
}
```

To test for true dependence on this loop:

- Assume that the left-hand side of statement S accesses memory location M on iteration I_0
- Assume that the right-hand side accesses the same location ΔI iterations later.

\[a[I_0 + 1] \text{ and } a[I_0 + \Delta I] \text{ must both refer to the same } M. \]

\[I_0 + 1 = I_0 + \Delta I \]

\[\Delta I = 1 \]

If we assume that $N > 0$, and since $\Delta I > 0$ then $\vec{D} = [<>]$
Example with Multiple Subscripts

```
for (i = 0; i < 100; ++i)
  for (j = 0; j < 100; ++j)
    for (k = 0; k < 100; ++k)
      S: a[i+1][j][k] = a[i][j][k+1] + B;
```
Example with Multiple Subscripts

```
for (i = 0; i < 100; ++i)
    for (j = 0; j < 100; ++j)
        for (k = 0; k < 100; ++k)
            S: a[i+1][j][k] = a[i][j][k+1] + B;
```

```
\begin{align*}
    l_0 + 1 &= l_0 + \Delta l \\
    J_0 &= J_0 + \Delta J \\
    K_0 &= K_0 + \Delta K + 1
\end{align*}
```
Example with Multiple Subscripts

```plaintext
for (i = 0; i < 100; ++i)
  for (j = 0; j < 100; ++j)
    for (k = 0; k < 100; ++k)
S:  a[i+1][j][k] = a[i][j][k+1] + B;
```

\[
\begin{align*}
 l_0 + 1 &= l_0 + \Delta l \\
 J_0 &= J_0 + \Delta J \\
 K_0 &= K_0 + \Delta K + 1
\end{align*}
\]

\[
\begin{align*}
 \Delta l &= 1 \\
 \Delta J &= 0 \\
 \Delta K &= -1
\end{align*}
\]
Example with Multiple Subscripts

```
for (i = 0; i < 100; ++i)
    for (j = 0; j < 100; ++j)
        for (k = 0; k < 100; ++k)
            S: a[i+1][j][k] = a[i][j][k+1] + B;
```

\[
\begin{align*}
I_0 + 1 &= I_0 + \Delta I \\
J_0 &= J_0 + \Delta J \\
K_0 &= K_0 + \Delta K + 1
\end{align*} \quad \iff \quad \begin{align*}
\Delta I &= 1 \\
\Delta J &= 0 \\
\Delta K &= -1
\end{align*}
\]

\[\vec{D} = [<, =, >]\]
A More Complicated Example

\[
\begin{align*}
\text{for } (i = 0; i < 100; ++i) \\
\text{for } (j = 0; j < 100; ++j) \\
a[i + 1][j] &= a[i][5] + B;
\end{align*}
\]
A More Complicated Example

\[
\begin{align*}
\textbf{for} & \quad (i = 0; i < 100; ++i) \\
& \quad \textbf{for} \quad (j = 0; j < 100; ++j) \\
& \quad a[i + 1][j] = a[i][5] + B;
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 l_0 + 1 &= l_0 + \Delta l \\
 j_0 &= 5
\end{cases}
\end{align*}
\]

\[
\vec{D} = [<, *]
\]
A More Complicated Example

```c
for ( i = 0; i < 100; ++i )
    for ( j = 0; j < 100; ++j )
        a[ i + 1][ j ] = a[ i ][5] + B;
```

\[
\begin{align*}
 l_0 + 1 &= l_0 + \Delta l \\
 J_0 &= 5
\end{align*}
\] \quad \Leftrightarrow \quad \begin{align*}
 \Delta l &= 1 \\
 \Delta J &= 5
\end{align*}
A More Complicated Example

\begin{align*}
\textbf{for} & \quad (i = 0; \ i < 100; \ ++i) \\
\textbf{for} & \quad (j = 0; \ j < 100; \ ++j) \\
\quad a[i+1][j] & = a[i][5] + B;
\end{align*}

\begin{align*}
\left\{
\begin{array}{l}
 l_0 + 1 = l_0 + \Delta l \\
 J_0 = 5
\end{array}
\right. & \quad \iff \\
\left\{
\begin{array}{l}
 \Delta l = 1 \\
 \Delta J = 5
\end{array}
\right.

\vec{D} = [<, *]
\end{align*}
Yet Another Example

```
for ( i = 0; i < 100; ++i )
  for ( j = 0; j < 100; ++j )
    a[ i +1] = a[ i ] + B[ j ];

\vec{D}_a = [<, *]
```
Yet Another Example

\[
\begin{aligned}
\textbf{for} \ (i = 0; i < 100; ++i) \\
&\quad \textbf{for} \ (j = 0; j < 100; ++j) \\
&\quad \quad a[i+1] = a[i] + B[j]; \\
\end{aligned}
\]

\[
\vec{D}_a = [<, \ast]
\]

\[
\begin{aligned}
\textbf{for} \ (j = 0; j < 100; ++j) \\
&\quad \textbf{for} \ (i = 0; i < 100; ++i) \\
&\quad \quad a[i+1] = a[i] + B[j];
\end{aligned}
\]
Yet Another Example

\begin{verbatim}
for (i = 0; i < 100; ++i)
 for (j = 0; j < 100; ++j)
 a[i +1] = a[i] + B[j];

\vec{D}_a = [<, *]

for (j = 0; j < 100; ++j)
 for (i = 0; i < 100; ++i)
 a[i +1] = a[i] + B[j];

\vec{D}_a = [*, <]
\bar{D}_a = { [<, <] [=, <] [>, <] }
\end{verbatim}
Yet Another Example

```
for (i = 0; i < 100; ++i)
    for (j = 0; j < 100; ++j)
        a[i+1] = a[i] + B[j];

\vec{D}_a = [<, *]
```

```
for (j = 0; j < 100; ++j)
    for (i = 0; i < 100; ++i)
        a[i+1] = a[i] + B[j];

\vec{D}_a = [* , <]
\vec{D}_a = \{ [<, <] , [=, <] , [>, <] \}
```

- \([<, <]\) is a level-1 true dependence
- \([=, <]\) is a level-2 true dependence
- \([>, <]\) is a level-1 anti-dependence. It exists because of the following iteration numbers: \(j = 0\) and \(i = 1\), and \(j = 1\) and \(i = 0\)
Steps to Perform Loop Transformations

1. Assume *affine* iteration space (i.e. something like $f(x) = ax + bx + cx + \cdots + K$ where a, b, c and K are constants)

2. Perform preliminary transformations — See Allen and Kennedy, chapter 4, but you know many of them (they use data flow analysis, def-use chains, etc.):
 - Loop normalization
 - Forward expression substitution
 - Induction-variable substitution (any variable v in a *for* loop L with index i which can be expressed as $v = cstExpr \times i + iExpr_L$ where $cstExpr$ and $iExpr$ do not vary in L)
 - ...

3. Separate the various subscript/index tuples into various groups (not seen here — see Allen and Kennedy, chapter 3 for more complete dependence testing techniques).

4. Assess all the dependences in the loop nest

5. Perform some loop transformation, and test for dependence violation
Consider the following loop:

```
for ( j = 0; j < N ++j )
    for ( i = 0; i < N ++i )
S: a[ i+1][ j ] = a[ i ][ j ] + B;
```

There is a true loop-carried dependence from S to itself. But as in C we have a “row-major” type of storing dimensions, the stride used to access a is memory-inefficient (and would prevent a vectorizing compiler from vectorizing the loop).
Consider the following loop:

```c
for (j = 0; j < N ++j )
    for (i = 0; i < N ++i )
S:    a[i+1][j] = a[i][j] + B;
```

There is a true loop-carried dependence from \(S \) to itself. But as in C we have a “row-major” type of storing dimensions, the stride used to access \(a \) is memory-inefficient (and would prevent a vectorizing compiler from vectorizing the loop). When interchanging the two loops, we enable multiple optimizing transformations for the compiler:

```c
for (i = 0; i < N ++i )
    for (j = 0; j < N ++j )
S:    a[i+1][j] = a[i][j] + B;
```
Safety of Loop Interchange

Not all loops can be interchanged safely. For example:

\[
\begin{align*}
\textbf{for} & \quad (j = 0; \ j < N \ ++j) \\
& \quad \textbf{for} \quad (i = 0; \ i < N \ ++i) \\
S : \quad & a[i+1][j] = a[i][j+1] + B;
\end{align*}
\]

Question: what is the direction vector for this loop?
Safety of Loop Interchange

Not all loops can be interchanged safely. For example:

\[
\begin{align*}
\textbf{for} & \quad (j = 0; j < N \; \text{++} \; j) \\
& \quad \textbf{for} \quad (i = 0; i < N \; \text{++} \; i) \\
S: \quad a[i+1][j] &= a[i][j+1] + B;
\end{align*}
\]

Question: what is the direction vector for this loop?

\[\vec{D} = [>, <]\]

We cannot interchange the two loops!
Illustration of Preceding Example
Safety of Loop Interchange (cont’d)

Definition
A dependence is *interchange preventing* with respect to a given pair of loops if interchanging those loops would reorder the endpoints of the dependence.

Definition
A dependence is *interchange sensitive* if it is carried by the same loop after interchange. That is, an interchange-sensitive dependence moves with its original carrier loop to the new level.

In the previous picture, the dashed red arrow is interchange preventing, while the horizontal and vertical arrows represent interchange-sensitive dependences. The “diagonal” dependence will always be carried by the outermost loop.

Theorem
Let $\vec{D}(\vec{i}, \vec{j})$ be a direction vector for a dependence in a perfect loop nest of n loops. Then the direction vector for the same dependence after a permutation of the loops in the nest is determined by applying the same permutation to the elements of $\vec{D}(\vec{i}, \vec{j})$.
Direction Matrix

Definition

The *direction matrix* for a loop nest L_n is a matrix in which each row is a direction vector for some dependence between statements contained in the next and every such direction vector is represented by a row.

Example:

$$\begin{array}{c}
\text{for (} k = 0; k < L; ++k) \\
\text{for (} j = 0; j < M; ++j) \\
\quad \text{for (} i = 0; i < N; ++i) \\
\quad \quad a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1];
\end{array}$$

Its direction matrix is
Definition

The direction matrix for a loop nest L_n is a matrix in which each row is a direction vector for some dependence between statements contained in the next and every such direction vector is represented by a row.

Example:

```
for (k = 0; k < L; ++k)
  for (j = 0; j < M; ++j)
    for (i = 0; i < N; ++i)
      a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1];
```

Its direction matrix is

\[
\begin{bmatrix}
\leq & \leq & \equiv \\
\equiv & > & <
\end{bmatrix}
\]

Legality of loop interchange

A permutation of the loops in a perfect nest is legal if and only if the direction matrix, after the same permutation is applied to its columns, has no “$>$” direction as the leftmost non-“$=$” direction in any row.
Back to Our Example

Its direction matrix is

\[
\text{for } (k = 0; k < L; ++k) \\
\text{for } (j = 0; j < M; ++j) \\
\text{for } (i = 0; i < N; ++i) \\
a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1];
\]
Back to Our Example

Its direction matrix is

\[
\begin{bmatrix}
< & < & = \\
< & = & >
\end{bmatrix}
\]

Is the following loop interchange legal?
Back to Our Example

Its direction matrix is

\[
\begin{bmatrix}
< & < & = \\
< & = & > \\
\end{bmatrix}
\]

Is the following loop interchange legal?

Its direction matrix is

\[
\begin{align*}
\textbf{for } & (k = 0; k < L; ++k) \\
\textbf{for } & (j = 0; j < M; ++j) \\
\textbf{for } & (i = 0; i < N; ++i) \\
& a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1];
\end{align*}
\]
Back to Our Example

Its direction matrix is

\[
\text{for } (k = 0; k < L; ++k) \\
\text{for } (j = 0; j < M; ++j) \\
\text{for } (i = 0; i < N; ++i) \\
a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1]; \\
\begin{bmatrix}
\lt & \lt & \eq \ \\
\lt & \eq & \gt
\end{bmatrix}
\]

Is the following loop interchange legal?

Its direction matrix is

\[
\text{for } (j = 0; j < M; ++j) \\
\text{for } (i = 0; i < N; ++i) \\
\text{for } (k = 0; k < L; ++k) \\
a[i+1][j+1][k] = a[i][j][k] + a[i][j+1][k+1]; \\
\begin{bmatrix}
\eq & \gt & \lt
\end{bmatrix}
\]
Loop Parallelization

Theorem
In a perfect loop nest, a particular loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only “=” entries.

Example:

```c
for (k = 0; k < L; ++k) {
    for (j = 0; j < M; ++j) {
        for (i = 0; i < N; ++i) {
            a[i][j][k+1] = a[i][j][k] + X1;
            b[i+1][j][k] = b[i][j][k] + X2;
            c[i+1][j+1][k+1] = c[i][j][k] + X3;
        }
    }
}
```

Its direction matrix is

```
< = =
< = = =
< < < <
```
Loop Parallelization

Theorem

In a perfect loop nest, a particular loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only “=” entries.

Example:

```c
for (k = 0; k < L; ++k) {
    for (j = 0; j < M; ++j) {
        for (i = 0; i < N; ++i) {
            a[i][j][k+1] = a[i][j][k] + X1;
            b[i+1][j][k] = b[i][j][k] + X2;
            c[i+1][j+1][k+1] = c[i][j][k] + X3;
        }
    }
}
```

Its direction matrix is

```
< = =
= = <
< < <
```

Where can we introduce parallelism?
for (k = 0; k < L; ++k) {
 // Parallelize here, for example:
 #pragma parallel omp for default(none) \
 shared (a,b,c,X1,X2,X3) private (i,j)
 for (j = 0; j < M; ++j) {
 for (i = 0; i < N; ++i) {
 a[i][j][k+1] = a[i][j][k] + X1;
 b[i+1][j][k] = b[i][j][k] + X2;
 c[i+1][j+1][k+1] = c[i][j][k] + X3;
 }
 }
}

Its direction matrix is
Loop Parallelization (cont’d)

```c
for (k = 0; k < L; ++k) {
    // Parallelize here, for example:
    #pragma parallel omp for default(none)
        shared (a,b,c,X1,X2,X3) private (i,j)
    for (j = 0; j < M; ++j) {
        for (i = 0; i < N; ++i) {
            a[i][j][k+1] = a[i][j][k] + X1;
            b[i+1][j][k] = b[i][j][k] + X2;
            c[i+1][j+1][k+1] = c[i][j][k] + X3;
        }
    }
}
```

Its direction matrix is

\[
\begin{bmatrix}
< & = & = \\
= & = & < \\
< & < & < \\
\end{bmatrix}
\]