Advanced Topics in Dataflow Computing and Multithreading

Guang R. Gao
McGill University, Montreal

Lubomir Bic
University of California, Irvine

Jean-Luc Gaudiot
University of Southern California
Contents

Foreword .. vii

Introduction ... ix

Processor Design
Design Principle of Massively Parallel Distributed-Memory Multiprocessor Architecture .. 1
 M. Amamiya and T. Kawan

StarT the Next Generation: Integrating Global Caches and Dataflow Architecture .. 19
 B.S. Ang, Arvind, and D. Chiu

Synchronization and Pipeline Design for a Multithreaded Massively Parallel Computer 55
 S. Sakai

Superpipelined Dynamic Data-Driven VLSI Processors 75
 H. Terada, M. Iwata, S. Miyata, and S. Komori

Language and Programming Issues
Stream Data Types for Signal Processing 87
 J.B. Dennis

Multilateral Diagrammatical Specification Environment Based on Data-Driven Paradigm 103
 M. Iwata and H. Terada

Coarse-Grain Dataflow Programming of Conventional Parallel Computers ... 113
 R. Jagannathan

Distributed Data Structure in Thread-Based Programming for a Highly Parallel Dataflow Machine EM-4 131
 M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi, and S. Sekiguchi

Programmability and Performance Issues of Multiprocessors on Hard Nonnumeric Problems 143
 A. Sohn and J.-L. Gaudiot

Compiling
Exploiting Iteration-Level Parallelism in Dataflow Programs 167
 L. Bie, J.M.A. Roy, and M. Nagel

Empirical Study of a Dataflow Language on the CM-5 187
 D.E. Culler, S.C. Goldstein, K.E. Schaus, and T. von Eicken

Programming the ADAM Architecture with SISAL 211
 S. Mitrović
Can Dataflow Machines Be Programmed with an Imperative Language?........ 229
S. F. Waft and D. Abramson

Resource Management and Scheduling
The Token Flow Model... 267
J. Buck and E. A. Lee
Distributed Task Management in SISAL......................... 291
M. Haines and A. P. W. Böhm
Load Balancing and Resource Management in the ADAM Machine........... 307
O. C. Maquelin

Workload Management in Massively Parallel Computers:
Some Dataflow Experiences 325
D. F. Snelling and J. R. Gurd

Studies on Optimal Task Granularity and Random Mapping 349
T. Sterling, J. Kuehn, M. Thistle, and T. Anastasio

The Effects of Resource Limitations on Program Parallelism 367
K. B. Theobald, G. R. Gao, and L. J. Hendren

Program Characteristics and Performance Studies
The Dataflow Parallelism of FFT.................................. 393
A. P. W. Böhm and R. E. Hiromoto

Locality in the Dataflow Paradigm................................ 405
I. Gottlieb and L. Biran

Locality and Latency in Hybrid Dataflow.......................... 417
W. A. Najjar, W. M. Miller, and A. P. W. Böhm

Implementation of Manipulator Control Computation on Conventional
and Dataflow Multiprocessor.................................. 435
S. Zeng and G. K. Egan

Biography.. 449