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Abstract 

We describe Charm++, an object oriented 
portable parallel programming language based on 
Cff. Its design philosophy, implementation, sam- 
ple applications and their performance on vari- 
ous parallel machines are described. Charm++ is 
an explicitly parallel language consisting of Cft 
with a few extensions. It provides a clear separa- 
tion between sequential and parallel objects. The 
execution model of Charm++ is message driven, 
thus helping one write programs that are latency- 
tolerant. The language supports multiple inheri- 
tance, dynamic binding, overloading, strong typ- 
ing, and reuse for parallel objects. Charm++ pro- 
vides specific modes for sharing information be- 
tween parallel objects. Extensive dynamic load 
balancing strategies are provided. It is based on 
the Charm parallel programming system, and its 
runtime system implementation reuses most of the 
runtime system for Charm. 

1 Introduction 

In the last decade, parallel processing has emerged 

as a powerful new technology. Many large scale 

commercial parallel machines are available today, 

such as Intel’s iPSC 860 and the Paragon, 
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NCUBE’s 1024 processor machines, the CM-5, 

KSR, etc. A large class of applications, in science, 

engineering, operations research, and even artifi- 

cial intelligence, can potentially benefit from par- 

allel processing, and enable solution of important 

problems. 

However, programming these machine remains a 

substantial hurdle. This is partly due to the new 

issues and difficulties that must be faced in writing 

parallel programs, such as scheduling, load balanc- 

ing, synchronization and race conditions, the ne- 

cessity of having to deal with communication laten- 

ties, and so on. In addition, parallel programming 

is made difficult by the fact the software developed 

for one parallel computer cannot be reused easily 

on another. These software hurdles must be over- 

come before the technology can be used effectively. 

In the same decade, the object oriented method- 

ology has emerged as a promising way of developing 

and organizing software, and permitting its reuse. 

This methodology has been brought into common 

practice to a large extent by pragmatic languages 

such as C++. Can object orientation help solve 

the parallel programming problem? It appears to 

be a natural choice for many reasons. The notion 

of state and persistence, which is one of the central 

features of object oriented methodology, naturally 

leads to the notion of a process, which is a central 

notion in parallel processing. Processes encapsu- 

late local data and interact with other processes 

only via defined interfaces, such as messages. Other 

notions such as inheritance and polymorphism can 
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be seen to acquire a new importance in the parallel 

world, where library modules must deal with data 

defined by other modules which may be distributed 

differently in different applications. 

Even independent of the question of whether 

object orientation can be a help in solving prob- 

lems of parallel programming, a separate argument 

can be made for developing a parallel object ori- 

ented system. Parallel processing and object ori- 

ented methodology have emerged, independently, 

as promising and popular new technologies. It can 

be predicted that both of these will be pursued 

and used extensively in years to come. It therefore 

makes sense to provide a bridge between the two 

powerful technologies, to combine their benefits. 

These considerations have led to substantial re- 

search on concurrent object oriented systems, some 

of which are summarized in Section 2. The work 

presented in this paper is based on the parallel pro- 

gramming concepts developed in the Charm par- 

allel programming system. The essential philoso- 

phy of Charm is discussed in Section 3, along with 

the guiding principles that we used for synthesizing 

these parallel programming constructs with object 

oriented constructs. We chose to use C++[27] as 

the underlying language, although the basic par- 

allel constructs are equally applicable in other ob- 

ject oriented languages as well. Section 4 describes 

the resultant language, including the structure of 

the program, concurrent classes, abstractions for 

specifically shared objects, and features that sup- 

port modularity. It also describes a simple exam- 

ple which demonstrates some concepts. Charm++ 

has been implemented to run on many parallel 

machines, including, shared memory machines (e.g. 

Sequent Symmetry), non-shared memory machines 

(e.g. the nCUBE/2 ), uniprocessors, and networks 

of workstations. The translator used in this imple- 

mentation: as well as relevant aspects of the run- 

time support system, are briefly discussed in Sec- 

tion 5. Section 6 describes a small set of appli- 

cations implemented using Charm++, along with 

their performance results on parallel machines. Fi- 

nally, Section 7 presents some conclusions and a 

discussion of future work. An example which uses 

dynamically created concurrent objects and shared 

objects is illustrated in Appendix A. 

2 Previous Work 

In this section we briefly discuss work done previ- 

ously by other researchers in object oriented con- 

current programming. 

The notion of “actors” was described by Hewitt 

[17] and further developed by Agha [l]. One of 

the first implementations of Actors on commercial 

parallel machines was carried out recently using 

Charm [18]. A c t ors, which are concurrent objects, 

communicate with each other solely via messages, 

and allow concurrency even within a single actor. 

The execution model for actors is message driven, 

which is helpful for latency tolerance (see Section 

3). However, we believe that concurrency within an 

object is difficult to manage, for the programmer as 

well as for the system. Moreover, using messages 

as the sole mechanism for information exchange di- 

minishes the expressiveness of the language as well 

as its efficiency. Charm++ supports specific kinds 

of “shared objects” in addition to messages for this 

reason (Section 4.3). Other Actor like languages 

include Cantor [3]. 

ABCL/1[29] 1 h a so as concurrent, message driven 

objects. An object processes one message at a time, 

and can selectively receive messages. Communica- 

tion between objects can be blocking, non-blocking 

or future based. ,4n express mode of messaging al- 

lows high priority messages to be processed quickly. 

ABCL/l also supports delegation. A low-latency 

implementation of ABCL was recently done[28] on 

the Fujitsu APlOOO. 

Concurrent Smalltalk (CST) [ll] is an experi- 

mental language designed to run on (fine grained) 

message-driven processors. The CA (Concurrent 

Aggregates) language [8, 91 supports a fine-grained 

model of para,lleliim, originally intended for the J- 

machine. An aggregate is a collection of objects 

that has a single name - a call to an aggregate may 
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be sent to any one of its members. This idea has 

some similarities with the idea of “branch offices” 

(see Section 4.1 j of chares, implemented in Charm 

around the same time that CA was defined [al]. 

CA offers concurrency within objects, which can 

be distributed across more than one processor, al- 

lowing hierarchies of parallel abstractions. CA also 

supports delegation, first class messages and con- 

tinuations. 

pC++ [14, 51 is a parallel C-l-+ language largely 

oriented toward data-parallel and SPMD pro- 

grams, and is based on CA and High Performance 

Fortran (HPF) ideas. It has a single thread of 

control, which can be forked into parallel threads 

(one on each processor) via a concurrent call. 

The concurrent objects share arrays which are dis- 

tributed using HPF-like constructs such as align- 

ments and distribution-templates. Originally de- 

signed for shared memory machines, PC++ has re- 

cently been implemented on the CM-5. C** [24] is 

another data-parallel C-t-t- language. 

Mentat is a noteworthy portable C-t- + based lan- 

guage [15]. C oncurrent objects are specified sepa- 

rately from sequential objects, which is a desirable 

feature, because it gives the programmer control 

over parallelism. Mentat, however, overloads con- 

structs for method invocation and message send- 

ing, which makes the cost of a call unclear to the 

programmer. Mentat supports futures, and man- 

ages object location, and synchronization and for- 

warding of communication automatically based on 

compiler analysis of dependences. Mentat does not 

appear to provide any special constructs for pro- 

gramming regular, data-parallel computations. 

pSather [la] b is ased on the Eiffel object oriented 

language. It supports a shared-memory model, 

based on clusters of shared-memory processors. 

Objects are localized to a cluster, and can have 

multiple concurrent threads, with synchronization 

provided by a monitor construct. pSather has data- 

parallel constructs for distribution and alignment. 

ESP-C+t [25] h as concurrent objects, transpar- 

ent remote method invocation: and blocking as well 

as non-blocking, future based messaging. Amber 

[7], and its predecessor Presto [4], are designed 

for a network of shared-memory multiprocessors. 

They provide a uniform network-wide object space. 

Amber objects are passive entities, and thread ob- 

jects invoke operations on them. The programmer 

can control object location by migration primitives. 

Both ESP and Amber do not seem to have been 

ported to commercial massively parallel comput- 

ers. 

There are several other efforts in this area. 

CC++ [6] provides various parallel constructs 

while using Cf+ for the sequential portions of 

the codes. POOL-T [2] has parallel objects that 

can be dynamically created, with a blocking model 

of communication between objects. Parallel-Q-f 

[19] provides a restricted “co-begin, co-end” model 

of process creation. Only sequential objects are 

allowed, which can be “migrated” to other proces- 

sors. OOMDC/C [lo] h as a message driven com- 

puting model built on C, and does not appear to 

fully support object oriented features like inheri- 

tance and dynamic binding. 

Charm++ differs from most, if not all, of the 

above in the following respects : Charm-l--l- sup- 

ports abstractions for specific modes of informa- 

tion sharing, in addition to supporting communi- 

cation via messages. It incorporates a message- 

driven scheduling strategy, which is essential for 

latency tolerance. It provides extensive support for 

dynamic load balancing, and prioritization of mes- 

sages. It supports a novel replicated type of object 

called a “branched chare” which has a sequential as 

well as parallel interface, and which can be used for 

efficiently programming data parallel applications. 

Charm+ does not depend on an operating system 

provided threads package, hence avoids the corre- 

sponding overhead and non-portability. It is also 

one of the few systems that has been implemented 

on many commercial shared as well as large dis- 

tributed memory machines. 
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3 Design Philosophy 

We will first describe the parallel programming 

concepts developed in the Charm parallel program- 

ming system[21, 13,201, and then discuss issues in- 

volved in synthesizing them with object oriented 

notions. 

3.1 The Charm Parallel Programming 
Philosophy 

The rationale used in the design of Charm can be 

summarized as follows. 

Portability is an essential catalyst for large scale 

development of parallel software. Charm programs 

run without change on all MIMD machines. 

The system must allow dynamic creation of par- 

allel work, and support it with dynamic load bal- 

ancing strategies. Such a facility is necessary 

to handle many irregular parallel computations 

(such as AI search computations, discrete optimiza- 

tion, irregular finite-element computations, adap- 

tive grid refinements, etc.). 

Simple Charm programs, therefore, specify par- 

allel processes called &ares’. Chares can create 

new chares, and send messages to each other. (It is 

possible to have a large number of chares per pro- 

cessor.) However, messages are only a restricted 

mode in which chares share information with each 

other. Parallel computations in general require 

processes to share data in a few specific but dis- 

tinct modes. Recognizing this, Charm provides 

additional datu abstractions for information shar- 

ing. These include constructs such as read-only 

data, accumulators, monotonic variables (used in 

branch-and-bound computations), and distributed 

tables. 

Charm also supports a special form of chare 

called brunch-ofice chare (BOC). A BOC instance 

has one branch on every processor. Each branch 

can send and receive asynchronous messages as a 

chare, but may also provide sequential public func- 

‘chare is Old English for chore. 

tions. A BOC instance has a single global name. 

So, a dynamically load balanced chare can call a 

BOC function without knowing which processor it 

is on; the call is always handled by the local branch 

of the BOC instance2. BOCs support regular, data 

parallel computations easily and efficiently. 

Latency Tolerance: Remote data always takes 

more time to access than local data, on any scal- 

able parallel machine. Moreover, the arrival of re- 

mote data can be further delayed due to runtime 

conditions and computations on remote processors. 

The parallel programming system should make it 

possible to tolerate this latency of communication. 

Message driven execution - instead of the tradi- 

tional blocking-receive-based communication - is 

employed in Charm to attain this goal. In message 

driven execution, aJl computations are initiated in 

response to messages being received. 

All system calls in Charm are non-blocking. So 

access to remote data is always done in a “split- 

phase” fashion. Along with message driven execu- 

tion, this induces better latency tolerance : while 

one process is waiting for remote data, another pro- 

cess, which has a message directed to it, may be 

scheduled on the same processor. What is more, 

a single process may wait for multiple data items 

simultaneously. Hence split-phase remote access 

allows overlap of communication and computation. 

Futures are sometimes used for latency tolerance 

in specific contexts. A process spawns another pro- 

cess to compute a value to be stored in a future. 

The calling process (or others) may do other com- 

putations and then when they need the value of 

the future, make a call to access it. If the value 

in the future has been computed, the calling pro- 

cess continues with this value; otherwise it blocks 

until this value is available. Compared to a (syn- 

chronous) remote procedure call (RPC), futures are 

better at overlapping communication and compu- 

tation. However, futures do not allow a single pro- 

cess to wait for multiple messages simultaneously. 

‘In contrast, a call to a concurrent aggregate in C-4 goes 

to a system chosen representative on some processor via an 

RPC-like mechanism. 
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Also, futures do not adapt to the runtime variation 

of remote response time: a programmer must de- 

cide how much computation to do before blocking 

on a future. Finally, transparent implementation 

of futures [15] hides the true cost of remote invoca- 

tion from the programmer, because all invocations 

appear to have the same blocking syntax and se- 

mantics. 

3.2 Synthesizing Parallelism with Ob- 
ject Orientation 

For completeness, we briefly restate some of the es- 

sential properties of object oriented programs. An 

object oriented program (e.g. a C++ program) 

consists of class definitions, global variable decla- 

rations and function definitions. Each class encap- 

sulates some data, and defines public and private 

functions to access and modify this data in spe- 

cific ways. In addition to this data abstraction, 

an object oriented language supports inheritance, 

and dynamic binding. A class may be defined as 

a subclass of another, thus inheriting all the func- 

tions defined for the superclass. A class may also 

redefine some of the functions defined by the su- 

perclass. Dynamic binding refers to the ability to 

determine the function to be called at run time. 

The programmer calls a function of an object be- 

longing to a base class, which at runtime may have 

been specialized to an instance of a derived class. 

Charm-l-t disallows unrestricted global variables 

and static variables in classes. Arbitrary opera- 

tions (mutators) on such variables cannot be imple- 

mented with satisfactory (e.g. serializable) seman- 

tics on parallel machines. Instead, we permit only 

global variables that are instances of predefined in- 

formation sharing classes (discussed in Section 4.3). 

Processor specific global variables are supported as 

public variables of branch-office chares. Other than 

this, we decided to retain all the features of C++. 

This allows one to include and interface with se- 

quential C++ code. 

Charm++ consists of the following categories of 

objects: 

1. Sequential objects 

2. Concurrent objects naturally arise from the 

processes (chares) of Charm. These are lo- 

calized units of work. Each chare object has 

its own local data and the code for handling 

messages are methods of these objects. 

3. Replicated objects are the branch-office chares 

of Charm, and consist of a branch on every 

processor. 

4. Next, the specific information sharing modes 

in Charm each become a template for a shared 

object. These objects may encapsulate data of 

any type, but have specific operations that can 

be performed on them. Shared objects are not 

localized to any particular processor, and may 

constitute a distributed data structure. 

5. Communication objects represent entities that 

can be sent as messages between concurrent 

objects. 

We feel that it is important to clearly distin- 

guish between sequential and concurrent objects. 

First, on most parallel machines, the cost of send- 

ing a message to a remote object is significant - 

several tens to hundreds of microseconds. Hence it 

is important for programmers to have a clear cost 

model for the actions in the program. In particular, 

they should understand which parts of their code 

involve expensive remote actions, and which ones 

are simply local function calls. Second, as stated 

above, Charm philosophy necessitates split-phase 

transactions, or asynchronous invocation of meth- 

ods. Thus, when one places a “call” to a concurrent 

object, it is simply deposited into the runtime sys- 

tem, and the caller continues executing subsequent 

code. Eventually, the system schedules the target 

object to process the given message. That object 

may then initiate some other concurrent compu- 

tations, collect their results, and send them in a 

message to the caller object. Clearly, providing the 

same interface as that for sequential objects will be 

misleading because the programmer might expect 

95 



the call to immediately execute, and return the re- 

sult. Third, a clean separation between sequential 

and parallel objects helps algorithm design : the 

“parallel paradigm” (which would be common for 

a class of algorithms) can be encoded in libraries 

using parallel objects to coordinate sequential pro- 

cesses. For each particular algorithm then, only the 

sequential part has to be specified, and this can be 

done using the best sequential algorithm. 

While multiple inheritance, dynamic binding, 

and overloading are supported for sequential ob- 

jects by Ct t, Charmf t extends these concepts 

for concurrent and replicated objects. Thus we al- 

low inheritance hierarchies of parallel classes. Dy- 

namic binding is supported by allowing run time 

determination of the remote parallel object type 

whose code is to be executed. Finally, overloading 

is supported by allowing message types to deter- 

mine the code to be executed on remote objects. 

4 The Charm++ Language 

Charm++ is basically C++ without global vari- 

ables, and with a few extensions to support parallel 

execution. Operations and manipulation of chares 

are restricted (as compared to sequential objects) 

to conform with parallel execution requirements. 

4.1 Structure and execution model 

A Charm++ program consists of modules. Each 

module is defined in a separate file. It can contain 

declarations and definitions of the following enti- 

ties: 

Messages : Message definitions are similar to 

structure definitions in C++. 

message MessageType { 
// List of data members as in C++ 

1; 

A message pointer has type (MessageType *> as 

in C-t+, and can be used as a normal pointer. Mes- 

sages may have two function members : pack and 

unpack (see Section 4.6), which have to be defined 

by the user”. 

Chare classes : Chares are concurrent objects. 

A chare definition has the form 

chare class ChareName [: superclass names] { 
// Private data and member functions as in C++ 
// One or more entry point definitions of the form 

entry: 
EntryPointName(MessageType *MsgPointer) 

{ C++ code block } 

1; 

As chares can exist on remote processors, 

method invocation may involve remote access. 

However, the philosophy of non-blocking remote 
access dictates that all remote access be through 

messages. Hence chare definitions cannot have 

public members, unlike C++ class definitions. The 

entry point definition specifies code that is exe- 

cuted without interruption when a message is re- 

ceived and scheduled for processing. Only one mes- 

sage per chare is executed at a time. Entry points 

are defined exactly as functions, except that they 

cannot return values and they have exactly one ar- 

gument which is a pointer to a message. Each chare 

instance is identified by a handle which is unique 

across all processors. The handle of a chare has 

type ChareName handte. 

Branched chare classes : These are modeled 

after the “branch office chares” of Charm. They are 

special replicated chares that have a branch on all 

processors, with each branch having its own data 

members. Branched chares can have public data 

and function members in addition to entry points 

and private members. A branched chare is identi- 
fied by a unique handle that is common to all its 

branches. Branched chares have similar definition 

syntax as normal chares : 

branched chare class ChareName 
C: superclass names 1 

{ // Private data and member functions as in C++ 
// Public data and member functions 

// Entry points as for normal &ares 

1; 

3Messages can be extended to general classes, with data 

and function members, and inheritance. This extension may 
be incorporated in a future version of Charm++. 
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Sequential objects, normal chares and other 

branch chares can access public members of the 

branch of a branched chare on that processor by 

LocaiBranch(ChareHandle)->DataMember and 

LocalBranch(ChareHandle)->FunctionMember(). 

Specifically shared objects : These are dis- 

cussed in detail in Section 4.3. 

Global functions : These are defined as in 

wt. 

Sequential classes : Charm++ allows hierar- 

chies of classes as in C-l-t. 

Every Charm++ program must have a chare 

type main. There can be only one chare instance 

of this chare type, which executes on a single sys- 

tem selected processor. This must have the entry 

point main. Execution of a Charm+ program 

begins at this entry point. Typically, this entry 

point is used to initialize specifically shared vari- 

ables and create new chares and branched chares. 

Charm++ program execution can be terminated 
by the CharmExit call. The main chare has an 

optional Quiescence entry point which is executed 
when the parallel computation has become quies- 

cent (i.e. when no processor is executing an entry 

point and all messages that have been sent have 

also been consumed). 

4.2 Basic Charm++ calls 

The Charm++ calls that provide support for par- 

allel execution are described below. 

Chares are created with the call 

new-chare(ChareName,EP,MsgPointer). 

The call deposits the seed for a chare in a pool 

of seeds and returns immediately. The chare will 

be created later on some processor, as determined 

by the dynamic load balancing strategy. The call 

causes the chare to be initialized by executing 

its entry point EP with the message contained in 

MsgPointer. Using an optional argument the user 

can also specify a processor to create the chare 

on, thereby overriding the dynamic load balancing 
strategy. new-chare() does not return any value. 

The user may, however, obtain a virtual handle 

(virtual because the chare has not yet been cre- 

ated) to the chare by specifying another optional 

argument. This handle may be used for sending 

messages to the chare or may be passed to other 

objects (see also the MyChareHandleO call). 

Branched chares are created with the call 

new-branched-chare(ChareName,EP,MsgPointer) This 

creates a branch on every processor and initializes 

it by executing EP. Branched chares are usually cre- 

ated in the main entry point of the main chare, in 

which case this call returns the handle of the newly 

created branched chare. When branched chares are 

dynamically created, the user can specify an entry 

point and chare handle at which the handle of the 

newly created branched chare can be received. 

Messages can be sent to chares by the call: 

ChareHandle=>EP (MsgPoint er ) . 

This sends the message pointed to by MsgPointer 

to the chare having handle ChareHandle at the en- 

try point EP, which must be a valid entry point of 

that chare type. Note that this is different from 

sequential method invocation in that it is non- 

blocking4. 

Messages to a branch of a branched chare on a 

processor P can be sent by 

ChareHandleCP] =>EP(MsgPointer). 

Messages to branched chares can be broadcast to 

all branches of that chare (on all processors) by 

ChareHandle[ALL]=>EP(MsgPointer) 

where ALL is a system defined reserved constant. 

Auxiliary calls 

The MyChareHandle(ChareHandle) call fills in 

the handle of the currently executing chare in 

ChareHandle. MainChareHandle(ChareHandle), sim- 

ilarly, obtains the handle of the main chare. These 

4The syntax of the Charm++ calls described above is 

intentionally different from the analogous operations on se- 

quential objects as in C++. This is so that the program- 
mer can clearly distinguish the semantics of parallel objects. 

“=>” instead of “->” for sending messages is used to em- 

phasize the difference between method invocation and mes- 
sage sending : the latter is non-blocking. Similarly, the 
new-chare() call has an analogous function to the %ew” op- 
erator in C++ ; however, it does not return any pointer to 

an object, and moreover? it is non-blocking. 
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handles should be used in preference to virtual han- 

dles because virtual handles involve an extra level 

of redirection of messages. 

Since messages are handled differently by the 

system, they are allocated memory using a different 

call : void *new-message( MESSAGE-TYPE > . The 

programmer relinquishes control of a message when 

it is sent. However, a message received at an entry 

point stays persistent : it may be reused or freed 

by the programmer. 

The ChareExit() call tells the system to release 

memory of the currently executing chare after 

the execution of the current entry point is com- 

pleted. Charm++ does not provide automatic 

garbage collection of chares. The CharmExit call 

causes the system to terminate all processes (non- 

preemptively, as above). 

Terminal input and output from any processor is 

accomplished by the CPrintf() and CScanf() calls, 

which are similar to their C counterparts. They 
guarantee atomicity, ensuring that outputs from 

two CPrintf() 11 ca s on different processors do not 

get mixed. 

Since pointers are not valid across processors in 

general, function pointers are meaningless if passed 

in a message. Charm++ provides calls to convert 

function pointers to and from function reference 

indices, which can be passed in messages : 

FnFlefType FunctionNameToRef(fn-pointer) con- 

verts a function pointer to a reference index, and 

FN-POINTER FunctionReffoName(fn-ref > does the 

reverse. 

Charm-t-k provides a few other calls to query 

processor numbers and for timing computations in 

a portable manner. 

4.3 Specifically shared objects 

Since global variables cannot be provided in a 
parallel execution environment, Charm f + pro- 

vides specific abstract object types for sharing data 

amongst chares, as in Charm. Each abstraction 

for information sharing may be thought of as a 

template, with predefined functions whose code is 

to be provided by the user. These objects are 

created and initialized in the main entry point of 

the main chare, after which they can be accessed 

only through their specific modes, on all proces- 

sors. This section presents a brief description of 

these abstractions. 

Read-Only objects These objects hold in- 

formation (e.g. problem parameters) that is 
obtained immediately after the program be- 

gins execution, but which does not subse- 

quently change. Read-only objects can be ac- 

cessed from any chare on any processor, with- 

out any need for “split-phase” access. 

Write-Once objects These are dynamic 

versions of read-only objects. They can be 
initialized once, from outside the main chare, 

using the results of a parallel computation. 

Accumulator objects An accumulator ob- 

ject has two operators on it : add which adds 

to the object in some user defined manner, and 

combine, which combines two objects. These 

operators must be commutative-associative. 

The accumulator template is predefined by the 

system ; however, the code for the add and 

combine operations for the particular type of 

accumulator has to be provided by the user. 

Accumulators are initialized from the main en- 

try point of the main chare. Any chare can 

“add” to an accumulator variable. The final 

value can be accessed once for each accumula- 

tor variable. Accumulators are optimized for 

fast update, because they can be read only 

once. 

Monotonic objects A monotonic object is 

updated by an operation that is idempotent as 

well as commutative - associative. Moreover, 

the object takes on monotonically increasing 

“values”. Like accumulators, the monotonic 

template is predefined: and the user has to pro- 

vide code for the update operation. Monotonic 

variables are init,ialized in the main entry point 

of the main &are. Any chare can update the 
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variable and also access its value more than 

once. This value may not be the current glob- 

ally best value, but the system propagates the 

best value as soon as possible. 

l Distributed Tables A distributed table is 

a set of entries, where each entry is a record 

with a key and data field. A distributed table 

type can be defined for any particular data 

type. Access to entries is through calls which 

Insert, Delete and Find entries in a particular 

table. All these calls are non-blocking, and 

their behavior depends on the status of the 

table and options specified in the calls. 

4.4 Software reuse through modules 

In sequential programs, modularity is enforced 

through encapsulation and clearly defined inter- 

faces. The modularity features of Charm++, like 

those in Charm, are motivated by the need for 

reusing independently developed, previously com- 

piled modules that can control the visibility of the 

entities they contain. This necessitates constructs 

in addition to those provided by C++ or C. 

A Charm++ program is written as a set of mod- 

ules, which can be separately compiled. A com- 
plete chare definition cannot be split across mod- 

ules. A module is similar to an ADA package; it 

encapsulates a set of related functions and classes 

and can control what entities it exports and im- 

ports using interface statements. Interface state- 

ments for a module include prototypes of all chares, 

shared objects, and functions that are to be ex- 

ported by the module. A module imports other 

modules by including their interface statements. 

Name resolution is done by the scope resolution 

operator “::“. Thus entry point EP in chare type 

ChareName in module Module1 is referred to as 

Module1 : : ChareName : : EP. Remote creation and 

message passing require chare, entry point and 

message names (or ids) to be sent across processors. 

Modules help to ensure consistency of ids across 

separately compiled program units? especially in 

case of dynamic binding and inheritance (see Sec- 

tion 5). 

Supporting modularity and reuse is more diffi- 

cult in a parallel context than in a sequential con- 

text. The issues here are : 

1. For scalability, modules must be able to ex- 

change data in a fully distributed fashion, 

without the need for centralized transfer. This 

is achieved in Charm++ with the branched 

chare abstraction. Since a branched chare 

has a branch on each processor, two branched 

chares in separate modules can exchange data 

s&ably. Also, entities in one module may de- 

posit data in distributed tables which can be 

accessed by other modules. 

2. A reusable module cannot manipulate func- 

tion pointers because it may need to pass the 

function in a message, to be invoked on a dif- 

ferent processor. (E.g. comparison function 

pointers may not be enough for a parallel sort- 

ing module). Charm++ provides function ref- 

erence indices (Section 4.2 above) which can 

be passed across processors in messages. 

3. A reusable module must not assume an input 

data distribution. (E.g. a matrix multipli- 

cation module must not assume a particular 

distribution of the matrices across processors). 

This is supported by branched chares which 

can encapsulate a data distribution, and have 

public functions. 

4.5 Load balancing and memory man- 
agement strategies 

Charm++ allows the user to select from a number 

of dynamic load balancing strategies depending on 

the requirements of the application. The strate- 

gies are implemented as modules on top of the ba- 

sic runtime system. Some of the load balancing 

strategies supported include[26] 

1. Random : new chares are sent to random pro- 

cessors 

2. Adaptive Contracting Within Neighborhood : 

new chares are balanced within a neighbor- 

hood, leading to a global balance. 
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3. Central manager : All new chares are sent 

to a central manager which redistributes them 

among processors. This strategy is meant for 

use with prioritized task creation. 

4. Token : This is a more sophisticated, scalable 

strategy for use with prioritized task creation. 

4.6 Other Charm++ features 

Prioritized Execution : Charm++ provides 

many strategies for managing queues of messages 
waiting to be processed. Some of them (FIFO, 

LIFO, etc) are based solely on the temporal order 

of arrival of messages. The user can also assign pri- 

orities to messages depending on the application re- 

quirements. Charm++ supports integer priorities 

as well as bit-vector priorities (with lexicographi- 

cal comparison of bit-vectors determining order of 

execution). 

Conditional Message Packing : Charm++ 
allows arbitrarily complex data structures in mes- 

sages. On non shared memory systems, pointers 
are not valid across processors, hence it is neces- 

sary to copy (pack) the structure into a contiguous 

block without pointers before sending the message. 

However, packing is wasteful if the message is not 

sent to another processor, or on shared memory 

systems. Hence for messages involving pointers the 

user is required to specify two functions for packing 

and unpacking messages that are called by the sys- 

tem before sending and after receiving a message, 

respectively. Thus only messages that are actually 

sent to other processors are packed. 

4.7 An example 

The following example illustrates inheritance 

and dynamic binding in a parallel context. The 

program is a regular, mostly data parallel algo- 

rithm for iterative solution of partial differential 

equations using the Jacobi method. A blocked data 

partitioning is used to distribute the 2-dimensional 

domain among processors. 

Consider a server chare of type ReductionAnd 5 

5By having general message objects that can define their 

module interface Reduction { 
enum Boolean { FALSE, TRUE }; 
message BooleanObject { 

Boolean convergevalue; 

1; 

// message used for initializing the 
// ReductionAnd branched chare 
message ReductionInit { /* parameters */ }; 

branched chare class Receiver { 
entry : 

// This is called in a broadcast vhen the 
// reduction is completed. 
virtual ReceiveResult(BooleanObject *result); 

1: 

branched chare class ReductionAnd { 
entry: 

Initialize(ReductionInit *parameters); 
// Called vhen this chare is created by a 
// nev-branched-chare call 

pub1 ic : 
void StartRedn(BooleanObject *local, 

Receiver handle h); 
// Called by clients to start a global AND 

Figure 1: Interface for the Reduction library 

module, which is imported in the Jacobi pro- 

gram 

(Figure 1) which provides a global AND reduc- 

tion operation over all processors. This ser- 

vice is needed by many other types of client 

chares. The library module Reduction that defines 

Reduct ionAnd also defines and exports the message 
type BooleanOb j ect and a class Receiver contain- 

ing a virtual entry point ReceiveResult that re- 

ceives results from Reduct ionAnd. 

Client chare types may be defined in separate 

modules. Chare types wanting the ReductionAnd 

service import Receiver in the module they are 

defined in and list Receiver as one of their base 

classes. The clients may choose to inherit the vir- 

tual entrypoint ReceiveResult, or redefine it for 

own combining functions, we can have a general reduction 
module that supports arbitrary combining operations and 
data types. 
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their specific purpose. Dynamic binding ensures 

that the proper ReceiveResult function will be 

called. Note that the clients may be of any type, 

as many different clients may require the same ser- 

vice. 

Figure 2 shows part of the message and sequen- 

tial class definitions for the Jacobi program. In 

Figure 3, Jacobi is a branched chare which is a 

subclass of the Receiver branched chare, allowing 

it to use the ReductionAnd class to do global con- 

vergence testing. Figure 4 has the main chare for 

the Jacobi program. 

The Jacobi branched chare is created from the 
main entry point of the main chare. It is initial- 

ized by sending a message to the BranchInit en- 

try point (which is executed by each branch on 

each processor). BranchInit starts the computa- 

tion by sending the boundaries of its local sub- 

domain to neighboring processors. All proces- 

sors receive boundaries from their neighbours at 

the recvBoundary entry point. Note that mes- 

sages from neighbours can be received in any or- 

der, hence the maximum possible overlap of com- 

putation (copyBoundary with communication is 

possible. After receiving messages from all neigh- 

bours (as measured by the variable count), the 

iterate private function does the local computa- 

tion and checks for local convergence. The local 

convergence value is then passed to the Reduction 

module by the StartRedn call. Note that after the 

local StartRedn call is made, the local processor 
is free to do other work, which would not be pos- 

sible in a system supporting only blocking calls. 

After global reduction is complete, the result is re- 

turned to the ReceiveResult entry point. This 

checks if the computation has globally converged, 

and initiat,es the next iteration otherwise, by send- 

ing its new boundaries to the neighbors. At this 

point the local branch might already have received 

the boundaries from all its neighbors (e.g. because 

they received their reduction results earlier). If so, 

it calls iterate immediately. Otherwise iterate 
will be called from the recvBoundary entry point 

wheu messages from all neighbors have been re- 

ceived. 

101 

Although the above Jacobi code is somewhat less 

concise than code written in a blocking style, it has 

significant performance advantages, and moreover, 

would be only a small part of the actual application 

code which includes the sequential functions not 

shown in the figures. 

The Reduct ionAnd chare could be used similarly 

by, say, a 3-dimensional grid module. Also, the 

ReductionAnd class may implement global AND 

in different ways, even possibly supporting multiple 

(pipelined) concurrent operations. 

module JacobiModule { 

// nxn is the size of each processor's sub-domain 
const int n = 32; 

enum Direction { NORTH, SOUTH, EAST, WEST }; 

// Message holding boundary values that have 
// to go across processors 
message BOUNDARY { 

Direction from; 
float boundary[n+2]; 

1; 

// Message to initialize Jacobi branched chare 
message JacobiInit { ReductionAnd handle redn; }; 

class TnoDGrid { // sequential class 
// The array storing values of points on this 
// processor's sub-domain. There are two 
// extra rows and columns for boundaries. 
float A[n+2] [n+2]; 

public: 
// Constructors and other public functions for 
// operations on 2-D grids such as update and 
// local convergence. 

Figure 2: Message and sequential class defi- 

nitions for the Jacobi program 

5 Implement at ion 

Charm++ ha.s been implemented as a, translator 

and a runtime system. The translator converts 

Charm++ constructs into C++ constructs and 



branched chare class Jacobi : public Receiver { 
TwoDGrid P, Q; 
int count, numOfNeighbours, K, mypenum; 
Boolean reductionDone; 
ReductionAnd handle rednHandle; 
Jacobi handle myHandle; 

public: 
Jacobi0 {} 

entry: 
BranchInit(JacobiInit *nsg) 
{ rednHandle = msg->redn; 

deleteslessage(msg); 
myHandle = MyChareHandleO; 
initialize0; 
sendBoundaries0; 

count = numOfNeighbours; 
reductionDone = TRUE; 

1 
recvBoundary (BOUNDARY *msg) 

{ copyBoundary(msg); 
if (--count == 0 &8c reductionDone) 

iterateo; 

1 
private: 

void iterate0 
{ P.update(%Q); 

BooleanObject *local = (BooleanObject *) 
nev~essage(EooleanObject); 

local->convergeValue = P.LocalConverge(&Q); 
reductionDone = FALSE; 
count = numOfNeighbours; 
LocalBranch(rednHandle)->StartRedn(local, 

myHandle); 

1 
entry: 

ReceiveResult(BooleanObject *global) 
{ if ( global->convergeValue ) 

P.PrintResult(mypenum,K); 
else { // start next iteration 

reductionDone = TRUE; 
P.copy(&Q); 
sendBoundaries(); 
if (count == 0) iterate0; 

1 
1 
void initializeo; 
void sendBoundaries0; 
void copyBoundary(BOUNDARY *msg); 

1; 

Figure 3: JacobiModule continued : the Ja- 

cobi branched chare 

1 r chare class main { 

entry: 
main0 
{ // Execution of the program starts here 

ReductionInit *m = (ReductionInit *) 
nev-message(ReductionInit); 

JacobiInit *msg = (JacobiInit *) 
nevmessage(JacobiInit1; 

// Create the branched chare for doing 
// global AND reduction 
msg->redn = neubranched-chare(ReductionAnd, 

Initialize,m); 

// Start the Jacobi iterations by creating 
// the Jacobi branched chare 
Jacobi handle jacobiboc; 
jacobiboc = new-branchedxhare(Jacobi, 

BranchInit,msg); 

}; // End of JacobiModule 

Figure 4: JacobiModule : the main chare 

calls to the runtime system. The runtime system 

of Charm is reused with modifications to support 

C++ interfac.es. Currently, a prototype transla- 

tor with complete functionality but restricted error 

checking has been implemented. Several test and 

application programs have been successfully exe- 

cuted on various parallel machines. 

The Charm runtime system [13] is written in C. 

It’s lowest layer consists of a machine dependent set 

of routines which use the calls provided by the par- 

ticular machine. On top of this is a machine inde- 

pendent set of rout.ines that implement the various 

functions such as chare creation, message process- 
ing, performance measurements, quiescence detec- 

tion, etc. The different strategies for queue and 

memory management and dynamic load balancing 

are written as modules that can be linked in at link 

time as specified by the user. 

One important function of the Charm++ trans- 

lator is to map parallel class and function names 

into consistent ids which can be passed to other 
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processors. This is important when considering dy- 

namic binding : when a sender sends a message 

to a chare C at an entry point E defined in C’s 

base class, C must call its own definintion of E if it 

has been redefined, otherwise it must call its base 

class’ definition of E. Also, multiple inheritance re- 

quires that ids of entry points inherited from dif- 

ferent base classes do not clash. Again, separate 

compilation of modules means that ids cannot be 

assigned at compile time. On the other hand, all 

ids must be compile time constants if they are to be 
used in a switch statement (as opposed to an inef- 

ficient if-then-else structure) to execute the proper 

code at the destination of the message. 

To meet these conflicting requirements the trans- 

lator generates functions which assign globally 

unique indices to chare and entry point names dur- 

ing initialization at run time. The translator also 

generates a public entry point selector function for 

each chare class which correctly maps global ids to 

the appropriate chare-local constants and then uses 

a switch statement to call the proper local function. 

Thus unique global ids can be passed in messages 

across modules. Similarly, for creating new chare 

objects, the translator generates a chare selector 
function for every module. 

One of the main units in the runtime system is 

the “pick and process” loop. This picks up incom- 

ing messages from the system message buffer, or- 

ders them according to a queueing strategy, and 

then processes them according to the type of mes- 

sage. The message for creating new chares in- 

cludes a chare name index, which is used by the 

translator-generated chare selector function to cre- 

ate the appropriate chare object. The message for 

execution of an entry point of an existing chare in- 

cludes an entry point index along with a message 

pointer and the chare object pointer. The index is 

used in the translator-generated entry point selec- 

tor function to call the proper entry point in the 
proper chare. 

6 Performance results 

Charm++ can be used for regular as well as ir- 

regular parallel computations. Tables 1 and 2 

present performance numbers in terms of speedups 

for three small applications on the nCUBE/2 (dis- 

tributed memory multicomputers), and Sequent 

Symmetry (shared memory multiprocessor). Pre- 
liminary results for the CM-5 are presented in table 
n 

65. 

l Jacobi : This is a regular, mostly data parallel 

algorithm for iterative solution of partial dif- 

ferential equations. The Jacobi method is used 

for 200 iterations of smoothening of a five- 

point stencil. The implementation mainly uses 

branched chares, with blocked partitioning of 

the 2-dimensional array. The speedups given 

are scaled speedups, obtained with a problem 

size of 32x32 grid points per processor. The 

timings for 1 processor are much lower than 

the rest because there is no communication at 

the boundaries of the grid. 

l TSP : This is an irregular application consist- 

ing of a parallel branch and bound implemen- 

tation of the asymmetric Traveling Salesper- 

son Problem. The implementation uses in- 

teger message priorities (equal to the lower 

bound on cost of a branch and bound node) 

to guide search through the branch and bound 

tree. The cost of the best solution is main- 

tained using a monotonic variable. The token 

based load balancing strategy [26] was used to 

distribute chares. Speedup levels off after 64 

processors on the nCUBE/2 because of a large 

increase in the number of wasteful branch and 

bound nodes. 

0 Primes : This is a program to compute the 

number of primes between 2 and a large num- 

ber N (of the order of a billion). The par- 

allel algorithm is based on the Eratosthenes’ 
sieve method. The implementation uses nor- 

mal chares to distribute work among proces- 

sors. The speedups are with reference to a 

serial algorithm which does not create any 
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chares, hence does not include any overhead 

of parallelism. 

PEs Jacobi TSP Primes 

(32x32) (40 cities) (log> 

1 0.88 (1.0) 242.7 (1.0) 4717.7 (1.0) 

16 1.5 (9.1) 20.5 (11.9) 579.0 (8.2) 

64 1.6 (35.4) 11.2 (21.7) 150.8 (31.3) 

256 1.7 (130.2) 11.2 (21.8) 32.3 (145.9) 

Table 1: Times (in seconds) and Speedups for 

3 applications on the nCUBE/2. 

PEs Jacobi TSP Primes 

(32x32) (40 cities) PO 

1 10.5 (1.0) 889.6 (1.0) 734.8 (1.0) 

4 11.4 (3.7) 224.0 (4.0) 184.2 (4.0) 

9 12.5 (7.5) 101.8 (8.7) 82.4 (8.9) 

16 13.9 (12.1) 58.8 (15.1) 46.6 (15.8) 

Table 2: Times (in seconds) and Speedups for 

3 applications on the Sequent Symmetry. 

PEs Jacobi TSP Primes 

(64x64) (40 cities) (10’) 

64 18.7 19.6 25.3 

Table 3: Preliminary Times (in seconds) 

3 applications on the CM-5. 

for 

7 Conclusions and Future work 

We have presented a portable object oriented par- 

Lllel programming system. We have discussed the 

esign issues for Charm++, described its impor- 

.nt constructs, and presented preliminary perfor- 

tnce results for both shared as well as non-shared 

mory machines. 

Charm++ provides a rich set of features that 

make it suitable for a broad range of applications. 

Some of the unique features in Charm++ are: its 

comprehensive support for both regular as well as 

irregular computations; its message driven execu- 

tion model which leads to better efficiency; its sup- 

port for specific, widely useful information sharing 

abstractions; and its user-selectable strategies for 

managing parallelism. Charm-l-f makes the pro- 
grammer and the runtime system each do what 

they do best. The programmer has to specify paral- 

lel computations, which leads to better parallel al- 

gorithm design. The runtime system decides when 

and where to execute work by scheduling and dy- 

namic load balancing. We feel that for efficient uti- 

lization of computing power (sustained speedups as 

opposed to theoretical peak speedups) good paral- 

lel algorithm design is essential. This is only possi- 

ble if the programmer is given flexibility in making 

design decisions along with abstractions that hide 

low level details of how things are done. Charm+f 

makes a significant step in this direction. 

Charm+ + is the latest component of the broader 

family of Charm parallel programming tools. Since 

Charm++ shares the runtime system with Charm, 
it can be used with Projections[22] and future per- 

formance feedback tools developed for Charm. We 

also expect Charm++ modules to co-exist with 

Charm as well as DP[23] ( an HPF based data- 

parallel language being developed on top of Charm) 

modules, in a single application. Dagger[lG] is 

a notation (and a visual editor) for expressing 

synchronization constraints (dependences between 

messages and computations) within a chare. It 

will be extended to provide the same facilities in 

Charmt+. 

Our future agenda for Charm++- consists of work 

in implementation, language design, and applica- 

tions. We will fine tune Charm++ for better per- 

formance and enhance the front-end for better error 

checking and recovery. The syntax of Charm++ 

constructs may be refined depending on initial ex- 

periences and capabilities of the translator. Many 

of the features in Charm-i-t can be generalized. 

We may consider allowing multiple value parame- 

ters as entry point arguments, with marshaling at 
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the sender’s end. Alternatively, message objects 

can be generalized to arbitrary objects, including 

parallel objects. Finally, we will continue devel- 

opment of applications in Charm++ that benefit 

from object oriented parallelism. 
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Appendix A 

The Charm++ program shown in figures 5, 6 

and 7 computes the number of primes between 1 

and a large number (of the order of a billion). 

The algorithm first divides the range of numbers 

among dynamically created chares using a divide- 
and-conquer tree. Each chare at the leaf of the 

tree calls a sequential function which computes the 

number of primes in its range. The count of primes 

computed by each chare is summed using an accu- 

mulator object. 

Figure 5 presents the message and accumulator 

declarations for the Primes program. seqprimes 

is a function defined in a separate file, and so is 
accessed via an extern declaration as usual. The 

RangeMsg is used to spawn the divide-and-conquer 
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tree. The type of the data held by the accumulator 

class AccCount is “pointer to MsgAccCount”. The 

only data any accumulator object is allowed to hold 

is a pointer to a communication object (i.e. a 

nodule Primes { 
'/ This is the sequential function which 
'/ returns the number of primes in a range. 
?xtern int seqPrimes(int lou, int high); 

'/ LENGTH is the size of the range which is 
'/ processed sequentially by seqPrimes0 
:onst int LENGTH = 10000; 

nessage MsgAccCount { int data; }; 

message AccInitMsg { int data; }; 

'1 This message tells a chare what range of 
f/ numbers it should process 
nessage RangeMsg { 

int Low, High; 

t; 

I/ This is the accumulator type used for 
I/ summing primes found by each chare. 
:lass AccCount : public Accumulator { 

MsgAccCount *msg; 

oublic: 
AccCount(Acc1nitMs.g *initmsg) 

i 
// "Constructor" used for initializing 

msg = (MsgAccCount *)neamessage(MsgAccCount); 
msg->data = initmsg->data; 

I 

void Accumulate (int x) 
{ // This accumulates a count 

msg->data += x; 

I 

void Combine (MsgAccCount *y) 
{ // Called only by the system, 

// to combine counts from two processors 
msg->data += y->data; 

1;) 

// This is the accumulator shared object, 
// which can be accessed by all processors 
AccCount *total; 

Figure 5. Primes module : declarations 

message), because the system may implement ac- 

cumulators by having multiple copies on different 

processors, thus requiring the accumulator data to 

be sent across processors. The AccInitMsg is used 

to send initial data to the accumulator. Although 

it appears redundant in this example, general us- 

age of accumulators requires such a message. For 

example, if one were to define an accumulator to 

hold a histogram, the initialization message may 

chare class main { 

entry: 
main0 

t 
int Limit; 

CPrintf("Enter upper limit of range : ">; 
CScanf("%d", &Limit); 

// Create and initialize the accumulator 
AccInitMsg *accmsg = (AccInitMsg *) 

neumessage(Acc1nitKs.g); 
accmsg->data = 0; 
total = new AccCount(accmsg); 

// Create the first chare at the root 
// of the divide-and-conquer tree 
RangeMsg *msg = 

(RangeMsg *) newmessage(RangeMsg); 
msg->Low = 1; 
msg->High = Limit; 
new-chare(PrimesChare, Goal, msg); 

I 

Quiescence0 { 
// This is executed when all chares finish 
main handle *myid; 
myid = MyChareHandleO; 

// Ask the accumulator to send its total 
// to the PrintResult entry point 
total->CollectAccValue(PrintResult, myid); 

1 

PrintResult(MsgAccCount * result) 

t 
CPrintf("The # of primes is:%d.", 

result->data); 
CharmExit(); 

1;) 

Figure 6 : main chare of the Primes module 
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contain the number of slots in the histogram. Al- 

though we include the definition of this accumu- 

lator in the Primes module for illustration, such 

commonly used accumulator subclasses are avail- 

able and can be reused from the Charm++ system 

library. 

Figure 6 shows the main chare definition. The 

main entry of this chare reads the input from the 

user and creates an instance of the accumulator 

(AccCount) object. The handle to this accumu- 

lator instance is stored in total, which can be 

accessed uniformly on all processors. Similarly, a 

message msg is used to create an instance of the 

PrimesChare. Note that all parallel objects are 
created by providing an initial message for them 

to process. Thus, for example, each chare instance 

processes this initial creation message before it pro- 

cesses any other messages directed to it. Charm++ 
supports quiescence detection. If the Quiescence 

entry point is defined in the main chare, the qui- 

escence detection algorithm is activated. When 

there remain no messages to process (i.e. all pro- 

duced messages have been processed), and all pro- 

cessors are idle, the system calls this entry point. 

In the Primes program, this serves the purpose of 

detecting that the tree of chares generated by the 

PrimesChare is exhausted. At this point, the main 

chare requests the accumulator object total to re- 

turn its final value to the PrintResult entry point, 
which simply prints this count and terminates the 

overall program execution. 

Figure 7 shows the PrimesChare definition, 

which happens to have no local variables, and only 

one entry point. The code at this entry point 

checks if the range given to it is small enough. If so, 

it calls seqprimes and adds the count of primes in 

the range to total via the Accumulate call. Oth- 

erwise, it simply divides the range into two, and 

creates chares for each sub-range. In either case it 

calls ChareExit to relinquish the resources occu- 

pied by the chare instance. 

chare class PrimesChare 

{ 
public: 

PrimesChareo {) 

entry: 
Goal(RangeMsg * msgl) 

{ 
int L = msgl->Lov; 
int H = msgl->High; 

if ((H-L+l) > LENGTH) 
{ // Distribute the halves of this range to 

// two new chares 
int Mid = L + (H-L+1)/2; 
RangeMsg *msg2 = (RangeMsg *) 

newmessagec RangeMsg); 
msg2->Low = Mid; 
msg2->High = H; 
msgl->High = Mid-l; 
// Reuse msgl ; msgl->Lov == L already 
new-chare(PrimesChare, Goal, msgl); 
newrhare(PrimesChare, Goal, msg2); 

1 
else { 

int count = seqPrimes(L,H); 
deletemessage(msg1); 

// Accumulate local count in the 
// global total accumulator 
total->Accumulate(count); 

I 
ChareExito; 

t;} 

1; // End of module Primes 

Figure 7 : the PrimesChare 
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