
CHARM++ :

A Portable Concurrent Object Oriented System Based On C++*

Laxmikant V. Kale
Department of Computer Science

University of Illinois, Urbana-Champaign
email : kale@cs.uiuc. edu

Abstract

We describe Charm++, an object oriented
portable parallel programming language based on
Cff. Its design philosophy, implementation, sam-
ple applications and their performance on vari-
ous parallel machines are described. Charm++ is
an explicitly parallel language consisting of Cft
with a few extensions. It provides a clear separa-
tion between sequential and parallel objects. The
execution model of Charm++ is message driven,
thus helping one write programs that are latency-
tolerant. The language supports multiple inheri-
tance, dynamic binding, overloading, strong typ-
ing, and reuse for parallel objects. Charm++ pro-
vides specific modes for sharing information be-
tween parallel objects. Extensive dynamic load
balancing strategies are provided. It is based on
the Charm parallel programming system, and its
runtime system implementation reuses most of the
runtime system for Charm.

1 Introduction

In the last decade, parallel processing has emerged

as a powerful new technology. Many large scale

commercial parallel machines are available today,

such as Intel’s iPSC 860 and the Paragon,

*This research was supported in part by the National Sci-
ence Foundation grants CCR-91-06608 and CCR-90-07195.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

0 1993 ACM Q-89791 -58;-9/93/0009/0091...$1.50

Sanjeev Krishnan
Department of Computer Science

University of Illinois, Urbana-Champaign

email : sanjeev@cs.uiuc. edu

NCUBE’s 1024 processor machines, the CM-5,

KSR, etc. A large class of applications, in science,

engineering, operations research, and even artifi-

cial intelligence, can potentially benefit from par-

allel processing, and enable solution of important

problems.

However, programming these machine remains a

substantial hurdle. This is partly due to the new

issues and difficulties that must be faced in writing

parallel programs, such as scheduling, load balanc-

ing, synchronization and race conditions, the ne-

cessity of having to deal with communication laten-

ties, and so on. In addition, parallel programming

is made difficult by the fact the software developed

for one parallel computer cannot be reused easily

on another. These software hurdles must be over-

come before the technology can be used effectively.

In the same decade, the object oriented method-

ology has emerged as a promising way of developing

and organizing software, and permitting its reuse.

This methodology has been brought into common

practice to a large extent by pragmatic languages

such as C++. Can object orientation help solve

the parallel programming problem? It appears to

be a natural choice for many reasons. The notion

of state and persistence, which is one of the central

features of object oriented methodology, naturally

leads to the notion of a process, which is a central

notion in parallel processing. Processes encapsu-

late local data and interact with other processes

only via defined interfaces, such as messages. Other

notions such as inheritance and polymorphism can

OOPSLA’93, pp. 91-10s

91

be seen to acquire a new importance in the parallel

world, where library modules must deal with data

defined by other modules which may be distributed

differently in different applications.

Even independent of the question of whether

object orientation can be a help in solving prob-

lems of parallel programming, a separate argument

can be made for developing a parallel object ori-

ented system. Parallel processing and object ori-

ented methodology have emerged, independently,

as promising and popular new technologies. It can

be predicted that both of these will be pursued

and used extensively in years to come. It therefore

makes sense to provide a bridge between the two

powerful technologies, to combine their benefits.

These considerations have led to substantial re-

search on concurrent object oriented systems, some

of which are summarized in Section 2. The work

presented in this paper is based on the parallel pro-

gramming concepts developed in the Charm par-

allel programming system. The essential philoso-

phy of Charm is discussed in Section 3, along with

the guiding principles that we used for synthesizing

these parallel programming constructs with object

oriented constructs. We chose to use C++[27] as

the underlying language, although the basic par-

allel constructs are equally applicable in other ob-

ject oriented languages as well. Section 4 describes

the resultant language, including the structure of

the program, concurrent classes, abstractions for

specifically shared objects, and features that sup-

port modularity. It also describes a simple exam-

ple which demonstrates some concepts. Charm++

has been implemented to run on many parallel

machines, including, shared memory machines (e.g.

Sequent Symmetry), non-shared memory machines

(e.g. the nCUBE/2), uniprocessors, and networks

of workstations. The translator used in this imple-

mentation: as well as relevant aspects of the run-

time support system, are briefly discussed in Sec-

tion 5. Section 6 describes a small set of appli-

cations implemented using Charm++, along with

their performance results on parallel machines. Fi-

nally, Section 7 presents some conclusions and a

discussion of future work. An example which uses

dynamically created concurrent objects and shared

objects is illustrated in Appendix A.

2 Previous Work

In this section we briefly discuss work done previ-

ously by other researchers in object oriented con-

current programming.

The notion of “actors” was described by Hewitt

[17] and further developed by Agha [l]. One of

the first implementations of Actors on commercial

parallel machines was carried out recently using

Charm [18]. A c t ors, which are concurrent objects,

communicate with each other solely via messages,

and allow concurrency even within a single actor.

The execution model for actors is message driven,

which is helpful for latency tolerance (see Section

3). However, we believe that concurrency within an

object is difficult to manage, for the programmer as

well as for the system. Moreover, using messages

as the sole mechanism for information exchange di-

minishes the expressiveness of the language as well

as its efficiency. Charm++ supports specific kinds

of “shared objects” in addition to messages for this

reason (Section 4.3). Other Actor like languages

include Cantor [3].

ABCL/1[29] 1 h a so as concurrent, message driven

objects. An object processes one message at a time,

and can selectively receive messages. Communica-

tion between objects can be blocking, non-blocking

or future based. ,4n express mode of messaging al-

lows high priority messages to be processed quickly.

ABCL/l also supports delegation. A low-latency

implementation of ABCL was recently done[28] on

the Fujitsu APlOOO.

Concurrent Smalltalk (CST) [ll] is an experi-

mental language designed to run on (fine grained)

message-driven processors. The CA (Concurrent

Aggregates) language [8, 91 supports a fine-grained

model of para,lleliim, originally intended for the J-

machine. An aggregate is a collection of objects

that has a single name - a call to an aggregate may

92

be sent to any one of its members. This idea has

some similarities with the idea of “branch offices”

(see Section 4.1 j of chares, implemented in Charm

around the same time that CA was defined [al].

CA offers concurrency within objects, which can

be distributed across more than one processor, al-

lowing hierarchies of parallel abstractions. CA also

supports delegation, first class messages and con-

tinuations.

pC++ [14, 51 is a parallel C-l-+ language largely

oriented toward data-parallel and SPMD pro-

grams, and is based on CA and High Performance

Fortran (HPF) ideas. It has a single thread of

control, which can be forked into parallel threads

(one on each processor) via a concurrent call.

The concurrent objects share arrays which are dis-

tributed using HPF-like constructs such as align-

ments and distribution-templates. Originally de-

signed for shared memory machines, PC++ has re-

cently been implemented on the CM-5. C** [24] is

another data-parallel C-t-t- language.

Mentat is a noteworthy portable C-t- + based lan-

guage [15]. C oncurrent objects are specified sepa-

rately from sequential objects, which is a desirable

feature, because it gives the programmer control

over parallelism. Mentat, however, overloads con-

structs for method invocation and message send-

ing, which makes the cost of a call unclear to the

programmer. Mentat supports futures, and man-

ages object location, and synchronization and for-

warding of communication automatically based on

compiler analysis of dependences. Mentat does not

appear to provide any special constructs for pro-

gramming regular, data-parallel computations.

pSather [la] b is ased on the Eiffel object oriented

language. It supports a shared-memory model,

based on clusters of shared-memory processors.

Objects are localized to a cluster, and can have

multiple concurrent threads, with synchronization

provided by a monitor construct. pSather has data-

parallel constructs for distribution and alignment.

ESP-C+t [25] h as concurrent objects, transpar-

ent remote method invocation: and blocking as well

as non-blocking, future based messaging. Amber

[7], and its predecessor Presto [4], are designed

for a network of shared-memory multiprocessors.

They provide a uniform network-wide object space.

Amber objects are passive entities, and thread ob-

jects invoke operations on them. The programmer

can control object location by migration primitives.

Both ESP and Amber do not seem to have been

ported to commercial massively parallel comput-

ers.

There are several other efforts in this area.

CC++ [6] provides various parallel constructs

while using Cf+ for the sequential portions of

the codes. POOL-T [2] has parallel objects that

can be dynamically created, with a blocking model

of communication between objects. Parallel-Q-f

[19] provides a restricted “co-begin, co-end” model

of process creation. Only sequential objects are

allowed, which can be “migrated” to other proces-

sors. OOMDC/C [lo] h as a message driven com-

puting model built on C, and does not appear to

fully support object oriented features like inheri-

tance and dynamic binding.

Charm++ differs from most, if not all, of the

above in the following respects : Charm-l--l- sup-

ports abstractions for specific modes of informa-

tion sharing, in addition to supporting communi-

cation via messages. It incorporates a message-

driven scheduling strategy, which is essential for

latency tolerance. It provides extensive support for

dynamic load balancing, and prioritization of mes-

sages. It supports a novel replicated type of object

called a “branched chare” which has a sequential as

well as parallel interface, and which can be used for

efficiently programming data parallel applications.

Charm+ does not depend on an operating system

provided threads package, hence avoids the corre-

sponding overhead and non-portability. It is also

one of the few systems that has been implemented

on many commercial shared as well as large dis-

tributed memory machines.

93

3 Design Philosophy

We will first describe the parallel programming

concepts developed in the Charm parallel program-

ming system[21, 13,201, and then discuss issues in-

volved in synthesizing them with object oriented

notions.

3.1 The Charm Parallel Programming
Philosophy

The rationale used in the design of Charm can be

summarized as follows.

Portability is an essential catalyst for large scale

development of parallel software. Charm programs

run without change on all MIMD machines.

The system must allow dynamic creation of par-

allel work, and support it with dynamic load bal-

ancing strategies. Such a facility is necessary

to handle many irregular parallel computations

(such as AI search computations, discrete optimiza-

tion, irregular finite-element computations, adap-

tive grid refinements, etc.).

Simple Charm programs, therefore, specify par-

allel processes called &ares’. Chares can create

new chares, and send messages to each other. (It is

possible to have a large number of chares per pro-

cessor.) However, messages are only a restricted

mode in which chares share information with each

other. Parallel computations in general require

processes to share data in a few specific but dis-

tinct modes. Recognizing this, Charm provides

additional datu abstractions for information shar-

ing. These include constructs such as read-only

data, accumulators, monotonic variables (used in

branch-and-bound computations), and distributed

tables.

Charm also supports a special form of chare

called brunch-ofice chare (BOC). A BOC instance

has one branch on every processor. Each branch

can send and receive asynchronous messages as a

chare, but may also provide sequential public func-

‘chare is Old English for chore.

tions. A BOC instance has a single global name.

So, a dynamically load balanced chare can call a

BOC function without knowing which processor it

is on; the call is always handled by the local branch

of the BOC instance2. BOCs support regular, data

parallel computations easily and efficiently.

Latency Tolerance: Remote data always takes

more time to access than local data, on any scal-

able parallel machine. Moreover, the arrival of re-

mote data can be further delayed due to runtime

conditions and computations on remote processors.

The parallel programming system should make it

possible to tolerate this latency of communication.

Message driven execution - instead of the tradi-

tional blocking-receive-based communication - is

employed in Charm to attain this goal. In message

driven execution, aJl computations are initiated in

response to messages being received.

All system calls in Charm are non-blocking. So

access to remote data is always done in a “split-

phase” fashion. Along with message driven execu-

tion, this induces better latency tolerance : while

one process is waiting for remote data, another pro-

cess, which has a message directed to it, may be

scheduled on the same processor. What is more,

a single process may wait for multiple data items

simultaneously. Hence split-phase remote access

allows overlap of communication and computation.

Futures are sometimes used for latency tolerance

in specific contexts. A process spawns another pro-

cess to compute a value to be stored in a future.

The calling process (or others) may do other com-

putations and then when they need the value of

the future, make a call to access it. If the value

in the future has been computed, the calling pro-

cess continues with this value; otherwise it blocks

until this value is available. Compared to a (syn-

chronous) remote procedure call (RPC), futures are

better at overlapping communication and compu-

tation. However, futures do not allow a single pro-

cess to wait for multiple messages simultaneously.

‘In contrast, a call to a concurrent aggregate in C-4 goes

to a system chosen representative on some processor via an

RPC-like mechanism.

94

Also, futures do not adapt to the runtime variation

of remote response time: a programmer must de-

cide how much computation to do before blocking

on a future. Finally, transparent implementation

of futures [15] hides the true cost of remote invoca-

tion from the programmer, because all invocations

appear to have the same blocking syntax and se-

mantics.

3.2 Synthesizing Parallelism with Ob-
ject Orientation

For completeness, we briefly restate some of the es-

sential properties of object oriented programs. An

object oriented program (e.g. a C++ program)

consists of class definitions, global variable decla-

rations and function definitions. Each class encap-

sulates some data, and defines public and private

functions to access and modify this data in spe-

cific ways. In addition to this data abstraction,

an object oriented language supports inheritance,

and dynamic binding. A class may be defined as

a subclass of another, thus inheriting all the func-

tions defined for the superclass. A class may also

redefine some of the functions defined by the su-

perclass. Dynamic binding refers to the ability to

determine the function to be called at run time.

The programmer calls a function of an object be-

longing to a base class, which at runtime may have

been specialized to an instance of a derived class.

Charm-l-t disallows unrestricted global variables

and static variables in classes. Arbitrary opera-

tions (mutators) on such variables cannot be imple-

mented with satisfactory (e.g. serializable) seman-

tics on parallel machines. Instead, we permit only

global variables that are instances of predefined in-

formation sharing classes (discussed in Section 4.3).

Processor specific global variables are supported as

public variables of branch-office chares. Other than

this, we decided to retain all the features of C++.

This allows one to include and interface with se-

quential C++ code.

Charm++ consists of the following categories of

objects:

1. Sequential objects

2. Concurrent objects naturally arise from the

processes (chares) of Charm. These are lo-

calized units of work. Each chare object has

its own local data and the code for handling

messages are methods of these objects.

3. Replicated objects are the branch-office chares

of Charm, and consist of a branch on every

processor.

4. Next, the specific information sharing modes

in Charm each become a template for a shared

object. These objects may encapsulate data of

any type, but have specific operations that can

be performed on them. Shared objects are not

localized to any particular processor, and may

constitute a distributed data structure.

5. Communication objects represent entities that

can be sent as messages between concurrent

objects.

We feel that it is important to clearly distin-

guish between sequential and concurrent objects.

First, on most parallel machines, the cost of send-

ing a message to a remote object is significant -

several tens to hundreds of microseconds. Hence it

is important for programmers to have a clear cost

model for the actions in the program. In particular,

they should understand which parts of their code

involve expensive remote actions, and which ones

are simply local function calls. Second, as stated

above, Charm philosophy necessitates split-phase

transactions, or asynchronous invocation of meth-

ods. Thus, when one places a “call” to a concurrent

object, it is simply deposited into the runtime sys-

tem, and the caller continues executing subsequent

code. Eventually, the system schedules the target

object to process the given message. That object

may then initiate some other concurrent compu-

tations, collect their results, and send them in a

message to the caller object. Clearly, providing the

same interface as that for sequential objects will be

misleading because the programmer might expect

95

the call to immediately execute, and return the re-

sult. Third, a clean separation between sequential

and parallel objects helps algorithm design : the

“parallel paradigm” (which would be common for

a class of algorithms) can be encoded in libraries

using parallel objects to coordinate sequential pro-

cesses. For each particular algorithm then, only the

sequential part has to be specified, and this can be

done using the best sequential algorithm.

While multiple inheritance, dynamic binding,

and overloading are supported for sequential ob-

jects by Ct t, Charmf t extends these concepts

for concurrent and replicated objects. Thus we al-

low inheritance hierarchies of parallel classes. Dy-

namic binding is supported by allowing run time

determination of the remote parallel object type

whose code is to be executed. Finally, overloading

is supported by allowing message types to deter-

mine the code to be executed on remote objects.

4 The Charm++ Language

Charm++ is basically C++ without global vari-

ables, and with a few extensions to support parallel

execution. Operations and manipulation of chares

are restricted (as compared to sequential objects)

to conform with parallel execution requirements.

4.1 Structure and execution model

A Charm++ program consists of modules. Each

module is defined in a separate file. It can contain

declarations and definitions of the following enti-

ties:

Messages : Message definitions are similar to

structure definitions in C++.

message MessageType {
// List of data members as in C++

1;

A message pointer has type (MessageType *> as

in C-t+, and can be used as a normal pointer. Mes-

sages may have two function members : pack and

unpack (see Section 4.6), which have to be defined

by the user”.

Chare classes : Chares are concurrent objects.

A chare definition has the form

chare class ChareName [: superclass names] {
// Private data and member functions as in C++
// One or more entry point definitions of the form

entry:
EntryPointName(MessageType *MsgPointer)

{ C++ code block }

1;

As chares can exist on remote processors,

method invocation may involve remote access.

However, the philosophy of non-blocking remote
access dictates that all remote access be through

messages. Hence chare definitions cannot have

public members, unlike C++ class definitions. The

entry point definition specifies code that is exe-

cuted without interruption when a message is re-

ceived and scheduled for processing. Only one mes-

sage per chare is executed at a time. Entry points

are defined exactly as functions, except that they

cannot return values and they have exactly one ar-

gument which is a pointer to a message. Each chare

instance is identified by a handle which is unique

across all processors. The handle of a chare has

type ChareName handte.

Branched chare classes : These are modeled

after the “branch office chares” of Charm. They are

special replicated chares that have a branch on all

processors, with each branch having its own data

members. Branched chares can have public data

and function members in addition to entry points

and private members. A branched chare is identi-
fied by a unique handle that is common to all its

branches. Branched chares have similar definition

syntax as normal chares :

branched chare class ChareName
C: superclass names 1

{ // Private data and member functions as in C++
// Public data and member functions

// Entry points as for normal &ares

1;

3Messages can be extended to general classes, with data

and function members, and inheritance. This extension may
be incorporated in a future version of Charm++.

96

Sequential objects, normal chares and other

branch chares can access public members of the

branch of a branched chare on that processor by

LocaiBranch(ChareHandle)->DataMember and

LocalBranch(ChareHandle)->FunctionMember().

Specifically shared objects : These are dis-

cussed in detail in Section 4.3.

Global functions : These are defined as in

wt.

Sequential classes : Charm++ allows hierar-

chies of classes as in C-l-t.

Every Charm++ program must have a chare

type main. There can be only one chare instance

of this chare type, which executes on a single sys-

tem selected processor. This must have the entry

point main. Execution of a Charm+ program

begins at this entry point. Typically, this entry

point is used to initialize specifically shared vari-

ables and create new chares and branched chares.

Charm++ program execution can be terminated
by the CharmExit call. The main chare has an

optional Quiescence entry point which is executed
when the parallel computation has become quies-

cent (i.e. when no processor is executing an entry

point and all messages that have been sent have

also been consumed).

4.2 Basic Charm++ calls

The Charm++ calls that provide support for par-

allel execution are described below.

Chares are created with the call

new-chare(ChareName,EP,MsgPointer).

The call deposits the seed for a chare in a pool

of seeds and returns immediately. The chare will

be created later on some processor, as determined

by the dynamic load balancing strategy. The call

causes the chare to be initialized by executing

its entry point EP with the message contained in

MsgPointer. Using an optional argument the user

can also specify a processor to create the chare

on, thereby overriding the dynamic load balancing
strategy. new-chare() does not return any value.

The user may, however, obtain a virtual handle

(virtual because the chare has not yet been cre-

ated) to the chare by specifying another optional

argument. This handle may be used for sending

messages to the chare or may be passed to other

objects (see also the MyChareHandleO call).

Branched chares are created with the call

new-branched-chare(ChareName,EP,MsgPointer) This

creates a branch on every processor and initializes

it by executing EP. Branched chares are usually cre-

ated in the main entry point of the main chare, in

which case this call returns the handle of the newly

created branched chare. When branched chares are

dynamically created, the user can specify an entry

point and chare handle at which the handle of the

newly created branched chare can be received.

Messages can be sent to chares by the call:

ChareHandle=>EP (MsgPoint er) .

This sends the message pointed to by MsgPointer

to the chare having handle ChareHandle at the en-

try point EP, which must be a valid entry point of

that chare type. Note that this is different from

sequential method invocation in that it is non-

blocking4.

Messages to a branch of a branched chare on a

processor P can be sent by

ChareHandleCP] =>EP(MsgPointer).

Messages to branched chares can be broadcast to

all branches of that chare (on all processors) by

ChareHandle[ALL]=>EP(MsgPointer)

where ALL is a system defined reserved constant.

Auxiliary calls

The MyChareHandle(ChareHandle) call fills in

the handle of the currently executing chare in

ChareHandle. MainChareHandle(ChareHandle), sim-

ilarly, obtains the handle of the main chare. These

4The syntax of the Charm++ calls described above is

intentionally different from the analogous operations on se-

quential objects as in C++. This is so that the program-
mer can clearly distinguish the semantics of parallel objects.

“=>” instead of “->” for sending messages is used to em-

phasize the difference between method invocation and mes-
sage sending : the latter is non-blocking. Similarly, the
new-chare() call has an analogous function to the %ew” op-
erator in C++ ; however, it does not return any pointer to

an object, and moreover? it is non-blocking.

97

handles should be used in preference to virtual han-

dles because virtual handles involve an extra level

of redirection of messages.

Since messages are handled differently by the

system, they are allocated memory using a different

call : void *new-message(MESSAGE-TYPE > . The

programmer relinquishes control of a message when

it is sent. However, a message received at an entry

point stays persistent : it may be reused or freed

by the programmer.

The ChareExit() call tells the system to release

memory of the currently executing chare after

the execution of the current entry point is com-

pleted. Charm++ does not provide automatic

garbage collection of chares. The CharmExit call

causes the system to terminate all processes (non-

preemptively, as above).

Terminal input and output from any processor is

accomplished by the CPrintf() and CScanf() calls,

which are similar to their C counterparts. They
guarantee atomicity, ensuring that outputs from

two CPrintf() 11 ca s on different processors do not

get mixed.

Since pointers are not valid across processors in

general, function pointers are meaningless if passed

in a message. Charm++ provides calls to convert

function pointers to and from function reference

indices, which can be passed in messages :

FnFlefType FunctionNameToRef(fn-pointer) con-

verts a function pointer to a reference index, and

FN-POINTER FunctionReffoName(fn-ref > does the

reverse.

Charm-t-k provides a few other calls to query

processor numbers and for timing computations in

a portable manner.

4.3 Specifically shared objects

Since global variables cannot be provided in a
parallel execution environment, Charm f + pro-

vides specific abstract object types for sharing data

amongst chares, as in Charm. Each abstraction

for information sharing may be thought of as a

template, with predefined functions whose code is

to be provided by the user. These objects are

created and initialized in the main entry point of

the main chare, after which they can be accessed

only through their specific modes, on all proces-

sors. This section presents a brief description of

these abstractions.

Read-Only objects These objects hold in-

formation (e.g. problem parameters) that is
obtained immediately after the program be-

gins execution, but which does not subse-

quently change. Read-only objects can be ac-

cessed from any chare on any processor, with-

out any need for “split-phase” access.

Write-Once objects These are dynamic

versions of read-only objects. They can be
initialized once, from outside the main chare,

using the results of a parallel computation.

Accumulator objects An accumulator ob-

ject has two operators on it : add which adds

to the object in some user defined manner, and

combine, which combines two objects. These

operators must be commutative-associative.

The accumulator template is predefined by the

system ; however, the code for the add and

combine operations for the particular type of

accumulator has to be provided by the user.

Accumulators are initialized from the main en-

try point of the main chare. Any chare can

“add” to an accumulator variable. The final

value can be accessed once for each accumula-

tor variable. Accumulators are optimized for

fast update, because they can be read only

once.

Monotonic objects A monotonic object is

updated by an operation that is idempotent as

well as commutative - associative. Moreover,

the object takes on monotonically increasing

“values”. Like accumulators, the monotonic

template is predefined: and the user has to pro-

vide code for the update operation. Monotonic

variables are init,ialized in the main entry point

of the main &are. Any chare can update the

98

variable and also access its value more than

once. This value may not be the current glob-

ally best value, but the system propagates the

best value as soon as possible.

l Distributed Tables A distributed table is

a set of entries, where each entry is a record

with a key and data field. A distributed table

type can be defined for any particular data

type. Access to entries is through calls which

Insert, Delete and Find entries in a particular

table. All these calls are non-blocking, and

their behavior depends on the status of the

table and options specified in the calls.

4.4 Software reuse through modules

In sequential programs, modularity is enforced

through encapsulation and clearly defined inter-

faces. The modularity features of Charm++, like

those in Charm, are motivated by the need for

reusing independently developed, previously com-

piled modules that can control the visibility of the

entities they contain. This necessitates constructs

in addition to those provided by C++ or C.

A Charm++ program is written as a set of mod-

ules, which can be separately compiled. A com-
plete chare definition cannot be split across mod-

ules. A module is similar to an ADA package; it

encapsulates a set of related functions and classes

and can control what entities it exports and im-

ports using interface statements. Interface state-

ments for a module include prototypes of all chares,

shared objects, and functions that are to be ex-

ported by the module. A module imports other

modules by including their interface statements.

Name resolution is done by the scope resolution

operator “::“. Thus entry point EP in chare type

ChareName in module Module1 is referred to as

Module1 : : ChareName : : EP. Remote creation and

message passing require chare, entry point and

message names (or ids) to be sent across processors.

Modules help to ensure consistency of ids across

separately compiled program units? especially in

case of dynamic binding and inheritance (see Sec-

tion 5).

Supporting modularity and reuse is more diffi-

cult in a parallel context than in a sequential con-

text. The issues here are :

1. For scalability, modules must be able to ex-

change data in a fully distributed fashion,

without the need for centralized transfer. This

is achieved in Charm++ with the branched

chare abstraction. Since a branched chare

has a branch on each processor, two branched

chares in separate modules can exchange data

s&ably. Also, entities in one module may de-

posit data in distributed tables which can be

accessed by other modules.

2. A reusable module cannot manipulate func-

tion pointers because it may need to pass the

function in a message, to be invoked on a dif-

ferent processor. (E.g. comparison function

pointers may not be enough for a parallel sort-

ing module). Charm++ provides function ref-

erence indices (Section 4.2 above) which can

be passed across processors in messages.

3. A reusable module must not assume an input

data distribution. (E.g. a matrix multipli-

cation module must not assume a particular

distribution of the matrices across processors).

This is supported by branched chares which

can encapsulate a data distribution, and have

public functions.

4.5 Load balancing and memory man-
agement strategies

Charm++ allows the user to select from a number

of dynamic load balancing strategies depending on

the requirements of the application. The strate-

gies are implemented as modules on top of the ba-

sic runtime system. Some of the load balancing

strategies supported include[26]

1. Random : new chares are sent to random pro-

cessors

2. Adaptive Contracting Within Neighborhood :

new chares are balanced within a neighbor-

hood, leading to a global balance.

99

3. Central manager : All new chares are sent

to a central manager which redistributes them

among processors. This strategy is meant for

use with prioritized task creation.

4. Token : This is a more sophisticated, scalable

strategy for use with prioritized task creation.

4.6 Other Charm++ features

Prioritized Execution : Charm++ provides

many strategies for managing queues of messages
waiting to be processed. Some of them (FIFO,

LIFO, etc) are based solely on the temporal order

of arrival of messages. The user can also assign pri-

orities to messages depending on the application re-

quirements. Charm++ supports integer priorities

as well as bit-vector priorities (with lexicographi-

cal comparison of bit-vectors determining order of

execution).

Conditional Message Packing : Charm++
allows arbitrarily complex data structures in mes-

sages. On non shared memory systems, pointers
are not valid across processors, hence it is neces-

sary to copy (pack) the structure into a contiguous

block without pointers before sending the message.

However, packing is wasteful if the message is not

sent to another processor, or on shared memory

systems. Hence for messages involving pointers the

user is required to specify two functions for packing

and unpacking messages that are called by the sys-

tem before sending and after receiving a message,

respectively. Thus only messages that are actually

sent to other processors are packed.

4.7 An example

The following example illustrates inheritance

and dynamic binding in a parallel context. The

program is a regular, mostly data parallel algo-

rithm for iterative solution of partial differential

equations using the Jacobi method. A blocked data

partitioning is used to distribute the 2-dimensional

domain among processors.

Consider a server chare of type ReductionAnd 5

5By having general message objects that can define their

module interface Reduction {
enum Boolean { FALSE, TRUE };
message BooleanObject {

Boolean convergevalue;

1;

// message used for initializing the
// ReductionAnd branched chare
message ReductionInit { /* parameters */ };

branched chare class Receiver {
entry :

// This is called in a broadcast vhen the
// reduction is completed.
virtual ReceiveResult(BooleanObject *result);

1:

branched chare class ReductionAnd {
entry:

Initialize(ReductionInit *parameters);
// Called vhen this chare is created by a
// nev-branched-chare call

pub1 ic :
void StartRedn(BooleanObject *local,

Receiver handle h);
// Called by clients to start a global AND

Figure 1: Interface for the Reduction library

module, which is imported in the Jacobi pro-

gram

(Figure 1) which provides a global AND reduc-

tion operation over all processors. This ser-

vice is needed by many other types of client

chares. The library module Reduction that defines

Reduct ionAnd also defines and exports the message
type BooleanOb j ect and a class Receiver contain-

ing a virtual entry point ReceiveResult that re-

ceives results from Reduct ionAnd.

Client chare types may be defined in separate

modules. Chare types wanting the ReductionAnd

service import Receiver in the module they are

defined in and list Receiver as one of their base

classes. The clients may choose to inherit the vir-

tual entrypoint ReceiveResult, or redefine it for

own combining functions, we can have a general reduction
module that supports arbitrary combining operations and
data types.

100

their specific purpose. Dynamic binding ensures

that the proper ReceiveResult function will be

called. Note that the clients may be of any type,

as many different clients may require the same ser-

vice.

Figure 2 shows part of the message and sequen-

tial class definitions for the Jacobi program. In

Figure 3, Jacobi is a branched chare which is a

subclass of the Receiver branched chare, allowing

it to use the ReductionAnd class to do global con-

vergence testing. Figure 4 has the main chare for

the Jacobi program.

The Jacobi branched chare is created from the
main entry point of the main chare. It is initial-

ized by sending a message to the BranchInit en-

try point (which is executed by each branch on

each processor). BranchInit starts the computa-

tion by sending the boundaries of its local sub-

domain to neighboring processors. All proces-

sors receive boundaries from their neighbours at

the recvBoundary entry point. Note that mes-

sages from neighbours can be received in any or-

der, hence the maximum possible overlap of com-

putation (copyBoundary with communication is

possible. After receiving messages from all neigh-

bours (as measured by the variable count), the

iterate private function does the local computa-

tion and checks for local convergence. The local

convergence value is then passed to the Reduction

module by the StartRedn call. Note that after the

local StartRedn call is made, the local processor
is free to do other work, which would not be pos-

sible in a system supporting only blocking calls.

After global reduction is complete, the result is re-

turned to the ReceiveResult entry point. This

checks if the computation has globally converged,

and initiat,es the next iteration otherwise, by send-

ing its new boundaries to the neighbors. At this

point the local branch might already have received

the boundaries from all its neighbors (e.g. because

they received their reduction results earlier). If so,

it calls iterate immediately. Otherwise iterate
will be called from the recvBoundary entry point

wheu messages from all neighbors have been re-

ceived.

101

Although the above Jacobi code is somewhat less

concise than code written in a blocking style, it has

significant performance advantages, and moreover,

would be only a small part of the actual application

code which includes the sequential functions not

shown in the figures.

The Reduct ionAnd chare could be used similarly

by, say, a 3-dimensional grid module. Also, the

ReductionAnd class may implement global AND

in different ways, even possibly supporting multiple

(pipelined) concurrent operations.

module JacobiModule {

// nxn is the size of each processor's sub-domain
const int n = 32;

enum Direction { NORTH, SOUTH, EAST, WEST };

// Message holding boundary values that have
// to go across processors
message BOUNDARY {

Direction from;
float boundary[n+2];

1;

// Message to initialize Jacobi branched chare
message JacobiInit { ReductionAnd handle redn; };

class TnoDGrid { // sequential class
// The array storing values of points on this
// processor's sub-domain. There are two
// extra rows and columns for boundaries.
float A[n+2] [n+2];

public:
// Constructors and other public functions for
// operations on 2-D grids such as update and
// local convergence.

Figure 2: Message and sequential class defi-

nitions for the Jacobi program

5 Implement at ion

Charm++ ha.s been implemented as a, translator

and a runtime system. The translator converts

Charm++ constructs into C++ constructs and

branched chare class Jacobi : public Receiver {
TwoDGrid P, Q;
int count, numOfNeighbours, K, mypenum;
Boolean reductionDone;
ReductionAnd handle rednHandle;
Jacobi handle myHandle;

public:
Jacobi0 {}

entry:
BranchInit(JacobiInit *nsg)
{ rednHandle = msg->redn;

deleteslessage(msg);
myHandle = MyChareHandleO;
initialize0;
sendBoundaries0;

count = numOfNeighbours;
reductionDone = TRUE;

1
recvBoundary (BOUNDARY *msg)

{ copyBoundary(msg);
if (--count == 0 &8c reductionDone)

iterateo;

1
private:

void iterate0
{ P.update(%Q);

BooleanObject *local = (BooleanObject *)
nev~essage(EooleanObject);

local->convergeValue = P.LocalConverge(&Q);
reductionDone = FALSE;
count = numOfNeighbours;
LocalBranch(rednHandle)->StartRedn(local,

myHandle);

1
entry:

ReceiveResult(BooleanObject *global)
{ if (global->convergeValue)

P.PrintResult(mypenum,K);
else { // start next iteration

reductionDone = TRUE;
P.copy(&Q);
sendBoundaries();
if (count == 0) iterate0;

1
1
void initializeo;
void sendBoundaries0;
void copyBoundary(BOUNDARY *msg);

1;

Figure 3: JacobiModule continued : the Ja-

cobi branched chare

1 r chare class main {

entry:
main0
{ // Execution of the program starts here

ReductionInit *m = (ReductionInit *)
nev-message(ReductionInit);

JacobiInit *msg = (JacobiInit *)
nevmessage(JacobiInit1;

// Create the branched chare for doing
// global AND reduction
msg->redn = neubranched-chare(ReductionAnd,

Initialize,m);

// Start the Jacobi iterations by creating
// the Jacobi branched chare
Jacobi handle jacobiboc;
jacobiboc = new-branchedxhare(Jacobi,

BranchInit,msg);

}; // End of JacobiModule

Figure 4: JacobiModule : the main chare

calls to the runtime system. The runtime system

of Charm is reused with modifications to support

C++ interfac.es. Currently, a prototype transla-

tor with complete functionality but restricted error

checking has been implemented. Several test and

application programs have been successfully exe-

cuted on various parallel machines.

The Charm runtime system [13] is written in C.

It’s lowest layer consists of a machine dependent set

of routines which use the calls provided by the par-

ticular machine. On top of this is a machine inde-

pendent set of rout.ines that implement the various

functions such as chare creation, message process-
ing, performance measurements, quiescence detec-

tion, etc. The different strategies for queue and

memory management and dynamic load balancing

are written as modules that can be linked in at link

time as specified by the user.

One important function of the Charm++ trans-

lator is to map parallel class and function names

into consistent ids which can be passed to other

102

processors. This is important when considering dy-

namic binding : when a sender sends a message

to a chare C at an entry point E defined in C’s

base class, C must call its own definintion of E if it

has been redefined, otherwise it must call its base

class’ definition of E. Also, multiple inheritance re-

quires that ids of entry points inherited from dif-

ferent base classes do not clash. Again, separate

compilation of modules means that ids cannot be

assigned at compile time. On the other hand, all

ids must be compile time constants if they are to be
used in a switch statement (as opposed to an inef-

ficient if-then-else structure) to execute the proper

code at the destination of the message.

To meet these conflicting requirements the trans-

lator generates functions which assign globally

unique indices to chare and entry point names dur-

ing initialization at run time. The translator also

generates a public entry point selector function for

each chare class which correctly maps global ids to

the appropriate chare-local constants and then uses

a switch statement to call the proper local function.

Thus unique global ids can be passed in messages

across modules. Similarly, for creating new chare

objects, the translator generates a chare selector
function for every module.

One of the main units in the runtime system is

the “pick and process” loop. This picks up incom-

ing messages from the system message buffer, or-

ders them according to a queueing strategy, and

then processes them according to the type of mes-

sage. The message for creating new chares in-

cludes a chare name index, which is used by the

translator-generated chare selector function to cre-

ate the appropriate chare object. The message for

execution of an entry point of an existing chare in-

cludes an entry point index along with a message

pointer and the chare object pointer. The index is

used in the translator-generated entry point selec-

tor function to call the proper entry point in the
proper chare.

6 Performance results

Charm++ can be used for regular as well as ir-

regular parallel computations. Tables 1 and 2

present performance numbers in terms of speedups

for three small applications on the nCUBE/2 (dis-

tributed memory multicomputers), and Sequent

Symmetry (shared memory multiprocessor). Pre-
liminary results for the CM-5 are presented in table
n

65.

l Jacobi : This is a regular, mostly data parallel

algorithm for iterative solution of partial dif-

ferential equations. The Jacobi method is used

for 200 iterations of smoothening of a five-

point stencil. The implementation mainly uses

branched chares, with blocked partitioning of

the 2-dimensional array. The speedups given

are scaled speedups, obtained with a problem

size of 32x32 grid points per processor. The

timings for 1 processor are much lower than

the rest because there is no communication at

the boundaries of the grid.

l TSP : This is an irregular application consist-

ing of a parallel branch and bound implemen-

tation of the asymmetric Traveling Salesper-

son Problem. The implementation uses in-

teger message priorities (equal to the lower

bound on cost of a branch and bound node)

to guide search through the branch and bound

tree. The cost of the best solution is main-

tained using a monotonic variable. The token

based load balancing strategy [26] was used to

distribute chares. Speedup levels off after 64

processors on the nCUBE/2 because of a large

increase in the number of wasteful branch and

bound nodes.

0 Primes : This is a program to compute the

number of primes between 2 and a large num-

ber N (of the order of a billion). The par-

allel algorithm is based on the Eratosthenes’
sieve method. The implementation uses nor-

mal chares to distribute work among proces-

sors. The speedups are with reference to a

serial algorithm which does not create any

103

chares, hence does not include any overhead

of parallelism.

PEs Jacobi TSP Primes

(32x32) (40 cities) (log>

1 0.88 (1.0) 242.7 (1.0) 4717.7 (1.0)

16 1.5 (9.1) 20.5 (11.9) 579.0 (8.2)

64 1.6 (35.4) 11.2 (21.7) 150.8 (31.3)

256 1.7 (130.2) 11.2 (21.8) 32.3 (145.9)

Table 1: Times (in seconds) and Speedups for

3 applications on the nCUBE/2.

PEs Jacobi TSP Primes

(32x32) (40 cities) PO

1 10.5 (1.0) 889.6 (1.0) 734.8 (1.0)

4 11.4 (3.7) 224.0 (4.0) 184.2 (4.0)

9 12.5 (7.5) 101.8 (8.7) 82.4 (8.9)

16 13.9 (12.1) 58.8 (15.1) 46.6 (15.8)

Table 2: Times (in seconds) and Speedups for

3 applications on the Sequent Symmetry.

PEs Jacobi TSP Primes

(64x64) (40 cities) (10’)

64 18.7 19.6 25.3

Table 3: Preliminary Times (in seconds)

3 applications on the CM-5.

for

7 Conclusions and Future work

We have presented a portable object oriented par-

Lllel programming system. We have discussed the

esign issues for Charm++, described its impor-

.nt constructs, and presented preliminary perfor-

tnce results for both shared as well as non-shared

mory machines.

Charm++ provides a rich set of features that

make it suitable for a broad range of applications.

Some of the unique features in Charm++ are: its

comprehensive support for both regular as well as

irregular computations; its message driven execu-

tion model which leads to better efficiency; its sup-

port for specific, widely useful information sharing

abstractions; and its user-selectable strategies for

managing parallelism. Charm-l-f makes the pro-
grammer and the runtime system each do what

they do best. The programmer has to specify paral-

lel computations, which leads to better parallel al-

gorithm design. The runtime system decides when

and where to execute work by scheduling and dy-

namic load balancing. We feel that for efficient uti-

lization of computing power (sustained speedups as

opposed to theoretical peak speedups) good paral-

lel algorithm design is essential. This is only possi-

ble if the programmer is given flexibility in making

design decisions along with abstractions that hide

low level details of how things are done. Charm+f

makes a significant step in this direction.

Charm+ + is the latest component of the broader

family of Charm parallel programming tools. Since

Charm++ shares the runtime system with Charm,
it can be used with Projections[22] and future per-

formance feedback tools developed for Charm. We

also expect Charm++ modules to co-exist with

Charm as well as DP[23] (an HPF based data-

parallel language being developed on top of Charm)

modules, in a single application. Dagger[lG] is

a notation (and a visual editor) for expressing

synchronization constraints (dependences between

messages and computations) within a chare. It

will be extended to provide the same facilities in

Charmt+.

Our future agenda for Charm++- consists of work

in implementation, language design, and applica-

tions. We will fine tune Charm++ for better per-

formance and enhance the front-end for better error

checking and recovery. The syntax of Charm++

constructs may be refined depending on initial ex-

periences and capabilities of the translator. Many

of the features in Charm-i-t can be generalized.

We may consider allowing multiple value parame-

ters as entry point arguments, with marshaling at

104

the sender’s end. Alternatively, message objects

can be generalized to arbitrary objects, including

parallel objects. Finally, we will continue devel-

opment of applications in Charm++ that benefit

from object oriented parallelism.

Acknowledgement

This work would not have been possible without

the research on the Charm runtime system over the

past several years by the current and past members

of the Parallel Programming Laboratory, including

Wennie Shu, Kevin Nomura, Wayne Fenton, BaIkr-

ishna Ramkumar, Vikram Saletore, Amitabh Sinha

and Attila Gursoy.

References

[l] G. Agha. Actors: A Model of Concurrent

Computation in Distributed Systems. MIT

Press, 1986.

[2] P. America. Issues in the design of a parallel

object oriented language. Formal Aspects of

Computing, 1(4):366-411, 1989.

[3] W. Athas and N. Boden. Cantor : An actor

programming system for scientific computing.

In Proceedings of the ACM SIGPLAN Work-

shop on Object Based Concurrent Program-

ming, ACM SIGPLAN Notices, pages 66-68,

April 1989.

[4] B. Bershad, E. Lazowska, and H. Levy. Presto:

A system for object oriented parallel program-

ming. Software: Practice and Experience,

18(8), August 1988.

PI F. Bodin, P. Beckman, D. Gan-

non, S. Narayana, and S. Yang. Distributed
PC++: Basic ideas for an object parallel lan-

gua.ge, 1992.

[6] I<. Mani Chandy and Carl Kesselman. Com-

positional C+ t: Compositional parallel pro-

gramming. Technical Report Caltech-CS-TR-
92-13, Department of Computer Science, Cal-

ifornia Institute of Technology, 1992.

[7] J. Chase, F. Amador, E. Lazowska, H. Levy,

and R. Littlefield. The Amber system : Paral-

lel programming on a network of multiproces-

sors. In Proceedings of the 12th ACM Sympo-

sium on Operating System Principles, in A CM

SIGOPS Operating Systems Review, Decem-

ber 1989.

[8] A. Chien. Concurrent Aggregates. MIT Press,

1993.

[9] A. Chien and W. J. Dally. Concurrent aggre-

gates. In Proceedings of the Second A CM Sym-

posium on Principles and Practice of Parallel

Programming, pages 187-196, March 1990.

[lo] T. W. Christopher. Early experience with

object-oriented message driven computing. In

Proceedings of the 3rd Symposium on Fron-

tiers of Massively Parallel Computing, Octo-

ber 1990.

[ll] W. DaIIy and A. Chien. Object oriented con-

current programming in CST. In Proceedings

of the Third Conference on Hypercube Com-

puters, pages 434-439. SIAM, 1988.

[12] J. Feldman, C-C. Lim, and T. Rauber.

The shared-memory language pSather on a
distributed-memory multiprocessor. In Pro-

ceedings of the Second Workshop on Lan-

guages, Compilers and Runtime Environments

for Distributed Memory Multiprocessors, Oc-

tober 1992.

[13] W. Fenton, B. Ramkumar, V.A. Saletore,

A.B. Sinha, and L.V. Kale. Supporting ma-

chine independent programming on diverse

parallel architectures. In Proceedings of the

International Conference on Parallel Process-

ing, August 1991.

141 D. Gannon and J. K. Lee. Object oriented

parallelism: pC++ ideas and experiments. In

Proceedings of 1991 Japan Society for Parallel

Processing, pages 13-23, 1993.

[15] A. S. Grimshaw. Easy-to-use object oriented

parallel programming with Mentat. Techni-

105

P61

PI

WI

Dl

PO1

Pll

PA

WI

cal Report CS-92-32, Department of Com-

puter Science, University of Virginia, Char-

lottesville, 1992.

A. Gursoy and L. V. Kale. Dagger: Com-

bining the benefits of synchronous and asyn-

chronous communication styles. Technical Re-

port 93-3, Parallel Programming Laboratory,

Department of Computer Science , University

of Illinois, Urbana-Champaign, March 1993.

C. Hewitt, P. Bishop, and R. Steiger. A

universal ACTOR formalism for artificial in-

telligence. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelli-

gence, pages 235-245. SIAM, 1973.

C. Houck and G. Agha. Hal: A high level actor

language and its distributed implementation.

In Proceedings of the International Conference

on Parallel Processing, August 1992.

C-H. Jo, K. M. George, and K. A. Teague.

Parallelizing translator for an object-oriented

parallel programming language. In Proceed-

ings of Tenth Annual Phoenix Conference on

Computers and Communications. IEEE Com-

puter Society Press, March 1991.

L. V. Kale. A tutorial introduction to

CHARM, December 1992.

L.V. Kale. The Chare Kernel parallel pro-

gramming language and system. In Proceed-

ings of the International Conference on Par-

allel Processing, August 1990.

L.V. Kale and A. B. Sinha. Projections: A
scalable performance tool. In Parallel Systems

Fair, International Parallel ProcessingSympo-

sium, April 1993.

E. Kornkven and L. V. Kale. Dynamic adap-

tive scheduling in an implementation of a

data parallel language. Technical Report 92-

10: Parallel Programming Laboratory, De-
partment of Computer Science , University of

Illinois, Urbana-Champaign, October 1992.

WI

[=I

WI

WI

WI

P-4

J. Larus, B. Richards, and G. Viswanathan.

c** : A large-grain, object-oriented, data-

parallel programming language. Technical Re-

port 1126, Computer Sciences Department,

University of Wisconsin-Madison, 1992.

W. Lau and V. Singh. An object-oriented class

library for scalable parallel heuristic search.

In Proceedings of the European Conference on

Object Oriented Programming, July 1992.

A. B. Sinha and L.V. Kale. A load balancing

strategy for prioritized execution of tasks. In

Proceedings of the International Parallel Pro-

cessing Symposium, April 1993.

B. Stroustrup. The C-t+ Programming Lan-

guage. Addison-Wesley, second edition, 1991.

K. Taura, S. Matsuoka, and A. Yonezawa. An

efficient implementation scheme of concurrent

object-oriented languages on stock multicom-

puters. In Proceedings of the 5th ACM SIG-

PLAN Symposium on Principles and Prac-

tice of Parallel Programming, ACM SIGPLAN

Notices, June 1993.

A. Yonezawa. ABCL: An Object Oriented

Concurrent System. MIT Press, 1990.

Appendix A

The Charm++ program shown in figures 5, 6

and 7 computes the number of primes between 1

and a large number (of the order of a billion).

The algorithm first divides the range of numbers

among dynamically created chares using a divide-
and-conquer tree. Each chare at the leaf of the

tree calls a sequential function which computes the

number of primes in its range. The count of primes

computed by each chare is summed using an accu-

mulator object.

Figure 5 presents the message and accumulator

declarations for the Primes program. seqprimes

is a function defined in a separate file, and so is
accessed via an extern declaration as usual. The

RangeMsg is used to spawn the divide-and-conquer

106

tree. The type of the data held by the accumulator

class AccCount is “pointer to MsgAccCount”. The

only data any accumulator object is allowed to hold

is a pointer to a communication object (i.e. a

nodule Primes {
'/ This is the sequential function which
'/ returns the number of primes in a range.
?xtern int seqPrimes(int lou, int high);

'/ LENGTH is the size of the range which is
'/ processed sequentially by seqPrimes0
:onst int LENGTH = 10000;

nessage MsgAccCount { int data; };

message AccInitMsg { int data; };

'1 This message tells a chare what range of
f/ numbers it should process
nessage RangeMsg {

int Low, High;

t;

I/ This is the accumulator type used for
I/ summing primes found by each chare.
:lass AccCount : public Accumulator {

MsgAccCount *msg;

oublic:
AccCount(Acc1nitMs.g *initmsg)

i
// "Constructor" used for initializing

msg = (MsgAccCount *)neamessage(MsgAccCount);
msg->data = initmsg->data;

I

void Accumulate (int x)
{ // This accumulates a count

msg->data += x;

I

void Combine (MsgAccCount *y)
{ // Called only by the system,

// to combine counts from two processors
msg->data += y->data;

1;)

// This is the accumulator shared object,
// which can be accessed by all processors
AccCount *total;

Figure 5. Primes module : declarations

message), because the system may implement ac-

cumulators by having multiple copies on different

processors, thus requiring the accumulator data to

be sent across processors. The AccInitMsg is used

to send initial data to the accumulator. Although

it appears redundant in this example, general us-

age of accumulators requires such a message. For

example, if one were to define an accumulator to

hold a histogram, the initialization message may

chare class main {

entry:
main0

t
int Limit;

CPrintf("Enter upper limit of range : ">;
CScanf("%d", &Limit);

// Create and initialize the accumulator
AccInitMsg *accmsg = (AccInitMsg *)

neumessage(Acc1nitKs.g);
accmsg->data = 0;
total = new AccCount(accmsg);

// Create the first chare at the root
// of the divide-and-conquer tree
RangeMsg *msg =

(RangeMsg *) newmessage(RangeMsg);
msg->Low = 1;
msg->High = Limit;
new-chare(PrimesChare, Goal, msg);

I

Quiescence0 {
// This is executed when all chares finish
main handle *myid;
myid = MyChareHandleO;

// Ask the accumulator to send its total
// to the PrintResult entry point
total->CollectAccValue(PrintResult, myid);

1

PrintResult(MsgAccCount * result)

t
CPrintf("The # of primes is:%d.",

result->data);
CharmExit();

1;)

Figure 6 : main chare of the Primes module

107

contain the number of slots in the histogram. Al-

though we include the definition of this accumu-

lator in the Primes module for illustration, such

commonly used accumulator subclasses are avail-

able and can be reused from the Charm++ system

library.

Figure 6 shows the main chare definition. The

main entry of this chare reads the input from the

user and creates an instance of the accumulator

(AccCount) object. The handle to this accumu-

lator instance is stored in total, which can be

accessed uniformly on all processors. Similarly, a

message msg is used to create an instance of the

PrimesChare. Note that all parallel objects are
created by providing an initial message for them

to process. Thus, for example, each chare instance

processes this initial creation message before it pro-

cesses any other messages directed to it. Charm++
supports quiescence detection. If the Quiescence

entry point is defined in the main chare, the qui-

escence detection algorithm is activated. When

there remain no messages to process (i.e. all pro-

duced messages have been processed), and all pro-

cessors are idle, the system calls this entry point.

In the Primes program, this serves the purpose of

detecting that the tree of chares generated by the

PrimesChare is exhausted. At this point, the main

chare requests the accumulator object total to re-

turn its final value to the PrintResult entry point,
which simply prints this count and terminates the

overall program execution.

Figure 7 shows the PrimesChare definition,

which happens to have no local variables, and only

one entry point. The code at this entry point

checks if the range given to it is small enough. If so,

it calls seqprimes and adds the count of primes in

the range to total via the Accumulate call. Oth-

erwise, it simply divides the range into two, and

creates chares for each sub-range. In either case it

calls ChareExit to relinquish the resources occu-

pied by the chare instance.

chare class PrimesChare

{
public:

PrimesChareo {)

entry:
Goal(RangeMsg * msgl)

{
int L = msgl->Lov;
int H = msgl->High;

if ((H-L+l) > LENGTH)
{ // Distribute the halves of this range to

// two new chares
int Mid = L + (H-L+1)/2;
RangeMsg *msg2 = (RangeMsg *)

newmessagec RangeMsg);
msg2->Low = Mid;
msg2->High = H;
msgl->High = Mid-l;
// Reuse msgl ; msgl->Lov == L already
new-chare(PrimesChare, Goal, msgl);
newrhare(PrimesChare, Goal, msg2);

1
else {

int count = seqPrimes(L,H);
deletemessage(msg1);

// Accumulate local count in the
// global total accumulator
total->Accumulate(count);

I
ChareExito;

t;}

1; // End of module Primes

Figure 7 : the PrimesChare

108

