
Dag-Consistent Distributed Shared Memory

Robert D. Blumofe Matteo Frigo Christopher F. Joerg
Charles E. Leiserson Keith H. Randall

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

Abstract

We introduce dag consistency, a relaxed consistency model
for distributed shared memory which is suitable for multi-
threaded programming. We have implemented dag consis-
tency in software for the Cilk multithreaded runtime system
running on a Connection Machine CM5. Our implementa-
tion includes a dag-consistent distributed cactus stack for
storage allocation. We provide empirical evidence of the
flexibility and efficiency of dag consistency for applications
that include blocked matrix multiplication, Strassen’s ma-
trix multiplication algorithm, and a Barnes-Hut code. Al-
though Cilk schedules the executions of these programs dy-
namically, their performances are competitive with stati-
cally scheduled implementations in the literature. We also
prove that the number FP of page faults incurred by a user
program running onP processors can be related to the num-
ber F1 of page faults running serially by the formula FP �F1+ 2Cs, where C is the cache size and s is the number of
thread migrations executed by Cilk’s scheduler.

1 Introduction

Architects of shared memory for parallel computers have at-
tempted to support Lamport’s model of sequential consis-
tency [22]: The result of any execution is the same as if the
operations of all the processors were executed in some se-
quential order, and the operations of each individualproces-
sor appear in this sequence in the order specified by its pro-
gram. Unfortunately, they have generally found that Lam-
port’s model is difficult to implement efficiently, and hence

This paper appears in the Proceedings of the 10th International Paral-
lel Processing Symposium, Honolulu, Hawaii, April 1996.

This research was supported in part by the Advanced Research Projects
Agency under Grants N00014-94-1-0985 and N00014-92-J-1310. Robert
Blumofe was supported in part by an ARPA High-Performance Computing
Graduate Fellowship, and he is now Assistant Professor at The University
of Texas at Austin. Matteo Frigo was a visiting scholar from University of
Padova, Italy and is now a graduate student at MIT. Charles Leiserson is
currently Shaw Visiting Professor at the National University of Singapore.
Keith Randall was supported in part by a Department of Defense NDSEG
Fellowship.

relaxed models of shared-memory consistency have been
developed [10, 12, 13] that compromise on semantics for
a faster implementation. By and large, all of these consis-
tency models have had one thing in common: they are “pro-
cessor centric” in the sense that they define consistency in
terms of actions by physical processors. In this paper, we
introduce “dag” consistency, a relaxed consistency model
based on user-level threads which we have implemented for
Cilk [4], a C-based multithreaded language and runtime sys-
tem.

Dag consistency is defined on the dag of threads that make
up a parallel computation. Intuitively, a read can “see” a
write in the dag-consistency model only if there is some se-
rial execution order consistent with the dag in which the read
sees the write. Unlike sequential consistency, but similar to
certain processor-centric models [12, 14], dag consistency
allows different reads to return values that are based on dif-
ferent serial orders, but the values returned must respect the
dependencies in the dag.

The current Cilk mechanisms to support dag-consistent
distributed shared memory on the Connection Machine
CM5 are implemented in software. Nevertheless, codes
such as matrix multiplication run efficiently, as can be seen
in Figure 1. The dag-consistent shared memory performs at
5 megaflops per processor as long as the work per proces-
sor is sufficiently large. This performance compares fairly
well with other matrix multiplicationcodes on the CM5 (that
do not use the CM5’s vector units). For example, an imple-
mentation coded in Split-C [9] attains just over 6 megaflops
per processor on 64 processors using a static data layout, a
static thread schedule, and an optimized assembly-language
inner loop. In contrast, Cilk’s dag-consistent shared mem-
ory is mapped across the processors dynamically, and the
Cilk threads performing the computation are scheduled dy-
namically at runtime. We believe that the overhead in our
current implementation can be reduced, but that in any case,
this overhead is a reasonable price to pay for ease of pro-
gramming and dynamic load balancing.

We have implemented irregular applications that employ



0

1

2

3

4

5

6

4 8 16 32 64

M
flo

ps
 / 

pr
oc

es
so

r

processors

4096x4096 optimized
1024x1024 optimized

1024x1024

Figure 1: Megaflops per processor versus the number of proces-
sors for several matrix multiplication runs on the Connection Ma-
chine CM5. The shared-memory cache on each processor is set to
2MB. The lower curve is for the matrixmul code in Figure 3 and
the upper two curves are for an optimized version that uses no tem-
porary storage.

Cilk’s dag-consistent shared memory, including a port of
a Barnes-Hut N -body simulation [1] and an implementa-
tion of Strassen’s algorithm [33] for matrix multiplication.
These irregular applications provide a good test of Cilk’s
ability to schedule computations dynamically. We achieve
a speedup of 9 on an 8192-particle N -body simulation us-
ing 32 processors, which is competitive with other soft-
ware implementations of distributed shared memory [18].
Strassen’s algorithm runs as fast as regular matrix multipli-
cation for 2048� 2048 matrices, and we coded it in Cilk in
a few hours.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an example of how matrix multiplication can
be coded in Cilk using dag-consistent memory. Section 3
gives a formal definition of dag consistency and describes
the abstract BACKER coherence algorithm for maintaining
dag consistency. Section 4 describes an implementation of
the BACKER algorithm for Cilk on the Connection Machine
CM5. Section 5 describes the distributed “cactus stack”
memory allocator which the system uses to allocate shared-
memory objects. Section 6 analyzes the number of faults
taken by multithreaded programs, both theoretically and em-
pirically. Section 7 investigates the running time of dag-
consistent shared memory programs and presents a model
for their performance. Section 8 compares dag-consistency
with some related consistency models and offers some ideas
for the future.

2 Example: matrix multiplication

To illustrate the concepts behind dag consistency, consider
the problem of parallel matrix multiplication. One way to
program matrix multiplication is to use the recursive divide-

C
x =

D

E F

G H

I J

A B

+

Rx =

CG CH

EG EH

DI DJ

FI FJ

Figure 2: Recursive decomposition of matrix multiplication. The
multiplication of n � n matrices requires eight multiplications ofn=2� n=2 matrices, followed by one addition of n� n matrices.

and-conquer algorithm shown in Figure 2. To multiply onen � n matrix by another, we divide each matrix into fourn=2 � n=2 submatrices, recursively compute some prod-
ucts of these submatrices, and then add the results together.
This algorithm lends itself to a parallel implementation, be-
cause each of the eight recursive multiplications is indepen-
dent and can be executed in parallel.

Figure 3 shows Cilk code1 for a “blocked” implementa-
tion of recursive matrix multiplication in which the (square)
input matrices A and B and the output matrix R are stored
as a collection of 16 � 16 submatrices, called blocks. All
three matrices are abstractly stored in Cilk’s shared mem-
ory, but the CM5 implementation distributes their elements
among the individual processor memories. The Cilk proce-
dure matrixmul takes as arguments pointers to the first
block in each matrix as well as a variable nb denoting the
number of blocks in any row or column of the matrices.
From the pointer to the first block of a matrix and the value
of nb, the location of any other block in the matrix can be
computed quickly. As matrixmul executes, values are
stored into R, as well as into a temporary matrix tmp.

The procedure matrixmul operates as follows. Lines
3–4 check to see if the matrices to be multiplied consist of
a single block, in which case a call is made to a serial rou-
tine multiply block (not shown) to perform the mul-
tiplication. Otherwise, line 8 allocates some page-aligned
temporary storage in shared memory for the results, lines 9–
10 compute pointers to the 8 submatrices of A and B, and
lines 11–12 compute pointers to the 8 submatrices of R and
the temporary matrix tmp. At this point, the divide step of
the divide-and-conquer paradigm is complete, and we begin
on the conquer step. Lines 13-20 recursively compute the
8 required submatrix multiplications, storing the results in
the 8 disjoint submatrices of R and tmp. The recursion is
made to execute in parallel by using the spawn directive,
which is similar to a C function call except that the caller
can continue to execute even if the callee has not yet re-
turned. The sync statement in line 21 causes the procedure
to suspend until all the procedures it spawned have finished.1Shown is Cilk-3 code, which provides explicit linguistic support
for shared-memory operations and call/return semantics for coordinating
threads. The original Cilk-1 system [4] used explicit continuation passing
to coordinate threads. For a history of the evolution of Cilk, see [17].

2



1 cilk void matrixmul(long nb, shared block *A,
shared block *B,
shared block *R)

2 {
3 if (nb == 1)
4 multiply_block(A, B, R);
5 else {
6 shared block *C,*D,*E,*F,*G,*H,*I,*J;
7 shared block *CG,*CH,*EG,*EH,

*DI,*DJ,*FI,*FJ;
8 shared page_aligned block tmp[nb*nb];

/* get pointers to input submatrices */
9 partition(nb, A, &C, &D, &E, &F);
10 partition(nb, B, &G, &H, &I, &J);

/* get pointers to result submatrices */
11 partition(nb, R, &CG, &CH, &EG, &EH);
12 partition(nb, tmp, &DI, &DJ, &FI, &FJ);

/* solve subproblems recursively */
13 spawn matrixmul(nb/2, C, G, CG);
14 spawn matrixmul(nb/2, C, H, CH);
15 spawn matrixmul(nb/2, E, H, EH);
16 spawn matrixmul(nb/2, E, G, EG);

17 spawn matrixmul(nb/2, D, I, DI);
18 spawn matrixmul(nb/2, D, J, DJ);
19 spawn matrixmul(nb/2, F, J, FJ);
20 spawn matrixmul(nb/2, F, I, FI);
21 sync;

/* add results together into R */
22 spawn matrixadd(nb, tmp, R);
23 sync;
24 }
25 return;
26 }

Figure 3: Cilk code for recursive blocked matrix multiplication.

(The sync statement is not a global barrier.) Then, line 22
spawns a parallel addition in which the matrix tmp is added
into R. (The procedure matrixadd is itself implemented
in a recursive, parallel, divide-and-conquer fashion, and the
code is not shown.) The sync in line 23 ensures that the
addition completes before matrixmul returns.

Like any Cilk multithreaded computation [4], the paral-
lel instruction stream of matrixmul can be viewed as a
“spawn tree” of procedures broken into a directed acyclic
graph, or dag, of “threads.” The spawn tree is exactly anal-
ogous to a traditional call tree. When a procedure, such as
matrixmul performs a spawn, the spawned procedure be-
comes a child of the procedure that performed the spawn.
Each procedure is broken by sync statements into non-
blocking sequences of instructions, called threads, and the
threads of the computation are organized into a dag repre-
senting the partial execution order defined by the program.
Figure 4 illustrates the structure of the dag formatrixmul.
Each vertex corresponds to a thread of the computation, and

M8M7M6M5M4M3M2M1

X Y Z

S

... ...

Figure 4: Dag of blocked matrix multiplication. Some edges have
been omitted for clarity.

the edges define the partial execution order. The syncs in
lines 21 and 23 break the procedure matrixmul into three
threads X, Y , and Z, which correspond respectively to the
partitioningand spawning of subproblemsM1;M2; : : : ;M8
in lines 2–20, the spawning of the addition S in line 22, and
the return in line 25.

The Cilk runtime system automatically schedules the ex-
ecution of the computation on the processors of a paral-
lel computer using the provably efficient technique of work
stealing [5], in which idle processors steal spawned proce-
dures from victim processors chosen at random. When a
procedure is stolen, we refer to it and all of its descendant
procedures in the spawn tree as a subcomputation.

Dag-consistent shared memory is a natural consisten-
cy model to support a shared-memory program such as
matrixmul. Certainly, sequential consistency can guar-
antee the correctness of the program, but a closer look at
the precedence relation given by the dag reveals that a much
weaker consistency model suffices. Specifically, the 8 recur-
sively spawned childrenM1;M2; : : : ;M8 need not have the
same view of shared memory, because the portion of shared
memory that each writes is neither read nor written by the
others. On the other hand, the parallel addition of tmp into
R by the computation S requires S to have a view in which
all of the writes to shared memory byM1;M2; : : : ;M8 have
completed.

The intuition behind dag consistency is that each thread
sees values that are consistent with some serial execution
order of the dag, but two different threads may see differ-
ent serial orders. Thus, the writes performed by a thread
are seen by its successors, but threads that are incompa-
rable in the dag may or may not see each other’s writes.
In matrixmul, the computation S sees the writes ofM1;M2; : : : ;M8, because all the threads of S are succes-
sors of M1;M2; : : : ;M8, but since the Mi are incompara-
ble, they cannot depend on seeing each others writes. We
shall define dag consistency precisely in Section 3.

3 The BACKER coherence algorithm

This section describes our coherence algorithm, which we
call BACKER, for maintaining dag consistency. We first
give a formal definition of dag-consistent shared memory
and explain how it relates to the intuition of dag consis-

3



tency that we have gained thus far. We then describe the
cache and “backing store” used by BACKER to store shared-
memory objects, and we give three fundamental opera-
tions for moving shared-memory objects between cache and
backing store. Finally, we give the BACKER algorithm and
describe how it ensures dag consistency.

We first introduce some terminology. Let G = (V;E) be
the dag of a multithreaded computation. For i; j 2 V , if a
path of nonzero length from thread i to thread j exists in G,
we say that i (strictly) precedes j, which we write i � j. We
say that two threads i; j 2 V with i 6= j are incomparable
if we have i 6� j and j 6� i.

Shared memory consists of a set of objects that threads
can read and write. To track which thread is responsible for
an object’s value, we imagine that each shared-memory ob-
ject has a tag which the write operation sets to the name of
the thread performing the write. We assume without loss
of generality that each thread performs at most one read or
write.

We define dag consistency as follows. (See also [17].)

Definition 1 The shared memory M of a multithreaded
computationG = (V;E) is dag-consistent if the following
two conditions hold:

1. Whenever any thread i 2 V reads any object m 2M ,
it receives a value v tagged with some thread j 2 V
such that j writes v to m and i 6� j.

2. For any three threads i; j; k 2 V , satisfying i � j � k,
if j writes some objectm 2M and k readsm, then the
value received by k is not tagged with i.

For deterministic programs, this definition implies the intu-
itive notion that a read can “see” a write only if there is some
serial execution order of the dag in which the read sees the
write. As it turns out, however, this intuitionis ill defined for
certain nondeterministic programs. For example, there ex-
ist nondeterministic programs whose parallel execution can
contain reads that do not occur in any serial execution. Defi-
nition1 implies the intuitivesemantics for deterministic pro-
grams and is well defined for all programs.

Programs can easily be written that are guaranteed to be
deterministic. Nondeterminism arises when a write to an ob-
ject occurs that is incomparable with another read or write
(of a different value) to the same object. For example, if a
read and a write to the same object are incomparable, then
the read might or might not receive the value of the write.
Similarly, if two writes are incomparable and a read exists
that succeeds them both with no other interveningwrites, the
read might receive the value of either write. To avoid non-
determinism, it suffices that no write to an object occurs that
is incomparable with another read or write to the same ob-
ject, in which case all writes to the object must lie on a single
path in the dag. Moreover, all writes and any one given read

must also lie on a single path. Consequently, by Definition1,
every read of an object sees exactly one write to that object,
and the execution is deterministic.

We now describe the BACKER coherence algorithm for
maintaining dag-consistent shared memory.2 In this algo-
rithm, versions of shared-memory objects can reside simul-
taneously in any of the processors’ local caches or the global
backing store. Each processor’s cache contains objects re-
cently used by the threads that have executed on that pro-
cessor, and the backing store provides default global storage
for each object. For our Cilk system on the CM5, portions of
each processor’s main memory are reserved for the proces-
sor’s cache and for a portion of the distributedbacking store,
although on some systems, it might be reasonable to imple-
ment the backing store on disk. In order for a thread exe-
cuting on the processor to read or write an object, the object
must be in the processor’s cache. Each object in the cache
has a dirty bit to record whether the object has been modified
since it was brought into the cache.

Three basic operations are used by the BACKER to ma-
nipulate shared-memory objects: fetch, reconcile, and flush.
A fetch copies an object from the backing store to a proces-
sor cache and marks the cached object as clean. A reconcile
copies a dirty object from a processor cache to the backing
store and marks the cached object as clean. Finally, a flush
removes a clean object from a processor cache. Unlike im-
plementations of other models of consistency, all three op-
erations are bilateral between a processor’s cache and the
backing store, and other processors’ caches are never in-
volved.

The BACKER coherence algorithm operates as follows.
When the user code performs a read or write operation on an
object, the operation is performed directly on a cached copy
of the object. If the object is not in the cache, it is fetched
from the backing store before the operation is performed. If
the operation is a write, the dirty bit of the object is set. To
make space in the cache for a new object, a clean object can
be removed by flushing it from the cache. To remove a dirty
object, it is reconciled and then flushed.

Besides performing these basic operations in response
to user reads and writes, the BACKER performs additional
reconciles and flushes to enforce dag consistency. For
each edge i! j in the computation dag, if threads i andj are scheduled on different processors, say p and q, then
BACKER reconciles all ofp’s cached objects after p executesi but before p enables j, and it reconciles and flushes q’s en-
tire cache before q executes j.

The key reason BACKER works is that it is always safe,
at any point during the execution, for a processor p to rec-
oncile an object or to flush a clean object. Suppose we ar-
bitrarily insert a reconcile of an object into the computation2See [17] for details of a “lazier” coherence algorithm than BACKER

based on climbing the spawn tree.

4



performed by p. Assuming that there is no other communi-
cation involving p, if p later fetches the object that it previ-
ously reconciled, it will receive either the value that it wrote
earlier or a value written by a thread i that is incomparable
with the thread i0 performing the read. In the first case, part 2
of the Definition 1 is satisfied by the semantics of ordinary
serial execution. In the second case, the thread i that per-
formed the write is incomparable with i0, and thus part 2 of
the definition holds as well. (Part 1 of the definition holds
trivially.)

The BACKER algorithm uses this safety property to guar-
antee dag consistency even when there is communication.
Suppose that a thread i resides on processor p with an edge
to a thread j on processor q. In this case, BACKER causesp to reconcile all its cached objects after executing i but be-
fore enabling j, and it causes q to reconcile and flush its en-
tire cache before executing j. At this point, the state of q’s
cache (empty) is the same as p’s if j had executed with i on
processor p, but a reconcile and flush had occurred between
them. Consequently, BACKER ensures dag consistency.

With all the reconciles and flushes being performed by the
BACKER algorithm, why should we expect it to be an ef-
ficient coherence algorithm? The main reason is that once
a processor has fetched an object into its cache, the object
never needs to be updated with external values or invali-
dated, unless communication involving that processor oc-
curs to enforce a dependency in the dag. Consequently, the
processor can run with the speed of a serial algorithm with
no overheads. Moreover, in Cilk, communication to enforce
dependencies does not occur often [4].

It is worth mentioning that BACKER actually supports
stronger semantics than Definition 1 requires. In fact, Def-
inition 1 allows certain semantic anomalies, but BACKER

handles these situations in the intuitively correct way. We
are currently attempting to characterize the semantics of
BACKER fully.

4 Implementation

This section describes our implementation of dag-consistent
shared memory for the Cilk runtime system running on
the Connection Machine Model CM5 parallel supercom-
puter [24]. We also describe the Cilk language extensions
for supporting shared-memory objects and the “diff” mech-
anism [20] for managing dirty bits. Finally, we discuss mi-
nor anomalies in atomicity that can occur when the size of
the concrete objects supported by the shared-memory sys-
tem is different from the abstract objects that the program-
mer manipulates.

The Cilk system on the CM5 supports concrete shared-
memory objects of 32-bit words. All consistency operations
are logically performed on a per-word basis. If the runtime
system had to operate on every word independently, how-
ever, the system would be terribly inefficient. Since extra

fetches and reconciles do not adversely affect the BACKER

coherence algorithm, we implemented the familiar strategy
of grouping objects into pages [16, Section 8.2], each of
which is fetched or reconciled as a unit. Assuming that spa-
tial locality exists when objects are accessed, grouping ob-
jects helps amortize the runtime system overhead.

Unfortunately, the CM5 operating system does not sup-
port handling of page faults by user-level code, and so we
were forced to implement shared memory in a relatively ex-
pensive fashion. Specifically, in our CM5 implementation,
shared memory is kept separate from other user memory,
and special operations are required to operate on it. Most
painfully, testing for page faults occurs explicitly in soft-
ware, rather than implicitly in hardware. Ourcilk2c type-
checking preprocessor [27] alleviates some of the discom-
fort, but a transparent solution that uses hardware support for
paging would be preferable. A minor advantage to the soft-
ware approach we use, however, is that we can support full
64-bit addressing of shared memory on the 32-bit SPARC
processors of the CM5 system.

Cilk’s language support makes it easy to express oper-
ations on shared memory. The user can declare shared
pointers and can operate on these pointers with normal C op-
erations, such as pointer arithmetic and dereferencing. The
type-checking preprocessor automatically generates code
to perform these operations. The user can also declare
shared arrays which are allocated and deallocated auto-
matically by the system. As an optimization, we also pro-
vide register shared pointers, which are a version of
shared pointers that are optimized for multiple accesses to
the same page. In our CM5 system, a register shared
pointer dereference takes 4 instructions when it performs
multiple accesses to within a single page, as compared to 1
instruction for an ordinary C-pointer dereference. Finally,
Cilk provides a loophole mechanism to convert shared
pointers to C pointers, allowing direct, fast operations on
pages. This loophole mechanism puts the onus on the user,
however, for ensuring that the pointer stays within a single
page. In the near future, we hope to port Cilk to an archi-
tecture and operating system that allow user-level handling
of page faults. On such a platform, no difference will exist
between shared objects and their C equivalents, and de-
tecting page faults will incur no software overhead.

An important issue we faced with the implementation of
dag-consistent shared memory on the CM5 was how to keep
track of which objects on a page have been written. The
CM5 provides no direct hardware support to maintain dirty
bits explicitly at the granularity of words. Rather than using
dirty bits explicitly, Cilk uses a diff mechanism as is used in
the Treadmarks system [20]. The diff mechanism computes
the dirty bit for an object by comparing that object’s value
with its value in a copy made at fetch time. Our implemen-
tation makes this copy only for pages loaded in read/write

5



mode, thereby avoiding the overhead of copying for read-
only pages. The diff mechanism imposes extra overhead on
each reconcile, but it imposes no extra overhead on each ac-
cess [35].

Dag consistency can suffer from atomicity anomalies
when abstract objects that the programmer is reading and
writing are larger than the concrete objects supported by the
shared-memory system. For example, suppose the program-
mer is treating two 4-byte concrete objects as one 8-byte ab-
stract object. If two incomparable threads each write the en-
tire 8-byte object, the programmer might expect an 8-byte
read of the structure by a common successor to receive one
of the two 8-byte values written. The 8-byte read may non-
deterministically receive 4 bytes of one value and 4 bytes
of the other value, however, since the 8-byte read is really
two 4-byte reads, and the consistency of the two halves is
maintained separately. Fortunately, this problem can only
occur if the abstract program is nondeterministic, that is, if
the program is nondeterministic even when the abstract and
concrete objects are the same size. When writing determin-
istic programs, the programmer need not worry about this
atomicity problem.

As with other consistency models, including sequential
consistency, atomicity anomalies can also occur when the
programmer packs several abstract objects into a single sys-
tem object. Fortunately, this problem can easily be avoided
in the standard way by not packing together abstract objects
that might be updated in parallel.

5 Memory allocation

Some means of allocating memory must be provided in
any useful implementation of shared memory. We consid-
ered implementing general heap storage in the style of C’s
malloc and free, but most of our immediate applica-
tions only require stack-like allocation for temporary vari-
ables and the like. Since Cilk procedures operate in a par-
allel tree-like fashion, however, we needed some kind of
parallel stack. We settled on implementing a cactus-stack
[15, 28, 32] allocator.

From the point of view of a single Cilk procedure, a cactus
stack behaves much like an ordinary stack. The procedure
can allocate and free memory by incrementing and decre-
menting a stack pointer. The procedure views the stack as a
linearly addressed space extending back from its own stack
frame to the frame of its parent and continuing to more dis-
tant ancestors.

The stack becomes a cactus stack when multiple proce-
dures execute in parallel, each with its own view of the stack
that corresponds to its call history, as shown in Figure 5. In
the figure, subcomputationS1 allocates some memoryA be-
fore procedureP1 is spawned. SubcomputationS1 then con-
tinues to allocate more memory B. When procedure P1 is
stolen and becomes the root of subcomputation S2, a new

A

B

C

D E

P1

P2

1S 2S 3S

A A A

B

C C

D E

1S 2S 3S

Figure 5: A cactus stack. Procedure P1 is stolen from subcom-
putation S1 to start subcomputation S2, and then procedure P2 is
stolen from S2 to start subcomputation S3 . Each subcomputation
sees its own stack allocations and the stack allocated by its ances-
tors. The stack grows downwards. The left side of the picture
shows how the stack grows like a tree, resembling a cactus. The
right side shows the stack as seen by the three subcomputations.
In this example, the stack segmentA is shared by all subcomputa-
tions, stack segment C is shared by subcomputations S2 and S3 ,
and the other segments,B, D, and E, are private.

branch of the stack is started so that subsequent allocations
performed by S2 do not interfere with the stack being used
by S1. The stacks as seen by S1 and S2 are independent
below the steal point, but they are identical above the steal
point. Similarly, when procedure P2 is stolen from S2 to
start subcomputation S3, the cactus stack branches again.

Cactus-stack allocation mirrors the advantages of an ordi-
nary procedure stack. Any object on the stack that is view-
able by a procedure has a simple address: its offset from
the base of the stack. Procedure local variables and arrays
can be allocated and deallocated automatically by the run-
time system in a natural fashion, as can be seen in the ma-
trix multiplication example from Figure 3. Allocation can
be performed completely locally without communication by
simply incrementing a local pointer, although communica-
tion may be required when an out-of-cache stack page is ac-
tually referenced. Separate branches of the cactus stack are
insulated from each other, allowing two subcomputations to
allocate and free objects independently, even though objects
may be allocated with the same address. Procedures can
reference common data through the shared portion of their
stack address space.

Cactus stacks have many of the same limitations as ordi-
nary procedure stacks [28]. For instance, a child thread can-
not return to its parent a pointer to an object that it has al-
located. Similarly, sibling procedures cannot share storage
that they create on the stack. Just as with a procedure stack,
pointers to objects allocated on the cactus-stack can only be
safely passed to procedures below the allocation point in the
call tree. Heap storage offers a way of alleviating some of
these limitations (and we intend to provide a heap alloca-

6



tor in a future version of Cilk), but the cactus stack provides
simple and efficient support for allocation of procedure local
variables and arrays.

The size of the backing store determines how large a
shared-memory application one can run. On the CM5, the
backing store is implemented in a distributed fashion by al-
locating a large fraction of each processor’s memory to this
function. To determine which processor holds the backing
store for a page, a hash function is applied to the page iden-
tifier (a pair of the cactus-stack address and the allocating
subcomputation). A fetch or reconcile request for a page
is made to the backing store of the processor to which the
page hashes. This policy ensures that backing store is spread
evenly across the processors’ memory. In other systems, it
might be reasonable to place the backing store on disk à la
traditional virtual memory.

6 An analysis of page faults

In this section, we examine the number FP of page faults
that a Cilk computation incurs when run onP processors us-
ing Cilk’s randomized work-stealing scheduler [4] and the
implementation of the BACKER coherence algorithm de-
scribed in Section 4. We prove that FP can be related to
the number F1 of page faults taken by a 1-processor execu-
tion by the formula FP � F1 + 2Cs, where C is the size
of each processor’s cache in pages and s is the total number
of steals executed by Cilk’s scheduler. The 2Cs term repre-
sents faults due to “warming up” the processors’ caches, and
we present empirical evidence that this overhead is actually
much smaller in practice than the theoretical bound.

We begin with a theorem that bounds the number of page
faults of a Cilk application. The proof takes advantage of
properties of the least-recently used (LRU) page replace-
ment scheme used by Cilk, as well as the fact that Cilk’s
scheduler,like C, executes serial code in a depth-first fash-
ion.

Theorem 1 Let FP be the number of page faults of a Cilk
computation when run on P processors with a cache of C
pages on each processor. Then, we have FP � F1 + 2Cs,
where s is the total number of steals that occur during Cilk’s
execution of the computation.

Proof: The proof is by induction on the number s of steals.
For the base case, observe that if no steals occur, then the
application runs entirely on one processor, and thus it faultsF1 times by definition. For the inductive case, consider an
execution E of the computation that has s steals. Choose
any subcomputation T from which no processor steals dur-
ing the execution E. Construct a new execution E0 of the
computation which is identical to E, except that T is never
stolen. SinceE0 has only s�1 steals, we know it has at mostF1 + 2C(s� 1) page faults by the inductive hypothesis.

To relate the number of page faults during executionE to
the number during execution E0, we examine cache behav-
ior under LRU replacement. Consider two processors that
execute simultaneously and in lock step a block of code us-
ing two different starting cache states, where each proces-
sor’s cache hasC pages. The main property of LRU that we
exploit is that the number of page faults in the two execu-
tions can differ by at most C page faults. This property fol-
lows from the observation that no matter what the starting
cache states might be, the states of the two caches must be
identical after one of the two executions takesC page faults.
Indeed, at the point when one execution has just taken itsCth page fault, each cache contains exactly the last C dis-
tinct pages referenced [19].

We can now count the number of page faults during the
executionE. The fault behavior ofE is the same as the fault
behavior ofE0 except for the subcomputationT and the sub-
computation, call it U , from which it stole. Since T is exe-
cuted in depth-first fashion, the only difference between the
two executions is that the starting cache state of T and the
starting cache state ofU after T are different. Therefore, ex-
ecutionE makes at most 2C more page faults than executionE0, and thus executionE has at most F1+2C(s�1)+2C =F1 + 2Cs page faults.

Theorem 1 says that the total number of faults on P pro-
cessors is at most the total number of faults on 1 proces-
sor plus an overhead term. The overhead arises whenever
a steal occurs, because in the worst case, the caches of both
the thieving processor and the victim processor contain no
pages in common compared to the situation when the steal
did not occur. Thus, they must be “warmed up” until the
caches “synchronize” with the cache of a serial execution.

To measure the warm-up overhead, we counted the num-
ber of page faults taken by several applications—including
matrixmul, an optimized matrix multiplication routine,
and a parallel version of Strassen’s algorithm [33]—for var-
ious choices of cache, processor, and problem size. For
each run we measured the cache warm-up fraction (FP �F1)=2Cs, which represents the fraction of the cache that
needs to be warmed up on each steal. We know from The-
orem 1 that the cache warm-up fraction is at most 1. Our
experiments indicate that the cache warm-up fraction is, in
fact, typically less than 3%, as can be seen from the his-
togram in Figure 6 showing the cache warm-up fraction for
153 experimental runs of the above applications, with pro-
cessor counts ranging from 2 to 64 and cache sizes from
256KB to 2MB. Thus, we see less than 3% of the extra 2Cs
faults.

To understand why cache warm-up costs are so low, we
performed an experiment that recorded the size of each sub-
problem stolen. We observed that most of the subproblems
stolen during an execution were small. In fact, only 5–10%

7



0

10

20

30

40

50

60

70

<0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 >3

nu
m

be
r 

of
 e

xp
er

im
en

ts

cache warm-up fraction (%)

Figure 6: Histogram of the cache warm-up fraction (FP �F1)=2Cs for a variety of applications, cache sizes, processor
counts, and problem sizes. The vertical axis shows the number of
experiments with a cache warm-up fraction in the shown range.

of the stolen subproblems were “large,” where a large sub-
problem is defined to be one that takes C or more pages to
execute. The other 90–95% of the subproblems are small
and are stolen when little work is left to do and many of the
processors are idle. Therefore, most of the stolen subprob-
lems never perform C page faults before terminating. The
bound FP � F1 + 2Cs derived in Theorem 1 thus appears
to be rather loose, and our experiments indicate that much
better performance can be expected.

7 Performance

In this section, we model the performance of Cilk on syn-
thetic benchmark applications similar to matrixmul. We
quantify performance in terms of “work” and “critical-path
length.” The work T1 of a computation is the running time,
including page faults, of the computation on one processor,
when the backing store is running on other processors. The
critical-path length T1 is the (theoretical) running time on
an infinite number of processors assuming that page faults
take zero time. Their ratio T1=T1 is the average paral-
lelism of the computation. We found that the running timeTP of the benchmarks on P processors can be estimated asTP � 1:34(T1=P )+5:1(T1). Speedup was always at least
a third of perfect linear speedup for benchmarks with large
average parallelism and running time was always within a
factor of 10 of optimal for those without much parallelism.

To analyze Cilk’s implementation of the BACKER co-
herence algorithm, we measured the work and critical-path
length for synthetic benchmarks obtained by adding sync
statements to the matrix multiplication program shown in
Figure 3. By judiciously placing sync statements in the
code, we were able to obtain synthetic benchmarks that ex-
hibited a wide range of average parallelism. We ran the
benchmarks on various numbers of processors, each time

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10

no
rm

al
iz

ed
 s

pe
ed

up

normalized machine size

Linear speedup
Parallelism bound

Curve fit

Figure 7: Normalized speedup curve for matrix multiplication.
The horizontal axis is normalized machine size and the vertical
axis is normalized speedup. Experiments consisted of 512 � 512,1024�1024, and2048�2048 problem sizes on 2 to 64 processors,
for matrix multiplication algorithms with various critical paths.

recording the number P of processors and the actual run-
time TP .

Figure 7 shows a normalized speedup curve [4] for the
synthetic benchmarks. This curve is obtained by plotting
speedup T1=TP versus machine size P , but normalizing
each of these values by dividing them by the average par-
allelism T1=T1. We use a normalized speedup curve, be-
cause it allows us to plot runs of different benchmarks on the
same graph. Also plotted in the figure are the perfect linear-
speedup curve TP = T1=P (the 45� line) and the limit on
performance given by the parallelism bound TP � T1 (the
horizontal line).

The quantity T1 is not necessarily a tight lower bound
on TP , because it ignores page faults. Indeed, the structure
of matrixmul on n � n matrices causes 
(lgn) faults
to be taken along any path through the dag. A better mea-
sure, which we shall denote T1(C), is the maximum, over
all paths in the dag, of the time (includingpage faults) to exe-
cute all threads along the path on one processor with a cache
size ofC pages. Although the boundTP � T1(C) is tighter
(and makes our numbers look better), it appears difficult to
compute. We can estimate using analytical techniques, how-
ever, that for our matrix multiplication algorithms, T1(C)
is about twice as large as T1. Had we used this value forT1
in the normalized speedup curve in Figure 7, each data point
would shift up and right by this factor of 2, giving somewhat
tighter results.

The normalized speedup curve in Figure 7 shows that
dag-consistent shared-memory applications can obtain good
speedups. The data was fit to a curve of the form TP =c1T1=P + c1T1. We obtained a fit with c1 = 1:34 andc1 = 5:1, with an R2 correlation coefficient of 0:963 and
a mean relative error of 13:8%. Thus, the shared memory

8



imposes about a 34% performance penalty on the work of
an algorithm, and a factor of 5 performance penalty on the
critical path. The factor of 5 on the critical path term is quite
good considering all of the scheduling, protocol, and com-
munication that could potentially contribute to this term.

There are two possible explanations for the additional34% on the work term. The extra work could represent con-
gestion at the backing store, which causes page faults to cost
more than in the one-processor run. Alternatively, it could
be because our T1 measure is too conservative. To computeT1, we run the backing store on processors other than the one
running the benchmark, while when we run on P proces-
sors, we use the same P processors to implement the back-
ing store. We have not yet run experiments to see which of
these two explanations is correct.

8 Conclusion

Many other researchers have investigated distributed shared
memory. To conclude, we briefly outline work in this area
and offer some ideas for the future.

The notion that independent tasks may have incoherent
views of each others’ memory is not new to Cilk. The
BLAZE [26] language incorporated a memory semantics
similar to that of dag consistency into a PASCAL-like lan-
guage. The Myrias [2] computer was designed to sup-
port a relaxed memory semantics similar to dag consistency,
with many of the mechanisms implemented in hardware.
Loosely-Coherent Memory [23] allows for a range of con-
sistency protocols and uses compiler support to direct their
use. Compared with these systems, Cilk provides a mul-
tithreaded programming model based on directed acyclic
graphs, which leads to a more flexible linguistic expression
of operations on shared memory.

Cilk’s implementation of dag consistency borrows heav-
ily on the experiences from previous implementations of
distributed shared memory. Like Ivy [25] and others [6,
11, 20], Cilk’s implementation uses fixed-sized pages to cut
down on the overhead of managing shared objects. In con-
trast, systems that use cache lines [7, 21, 29] require some
degree of hardware support [31] to manage shared mem-
ory efficiently. As another alternative, systems that use
arbitrary-sized objects or regions [8, 18, 30, 34] require ei-
ther an object-oriented programming model or explicit user
management of objects.

The idea of dag-consistent shared memory can be ex-
tended to the domain of file I/O to allow multiple threads to
read and write the same file in parallel. We anticipate that
it should be possible to memory-map files and use our exist-
ing dag-consistency mechanisms to provide a parallel, asyn-
chronous, I/O capability for Cilk.

We are also currently working on porting dag-consistent
shared memory to our Cilk-NOW [3] adaptively parallel,
fault-tolerant, network-of-workstations system. We are us-

ing operating system hooks to make the use of shared mem-
ory be transparent to the user. We expect that the well-
structured nature of Cilk computations will allow the run-
time system to maintain dag consistency efficiently, even in
the presence of processor faults.

Acknowledgments

We gratefully acknowledge the work of Bradley Kuszmaul
of Yale, Yuli Zhou of AT&T Bell Laboratories, and Rob
Miller of Carnegie Mellon, all formerly of MIT, for their ef-
forts as part of the Cilk team. Rob implemented the type-
checking preprocessor for Cilk and led and implemented the
design of the linguisticsfor explicit shared memory. Yuli un-
dertook the first port of theN -body code to Cilk. Thanks to
Burton Smith of Tera Computer Corporation for acquainting
us with related work. Thanks to Mingdong Feng of the Na-
tional University of Singapore for porting Cilk to the IBM
SP-2 and providing feedback on our research. Thanks to the
National University of Singapore for resources used to pre-
pare the final version of this paper. Thanks to Arvind and his
dataflow group at MIT for helpful discussions and inspira-
tion.

References
[1] Joshua E. Barnes. A hierarchical O(N logN) N -body

code. Available on the Internet from ftp://hubble.
ifa.hawaii.edu/pub/barnes/treecode/.

[2] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas.
The control mechanism for the Myrias parallel computer sys-
tem. Computer Architecture News, 16(4):21–30, September
1988.

[3] Robert D. Blumofe. Executing Multithreaded Programs Ef-
ficiently. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Techno-
logy, September 1995.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: An efficient multithreaded runtime system. In Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pages
207–216, Santa Barbara, California, July 1995.

[5] Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing. In Pro-
ceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 356–368, Santa Fe, New Mexico,
November 1994.

[6] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Im-
plementation and performance of Munin. In Proceedings of
the Thirteenth ACM Symposium on Operating Systems Prin-
ciples, pages 152–164, Pacific Grove, California, October
1991.

[7] David Chaiken and Anant Agarwal. Software-extended co-
herent shared memory: Performance and cost. In Proceed-
ings of the 21st Annual International Symposium on Com-
puter Architecture, pages 314–324, Chicago, Illinois, April
1994.

[8] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska,
Henry M. Levy, and Richard J. Littlefield. The Amber sys-
tem: Parallel programming on a network of multiprocessors.

9



In Proceedings of the Twelfth ACM Symposium on Operat-
ing Systems Principles, pages 147–158, Litchfield Park, Ari-
zona, December 1989.

[9] Daved E. Culler, Andrea Dusseau, Seth Copen Goldst-
ein, Arvind Krishnamurthy, Steven Lumetta, Thorsten von
Eicken, and Katherine Yelick. Parallel programming in
Split-C. In Supercomputing ’93, pages 262–273, Portland,
Oregon, November 1993.

[10] Michel Dubois, Christoph Scheurich, and Faye Briggs.
Memory access buffering in multiprocessors. In Proceed-
ings of the 13th Annual International Symposium on Com-
puter Architecture, pages 434–442, June 1986.

[11] Vincent W. Freeh, David K. Lowenthal, and Gregory R. An-
drews. Distributed Filaments: Efficient fine-grain paral-
lelism on a cluster of workstations. In Proceedings of the
First Symposium on Operating Systems Design and Imple-
mentation, pages 201–213, Monterey, California, November
1994.

[12] Guang R. Gao and Vivek Sarkar. Location consistency:
Stepping beyond the barriers of memory coherence and seri-
alizability. Technical Report 78, McGill University, School
of Computer Science, Advanced Compilers, Architectures,
and Parallel Systems (ACAPS) Laboratory, December 1993.

[13] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phil
lip Gibbons, Anoop Gupta, and John Hennessy. Memory
consistency and event ordering in scalable shared-memory
multiprocessors. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 15–26,
Seattle, Washington, June 1990.

[14] James R. Goodman. Cache consistency and sequential con-
sistency. Technical Report 61, IEEE Scalable Coherent In-
terface (SCI) Working Group, March 1989.

[15] E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 stack
mechanism. Proceedings of the AFIPS Spring Joint Com-
puter Conference, pages 245–251, 1968.

[16] John L. Hennessy and David A. Patterson. Computer Archi-
tecture: a Quantitative Approach. Morgan Kaufmann, San
Mateo, CA, 1990.

[17] Christopher F. Joerg. The Cilk System for Parallel Multi-
threaded Computing. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute
of Technology, January 1996.

[18] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A.
Wallach. CRL: High-performance all-software distributed
shared memory. In Proceedings of the Fifteenth ACM Sym-
posium on Operating Systems Principles, pages 213–228,
Copper Mountain Resort, Colorado, December 1995.

[19] Edward G. Coffman Jr. and Peter J. Denning. Operating
Systems Theory. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1973.

[20] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy
Zwaenepoel. TreadMarks: Distributed shared memory on
standard workstations and operating systems. In USENIX
Winter 1994 Conference Proceedings, pages 115–132, San
Francisco, California, January 1994.

[21] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Hein-
lein, Richard Simoni, Kourosh Gharachorloo, John Chapin,
David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta,
Mendel Rosenblum, and John Hennessy. The Stanford Flash
multiprocessor. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture, pages 302–
313, Chicago, Illinois, April 1994.

[22] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE Trans-
actions on Computers, C-28(9):690–691, September 1979.

[23] James R. Larus, Brad Richards, and Guhan Viswanathan.
LCM: Memory system support for parallel language imple-
mentation. In Proceedingsof the Sixth International Confer-
ence on Architectural Support for Programming Languages

and Operating Systems, pages 208–218, San Jose, Califor-
nia, October 1994.

[24] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Doug-
las, Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill,
W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St.
Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang,
and Robert Zak. The network architecture of the Connection
Machine CM-5. In Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages
272–285, San Diego, California, June 1992.

[25] Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[26] Piyush Mehrotra and Jon Van Rosendale. The BLAZE lan-
guage: A parallel language for scientific programming. Par-
allel Computing, 5:339–361, 1987.

[27] Robert C. Miller. A type-checking preprocessor for Cilk 2,
a multithreaded C language. Master’s thesis, Department
of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology, May 1995.

[28] Joel Moses. The function of FUNCTION in LISP or why the
FUNARG problem should be called the envronment prob-
lem. Technical Report memo AI-199, MIT Artificial Intel-
ligence Laboratory, June 1970.

[29] Steven K. Reinhardt, James R. Larus, and David A. Wood.
Tempest and Typhoon: User-level shared memory. In Pro-
ceedings of the 21st Annual International Symposium on
Computer Architecture, pages 325–336, Chicago, Illinois,
April 1994.

[30] Daniel J. Scales and Monica S. Lam. The design and evalu-
ation of a shared object system for distributed memory ma-
chines. In Proceedingsof the First Symposium on Operating
Systems Design and Implementation, pages 101–114, Mon-
terey, California, November 1994.

[31] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Stev
en K. Reinhardt, James R. Larus, and David A. Wood. Fine-
grain access control for distributed shared memory. In Pro-
ceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages297–306,San Jose, California, October1994.

[32] Per Stenström. VLSI support for a cactus stack oriented
memory organization. Proceedings of the Twenty-First An-
nual Hawaii International Conference on System Sciences,
volume 1, pages 211–220, January 1988.

[33] Volker Strassen. Gaussian elimination is not optimal. Nu-
merische Mathematik, 14(3):354–356, 1969.

[34] Andrew S. Tanenbaum, Henri E. Bal, and M. Frans Kaash-
oek. Programming a distributed system using shared ob-
jects. In Proceedingsof the Second International Symposium
on High Performance Distributed Computing, pages 5–12,
Spokane, Washington, July 1993.

[35] Matthew J. Zekauskas,Wayne A. Sawdon, and Brian N. Ber-
shad. Software write detection for a distributed shared mem-
ory. In Proceedings of the First Symposium on Operating
Systems Design and Implementation, pages 87–100, Mon-
terey, California, November 1994.

10


