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Abstract

We introduce dag consistency, a relaxed consistency model
for distributed shared memory which is suitable for multi-
threaded programming. We have implemented dag consis-
tency in software for the Cilk multithreaded runtime system
running on a Connection Machine CM5. Our implementa-
tion includes a dag-consistent distributed cactus stack for
storage allocation. We provide empirical evidence of the
flexibility and efficiency of dag consistency for applications
that include blocked matrix multiplication, Srassen’s ma-
trix multiplication algorithm, and a Barnes-Hut code. Al-
though Cilk schedul es the executions of these programs dy-
namically, their performances are competitive with stati-
cally scheduled implementationsin the literature. We also
prove that the number Fp of page faultsincurred by a user
programrunning on P processors can berelated to thenum-
ber F of page faultsrunning serially by the formula F'p <
F1 4+ 2C's, where C' isthe cache size and s isthe number of
thread migrations executed by Cilk's schedul er.

1 Introduction

Architects of shared memory for parallel computers have at-
tempted to support Lamport’s model of sequential consis-
tency [22]: The result of any execution isthe same asif the
operations of all the processors were executed in some se-
guential order, andthe operationsof each individual proces-
sor appear in thissequence in the order specified by itspro-
gram. Unfortunately, they have generally found that Lam-
port’smodel isdifficult to implement efficiently, and hence
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relaxed models of shared-memory consistency have been
developed [10, 12, 13] that compromise on semantics for
afaster implementation. By and large, al of these consis-
tency models have had one thingin common: they are “pro-
cessor centric” in the sense that they define consistency in
terms of actions by physical processors. In this paper, we
introduce “dag” consistency, a relaxed consistency model
based on user-level threads which we have implemented for
Cilk[4], aC-based multithreaded |anguage and runtime sys-
tem.

Dag consistency isdefined on thedag of threadsthat make
up a parallel computation. Intuitively, a read can “see’ a
writein the dag-consistency model only if thereis some se-
rial execution order consistent withthedag inwhichtheread
sees thewrite. Unlike sequential consistency, but similar to
certain processor-centric models [12, 14], dag consistency
alowsdifferent reads to return values that are based on dif-
ferent serial orders, but the values returned must respect the
dependenciesin the dag.

The current Cilk mechanisms to support dag-consistent
distributed shared memory on the Connection Machine
CM5 are implemented in software. Nevertheless, codes
such as matrix multiplication run efficiently, as can be seen
in Figure 1. The dag-consistent shared memory performs at
5 megaflops per processor as long as the work per proces-
sor is sufficiently large. This performance compares fairly
well with other matrix multiplicationcodesonthe CM5 (that
do not use the CM5’svector units). For example, an imple-
mentation coded in Split-C[9] attainsjust over 6 megaflops
per processor on 64 processors using a static data layout, a
static thread schedul e, and an optimized assembly-language
inner loop. In contrast, Cilk’s dag-consistent shared mem-
ory is mapped across the processors dynamicaly, and the
Cilk threads performing the computation are scheduled dy-
namicaly at runtime. We believe that the overhead in our
current implementation can be reduced, but that in any case,
this overhead is a reasonable price to pay for ease of pro-
gramming and dynamic load balancing.

We have implemented irregular applicationsthat employ
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Figure 1: Megaflops per processor versus the number of proces-
sors for several matrix multiplication runs on the Connection Ma-
chine CM5. The shared-memory cache on each processor is set to
2MB. Thelower curveisfor thermat r i xmul codein Figure3and
the upper two curvesare for an optimized version that usesno tem-
porary storage.

Cilk’s dag-consistent shared memory, including a port of
a Barnes-Hut N-body simulation [1] and an implementa-
tion of Strassen’s agorithm [33] for matrix multiplication.
These irregular applications provide a good test of Cilk's
ability to schedule computations dynamically. We achieve
a speedup of 9 on an 8192-particle N -body simulation us-
ing 32 processors, which is competitive with other soft-
ware implementations of distributed shared memory [18].
Strassen’s algorithm runs as fast as regular matrix multipli-
cation for 2048 x 2048 matrices, and we coded it in Cilk in
afew hours.

The remainder of this paper isorganized asfollows. Sec-
tion 2 gives an example of how matrix multiplication can
be coded in Cilk using dag-consistent memory. Section 3
gives a forma definition of dag consistency and describes
the abstract BACKER coherence algorithm for maintaining
dag consistency. Section 4 describes an implementation of
the BACKER agorithmfor Cilk onthe Connection Machine
CM5. Section 5 describes the distributed “cactus stack”
memory alocator which the system usesto allocate shared-
memory objects. Section 6 analyzes the number of faults
taken by multithreaded programs, boththeoretically and em-
pirically. Section 7 investigates the running time of dag-
consistent shared memory programs and presents a model
for their performance. Section 8 compares dag-consistency
with some related consistency modelsand offers some ideas
for the future.

2 Example: matrix multiplication

To illustrate the concepts behind dag consistency, consider
the problem of parallel matrix multiplication. One way to
program matrix multiplicationisto usetherecursive divide-
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Figure 2: Recursive decomposition of matrix multiplication. The
multiplication of n x n matrices requires eight multiplications of
n/2 x n/2 matrices, followed by one addition of rn x n matrices.

and-conguer agorithm shown in Figure 2. To multiply one
n X n matrix by another, we divide each matrix into four
n/2 x n/2 submatrices, recursively compute some prod-
ucts of these submatrices, and then add the resultstogether.
Thisagorithmlendsitself to aparalel implementation, be-
cause each of the eight recursive multiplicationsisindepen-
dent and can be executed in paralld.

Figure 3 shows Cilk code' for a*“blocked” implementa-
tion of recursive matrix multiplicationin which the (square)
input matrices A and B and the output matrix R are stored
as acollection of 16 x 16 submatrices, called blocks. All
three matrices are abstractly stored in Cilk’s shared mem-
ory, but the CM5 implementation distributestheir el ements
among the individua processor memories. The Cilk proce-
dure mat r i xmul takes as arguments pointers to the first
block in each matrix as well as a variable nb denoting the
number of blocks in any row or column of the matrices.
From the pointer to thefirst block of amatrix and the value
of nb, the location of any other block in the matrix can be
computed quickly. As matri xmul executes, values are
stored into R, as well asinto atemporary matrix t np.

The procedure mat ri xrmul operates as follows. Lines
34 check to see if the matrices to be multiplied consist of
asingle block, in which case a cdl is made to a seria rou-
tine mul ti pl y_bl ock (not shown) to perform the mul-
tiplication. Otherwise, line 8 allocates some page-aligned
temporary storage in shared memory for theresults, lines 9—
10 compute pointers to the 8 submatrices of A and B, and
lines 11-12 compute pointers to the 8 submatrices of R and
the temporary matrix t mp. At this point, the divide step of
the divide-and-conquer paradigm is complete, and we begin
on the conquer step. Lines 13-20 recursively compute the
8 required submatrix multiplications, storing the resultsin
the 8 digoint submatrices of Rand t np. The recursion is
made to execute in parallel by using the spawn directive,
which is similar to a C function call except that the caller
can continue to execute even if the callee has not yet re-
turned. Thesync statement in line 21 causes the procedure
to suspend until all the proceduresit spawned have finished.

I'shown is Cilk-3 code, which provides explicit linguistic support
for shared-memory operations and call/return semantics for coordinating
threads. The origina Cilk-1 system [4] used explicit continuation passing
to coordinate threads. For a history of the evolution of Cilk, see [17].



1 cilk void matrixmul (I ong nb, shared bl ock *A,
shared bl ock *B,
shared bl ock *R)

2
3 if (nb == 1)
4 mul tiply_block(A B, R;
5 el se {
6 shared bl ock *C, *D, *E, *F, *G *H, *1, *J;
7 shared bl ock *CG, *CH, *EG, *EH,
*Dl, *DJ, *FI, *FJ;
8 shared page_al i gned bl ock tnp[ nb*nb];
/* get pointers to input submatrices */
9 partition(nb, A &C &D, &E, &F);
10 partition(nb, B, & &H, &, &J);
/* get pointers to result submatrices */
11 partition(nb, R &CG &CH, &EG &EH);
12 partition(nb, tnmp, &D, &DJ, &Fl, &FJ);
/* sol ve subprobl ens recursively */
13 spawn matrixmul (nb/2, C, G CGO;
14 spawn matrixmul (nb/2, C, H CH);
15 spawn matrixmul (nb/2, E, H EH);
16 spawn matrixmul (nb/2, E, G EGQ;
17 spawn matrixmul (nb/2, D, I, D);
18 spawn matrixmul (nb/2, D, J, DJ);
19 spawn matrixmul (nb/ 2, F, J, FJ);
20 spawn matrixmul (nb/2, F, I, Fl);
21 sync;
/* add results together into R */
22 spawn matrixadd(nb, tmp, R);
23 sync;
24 }
25 return;
26}

Figure 3: Cilk codefor recursive blocked matrix multiplication.

(Thesync statement isnot aglobal barrier.) Then, line 22
spawns aparallel additioninwhichthe matrix t np isadded
into R. (The procedure mat r i xadd isitself implemented
inarecursive, paralle, divide-and-conquer fashion, and the
code is not shown.) The sync in line 23 ensures that the
addition completes before mat r i xrmul returns.

Like any Cilk multithreaded computation [4], the paral-
lel instruction stream of mat r i xrmul can be viewed as a
“gpawn treg” of procedures broken into a directed acyclic
graph, or dag, of “threads.” The spawn tree is exactly anal-
ogous to atraditional call tree. When a procedure, such as
mat ri xrmul performsaspawn, the spawned procedure be-
comes a child of the procedure that performed the spawn.
Each procedure is broken by sync statements into non-
blocking sequences of instructions, called threads, and the
threads of the computation are organized into a dag repre-
senting the partial execution order defined by the program.
Figure4illustratesthestructureof thedag for mat r i xnul .
Each vertex correspondsto athread of the computation, and

Figure4: Dag of blocked matrix multiplication. Someedgeshave
been omitted for clarity.

the edges define the partial execution order. The syncsin
lines 21 and 23 bresak the proceduremat r i xmul intothree
threads X, Y, and 7, which correspond respectively to the
partitioningand spawning of subproblems My, Mo, ..., Mg
in lines 2—20, the spawning of the addition S in line 22, and
thereturninline 25.

The Cilk runtime system automatically schedul es the ex-
ecution of the computation on the processors of a paral-
lel computer using the provably efficient technique of work
stealing [5], in which idle processors steal spawned proce-
dures from victim processors chosen at random. When a
procedure is stolen, we refer to it and all of its descendant
procedures in the spawn tree as a subcomputation.

Dag-consistent shared memory is a natural consisten-
cy model to support a shared-memory program such as
mat ri xrmul . Certainly, sequential consistency can guar-
antee the correctness of the program, but a closer look at
the precedence rel ation given by the dag reveal s that amuch
weaker consistency model suffices. Specifically, the8 recur-
sively spawned children My, M-, . . ., Mg need not have the
same view of shared memory, because the portion of shared
memory that each writesis neither read nor written by the
others. On the other hand, the parallel addition of t np into
R by the computation S requires S to have aview in which
all of thewritesto shared memory by M, M5, ..., Mg have
compl eted.

The intuition behind dag consistency is that each thread
sees values that are consistent with some serial execution
order of the dag, but two different threads may see differ-
ent serial orders. Thus, the writes performed by a thread
are seen by its successors, but threads that are incompa-
rable in the dag may or may not see each other’s writes.
In mat ri xmul , the computation S sees the writes of
My, M, ..., Mg, because dl the threads of S are succes-
sors of My, M, ..., Mg, but since the M; are incompara-
ble, they cannot depend on seeing each others writes. We
shall define dag consistency precisely in Section 3.

3 TheBACKER coherencealgorithm

This section describes our coherence agorithm, which we
cal BACKER, for maintaining dag consistency. We first
give a forma definition of dag-consistent shared memory
and explain how it relates to the intuition of dag consis-



tency that we have gained thus far. We then describe the
cache and “backing store” used by BACKER to store shared-
memory objects, and we give three fundamental opera
tionsfor moving shared-memory objects between cache and
backing store. Finaly, we givethe BACKER agorithm and
describe how it ensures dag consistency.

Wefirst introduce some terminology. Let G = (V, E) be
the dag of a multithreaded computation. Fori,j € V,if a
path of nonzero length from thread : to thread j existsin G,
we say that i (strictly) precedes j, whichwewrite: < j. We
say that two threads ¢, j € V withi # j areincomparable
if wehavei £ jandj £ i.

Shared memory consists of a set of objects that threads
can read and write. To track which thread is responsiblefor
an object’svalue, we imaginethat each shared-memory ob-
ject has a tag which the write operation sets to the name of
the thread performing the write. We assume without loss
of generdlity that each thread performs at most one read or
write.

We define dag consistency as follows. (Seeaso [17].)

Definition 1 The shared memory M of a multithreaded
computation G = (V, ) is dag-consistent if the following
two conditions hold:

1. Whenever any thread : € V reads any object m € M,
it recelves a value v tagged with some thread j € V
such that j writesv tom and: 4 j.

2. For anythreethreadsi, j, k € V, satisfying: < j < k,
if j writessomeobject m € M and k reads m, thenthe
value received by k is not tagged with s.

For deterministic programs, this definition implies the intu-
itivenotionthat aread can “see” awriteonly if thereissome
seria execution order of the dag in which the read sees the
write. Asitturnsout, however, thisintuitionisill defined for
certain nondeterministic programs. For example, there ex-
ist nondeterministic programs whose parallel execution can
contain reads that do not occur inany seria execution. Defi-
nition1impliestheintuitivesemanticsfor deterministic pro-
grams and iswell defined for al programs.

Programs can easily be written that are guaranteed to be
deterministic. Nondeterminismariseswhen awriteto an ob-
ject occurs that is incomparable with another read or write
(of a different value) to the same object. For example, if a
read and a write to the same object are incomparable, then
the read might or might not receive the value of the write.
Similarly, if two writes are incomparable and a read exists
that succeeds them both with no other interveningwrites, the
read might receive the value of either write. To avoid non-
determinism, it suffices that no writeto an object occursthat
isincomparable with another read or write to the same ob-
ject, inwhich case al writesto theobject must lieonasingle
path inthedag. Moreover, al writesand any one given read

must a solieonasinglepath. Consequently, by Definition1,
every read of an object sees exactly onewriteto that object,
and the execution is deterministic.

We now describe the BACKER coherence agorithm for
maintaining dag-consistent shared memory.? In this algo-
rithm, versions of shared-memory objects can reside simul-
taneously in any of the processors' local caches or the global
backing store. Each processor’s cache contains objects re-
cently used by the threads that have executed on that pro-
cessor, and the backing store providesdefault global storage
for each object. For our Cilk system onthe CM5, portionsof
each processor’s main memory are reserved for the proces-
sor’scache and for aportion of the distributed backing store,
although on some systems, it might be reasonable to imple-
ment the backing store on disk. In order for a thread exe-
cuting on the processor to read or write an object, the object
must be in the processor’s cache. Each abject in the cache
hasadirty bit to record whether the obj ect has been modified
since it was brought into the cache.

Three basic operations are used by the BACKER to ma-
ni pul ate shared-memory objects: fetch, reconcile, and flush.
A fetch copies an object from the backing store to a proces-
sor cache and marks the cached object as clean. A reconcile
copies a dirty object from a processor cache to the backing
store and marks the cached object as clean. Findly, a flush
removes a clean object from a processor cache. Unlikeim-
plementations of other models of consistency, al three op-
erations are bilateral between a processor’s cache and the
backing store, and other processors caches are never in-
volved.

The BACKER coherence agorithm operates as follows.
When the user code performsaread or write operation onan
object, the operation is performed directly on a cached copy
of the object. If the object is not in the cache, it is fetched
from the backing store before the operation is performed. If
the operation isawrite, the dirty bit of the object is set. To
make space in the cache for a new object, aclean object can
be removed by flushing it from the cache. To removeadirty
object, it isreconciled and then flushed.

Besides performing these basic operations in response
to user reads and writes, the BACKER performs additional
reconciles and flushes to enforce dag consistency. For
each edge ¢ — j in the computation dag, if threads ¢ and
j ae scheduled on different processors, say p and ¢, then
BAcCKER reconcilesal of p'scached objectsafter p executes
1 but before p enables j, and it reconciles and flushes ¢’sen-
tire cache before ¢ executes ;.

The key reason BACKER worksisthat it is dways safe,
at any point during the execution, for a processor p to rec-
oncile an object or to flush a clean object. Suppose we ar-
bitrarily insert areconcile of an object into the computation

?See [17] for details of a “lazier” coherence algorithm than BACKER
based on climbing the spawn tree.



performed by p. Assuming that there is no other communi-
cation involving p, if p later fetches the object that it previ-
oudy reconciled, it will receive either thevaluethat it wrote
earlier or avalue written by athread ¢ that isincomparable
withthethread i’ performing theread. Inthefirst case, part 2
of the Definition 1 is satisfied by the semantics of ordinary
seria execution. In the second case, the thread ¢ that per-
formed the writeis incomparable with ¢/, and thus part 2 of
the definition holds as well. (Part 1 of the definition holds
trivialy.)

The BACKER agorithm uses this safety property to guar-
antee dag consistency even when there is communication.
Suppose that athread ¢ resides on processor p with an edge
to athread j on processor ¢. In thiscase, BACKER causes
p toreconcileal its cached objects after executing ¢ but be-
foreenabling j, and it causes ¢ to reconcile and flush itsen-
tire cache before executing j. At this point, the state of ¢'s
cache (empty) isthesame as p’sif j had executed with ¢ on
processor p, but areconcile and flush had occurred between
them. Conseguently, BACKER ensures dag consistency.

With all thereconciles and flushes being performed by the
BACKER algorithm, why should we expect it to be an ef-
ficient coherence algorithm? The main reason is that once
a processor has fetched an object into its cache, the object
never needs to be updated with external vaues or invali-
dated, unless communication involving that processor oc-
curs to enforce a dependency in the dag. Consequently, the
processor can run with the speed of a serial algorithm with
no overheads. Moreover, in Cilk, communication to enforce
dependencies does not occur often [4].

It is worth mentioning that BACKER actually supports
stronger semantics than Definition 1 requires. In fact, Def-
inition 1 allows certain semantic anomalies, but BACKER
handles these situationsin the intuitively correct way. We
are currently attempting to characterize the semantics of
BACKER fully.

4 Implementation

This section describes our implementation of dag-consi stent
shared memory for the Cilk runtime system running on
the Connection Machine Model CM5 parallel supercom-
puter [24]. We also describe the Cilk language extensions
for supporting shared-memory objects and the “diff” mech-
anism [20] for managing dirty bits. Finally, we discuss mi-
nor anomalies in atomicity that can occur when the size of
the concrete objects supported by the shared-memory sys-
tem is different from the abstract objects that the program-
mer mani pul ates.

The Cilk system on the CM5 supports concrete shared-
memory objects of 32-bitwords. All consistency operations
are logicaly performed on a per-word basis. If the runtime
system had to operate on every word independently, how-
ever, the system would be terribly inefficient. Since extra

fetches and reconciles do not adversely affect the BACKER
coherence a gorithm, we implemented the familiar strategy
of grouping objects into pages [16, Section 8.2], each of
which isfetched or reconciled as a unit. Assuming that spa-
tial locality exists when objects are accessed, grouping ob-
jects hel ps amortize the runtime system overhead.

Unfortunately, the CM5 operating system does not sup-
port handling of page faults by user-level code, and so we
were forced to implement shared memory in arelatively ex-
pensive fashion. Specificaly, in our CM5 implementation,
shared memory is kept separate from other user memory,
and specia operations are required to operate on it. Most
painfully, testing for page faults occurs explicitly in soft-
ware, rather thanimplicitlyin hardware. Our ci | k2c type-
checking preprocessor [27] alleviates some of the discom-
fort, but atransparent sol utionthat useshardware support for
paging would be preferable. A minor advantage to the soft-
ware approach we use, however, isthat we can support full
64-bit addressing of shared memory on the 32-bit SPARC
processors of the CM5 system.

Cilk’s language support makes it easy to express oper-
ations on shared memory. The user can declare shar ed
pointersand can operate on these pointerswith normal C op-
erations, such as pointer arithmetic and dereferencing. The
type-checking preprocessor automatically generates code
to perform these operations. The user can also declare
shar ed arrays which are allocated and deallocated auto-
maticaly by the system. As an optimization, we aso pro-
vider egi st er shar ed pointers, which are a version of
shar ed pointersthat are optimized for multipleaccessesto
the same page. In our CM5 system, ar egi st er shar ed
pointer dereference takes 4 instructions when it performs
multiple accesses to within a single page, as compared to 1
instruction for an ordinary C-pointer dereference. Finaly,
Cilk provides a loophole mechanism to convert shar ed
pointers to C pointers, alowing direct, fast operations on
pages. Thisloopholemechanism puts the onus on the user,
however, for ensuring that the pointer stays withina single
page. In the near future, we hope to port Cilk to an archi-
tecture and operating system that alow user-level handling
of page faults. On such a platform, no difference will exist
between shar ed objects and their C equivalents, and de-
tecting page faults will incur no software overhead.

An important issue we faced with the implementation of
dag-consistent shared memory on the CM5 was how to keep
track of which objects on a page have been written. The
CM5 provides no direct hardware support to maintain dirty
bitsexplicitly at the granularity of words. Rather than using
dirty bitsexplicitly, Cilk usesa diff mechanism asisusedin
the Treadmarks system [20]. The diff mechanism computes
the dirty bit for an object by comparing that object’s value
with itsvaluein a copy made at fetch time. Our implemen-
tation makes this copy only for pages loaded in read/write



mode, thereby avoiding the overhead of copying for read-
only pages. The diff mechanism imposes extraoverhead on
each reconcile, but it imposes no extraoverhead on each ac-
cess [35].

Dag consistency can suffer from atomicity anomalies
when abstract objects that the programmer is reading and
writing are larger than the concrete obj ects supported by the
shared-memory system. For example, supposethe program-
mer istreating two 4-byte concrete objects as one 8-byteab-
stract object. If two incomparablethreads each writethe en-
tire 8-byte object, the programmer might expect an 8-byte
read of the structure by a common successor to receive one
of thetwo 8-byte values written. The 8-byte read may non-
deterministically receive 4 bytes of one value and 4 bytes
of the other value, however, since the 8-byte read isreally
two 4-byte reads, and the consistency of the two halvesis
maintained separately. Fortunately, this problem can only
occur if the abstract program is nondeterministic, that is, if
the program is nondeterministic even when the abstract and
concrete objects are the same size. When writing determin-
istic programs, the programmer need not worry about this
atomicity problem.

As with other consistency models, including sequential
consistency, atomicity anomalies can aso occur when the
programmer packs several abstract objectsintoasingle sys-
tem object. Fortunately, this problem can easily be avoided
inthe standard way by not packing together abstract objects
that might be updated in paralldl.

5 Memory allocation

Some means of allocating memory must be provided in
any useful implementation of shared memory. We consid-
ered implementing general heap storage in the style of C's
mal | oc and f r ee, but most of our immediate applica
tions only require stack-like allocation for temporary vari-
ables and the like. Since Cilk procedures operate in a par-
alel tree-like fashion, however, we needed some kind of
paralel stack. We settled on implementing a cactus-stack
[15, 28, 32] allocator.

Fromthe point of view of asingleCilk procedure, acactus
stack behaves much like an ordinary stack. The procedure
can allocate and free memory by incrementing and decre-
menting a stack pointer. The procedure views the stack as a
linearly addressed space extending back from its own stack
frame to the frame of its parent and continuing to more dis-
tant ancestors.

The stack becomes a cactus stack when multiple proce-
duresexecuteinparallel, each withitsown view of the stack
that correspondstoits call history, as shownin Figure5. In
thefigure, subcomputation S; allocates some memory A be-
foreprocedure P; isspawned. Subcomputation.S; then con-
tinues to allocate more memory B. When procedure P; is
stolen and becomes the root of subcomputation S-, a new

A A A A
P —»
1 — — —
C C (¢
P, —

B B — —
D E D E
S, S, S, S S, S,

Figure 5: A cactus stack. Procedure P; is stolen from subcom-
putation S; to start subcomputation S, and then procedure P is
stolen from S, to start subcomputation .S5. Each subcomputation
seesits own stack allocations and the stack allocated by its ances-
tors. The stack grows downwards. The left side of the picture
shows how the stack grows like a tree, resembling a cactus. The
right side shows the stack as seen by the three subcomputations.
In this example, the stack segment A is shared by all subcomputa-
tions, stack segment C' is shared by subcomputations S, and Ss,
and the other segments, B, D, and F, are private.

branch of the stack is started so that subsequent all ocations
performed by S, do not interfere with the stack being used
by S;. The stacks as seen by S; and .S, are independent
below the steal point, but they are identical above the steal
point. Similarly, when procedure P, is stolen from S5 to
start subcomputation .Ss, the cactus stack branches again.

Cactus-stack all ocation mirrorsthe advantages of an ordi-
nary procedure stack. Any object on the stack that is view-
able by a procedure has a simple address: its offset from
the base of the stack. Procedure local variables and arrays
can be alocated and deallocated automatically by the run-
time system in a natural fashion, as can be seen in the ma-
trix multiplication example from Figure 3. Allocation can
be performed compl etely locally without communi cation by
simply incrementing a local pointer, although communica-
tion may be required when an out-of-cache stack pageisac-
tually referenced. Separate branches of the cactus stack are
insulated from each other, allowing two subcomputationsto
allocate and free objectsindependently, even though objects
may be allocated with the same address. Procedures can
reference common data through the shared portion of their
stack address space.

Cactus stacks have many of the same limitationsas ordi-
nary procedure stacks[28]. For instance, achild thread can-
not return to its parent a pointer to an object that it has al-
located. Similarly, sibling procedures cannot share storage
that they create on the stack. Just as with a procedure stack,
pointersto objects all ocated on the cactus-stack can only be
safely passed to procedures bel ow the allocation point in the
cal tree. Heap storage offers a way of alleviating some of
these limitations (and we intend to provide a heap aloca



tor in afutureversion of Cilk), but the cactus stack provides
simpleand efficient support for alocation of procedurelocal
variablesand arrays.

The size of the backing store determines how large a
shared-memory application one can run. On the CM5, the
backing storeisimplemented in a distributed fashion by al-
locating alarge fraction of each processor’s memory to this
function. To determine which processor holds the backing
storefor apage, ahash functionis applied to the page iden-
tifier (a pair of the cactus-stack address and the allocating
subcomputation). A fetch or reconcile request for a page
is made to the backing store of the processor to which the
page hashes. Thispolicy ensuresthat backing storeisspread
evenly across the processors memory. In other systems, it
might be reasonabl e to place the backing storeon disk a la
traditiona virtual memory.

6 Ananalyssof pagefaults

In this section, we examine the number Fp of page faults
that aCilk computationincurswhen runon P processorsus-
ing Cilk’s randomized work-stealing scheduler [4] and the
implementation of the BACKER coherence algorithm de-
scribed in Section 4. We prove that Fp can be related to
the number I} of page faultstaken by a 1-processor execu-
tion by the formula Fp < Iy + 2C's, where C' isthe size
of each processor’s cache in pages and s isthetotal number
of steals executed by Cilk’sscheduler. The 2C's term repre-
sentsfaultsdueto “warming up” theprocessors caches, and
we present empirical evidence that thisoverhead is actually
much smaller in practice than the theoretical bound.

We begin with atheorem that boundsthe number of page
faults of a Cilk application. The proof takes advantage of
properties of the least-recently used (LRU) page replace-
ment scheme used by Cilk, as well as the fact that Cilk’'s
scheduler,like C, executes seria code in a depth-first fash-
ion.

Theorem 1 Let Fp be the number of page faults of a Cilk
computation when run on P processors with a cache of '
pages on each processor. Then, we have Fp < Fy 4 2C's,
where s isthetotal number of stealsthat occur during Cilk's
execution of the computation.

Proof:  The proof isby induction onthe number s of stedls.
For the base case, observe that if no steals occur, then the
application runs entirely on one processor, and thusit faults
Iy times by definition. For the inductive case, consider an
execution £ of the computation that has s steals. Choose
any subcomputation 7" from which no processor steals dur-
ing the execution E. Construct a new execution £’ of the
computation which isidentical to F, except that " is never
stolen. Since £’ hasonly s—1 sted's, weknow it hasat most
F1 4+ 2C (s — 1) page faults by the inductive hypothesis.

To relate the number of page faults during execution £ to
the number during execution E’, we examine cache behav-
ior under LRU replacement. Consider two processors that
execute simultaneoudly and in lock step ablock of code us-
ing two different starting cache states, where each proces-
sor’scache has C pages. The main property of LRU that we
exploit is that the number of page faults in the two execu-
tions can differ by at most C' page faults. This property fol-
lows from the observation that no matter what the starting
cache states might be, the states of the two caches must be
identical after one of thetwo executionstakes C' page faults.
Indeed, at the point when one execution has just taken its
C'th page fault, each cache contains exactly the last C dis-
tinct pages referenced [19].

We can now count the number of page faults during the
execution . Thefault behavior of £ isthe same asthefault
behavior of E’ except for the subcomputation 7" and the sub-
computation, cal it U, from which it stole. Since 7" is exe-
cuted in depth-first fashion, the only difference between the
two executions is that the starting cache state of 7" and the
starting cache state of U/ after 1" aredifferent. Therefore, ex-
ecution /7 makes at most 2C' more pagefaultsthan execution
E’, andthusexecution £ hasat most F; +2C'(s—1)42C =
F1 + 2C's page faults. ]

Theorem 1 says that the total number of faultson P pro-
cessors is a most the total number of faults on 1 proces-
sor plus an overhead term. The overhead arises whenever
asteal occurs, because in the worst case, the caches of both
the thieving processor and the victim processor contain no
pages in common compared to the situation when the steal
did not occur. Thus, they must be “warmed up” until the
caches “synchronize” with the cache of a seria execution.

To measure the warm-up overhead, we counted the num-
ber of page faults taken by severa applications—including
mat ri xrmul , an optimized matrix multiplication routine,
and aparallel version of Strassen’salgorithm [33]—for var-
ious choices of cache, processor, and problem size. For
each run we measured the cache warm-up fraction (Fp —
F1)/2C's, which represents the fraction of the cache that
needs to be warmed up on each steal. We know from The-
orem 1 that the cache warm-up fraction is at most 1. Our
experiments indicate that the cache warm-up fraction is, in
fact, typicaly less than 3%, as can be seen from the his-
togram in Figure 6 showing the cache warm-up fraction for
153 experimental runs of the above applications, with pro-
cessor counts ranging from 2 to 64 and cache sizes from
256K B to 2MB. Thus, we see lessthan 3% of theextra2C's
faults.

To understand why cache warm-up costs are so low, we
performed an experiment that recorded the size of each sub-
problem stolen. We observed that most of the subproblems
stolen during an execution were small. In fact, only 5-10%



70

60 r 1

50 1

30 -

20 H E
10 ]
oL | ﬂﬁﬁﬁ

<05 05-1 1-15 152 2-25 25-3 >3

number of experiments

cache warm-up fraction (%)

Figure 6: Histogram of the cache warm-up fraction (Fr —
F1)/2Cs for a variety of applications, cache sizes, processor
counts, and problem sizes. The vertical axis shows the number of
experiments with a cache warm-up fraction in the shown range.

of the stolen subproblems were “large,” where alarge sub-
problem is defined to be one that takes C' or more pages to
execute. The other 90-95% of the subproblems are small
and are stolen when littlework isleft to do and many of the
processors are idle. Therefore, most of the stolen subprob-
lems never perform C' page faults before terminating. The
bound F'p < F; + 2C's derived in Theorem 1 thus appears
to be rather loose, and our experiments indicate that much
better performance can be expected.

7 Performance

In this section, we model the performance of Cilk on syn-
thetic benchmark applicationssimilar tomat ri xrmul . We
quantify performance in terms of “work” and “critical -path
length.” Thework 77 of acomputation isthe running time,
including page faults, of the computation on one processor,
when the backing store is running on other processors. The
critical-path length 7., isthe (theoretical) running time on
an infinite number of processors assuming that page faults
take zero time. Their ratio 7 /T, is the average paral-
Ielism of the computation. We found that the running time
Tp of the benchmarks on P processors can be estimated as
Tp ~ 1.34(T1/P) +5.1(T). Speedup was always at |east
athird of perfect linear speedup for benchmarks with large
average paralelism and running time was aways within a
factor of 10 of optimal for those without much parallelism.

To anayze Cilk’'s implementation of the BACKER co-
herence a gorithm, we measured the work and critical-path
length for synthetic benchmarks obtained by adding sync
statements to the matrix multiplication program shown in
Figure 3. By judiciously placing sync statements in the
code, we were able to obtain synthetic benchmarks that ex-
hibited a wide range of average paralleism. We ran the
benchmarks on various numbers of processors, each time
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Figure 7: Normalized speedup curve for matrix multiplication.

The horizontal axis is normalized machine size and the vertical

axisis normalized speedup. Experiments consisted of 512 x 512,

1024 x 1024, and 2048 x 2048 problemsizeson 2 to 64 processors,
for matrix multiplication algorithms with various critical paths.

recording the number P of processors and the actua run-
time7p.

Figure 7 shows a normalized speedup curve [4] for the
synthetic benchmarks. This curve is obtained by plotting
speedup T3 /T versus machine size P, but normalizing
each of these values by dividing them by the average par-
alelism 7 /T, . We use a normalized speedup curve, be-
causeit allowsusto plot runs of different benchmarkson the
same graph. Also plottedin the figure are the perfect linear-
speedup curve Tp = T3 /P (the 45° line) and the limit on
performance given by the parallelismbound 7 > T, (the
horizontal line).

The quantity 7. is not necessarily atight lower bound
on Tp, because it ignores page faults. Indeed, the structure
of mat ri xmul on n x n matrices causes Q(lgn) faults
to be taken aong any path through the dag. A better mea-
sure, which we shall denote T-. (C'), is the maximum, over
all pathsinthedag, of thetime (including pagefaults) to exe-
cute all threads al ong the path on one processor with acache
sizeof C' pages. Althoughthebound7p > T, (C') istighter
(and makes our numbers look better), it appears difficult to
compute. We can estimate using analytical techniques, how-
ever, that for our matrix multiplicetion algorithms, T, (C')
isabout twiceaslargeasT,,,. Had we used thisvauefor 7,
inthe normalized speedup curvein Figure7, each datapoint
would shift up and right by thisfactor of 2, giving somewhat
tighter results.

The normalized speedup curve in Figure 7 shows that
dag-consistent shared-memory applicationscan obtain good
speedups. The data was fit to a curve of the form 7p =
e1Ti/P + cooTw. We oObtained a fit withe; = 1.34 and
¢ = 5.1, with an R? correlation coefficient of 0.963 and
amean relative error of 13.8%. Thus, the shared memory



imposes about a 34% performance penalty on the work of
an agorithm, and afactor of 5 performance penalty on the
critical path. Thefactor of 5 onthe critical path termisquite
good considering all of the scheduling, protocol, and com-
munication that could potentially contribute to thisterm.

There are two possible explanations for the additional
34% onthework term. The extrawork could represent con-
gestion at the backing store, which causes page faultsto cost
more than in the one-processor run. Alternatively, it could
be because our 7 measure istoo conservative. To compute
T, werunthebacking storeon processorsother thantheone
running the benchmark, while when we run on P proces-
sors, we use the same P processors to implement the back-
ing store. We have not yet run experiments to see which of
these two explanationsis correct.

8 Conclusion

Many other researchers have investigated distributed shared
memory. To conclude, we briefly outline work in this area
and offer some ideas for the future.

The notion that independent tasks may have incoherent
views of each others memory is not new to Cilk. The
BLAZE [26] language incorporated a memory semantics
similar to that of dag consistency into a PASCAL-like lan-
guage. The Myrias [2] computer was designed to sup-
port arelaxed memory semantics similar to dag consistency,
with many of the mechanisms implemented in hardware.
Loosely-Coherent Memory [23] alows for a range of con-
sistency protocols and uses compiler support to direct their
use. Compared with these systems, Cilk provides a mul-
tithreaded programming model based on directed acyclic
graphs, which leads to a more flexible linguistic expression
of operations on shared memory.

Cilk’simplementation of dag consistency borrows heav-
ily on the experiences from previous implementations of
distributed shared memory. Like Ivy [25] and others [6,
11, 20], Cilk’ simplementation uses fixed-sized pagesto cut
down on the overhead of managing shared objects. In con-
trast, systems that use cache lines [7, 21, 29] reguire some
degree of hardware support [31] to manage shared mem-
ory efficiently. As another alternative, systems that use
arbitrary-sized objects or regions [8, 18, 30, 34] require ei-
ther an object-oriented programming model or explicit user
management of objects.

The idea of dag-consistent shared memory can be ex-
tended to the domain of file 1/0O to allow multiplethreadsto
read and write the same file in paralel. We anticipate that
it should be possibleto memory-map files and use our exist-
ing dag-consi stency mechanismsto provideaparalle, asyn-
chronous, 1/0 capability for Cilk.

We are a so currently working on porting dag-consistent
shared memory to our Cilk-NOW [3] adaptively parald,
fault-tolerant, network-of-workstations system. We are us-

ing operating system hooksto make the use of shared mem-
ory be transparent to the user. We expect that the well-
structured nature of Cilk computations will allow the run-
time system to maintain dag consistency efficiently, evenin
the presence of processor faults.
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