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QpenMe the portable alternative to message passing, ofsers a 

powerful new way to achieve scalability in software. This article 
compares OpenMP to existing parallel-programming models. 

pplication developers have long recognized 
that scalable hardware and software are nec- 
essary for parallel scalability in application 
performance. Both have existed for some time 

in their lowest common denominator form, and scalable 
hardware-as physically distributed memories connected 
through a scalable interconnection network (as a multi- 
stage interconnect, k-ary n-cube, or fat tree)-has been 
commercially available since the 1980s. When develop- 
ers build such systems without any provision for cache 
coherence, the systems are essentially “zeroth order” 
scalable architectures. They provide only a scalable in- 
terconnection network, and the burden of scalability falls 
on the software. As a result, scalable software for such 
systems exists, at  some level, only in a message-passing 
model. Message passing is the native model for these ar- 
chitectures, and developers can only build higher-level 
models on top of it. 

Unfortunately, many in the high-performance com- 
puting world implicitly assume that the only way to 
achieve scalability in parallel software is with a message- 
passing programming model. This is not necessarily true. 
A class of multiprocessor architectures is now emerging 
that offers scalable hardware support for cache coher- 

ence. These are generally called scalable shaved memory 
~ultip~ocessov architectures.’ For SSMP systems, the na- 
tive programming model is shared memory, and message 
passing is built on top of the shared-memory model. On 
such systems, software scalability is straightforward to 
achieve with a shared-memory programming model. 

In a shared-memory system, every processor has di- 
rect access to the memory of every other processor, 
meaning it can directly load or store any shared address. 
The programmer also can declare certain pieces of mem- 
ory as private to the processor, which provides a simple 
yet powerful model for expressing and managing paral- 
lelism in an application. 

Despite its simplicity and scalability, many parallel ap- 
plications developers have resisted adopting a shared- 
memory programming model for one reason: portabil- 
ity. Shared-memory system vendors have created their 
own proprietary extensions to Fortran or C for paral- 
lel-software development. However, the absence of 
portability has forced many developers to adopt a 
portable message-passing model such as the Message 
Passing Interface (MPI) or Parallel Virtual Machine 
(PVM). This article presents a portable alternative to 
message passing: OpenMP. 
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OpenMP was designed to exploit certain char- 
acteristics of shared-memory architectures. The 
ability to directly access memory throughout the 
system (with minimum latency and no explicit 
address mapping), combined with fast shared- 
memory locks, makes shared-memory architec- 
tures best suited for supporting OpenMP. 

Why a new standard? 
The closest approximation to a standard shared- 
memory programming model is the now- 
dormant ANSI X3HS standards effort.2 X3H.5 
was never formally adopted as a standard largely 
because interest waned as distributed-memory 
message-passing systems (MPPs) came into 
vogue. However, even though hardware vendors 
support it to varying degrees, X3HS has limita- 
tions that make it unsuitable for anything other 
than loop-level parallelism. Consequently, ap- 
plications adopting this model are often limited 
in their parallel scalability. 

MPI has effectively standardized the message- 
passing programming model. It is a portable, 
widely available, and accepted standard for writ- 
ing message-passing programs. Unfortunately, 
message passing is generally a difficult way to 
program. It requires that the program’s data 
structures be explicitly partitioned, so the entire 
application must be parallelized to work with 
the partitioned data structures. There is no in- 
cremental path to parallelize an application. 
Furthermore, modern multiprocessor architec- 
tures increasingly provide hardware support for 
cache coherence; therefore, message passing is 
becoming unnecessary and overly restrictive for 
these systems. 

Pthreads is an accepted standard for shared 
memory in low-end systems. However, it is not 
targeted a t  the technical, HPC space. There is 
little Fortran support for pthreads, and it is not 
a scalable approach. Even for C applications, the 
pthreads model is awkward, because it is lower- 
level than necessary for most scientific applica- 
tions and is targeted more at providing task par- 
allelism, not data parallelism. Also, portability 
to unsupported platforms requires a stub library 
or equivalent workaround. 

Researchers have defined many new languages 
for parallel computing, but these have not found 
mainstream acceptance. High-Performance For- 
tran (HPF) is the most popular multiprocessing 
derivative of Fortran, but it is mostly geared to- 
ward distributed-memory systems. 

Independent software developers of scientific 

JANUARY-MARCH 1998 

applications, as well as government laboratories, 
have a large volume of Fortran 77 code that 
needs to get parallelized in a portable fashion. 
The rapid and widespread acceptance of shared- 
memory multiprocessor architectures-from 
the desktop to “glass houses”-has created a 
pressing demand for .a portable way to program 
these systems. Developers need to parallelize ex- 
isting code without completely rewriting it, but 
this is not possible with most existing parallel- 
language standards. Only OpenMP and X3HS 
allow incremental parallelization of existing 
code, of which only OpenMP is scalable (see 
Table 1). OpenMP is targeted at developers who 
need to quickly parallelize existing scientific 
code, but it remains flexible enough to support a 
much broader application set. OpenMP pro- 
vides an incremental path for parallel conver- 
sion of any existing software. It also provides 
scalability and performance for a complete re- 
write or entirely new development. 

What is OpenMP? 
At its most elemental level, OpenMP is a set of 
compiler directives and callable runtime library 
routines that extend Fortran (and separately, C 
and C++) to express shared-memory parallelism. 
It leaves the base language unspecified, and ven- 
dors can implement OpenMP in any Fortran 
compiler. Naturally, to support pointers and al- 
locatables, Fortan 90 and Fortran 95 require the 
OpenMP implementation to include additional 
semantics over Fortran 7 7 .  
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Several vendors have prod- 
ucts-including compilers, de- 
velopment tools, and perfor- 
mance-analysis tools-that are 
Openi" aware. Typically, these 
tools understand the semantics 
of OpenMP constructs and 
hence aid the process of writing 
programs. The OpenMP Arch- 
tecture Review Board includes 
representatives from Digital, 
Hewlett-Packard, Intel, IBM, 
Kuck and Associates, and Sili- 
con Graphics. 

All of these companies are 
actively developing compilers 
and tools for OpenMP. Open 
MP products are available to- 
day from Silicon Graphics and 
other vendors. In addition, a 
number of independent soft- 
ware vendors plan to use Open- 
MP in future products. (For 
information on individual pro- 
ducts, see www.openmp.org.) 

OpenMP leverages many of the X3HS con- 
cepts while extending them to support coarse- 
grain parallelism. Table 2 compares OpenMP 
with the directive bindings specified by X3HS 
and the MIPS Pro Doacross model,3 and it sum- 
marizes the language extensions into one of 
three categories: control structure, data envi- 
ronment, or synchronization. The standard also 
includes a callable runtime library with accom- 
panying environment variables. 

A simple example 
Figure 1 presents a simple ex- 
ample of computing T using 
0 ~ e n M P . ~  This example il- 
lustrates how to parallelize a 
simple loop in a shared-mem- 
ory programming model. The 
code would look(simi1ar with 
either the Doacross or the X3- 
HS set of directives (except 
that X3HS does not have a 
r e d u c t i o n  attribute, so you 
would have to code it yourself). 

Program execution begins as 
a single process. This initial 
process executes serially, and 
we can set up our problem in a 
standard sequential manner, 

reading and writing s t d o u t  as necessary. 
When we first encounter a para l le l  con- 
struct, in this case a paral le l  do, the runtime 
forms a team of one or more processes and cre- 
ates the data environment for each team mem- 
ber. The data environment consists of one p r i -  
vate variable, x, one r e d u c t i o n  variable, 
sum, and one sharedvariable, w. All references 
to x and s u m  inside the parallel region address 
private, nonshared copies. The r e d u c t i o n  at- 
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it becomes fairly straightforward to parallelize 
individual loops incrementally and thereby im- 
mediately realize the performance advantages of 
a multiprocessor system. 

For comparison with message passing, Figure 
2 presents the same example using MPI. Clearly, 
there is additional complexity just in setting up 
the problem, because we must begin with a team 
of parallel processes. Consequently, we need to 
isolate a root process to read and write s tdout .  
Because there is no globally shared data, we 
must explicitly broadcast the input parameters 
(in this case, the number of intervals for the in- 
tegration) to all the processors. Furthermore, we 
must explicitly manage the loop bounds. This re- 
quires identifylng each processor (myid) and 
knowing how many processors will be used to ex- 

Figure 1. Computing IT in parallel using OpenMP. 

tribute takes an operator, such that at  the end of 
the parallel region it reduces the private copies 
to the master copy using the specified operator. 
All references to win the parallel region address 
the single master copy. The loop index variable, 
i, is private by default. The compiler takes 
care of assigning the appropriate iterations to 
the individual team members, so in parallelizing 
this loop the user need not even on know how 
many processors it runs. 

There might be additional control and syn- 
chronization constructs within the parallel re- 
gion, but not in this example. The parallel re- 
gion terminates with the end do, which has an 
implied barrier. On exit from the parallel region, 
the initial process resumes execution using its 
updated data environment. In this case, the only 
change to the master’s data environment is the 
reduced value of sum. 

This model of execution is referred to as the 
fork4oin model. Throughout the course of a pro- 
gram, the initial process can fork and join many 
times. The fork/join execution model makes it 
easy to get loop-level parallelism out of a se- 
quential program. Unlike in message passing, 
where the program must be completely decom- 
posed for parallel execution, the shared-mem- 
ory model makes it possible to parallelize just at 
the loop level without decomposing the data 
structures. Given a working sequential program, Figure 2. Computing IT in parallel using MPI. 
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Figure 3. Computing T in parallel using pthreads. 

ecute the loop (numprocs). 
When we finally get to the 

loop, we can only sum into our 
private value for mypi. To re- 
duce across processors we use 
the MPI-Reduce routine and 
sum into pi. The storage for 
pi is replicated across all pro- 
cessors, even though only the 
root process needs it. As a gen- 
eral rule, message-passing pro- 
grams waste more storage than 
shared-memory  program^.^ 
Finally, we can print the result, 
again making sure to isolate 
just one process for this step to 
avoid printing numprocs 
messages. 

It is also interesting to see 
how this example looks using 
pthreads (see Figure 3). Natu- 
rally, it’s written in C, but we 
can still compare functionality 
with the Fortran examples gv- 
en in Figures 1 and 2. 

The pthreads version is more 
complex than either the Open- 
MP or the MPI versions: 

First, pthreads is aimed at 
providing task parallelism, 
whereas the example is one 
of data parallelism-paral- 
lelizing a loop. The exam- 
ple shows why pthreads 
has not been widely used 
for scientific applications. 
Second, pthreads is some- 
what lower-level than we 
need, even in a task- or 
threads-based model. This 
becomes clearer as we go 
through the example. 

As with the MPI version, we 
need to know how many threads 
will execute the loop and we 
must determine their IDS so we 
can manage the loop bounds. 
We get the thread number as a 
command-line argument and 
use it to allocate an array of 
thread IDS. At this time, we 
also initialize a lock, reduc- 
t ion-mutex, which we’ll 
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need for reducing our partial sums into a global Table 3: Time (in seconds) to compute n using lo9 intervals 
sum for T.  Our basic approach is to siart a 
worker thread, PIworker, for every processor 
we want to work on the loop. In PIworker, 
we first compute a zero-based thread ID and use 
this to map the loop iterations. The loop then 
computes the partial sums into mypi. We add 
these into the global result pi, making sure to 
protect against a race condition by locking. Fi- 
nally, we need to explicitly join all our threads 
before we can print out the result of the inte- 
gration. 

All the data scoping is implicit; that is, global 
variables are shared and automatic variables are 
private. There is no simple mechanism in p- 
threads for making global variables private. Also, 
implicit scoping is more awkward in Fortran be- 
cause the language is not as strongly scoped as 
C. 

In terms of performance, all three models are 
comparable for this simple example. Table 3 
presents the elapsed time in seconds for each 
program when run on a Silicon Graphics Ori- 
gn2000 server, using lo9 intervals for each in- 
tegration. All three models are exhibiting excel- 
lent scalability on a per node basis (there are two 
CPUs per node in the Origin2000), as expected 
for this embarrassingly parallel algorithm. 

Scalability 
Although simple and effective, loop-level par- 
allelism is usually limited in its scalability, be- 
cause it leaves some constant fraction of se- 
quential work in the program that by Amdahl’s 
law can quickly overtake the gains from parallel 
execution. It is important, however, to distin- 
guish between the type of parallelism (for ex- 
ample, loop-level versus coarse-grained) and 
the programming model. The  type of paral- 
lelism exposed in a program depends on the al- 
gorithm and data structures employed and not 
on the programming model (to the extent that 
those algorithms and data structures can be rea- 
sonably expressed within a given model). 
Therefore, given a parallel algorithm and a scal- 
able shared-memory architecture, a shared- 
memory implementation scales as well as a mes- 
sage-passing implementation. 

OpenMP introduces the powerful concept of 
orphan directives that simplify the task of imple- 
menting coarse-grain parallel algorithms. Or- 
phan directives are directives encountered out- 
side the lexical extent of the parallel region. 
Coarse-grain parallel algorithms typically con- 

with three standard parallel-programming models. 
CPUS OpenMP MPI Pthreads 

1 107.7 121.4 115.4 

2 53.9 60.7 62.5 

4 27.0 30.3 32.4 

6 17.9 20.4 22.0 
8 13.5 15.2 16.7 

sist of only a few parallel regions, with most of 
the execution taking place within those regions. 

In implementing a coarse-grained parallel al- 
gorithm, it becomes desirable, and often neces- 
sary, to be able to specify control or synchro- 
nization from anywhere inside the parallel 
region, not just from the lexically contained por- 
tion. OpenMP provides this functionality by 
specifymg binding rules for all directives and al- 
lowing them to be encountered dynamically in 
the call chain originating from the parallel re- 
gion. In contrast, X3H5 does not allow direc- 
tives to be orphaned, so all the control and syn- 
chronization for the program must be lexically 
visible in the parallel construct. This limitation 
restricts the programmer and makes any non- 
trivial coarse-grained parallel application virtu- 
ally impossible to write. 

A coarse-grain example 
To highlight additional features in the standard, 
Figure 4 presents a slightly more complicated 
example, computing the energy spectrum for a 
field. This is essentially a histogramming prob- 
lem with a slight twist-it also generates the se- 
quence in parallel. We could easily parallelize 
the histogramming loop and the sequence gen- 
eration as in the previous example, but in the in- 
terest of performance we would like to his- 
togram as we compute in order to preserve 
locality. 

The program goes immediately into a parallel 
region with a parallel directive, declaring 
the variables field and ispectrum as 
shared, and making everything else private 
with a default clause. The default clause 
does not affect common blocks, so setup re- 
mains a shared data structure. 

Within the parallel regon, we call initial - 
ize-f ield ( ) to initialize the field and is- 
pectrum arrays. Here we have an example of 
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Figure 4. A coarse-grained example. 

orphaning the do directive. With the X3HS di- 
rectives, we would have to move these loops into 
the main program so that they could be lexically 
visible within the parallel directive. Clearly, 
that restriction makes it difficult to write good 
modular parallel programs. We use the nowait 
clause on the end do directives to eliminate the 

implicit barrier. Finally, we use the single di- 
rective when we initialize a single internal field 
point. The end single directive also can take 
a nowait clause, but to guarantee correctness 
we need to synchronize here. 

The field gets computed in compute-field. 
This could be any parallel Laplacian solver, but 
in the interest of brevity we don’t include it here. 
With the field computed, we are ready to com- 
pute the spectrum, so we hstogram the field val- 
ues using the atomic drective to eliminate race 
conditions in the updates to ispectrum. The 
end do here has a nowait because the parallel 
region ends after compute spectrum() and 
there is an implied barrier when the threads join. 

OpenMP design objective 
OpenMP was designed to be a flexible standard, 
easily implemented across different platforms. 
As we discussed, the standard compriss four dis- 
tinct parts: 

0 control structure, 
0 the data environment, 
* synchronization, and 

the runtime library. 

Control structure 
OpenMP strives for a minimalist set of con- 

trol structures. Experience has indicated that 
only a few control structures are necessary for 
writing most parallel applications. For example, 
in the Doacross model, the only control struc- 
ture is the doacross directive, yet this is ar- 
guably the most widely used shared-memory 
programming model for scientific computing. 
Many of the control structures provided by 
X3H5 can be trivially programmed in OpenMP 
with no performance penalty. OpenMP includes 
control structures only in those instances where 
a compiler can provide both functionality and 
performance over what a user could reasonably 
program. 

Our examples used only three control struc- 
tures: parallel, do, and single. Clearly, the 
compiler adds functionality in parallel and 
do directives. For single, the compiler adds 
performance by allowing the first thread reach- 
ing the single directive to execute the code. 
This is nontrivial for a user to program. 

Data environment 
Associated with each process is a unique data 

environment providing a context for execution. 
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Engineering of Complex Distributed Systems track 
Presenting requirements for complex distributed systems, recent research results, and 
technological developments apt to be transferred into mature applications and 
products. 

Representing a cross sectin of current work involving actors and agents-autonomy, 
identity, interaction, communication, coordination, mobility, persistence, protocols, 
distribution, and parallelism. 

Showcasing traditional and innovative uses of object-oriented languages, systems, and 
technologies. 

Actors & Agents 

Obiect -Orient ed Systems track 

Also, regular columns on mobile computing, distributed multimedia applications, 
distributed databases, and high-performance computing trends from around the world. 
IEEE Concurrency chronicles the latest advances in high-performance computing, 
distributed systems, parallel processing, mobile computing, embedded systems, 
multimedia applications, and the Internet. 

The initial process a t  program start-up has an 
initial data environment that exists for the du- 
ration of the program. It contructs new data 
environments only for new processes created 
during program execution. The objects consti- 
tuting a data environment might have one of 
three basic attributes: shared, private, or 
reduct ion. 

The concept of reduction as an attribute is 
generalized in OpenMP. It allows the compiler 
to efficiently implement reduct ion opera- 
tions. This is especially important on cache- 
based systems where the compiler can eliminate 
any false sharing. On large-scale SSMP archi- 
tectures, the compiler also might choose to im- 
plement tree-based reductions for even better 
performance. 

OpenMP has a rich data environment. In ad- 
dition to the reduction attribute, it allows 
private initialization with f irstprivate 
and copyin, and private persistence with 
lastprivate. None of these features exist in 

X3H5, but experience has indicated a real need 
for them. 

Global objects can be made private with 
the threadprivate directive. In the interest 
of performance, OpenMP implements a “p-  
copy” model for privatizing global objects: 
threadprivate will create p copies of the 
global object, one for each of the p members in 
the team executing the parallel region. Often, 
however, it is desirable either from memory 
constraints or for algorithmic reasons to priva- 
tize only certain elements because of a com- 
pound global object. OpenMP allows individ- 
ual elements of a compound global object to 
appear in a private list. 

Synchronization 
There are two types of synchronization: im- 

plicit and explicit. Implicit synchronization 
points exist a t  the beginning and end of parallel 
constructs and at the end of control constructs 
(for example, do and single). In the case of 
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do sections, and single, the implicit syn- 
chronization can be removed with the nowai t 
clause. 

The user specifies explicit synchronization to 
manage order or data dependencies. Synchro- 
nization is a form of interprocess communication 
and, as such, can greatly affect program perfor- 
mance. In general, minimizing a program’s syn- 
chronization requirements (explicit and implicit) 
achieves the best performance. For this reason, 
OpenMP provides a rich set of synchronization 
features so developers can best tune the synchro- 
nization in an application. 

We saw an example using the Atomic direc- 
tive. This directive allows the compiler to take 
advantage of available hardware for implement- 
ing atomic updates to a variable. OpenMP also 
provides a Plush directive for creating more 
complex synchronization constructs such as 
point-to-point synchronization. For ultimate 
performance, point-to-point synchronization 
can eliminate the implicit barriers in the energy- 
spectrum example. All the OpenMP synchro- 
nization directives can be orphaned. As discussed 
earlier, this is critically important for imple- 
menting coarse-grained parallel algorithms. 

Runtime library and environment variables 
In addition to the directive set described, 

OpenMP provides a callable runtime library 
and accompanying environment variables. The 
runtime library includes query and lock func- 
tions. The runtime functions allow an applica- 
tion to specify the mode in which it should run. 
An application developer might wish to maxi- 
mize the system’s throughput performance, 
rather than time to completion. In such cases, 
the developer can tell the system to dynamically 
set the number of processes used to execute 
parallel regions. This can have a dramatic effect 
on the system’s throughput performance with 
only a minimal impact on the program’s time to 
completion. 

The runtime functions also allow a developer 
to specify when to enable nested parallelism, 
which allows the system to act accordingly 
when it encounters a nested parallel construct. 
On the other hand, by disabling it, a developer 
can write a parallel library that will perform in 
an easily predictable fashion whether encoun- 
tered dynamically from withrn or outside a par- 
allel region. 

OpenMP also provides a conditional compi- 
lation facility both through the C language pre- 
processor (CPP) and with a Fortran comment 

sentinel. This allows calls to the runtime library 
to be protected as compiler directives, so Open- 
MP code can be compiled on non-OpenMP sys- 
tems without linking in a stub library or using 
some other awkward workaround. 

OpenMP provides standard environment 
variables to accompany the runtime library 
functions where it makes sense and to simplify 
the start-up scripts for portable applications. 
This helps application developers who, in addi- 
tion to creating portable applications, need a 
portable runtime environment. 

penMP is supported by a number of 
hardware and software vendors, and 
we expect support to grow. OpenMP 
has been designed to be extensible 

and evolve with user requirements. The  
OpenMP Architecture Review Board was created 
to provide long-term support and enhancements 
of the OpenMP specifications. The OARB char- 
ter includes interpreting OpenMP specifications, 
developing future OpenMP standards, address- 
ing issues of validation of OpenMP implementa- 
tions, and promoting OpenMP as a de facto stan- 
dard. 

Possible extensions for Fortran include greater 
support for nested parallelism and support for 
shaped arrays. Nested parallelism is the ability 
to create a new team of processes from within an 
existing team. It can be useful in problems 
exhibiting both task and data parallelism. For ex- 
ample, a natural application for nested paral- 
lelism would be parallelizing a task queue where- 
in the tasks involve large matrix multiplies. 

Shaped arrays refers to the ability to explicitly 
assign the storage for arrays to specific memory 
nodes. This ability is useful for improving per- 
formance on Non-Uniform Memory architec- 
tures (NUMAS) by reducing the number of 
non-local memory references made by a proces- 
sor. 

The OARB is currently developing the spec- 
ification of C and C++ bindings and is also de- 
veloping validaaon suites for tesing OpenMP 
implementations. + 
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