
291PARALLEL PROGRAMMABILITY AND CHAPEL

The International Journal of High Performance Computing Applications,
Volume 21, No. 3, Fall 2007, pp. 291–312
DOI: 10.1177/1094342007078442
© 2007 SAGE Publications

PARALLEL PROGRAMMABILITY AND
THE CHAPEL LANGUAGE

B. L. Chamberlain1

D. Callahan2

H. P. Zima3

Abstract

In this paper we consider productivity challenges for paral-
lel programmers and explore ways that parallel language
design might help improve end-user productivity. We offer
a candidate list of desirable qualities for a parallel program-
ming language, and describe how these qualities are
addressed in the design of the Chapel language. In doing
so, we provide an overview of Chapel’s features and how
they help address parallel productivity. We also survey cur-
rent techniques for parallel programming and describe
ways in which we consider them to fall short of our idealized
productive programming model.

Key words: parallel languages, productivity, parallel pro-
gramming, programming models, Chapel

1 Introduction

It is an increasingly common belief that the programma-
bility of parallel machines is lacking, and that the high-
end computing (HEC) community is suffering as a result
of it. The population of users who can effectively program
parallel machines comprises only a small fraction of those
who can effectively program traditional sequential com-
puters, and this gap seems only to be widening as time
passes. The parallel computing community’s inability to
tap the skills of mainstream programmers prevents parallel
programming from becoming more than an arcane skill,
best avoided if possible. This has an unfortunate feedback
effect, since our small community tends not to have the
resources to nurture new languages and tools that might
attract a larger community—a community that could then
improve those languages and tools in a manner that is taken
for granted by the open-source C and Java communities.

This gap between sequential and parallel programming
is highlighted by frequent comments in the high-end user
community along the lines of “Why isn’t programming
this machine more like Java/Matlab/my favorite sequen-
tial language?” Such comments cut to the heart of the
parallel programmability problem. Current parallel pro-
gramming languages are significantly different from those
that a modern sequential programmer is accustomed to,
and this makes parallel machines difficult to use and
unattractive for many traditional programmers. To this
end, developers of new parallel languages should ask what
features from modern sequential languages they might
effectively incorporate in their language design.

At the same time, one must concede that programming
parallel machines is inherently different from sequential
programming, in that the user must express parallelism,
data distribution, and typically synchronization and com-
munication. To this end, parallel language developers
should attempt to develop features that ease the burdens
of parallel programming by providing abstractions for
these concepts and optimizing for common cases.

This article explores these two challenges by considering
language features and characteristics that would make
parallel programming easier while also bringing it closer
to broad-market sequential computing. It surveys parallel
languages that currently enjoy some degree of popularity
in the HEC community and attempts to characterize them
with respect to these features. And finally, it provides an
introduction to the Chapel programming language, which
is being developed as part of DARPA’s High Productiv-

1CRAY INC., SEATTLE WA
(BRADC@CRAY.COM)
2MICROSOFT CORPORATION, REDMOND WA
3JPL, PASADENA CA AND UNIVERSITY OF VIENNA,
AUSTRIA

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

292 COMPUTING APPLICATIONS

ity Computing Systems (HPCS) program in order to try
and improve the programmability and overall productiv-
ity of next-generation parallel machines. Productivity is
defined by HPCS as a combination of performance, pro-
grammability, portability, and robustness. Chapel strives
to positively impact all of these areas, focusing most
heavily on programmability.

2 Principles for Productive Parallel
Language Design

2.1 Programmer Responsibilities

Before describing the features that we believe productive
parallel programming languages ought to provide, we
begin by listing the responsibilities that we consider to be
the programmer’s rather than the compiler’s. There are
many research projects that take a different stance on these
issues, and we list our assumptions here not to contradict
those approaches, but rather to bound the space of lan-
guages that we consider in this paper and to clarify our
starting assumptions in these matters.

Identification of parallelism While a holy grail of par-
allel computing has historically been to automatically
transform good sequential codes into good parallel codes,
our faith in compilers and runtime systems does not
extend this far given present-day technology. As a result,
we believe that it should be the programmer’s responsi-
bility to explicitly identify the subcomputations within
their code that can and/or should execute in parallel. We
also believe that a good language design can greatly help
the programmer in this respect by including abstractions
that make common forms of parallel computation sim-
pler to express and less prone to simple errors. Such con-
cepts should make the expression of parallel computation
natural for the programmer and shift the compiler’s
efforts away from the detection of parallelism and toward
its efficient implementation.

Synchronization To the extent that a language’s abstrac-
tions for parallelism do not obviate the need for synchroni-
zation, the programmer will need to specify it explicitly.
While it is possible to create abstractions for data parallel
computation that require little or no user-level synchroni-
zation (High Performance Fortran Forum 1993; Cham-
berlain 2001), support for task parallelism tends to
necessitate synchronization of some form. As with paral-
lelism, good language design should result in high-level
abstractions for synchronization rather than simply pro-
viding low-level locks and mutual exclusion.

Data distribution and locality As with detection of
parallelism, we have little faith that compilers and run-

time systems will automatically do a good job of allocat-
ing and distributing data to suit a user’s computation and
minimize communication. For this reason, we expect that
the performance-minded programmer will ultimately
need to specify how data aggregates should be distrib-
uted across the machine and to control the locality of
interacting variables. Once again, it would seem that lan-
guages could provide abstractions and distribution librar-
ies to ease the burden of specifying such distributions.
Depending on the language semantics, one might also
want a means of specifying where on the machine a spe-
cific subcomputation should be performed, potentially in
a data-driven manner.

2.2 Productive Parallel Language Desiderata

In this section, we enumerate a number of qualities that
we believe to be worth consideration in the design of a
productivity-oriented parallel language. Since different
programmers have differing goals and tastes, it is likely
that readers will find some of these characteristics more
crucial and others less so. Along these same lines, this list
clearly reflects the preferences and biases of the authors,
and may neglect characteristics that other language design
philosophies might consider crucial. For these reasons, this
section should be considered an exploration of themes and
characteristics rather than a definitive list of requirements.

2.2.1 A global view of computation We call a pro-
gramming model fragmented if it requires programmers
to express their algorithms on a task-by-task basis, explic-
itly decomposing data structures and control flow into
per-task chunks. One of the most prevalent fragmented
programming models is the Single Program, Multiple Data
(SPMD) model, in which a program is written with the
assumption that multiple instances of it will be executed
simultaneously. In contrast to fragmented models, a glo-
bal-view programming model is one in which program-
mers express their algorithms and data structures as a
whole, mapping them to the processor set in orthogonal
sections of code, if at all. These models execute the pro-
gram’s entry point with a single logical thread, and the
programmer introduces additional parallelism through
language constructs.

As a simple data-parallel example, consider the expres-
sion of a three-point stencil on a vector of values. Figure 1
shows pseudocode for how this computation might appear
in both global-view and fragmented programming mod-
els. In the global-view version, the problem size is defined
on line 1 and used to declare two vectors on line 2. Lines
3–4 express the computation itself, using the global prob-
lem size to express the loop bounds and indices.

In the fragmented version, the global problem size
(defined on line 1) is divided into a per-task problem size

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

293PARALLEL PROGRAMMABILITY AND CHAPEL

on line 2. This local problem size is then used to allocate
the vectors, including extra elements to cache values
owned by neighboring tasks (line 3). Lines 4–5 set up
default local bounds for the iteration space. The condi-
tionals in lines 6, 10, and 15 express the communication
required to exchange boundary values with neighbors.
They also modify the local iteration bounds for tasks
without neighbors. The computation itself is expressed
on lines 17–18 using the local view of the problem size
for looping and indices. Note that as written, this code is
only correct when the global problem size divides evenly

between the number of tasks—more effort would be
required to write a general implementation of the algo-
rithm that relaxes this assumption.

As a second example of global-view and fragmented mod-
els, consider a task-parallel divide-and-conquer algorithm
like Quicksort. Figure 2 shows this computation as it might
appear in each programming model. In the global-view
version, the code computes the pivot in line 1 and then
uses a cobegin statement in line 2 to indicate that the two
“conquer” steps in lines 3 and 4 can be executed in paral-
lel.

Fig. 1 Pseudocode fragments illustrating a data parallel three-point stencil written in (a) global-view and (b) frag-
mented styles. The global-view code starts with a single logical thread and introduces additional parallelism via the
forall statement. It also allocates and accesses its arrays holistically. In contrast, the fragmented code assumes that
numTasks threads are executing the code concurrently, and requires the programmer to divide data into per-proces-
sor chunks and manage communication explicitly (illustrated here using message passing, though other communi-
cation schemes could also be substituted).

Fig. 2 Pseudocode fragments illustrating a task parallel Quicksort algorithm written in (a) global-view and (b) frag-
mented styles. As before, the global-view code starts with a single logical thread, and introduces parallelism using
the cobegin statement. It operates on its data array as a whole. In contrast, the fragmented code again assumes that
numTasks threads are executing the code, and requires the user to explicitly embed the divide and conquer task tree
into the multiple program images.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

294 COMPUTING APPLICATIONS

In contrast, the fragmented expression of the algorithm
describes Quicksort from a single task’s point of view, over-
laying the virtual tree of recursive calls onto the available
tasks. Thus, each task begins on line 2 by receiving the
portion of the data for which it is responsible from its
parent in the task tree, if it has one. If it has a child at this
level of the task tree, it computes the pivot (line 4), and
sends half of the work to the child (line 5). It then makes
a recursive call to sort the second half of the data (line 6)
and receives the sorted data from its child task for the ini-
tial half (line 7). If, on the other hand, it has no child at
this level of the task tree, it simply sorts the data locally
(line 9). In either case, if it has a parent task, it sends the
sorted result back to it (line 11).

Note that while the pseudocode presented in these two
examples uses a 2-sided message passing style, other
fragmented models might use alternative communication
paradigms such as 1-sided puts and gets, co-arrays, shared
memory, synchronization, etc. For this discussion the
important point is not what style of communication is
used, but rather that any fragmented model will require
the programmer to explicitly specify and manage com-
munication and synchronization due to its focus on cod-
ing at a task-by-task level.

While these examples are merely pseudocode, intended
to introduce the concepts of global-view and fragmented
programming models, they capture some of the differ-
ences that exist in real languages which implement these
models: global-view codes tend to be shorter and tend to
express the overall parallel algorithm more clearly. Frag-
mented codes are typically longer and tend to be cluttered
with the management of per-task details such as local
bounds and indices, communication, and synchronization.

The global view is not without some cost, however.
Typically, compilers and runtimes for global-view lan-
guages must be more sophisticated, since they are ulti-
mately responsible for breaking the algorithm into the
per-processor pieces that will allow it to be implemented
on a parallel machine. In contrast, compilers for fragmented
languages primarily need to be good sequential compilers,
although building an understanding of the specific frag-
mented programming language into the compiler can lead
to additional optimization opportunities such as commu-
nication pipelining.

The observation that fragmented languages tend to
impose less of a burden on their compilers is almost cer-
tainly the reason that today’s most prevalent parallel
languages1—MPI, SHMEM, Co-array Fortran, Unified
Parallel C (UPC), and Titanium—are based on fragmented
or SPMD programming models. In contrast, global-view
languages such as High Performance Fortran (HPF), Sisal,
NESL, and ZPL have typically not found a solid foothold
outside of the academic arena.2 One exception to this
generalization is OpenMP, which provides a global-view

approach in its typical usage. However, it also provides a
shared-memory abstract machine model, which tends to
present challenges to optimizing for locality and scaling
to large numbers of processors on current architectures.

We believe that the dominance of the fragmented pro-
gramming model is the primary inhibitor of parallel pro-
grammability today, and therefore recommend that new
productivity-oriented languages focus on supporting a
global view of parallel programming. Note that support
for a global view does not necessarily prevent a program-
mer from coding on a task-by-task basis; however, it does
save them the trouble of doing so in sections of their code
that do not require such low-level detail management.

2.2.2 Support for general parallelism Parallel algo-
rithms are likely to contain opportunities for parallel exe-
cution at arbitrary points within the program. Yet today’s
parallel languages tend to support only a single level of
parallelism cleanly, after which additional parallelism must
either be ignored and expressed sequentially or expressed
by resorting to a secondary parallel language. The most
common example of this in current practice is the use of
MPI to express a coarse level of algorithmic parallelism,
combined with OpenMP to specify a second, finer level
of parallelism within each MPI task. To a certain extent,
this “single level of parallelism” characteristic results from
the prevalence of the SPMD model in the programming
models, execution models, and implementation strategies
of today’s parallel languages. Parallelism in the SPMD
model is only expressed through the cooperating program
instances, making it difficult to express additional, nested
parallelism.

In addition, algorithms tend to contain sub-computa-
tions that are both data- and task-parallel by nature. Yet
most of today’s parallel programming languages cleanly
support only a single type of parallelism, essentially ignor-
ing the other. Again, due to the prevalence of the SPMD
model, data parallelism tends to be the more common
model. In order for a parallel language to be general, it
should cleanly support both data and task parallelism.

We believe that when languages make it difficult to
express nested instances of data and task parallelism,
they limit their general applicability within the space of
parallel computations and will eventually leave the pro-
grammer stuck and frustrated. To this end, we recom-
mend that productivity-oriented parallel languages focus
on supporting general forms of parallelism—both data
and task parallelism, as well as the composition of paral-
lel code sections.

2.2.3 Separation of algorithm and implementation
A great majority of today’s languages—sequential as
well as parallel—do a poor job of expressing algorithms
in a manner that is independent of their data structures’

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

295PARALLEL PROGRAMMABILITY AND CHAPEL

implementation in memory. For example, consider the
changes required to convert a typical sequential matrix–
vector multiplication algorithm from a dense array to a
sparse array using a compressed row storage (CRS) for-
mat, as illustrated in Figure 3. To perform the conversion,
a new scalar, nnz is added to describe the number of non-
zeros in the array, while the 2D array M is converted into
three 1D arrays of varying sizes: Mvals, col, and rowptr.
In addition, the inner loop and accesses to M and V have
changed to the point that they are virtually unrecogniza-
ble as matrix–vector multiplication to anyone but the
experienced CRS programmer. As a result, we have
failed in our goal of writing the algorithm independently
of data structure. In contrast, languages such as Matlab
which do a better job of separating data representation
issues from the expression of computation result in codes
that are less sensitive to their data structures’ implemen-
tation details (Gilbert, Moler, and Schreiber 1992).

Note that one need not rely on an example as advanced
as converting a dense algorithm into a sparse one to run
afoul of such sensitivities. Even when dealing with sim-
ple dense arrays, the loop nests in most HEC codes are
influenced by factors such as whether a matrix is stored
in row- or column-major order, what the architecture’s
cache-line size is, or whether the processor is a vector or
scalar processor. Yet, the algorithm being expressed is
semantically independent of these factors. Most novice
programmers are taught that algorithms and data structures
ought to be orthogonal to one another, yet few of our lan-
guages support such separation cleanly without sacrific-
ing performance.

In the realm of parallel computing, these problems are
compounded since a computation’s expression is sensi-
tive not only to the traditional sequential concerns, but
also to the distribution of data aggregates between multiple
processors and the communication that may be required
to fetch non-local elements to a processor’s local mem-

ory. Consider how sensitive today’s fragmented parallel
codes tend to be to such decisions as: whether they use a
block or block-cyclic distribution; whether the distribu-
tion is applied to a single dimension or multiple dimen-
sions; or whether or not the problem sizes divide evenly
between the processors. Altering these decisions tends to
affect so much code that making such changes occurs
only when absolutely necessary, rather than as part of the
normal experimentation that ought to take place while
developing new codes. And yet, much of it is orthogonal
to the numerical computation that is being expressed.
Unfortunately, fragmented programming models have
limited means for addressing this problem since data is
allocated by each program instance, limiting the user’s
ability to express computation over a distributed data
structure in a manner that is orthogonal to its distribution.

In order to support such a separation between algorithm
and data structure implementation, it would seem that
parallel languages would minimally need to support a
means for defining a data aggregate’s distribution, local
storage, and iteration methods independently of the com-
putations that operate on the data structure. In such an
approach, the compiler’s job would be to convert the glo-
bal-view expression of an algorithm into the appropriate
local allocations, iterations, and communication to effi-
ciently implement the code. In order to achieve ideal per-
formance, it seems likely that the language and compiler
would need to have knowledge about the mechanisms
used for expressing storage and iteration.

2.2.4 Broad-market language features The gap
between parallel languages and popular broad-market
languages is wide and growing every year. Consider the
newly-trained programmer emerging from college with
experience using Java, Matlab, or Perl in a sequential
computing setting and being asked to implement parallel
code in Fortran/C + MPI. In addition to the general chal-

Fig. 3 Pseudocode fragments illustrating how sensitive algorithms in most languages are to data layout—in this
case (a) a dense matrix layout versus (b) a sparse compressed row layout. While the two codes express the same
logical matrix–vector multiplication operation, the lack of separation between algorithms and data structures causes
the codes to be expressed very differently.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

296 COMPUTING APPLICATIONS

lenge of writing correct parallel programs, these pro-
grammers are forced to contend with languages that seem
primitive compared to those in which they have been
trained, containing features whose characteristics were
determined by compiler technology that is now decades
old.

In order to bring new programmers into the parallel
computing community, we believe that new parallel lan-
guages need to bridge this gap by providing broad-market
features that do not undermine the goals of parallel com-
puting. These features might include: object-oriented pro-
gramming; function and operator overloading; garbage
collection; generic programming (the ability to apply a
piece of code to a variety of types for which it is suitable
without explicitly rewriting it); latent types (the ability to
elide a variable’s type when it can be determined by the
compiler); support for programming in-the-large (compos-
ing large bodies of code in modular ways); and a rich set
of support routines in the form of standardized libraries.

2.2.5 Data abstractions Scientific programmers write
algorithms that tend to call for a wide variety of data
structures, such as multidimensional arrays, strided arrays,
hierarchical arrays, sparse arrays, sets, graphs, or hash
tables. Yet current parallel languages tend to support
only a minimal set of data structures, typically limited to
traditional dense arrays (and C-based languages fail to
even support much in the way of a flexible multidimen-
sional array). To the extent that these languages fail to
support objects, more complex data structures tend to be
implemented in terms of simpler arrays, as exhibited by
the sparse CRS example of Figure 3b.

Despite the fact that HEC computations almost always
operate on large data sets by definition, parallel languages
typically fail to provide a richer set of built-in data struc-
tures from which the programmer can select. Having such
data structures available by default, whether through a
library or the language definition itself, not only saves the
programmer the task of creating them manually, it also
improves code readability by encouraging programmers
to use a standard and familiar set of data structures. Such
support can also create opportunities for compiler optimi-
zations that hand-coded data structures tend to obscure.
As a specific example, the accesses to array V in the CRS
matrix–vector multiplication of Figure 3b are an example
of indirect indexing, which tends to thwart compiler opti-
mization. Yet in the context of CRS, this indexing has
specific semantics that would have been valuable to the
compiler if the language had supported a CRS sparse
matrix format directly. In past work, we have demon-
strated how compiler familiarity with a distributed sparse
data structure can improve code clarity and provide
opportunities for optimization (Ujaldon et al. 1997; Cham-
berlain 2001; Chamberlain and Snyder 2001). We believe

that doing the same for other common data structures
would benefit parallel productivity.

2.2.6 Performance Since performance is typically
the bottom line in high-performance computing, it stands
to reason that support for the previous features should not
ultimately prevent users from achieving the performance
they require. Yet, this represents a serious challenge since
there tends to be an unavoidable tension between per-
formance and programmability that typically complicates
programming language design.

Our guiding philosophy here is that languages should
provide a spectrum of features at various levels so that
code which is less performance-oriented can be written
more easily, potentially resulting in less-than-optimal
performance. As additional performance is required for a
section of code, programmers should be able to rewrite it
using increasingly low-level performance-oriented fea-
tures until they are able to obtain their target performance.
This philosophy follows the 90/10 rule: if 90% of the pro-
gram’s time is spent in 10% of the code, the remaining
code can afford to be relatively simple to write, read, and
maintain, even if it impacts performance. Meanwhile, the
crucial 10% should be expressible using a separation of
concerns so that distributions, data structures, and com-
munication algorithms can be modified with minimal
impact on the original computation. Such a separation
should ideally result in increased readability, writability,
and maintainability of the performance-oriented code as
compared with current approaches.

2.2.7 Execution model transparency A quality that
has made languages like C popular is the ability for archi-
tecture-savvy programmers to understand roughly how
their source code will map down to the target architecture.
This gives programmers the ability to make informed
choices between different implementation approaches by
considering and estimating the performance impacts that
they will have on the execution. While such mental map-
pings are typically imperfect given the complexity of mod-
ern architectures and compiler optimizations, having even
a coarse model of the code’s execution is far better than
working in a language which is so abstract that the map-
ping to the hardware is a mystery.

This would seem to be an important quality for parallel
languages to have as well. While sequential programmers
will typically be most interested in memory accesses,
caches, and registers, parallel programmers will also be
concerned with how parallelism is implemented, where
code is executed, which data accesses are local and remote,
and where communication takes place. A secondary ben-
efit for creating parallel languages with transparent execu-
tion models is that it often makes writing compilers for
such languages easier by narrowing the space of implemen-

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

297PARALLEL PROGRAMMABILITY AND CHAPEL

tation options. This can result in making code perform
more portably since different compilers will need to obey
similar implementation strategies at a coarse level, even if
their optimizations and implementation details vary.

2.2.8 Portability Given the evolution and diversity of
parallel architectures during the past several decades, it
seems crucial to make sure that new parallel languages
are portable to a diverse set of architectures. This repre-
sents a unique challenge since the simplest way to achieve
this is to have languages target a machine model that
represents a lowest common denominator for the union
of parallel architectures—for example, one with a single
thread per processor and distributed memory. Yet making
such a choice can limit the expressiveness of a language,
as exhibited by many current parallel languages. It can also
limit the language’s ability to take advantage of architec-
tures that offer a richer set of features. Another approach,
and the one we espouse, is to target a more sophisticated
machine model that can be emulated in software on archi-
tectures that fail to support it. For example, a language
that assumes each processor can execute multiple threads
may be implemented on a single-threaded processor by
managing the threads in software. In addition, we believe
that languages should be usable in a mode that is simpler
and more compatible with a less-capable architecture
when the best performance is required. Continuing our
example, programmers of a single-threaded architecture
ought to be able to restrict their code to use a single thread
per processor in order to avoid the overhead of software
multithreading.

2.2.9 Interoperability with existing codes When
designing a new parallel language, it is often tempting to
fantasize about how much cleaner everyone’s existing
codes would be if they were rewritten in your language.
However, the reality of the situation is that there is so
much code in existence, so much of which is obfuscated
by struggling with many of the challenges listed above,
that it is simply unrealistic to believe that this will happen
in most cases. For this reason, making new languages inter-
operate with existing languages seems crucial.

For our purposes, interoperation has two main goals.
The first is to deal with the mechanics of invoking func-
tions from an existing language to the new language and
back again, passing arguments of various standard types.
The second is to have the two languages interoperate on
each others’ data structures in-place, in order to avoid
making redundant copies of large distributed data struc-
tures, or redistributing them across the machine. While
such approaches may be reasonable for exploratory pro-
gramming, if production codes switch between the two
languages during their core computations, such over-
heads are likely to impact performance too much. It is

unrealistic to assume that any two languages will be able
to compute on shared data structures of arbitrary types
without problems, but new languages should strive to
achieve this for common data structures and their imple-
mentations within HEC codes.

2.2.10 Bells and whistles There are a number of other
features that one may want in a language that have less to
do with the language and more to do with its implementa-
tion, libraries, and associated tools. For example, attractive
features might include built-in support for visualizations,
interpreters to support interactive exploratory program-
ming, good debuggers and performance monitors, and
clear error messages. While these features are not as
“deep” from a language-design perspective as many of
the others that have been covered in this section, one only
needs to interact with a few users (or reflect on their own
experiences) to realize how valuable such ancillary fea-
tures can be for productivity.

3 Parallel Language Survey

In this section, we give a brief overview of several parallel
languages and describe how they meet or fall short of the
design principles in the previous section. Given the large
number of parallel languages that have been developed in
recent decades, we focus primarily on languages that are
in current use and that have influenced our design.

Observations on SPMD languages Since many of the
languages described in this section provide the program-
mer with an SPMD view of computation, we begin by
making some general observations about the SPMD pro-
gramming model. As described in the previous section,
SPMD programming gives the user a fairly blunt mecha-
nism for specifying parallel computation and distributed
data structures: parallelism is only available via the mul-
tiple cooperating instances of the program while distrib-
uted data aggregates must be created manually by having
each program instance allocate its local piece of the data
structure independently. Operations on remote chunks of
the data structure typically require some form of commu-
nication or synchronization to keep the cooperating pro-
gram instances in step.

The main benefits of languages supporting an SPMD pro-
gramming model relate to their simplicity. The restricted
execution model of these languages tends to make them
fairly simple to understand and reason about, resulting in
a high degree of transparency in their execution model.
This simplicity can also result in a high degree of porta-
bility due to the lack of reliance on sophisticated architec-
tural features or compilers. Yet the simplicity of this model
also requires the user to shoulder a greater burden by man-
aging all of the details related to manually fragmenting

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

298 COMPUTING APPLICATIONS

data structures as well as communicating and synchronizing
between program instances. This explicit detail manage-
ment obfuscates algorithms and creates rich opportunities
for introducing bugs that are notoriously difficult to track
down.

3.1 Communication Libraries

MPI MPI (Message Passing Interface; Message Passing
Interface Forum 1994) (Snir et al. 1998) is the most preva-
lent HEC programming paradigm, designed by a broad
consortium effort between dozens of organizations. MPI
supports a fragmented programming model in which mul-
tiple program instances execute simultaneously, commu-
nicating by making calls to the MPI library. These routines
support various communication paradigms including two-
sided communication, broadcasts, reductions, and all-to-
all data transfers. MPI-2 is an extension to the original
MPI standard that introduces a form of single-sided com-
munication as well as dynamic task creation which allows
programs to be spawned at arbitrary program points rather
than just at load-time (Message Passing Interface Forum
1997; Gropp et al. 1998).

MPI has been a great success in the HEC community
due to the fact that it has a well-specified standard, freely
available implementations, and a high degree of portabil-
ity and performance consistency between architectures.
As a result, MPI has become the de facto standard for
parallel programming.

MPI is most often used in an SPMD style because of
its simplicity, yet it does not force the user into an SPMD
programming model since instances of distinct programs
can be run cooperatively. However, even when used in this
mode, MPI shares the general characteristics of SPMD
languages as described above, because of the fact that its
parallelism is expressed at the granularity of a program
rather than a function, statement, or expression.

The MPI interface is supported for C and Fortran, and
MPI-2 adds support for C++. To a large extent, MPI’s
ability to support the separation of an algorithm from its
implementation, broad-market features, data abstractions,
and interoperability with existing codes is strongly tied to
the base languages with which it is used, as impacted by
the introduction of a fragmented programming model.
MPI tends to serve as a favorite target of criticism in the
HEC community, due in part to its failure to satisfy many
of the design principles from Section 2.2. However, the
fact that so many sophisticated parallel codes have been
written using MPI is testament to its success in spite of
its shortcomings.

PVM PVM (Parallel Virtual Machine) (Geist et al. 1994a,
1994b) is another two-sided message passing interface
that was developed during the same period as MPI, but

which has not enjoyed the same degree of adoption in the
community. PVM’s interface is somewhat simpler than
MPI’s, and supports the ability to dynamically spawn new
parallel tasks at the program level, as in MPI-2. PVM is
supported for C, C++, and Fortran. Despite numerous
differences between PVM and MPI, our analysis of PVM
with respect to our desiderata is much the same: ulti-
mately its fragmented programming model stands in the
way of making it a highly productive parallel language.

SHMEM SHMEM (Barriuso and Knies 1994) is a single-
sided communication interface that was developed by
Cray in the 1990s to support a single processor’s ability
to put data into, and get data from, another processor’s
memory without that processor’s code being involved.
Such an interface maps well to Cray architectures and
supports faster data transfers by removing much of the
synchronization and buffering that is necessitated by the
semantics of two-sided message passing. This one-sided
communication style is arguably easier to use since pro-
grammers do not have to write their program instances to
know about the communication that the other is performing,
yet in practice some amount of synchronization between
the programs tends to be required to know when remote
values are ready to be read or written. Since its initial
development, a portable version of SHMEM has been
implemented named GPSHMEM (Generalized Portable
SHMEM) and is designed to support portability of the
interface to a broader range of platforms (Parzyszek, Nie-
plocha, and Kendall 2000).

Programmers debate whether two-sided or single-
sided communication is easier because of the tradeoff
between having both program instances involved in the
communication versus the subtle race conditions that can
occur as a result of incorrect synchronization in the one-
sided model. However, from our perspective, the SHMEM
interface still relies on an SPMD programming model,
and as such does little to address our wishlist for a pro-
ductive language.

ARMCI and GASNet Two other single-sided commu-
nication libraries that have recently grown in popularity
are ARMCI (Aggregate Remote Memory Copy Inter-
face) (Nieplocha and Carpenter 1999) and GASNet (Glo-
bal Address Space Networking) (Bonachea 2002). Both of
these interfaces seek to support portable single-sided com-
munication by generalizing the concepts established by
the SHMEM library. ARMCI was developed at Pacific
Northwest National Laboratory and is built on native
network communication interfaces and system resources.
It has been used to implement GPSHMEM, Co-array
Fortran (Dotsenko, Coarfa, and Mellor-Crummey 2004),
and the Global Arrays library. GASNet was developed at
Berkeley. It is constructed around a core API that is based

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

299PARALLEL PROGRAMMABILITY AND CHAPEL

on Active Messages (von Eicken et al. 1992) and is imple-
mented on native network communication interfaces.
GASNet has been used to implement UPC (Chen et al.
2003; Chen, Iancu, and Yelick 2005) and Titanium (Su
and Yelick 2005). Both ARMCI and GASNet are prima-
rily used as implementation layers for libraries and lan-
guages. Their use as stand-alone parallel programming
languages has similar productivity limiters as the previ-
ous communication libraries described in this section.

3.2 PGAS Languages

A group of parallel programming languages that are cur-
rently receiving a great deal of attention are the Parti-
tioned Global Address Space (PGAS) languages (Carlson
et al. 2003). These languages are designed around a mem-
ory model in which a global address space is logically
partitioned such that a portion of it is local to each proc-
essor. PGAS languages are typically implemented on dis-
tributed memory machines by implementing this virtual
address space using one-sided communication libraries
like ARMCI or GASNet.

PGAS languages are a welcome improvement over one-
sided and two-sided message passing libraries in that they
provide abstractions for building distributed data struc-
tures and communicating between cooperating program
instances. In spite of these improvements, however, users
still program with the SPMD model in mind, writing
code with the understanding that multiple instances of it
will be executing cooperatively. Thus, while the PGAS
languages improve productivity, they continue to fall
short of our goals of providing a global view of parallel
computation and general parallelism.

The three main PGAS languages are Co-array Fortran,
UPC, and Titanium. While these are often characterized as
Fortran, C, and Java dialects of the same programming
model, this is an over-generalization. In the paragraphs
below, we highlight some of their features and differences.

Co-array Fortran Co-array Fortran (CAF; formerly
known as F––) is an elegant extension to Fortran to sup-
port SPMD programming (Numerich and Reid 1998). Its
success has been such that its features will be included in
the next Fortran standard (Numerich and Reid 2005).
CAF supports the ability to refer to the multiple cooperating
instances of an SPMD program (known as images) through
a new type of array dimension called a co-array. By declar-
ing a variable with a co-array dimension, the user speci-
fies that each program image will allocate a copy of the
variable. Each image can then access remote instances of
the variable by indexing into the co-array dimensions
using indices that refer to the logical image space. Co-
arrays are expressed using square brackets which make
them stand out syntactically from traditional Fortran arrays

and array references. Synchronization routines are also
provided to coordinate between the cooperating images.

While PGAS languages like CAF tend to provide a
more coherent view of distributed data structures than
message-passing libraries, they still require users to frag-
ment arrays into per-processor chunks. For example, in
Co-array Fortran an n-element array would typically be
allocated as a co-array of size n/numImages, causing the
user to deal with many of the same data structure frag-
mentation details as in MPI programming. The greatest
programmability improvement comes in the area of sim-
plifying communication, since co-arrays provide a truly
elegant abstraction for data transfer as compared to one-
sided and two-sided communication. Moreover, the syn-
tactic use of square brackets provides the user with good
insight into the program’s execution model.

UPC UPC is similar to Co-array Fortran in that it extends
C to support PGAS-style computation (Carlson et al.
1999; El-Ghazawi et al. 2005; UPC Consortium 2005).
However, UPC supports a very different model for dis-
tributing arrays in which declaring an array variable with
the shared keyword causes the linearly-ordered array ele-
ments to be distributed between the program instances (or
threads) in a cyclic or block-cyclic manner. This mecha-
nism provides a more global view of the user’s arrays, yet
it is restricted enough that locality-minded programmers
will still tend to break arrays into THREADS arrays of n/
THREADS elements each. The biggest downside to UPC’s
distributed arrays is that since they are based on C arrays,
they inherit many of the same limitations. In particular,
performing a 2D blocked decomposition of a 2D array is
non-trivial, even if the problem size and number of
threads are statically known.

UPC also supports a slightly more global view of con-
trol by introducing a new loop structure, the upc_forall loop,
in which global iterations of a C-style “for loop” are
assigned to threads using an affinity expression. While
this support for a global iteration space is useful, it also
tends to be somewhat at odds with the general UPC exe-
cution model which is SPMD by nature until a upc_forall
loop is encountered.

UPC’s most useful feature is perhaps its support for
pointers into the partitioned global shared address space.
Pointers may be declared to be private (local to a thread)
or shared, and may point to data that is also either private
or shared. This results in a rich abstraction for shared
address space programming that successfully maintains a
notion of affinity since a symbol’s shared/private charac-
teristic is part of the type system and therefore visible to
the programmer and compiler.

Titanium Titanium is a PGAS language that was devel-
oped at Berkeley as an SPMD dialect of Java (Yelick

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

300 COMPUTING APPLICATIONS

et al. 1998; Hilfinger et al. 2005). Titanium adds several
features to Java in order to make it more suited for HEC,
including: multidimensional arrays supporting iterators,
subarrays, and copying; immutable “value” classes; oper-
ator overloading; and regions that support safe, perform-
ance-oriented memory management as an alternative to
garbage collection. To support coordination between the
SPMD program instances, Titanium supports: a number
of synchronization and communication primitives; single
methods and variables which give the compiler and pro-
grammer the ability to reason about synchronization in a
type-safe manner; and a notion of private/shared refer-
ences and data similar to that of UPC.

In many respects, Titanium is the most promising of
the PGAS languages in terms of our productivity wish-
list. It has the most support for broad-market features that
current sequential programmers—particularly those from
the Java community—would come to expect. The fact
that it is an object-oriented language gives it better capa-
bilities for separating algorithms from implementations
and providing mechanisms for creating data abstractions.
Its support for single annotations and private/shared dis-
tinctions help it achieve performance and to expose its
execution model to the user. The chief disadvantage to
Titanium is that, like other PGAS languages, it supports
an SPMD programming model which thwarts its ability
to support a global view of data structures and control, as
well as to express general parallelism.

3.3 OpenMP

OpenMP is a set of directives and library routines that are
used to specify parallel computation in a shared memory
style for C, C++, and Fortran (Dagum and Menon 1998;
Chandra et al. 2000). OpenMP is a drastic departure from
the communication libraries and PGAS languages described
above in that it is the first programming model described
in this survey that can be used in a non-fragmented man-
ner. OpenMP is typically used to annotate instances of
parallelism within a sequential program—most notably,
by identifying loops in which parallel computation should
occur. The OpenMP compiler and runtime implement this
parallelism using a team of cooperating threads. While
OpenMP can be used in a fragmented manner, querying
the identity of a thread within a parallel region and taking
actions based on that identity, it is more often used in a
global-view manner, identifying the opportunity for par-
allelism and letting the the compiler and runtime manage
the thread-level details. This ability to inject parallelism
incrementally into a sequential program is considered
OpenMP’s greatest strength and productivity gain.

While the OpenMP standard supports nested parallel-
ism, most implementations only handle a single level of
parallelism at a time. OpenMP is currently not suited for

task parallelism, though there is interest in evolving it to
handle such problems. The biggest downside to OpenMP
is its reliance on a shared-memory programming model,
which has generally not proven to be scalable to large
numbers of processors. For this reason, OpenMP is typi-
cally used within shared memory portions of a larger dis-
tributed memory machine—for example, to express
thread level parallelism within an MPI program running
on a cluster of SMPs. OpenMP’s other downside is that,
like MPI, it is used in combination with C, C++, and For-
tran, limiting its ability to support higher-level data
abstractions and broad-market features from more mod-
ern languages.

3.4 HPF

High Performance Fortran (HPF; High Performance For-
tran Forum 1993, 1997) (Koelbel et al. 1996) is a parallel
extension to Fortran 90 that was developed by the High
Performance Fortran Forum, a coalition of academic and
industrial language experts. HPF is an evolution of ear-
lier parallel Fortran dialects such as Fortran-D (Fox et al.
1990), Vienna Fortran (Chapman, Mehrotra, and Zima
1992; Zima et al. 1992), and Connection Machine For-
tran (Albert et al. 1988). HPF is a global-view language
supporting distributed arrays and a single logical thread
of computation. It supports a number of directives that
allow users to provide hints for array distribution and
alignment, loop scheduling, and other details relevant to
parallel computation. HPF compilers implement the user’s
code by generating an SPMD program in which the com-
piler-generated code and runtime manage the details of
implementing distributed arrays and interprocessor com-
munication.

HPF meets our productivity goals by providing a global
view of computation, but does not provide for general par-
allelism. Because of its SPMD execution model and sin-
gle logical thread of execution, it is good at expressing a
single level of data parallelism cleanly, but not at express-
ing task or nested parallelism. HPF also suffers from a
lack of transparency in its execution model—it is difficult
for both users and compilers to reason about how a code
will/should be implemented (Ngo, Snyder, and Chamber-
lain 1997). Depending on who you talk to, HPF’s lack of
success is attributed to some combination of: this lack of
a transparent execution model; its inability to achieve good
performance quickly enough (alternatively, the impatience
of its user community); its lack of support for higher-level
data abstractions such as distributed sparse arrays, graphs,
and hash tables; and a number of other theories. In our
work on Chapel, we build on HPF’s general approach for
global-view programming on distributed arrays while
adding richer support for general parallelism and data struc-
tures.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

301PARALLEL PROGRAMMABILITY AND CHAPEL

3.5 ZPL

ZPL is an array-based parallel language developed at the
University of Washington (Snyder 1999; Chamberlain
2001; Deitz 2005). Like HPF, ZPL supports global-view
parallel computation on distributed arrays where the
management details are implemented by the compiler and
runtime using an SPMD implementation. As with HPF,
ZPL’s execution model only supports programs with a
single level of data parallelism at a time, making it simi-
larly limited in terms of generality.

ZPL is unique among global-view languages in that it
supports execution model transparency in its syntax via a
concept known as the WYSIWYG performance model
(Chamberlain et al. 1998). Traditional operations are seman-
tically restricted in ZPL to only be applicable to array
expressions that are distributed in an aligned manner. To
operate on arrays that are not aligned, a series of array
operators are used to express different access patterns
including translations, broadcasts, reductions, parallel pre-
fix operations, and gathers/scatters. These stylized opera-
tors show up clearly in the syntax and can be used to
reason about where programs require communication and
what type it is. In this way, programmers are able to make
coarse algorithmic tradeoffs by inspecting the syntax of
their programs. In practice, ZPL achieves performance
that is competitive with hand-coded Fortran+MPI, and is
portable to most platforms that support MPI. ZPL sup-
ports array computations using a language concept known
as a region3 to represent distributed index sets, including
sparse arrays (Chamberlain et al. 1999; Chamberlain 2001;
Chamberlain and Snyder 2001). In our Chapel work, we
expand upon the region concept to support distributed
sets, graphs, and hash tables. We also strive to implement
the general parallelism and broad-market features that
ZPL fails to provide.

3.6 Cilk

Cilk is a global-view parallel language that supports a
multithreaded execution model (Randall 1998; Super-
computing Technologies Group 2001). To the program-
mer, Cilk codes look like C programs that have been
annotated with operations to spawn and synchronize
threads. Moreover, the elision of Cilk’s keywords result in
a C program that validly implements Cilk’s semantics.
Cilk’s runtime system is in charge of scheduling the par-
allel computation so that it will run efficiently on a plat-
form, and it utilizes aggressive work sharing and stealing
techniques to balance the computational load and avoid
swamping the system with too much parallelism.

Cilk is attractive with respect to our productivity desid-
erata in that it provides a global view of nestable parallel-
ism. While Cilk threads can be used to implement data

parallelism, the language provides little in the way of
abstractions to make operating on distributed arrays triv-
ial—the user would have to manage such data structures
manually. As a result, Cilk seems best-suited for nested
task parallelism—an important area since so few lan-
guages support it. The current version of Cilk is also lim-
ited to shared memory platforms, resulting in potential
scaling and portability problems as in OpenMP. While
previous versions of Cilk ran on clusters of workstations
(Joerg 1996), this capability has not been carried for-
ward. A final point of interest about Cilk is that while its
execution model is not transparent, it does have an analytic
performance model that allows users to predict asymp-
totic program performance.

4 Chapel Overview

In this section, we describe a number of key Chapel lan-
guage features, relating them to the goals that we estab-
lished in Section 2.2. Because of the space limitations of
this paper, we provide a brief introduction to a number of
Chapel concepts without covering them in exhaustive
detail. For a more complete introduction to the language,
the reader is referred to the Chapel Language Specifica-
tion (Cray Inc. 2005).

4.1 Base Language Concepts in Chapel

Chapel is a global-view parallel language that supports a
block-imperative programming style. In fact, the “pseu-
docode” fragments presented in Figures 1a, 2a, and 3 are
written in Chapel. Syntactically, Chapel diverges from
other block-imperative HEC languages like C and For-
tran. At times, this is because of our differing goals (e.g.
support for generic programming and a better separation
of algorithm and data structures), and at times because of
differing sensibilities. The decision to avoid building
directly on C or Fortran also reflects our belief that look-
ing too similar to an existing language can cause users
to fall back on their sequential programming styles and
assumptions rather than considering their algorithm afresh,
as is often necessary when writing parallel programs. We
believe that interoperability with existing languages is far
more important than extending an existing syntax. That
said, elements of Chapel’s syntax will be familiar to
users of C, Fortran, Java, Modula, and Ada.

Basic types and variables Chapel supports a number of
built-in types that are standard for HEC: floating point and
integer types of varying widths, complex values, boolean
values, and strings. Variable declarations in Chapel take
the general form:

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

302 COMPUTING APPLICATIONS

where name gives the name of the variable, definition
indicates its type and structural properties, and initializer
supplies its initial value. For code robustness reasons,
each type in Chapel has a default initial value used for
uninitialized variable declarations, though these may be
overridden or suppressed by the user. Chapel’s declara-
tion syntax differs from the more common “type first” style
used in C and Fortran primarily due to our goal of sup-
porting generic programming by eliding a variable’s type
(described below). In addition, we have a preference for
variable definitions that can be read left-to-right, and for
array specifications that can define multiple variables and
that need not be split by a variable’s name.

Locales In Chapel, we use the term locale to refer to the
unit of a parallel architecture that is capable of performing
computation and has uniform access to the machine’s
memory. For example, on a cluster architecture, each
node and its associated local memory would be consid-
ered a locale. Chapel supports a locale type and provides
every program with a built-in array of locales to represent
the portion of the machine on which the program is exe-
cuting. Effectively, the following variables are provided
by the system:

Programmers may reshape or partition this array of locales
in order to logically represent the locale set as their algo-
rithm prefers. Locales are used for specifying the map-
ping of Chapel data and computation to the physical
machine using features described below.

Other basic types Chapel supports tuples of homogene-
ous and heterogeneous types as a means of bundling several
values together in a lightweight fashion. It also supports a
sequence type that is used to represent ordered homogene-
ous collections in cases where richer data aggregates such
as arrays are overkill. Chapel’s semantics for operations
on arrays are defined in terms of sequence semantics.

Chapel also supports type unions which are similar to
C’s union types, except that they must be used in a type-
safe manner. For example, having written to a union var-
iable via member x, the variable cannot then be accessed
via member y.

Control flow and functions Chapel supports a variety
of standard control flow statements as in most block-
imperative languages—loops, conditionals, select state-
ments (similar to “switch” or “case” statements), breaks,
continues, gotos, and returns. Chapel supports function
definitions that support default argument values, argument
matching by name, and argument intents. Functions can

be overloaded, as can most of the standard operators. Func-
tion resolution is performed in a multiple-dispatch manner.

4.2 Parallelism in Chapel

Chapel is designed around a multithreaded execution model
in which parallelism is not described using a processor-
or task-based model, but in terms of independent compu-
tations implemented using threads. Rather than giving
the programmer access to threads via low-level fork/join
mechanisms and naming, Chapel provides higher-level
abstractions for parallelism using anonymous threads that
are implemented by the compiler and runtime system.
We choose this model both to relieve users of the burden
of thread management and due to its generality. Although
most architectures do not currently have hardware sup-
port for multithreading, we believe that the benefits gained
in programmability and generality will outweigh the poten-
tial performance impacts of managing these threads in
software. Moreover, as multicore processors become more
readily available, we anticipate that support for multi-
threading will become more commonplace.

4.2.1 Data parallelism
Domains and arrays Chapel supports data parallelism
using a language construct known as a domain—a named,
first-class set of indices that is used to define the size and
shape of arrays and to support parallel iteration. Note that
we use the term array in Chapel to represent a general
mapping from an index set of arbitrary type to a set of var-
iables. This results in a richer array concept than the rec-
tilinear blocks of data supported by most HEC languages.
Chapel’s domains are an evolution of the region concept
that was developed in ZPL, generalized here to support sets,
graphs, and associative arrays. Chapel has three main
classes of domains, described in the following paragraphs.

Arithmetic domains are those in which indices are rep-
resented using multidimensional integer coordinates, to
support rectilinear index sets as in traditional array lan-
guages. Arithmetic domains may have dynamic sizes and
bounds, and they may be dense, strided, or sparse in each
dimension. The following declarations create a simple
2D arithmetic domain and array:

Indefinite domains represent an index set of arbitrary
type, as specified by the user. For example, a program-
mer might choose to use floating point values, strings, or
object references as an indefinite domain’s index type.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

303PARALLEL PROGRAMMABILITY AND CHAPEL

Indefinite domains are used to implement sets or associa-
tive arrays, and can be thought of as providing hash
table-like functionality. The following example creates
an array of integers indexed using strings:

Opaque domains are those in which the indices have
no values or algebra in relation to one another—they
are simply anonymous indices, each of which is unique.
Opaque domains can be used to represent graphs or link-
based data structures in which there is no requirement to
impose an index value or ordering on the nodes that com-
prise the data structure. Opaque domains and arrays are
declared as follows:

As shown above, Chapel arrays are declared by speci-
fying the domain(s) that define the array’s size and shape
in combination with an element type that is to be stored
for each element within the array. In general, domains
may be dynamically modified to add or subtract indices
from the set that they describe. When this occurs, any
arrays defined using the domain are reallocated to reflect
the changes to the domain’s index set. Thus, the declara-
tion of an array over a domain establishes an invariant
relationship between the two concepts that is maintained
dynamically throughout the array’s lifetime.

Index types and subdomains Chapel supports an
index type that is parameterized by a domain value. A
variable of a given index type may store any of the indi-
ces that its domain describes. The following code declares
and initializes an index variable for each of the three
domains declared above:

A domain variable may be declared as a subdomain of
another domain, constraining its indices to be a subset of
those described by its parent. For example, the following
code creates a subdomain for each of the three domains
declared above:

Index types and subdomains are beneficial because the
compiler can often reason about them to eliminate bounds
checks. For example, if an index value from innerD is
used to access array A, no bounds check is required since
innerD is a subdomain of A’s domain D. Index types and
subdomains also provide readers of Chapel code with
additional semantic information about a variable’s value.
In contrast, code can be difficult to understand when every
variable used to access an arithmetic array is declared as
an integer.

Iteration, slicing, and promotion Parallel iteration is
specified in Chapel using forall loops in either statement
or expression form. Forall loops iterate over domains,
arrays, or other expressions that evaluate to a sequence of
values. Forall loops may optionally define loop variables
that take on the values described by the collection being
traversed. For example, a forall loop over a domain will
create loop variables of that domain’s index type that will
take on the index values described by the domain. Loop
variables are only defined for the body of the forall loop.
Figure 4 illustrates forall loops for our running domain
examples.

Chapel users can index into arrays an element at a time
using individual index values, such as those resulting
from a forall loop over a domain. Alternatively, they may
index into arrays in an aggregate manner by using a
domain expression to specify an arbitrary subset of the
array’s values. This provides an array slicing mechanism
similar to that of Fortran 90, yet with richer semantics
since Chapel domains can describe arbitrary index sets.
For example, the following expressions use our previous
subdomain declarations to slice into arrays declared over
their parent domains:

Promotion, reductions, and scans Chapel supports the
promotion of scalar operators and functions over data

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

304 COMPUTING APPLICATIONS

aggregates such as whole array references or array slices.
Whole-array assignment is a trivial example involving
the promotion of the scalar assignment operator. The seman-
tics of such promotions are defined using sequence-based
interpretations of the array expressions. Promoted opera-
tors take sequence expressions of compatible rank and
shape. Chapel also supports a cross-product style of promo-
tion. Promotions over aggregates are implicitly parallel.

Chapel also supports other specialized forms of data
parallel computation such as reductions and parallel pre-
fix computations (scans). These operators can be invoked
using built-in operations like sum or min, or users can
specify their own operations that define the component
functions of a scan or reduction (Deitz et al. 2006).

As example uses of promotion and reductions, con-
sider the following Chapel statements which compute
approximate norms for a 3D n × n × n array, A. These
promote the standard exponentiation operator and abso-
lute value function across A’s elements, using sum and
max reductions to collapse the resulting values to a sca-
lar:

Domain distributions A domain’s indices may be
decomposed between multiple locales, resulting in a dis-
tributed allocation for each array defined using that
domain. Domain distributions also provide a default work
location for threads implementing parallel computation
over a domain’s indices or an array’s values. Because of
the constrained relationship between an array and its defin-
ing domain, two arrays declared using the same domain
are guaranteed to have the same size, shape, and distribu-
tion throughout their lifetimes, allowing the compiler to
reason about the distribution of aligned arrays. Subdomains
also inherit their parent domain’s distribution unless explic-
itly over-ridden, providing additional alignment informa-
tion.

Chapel will support a number of traditional distributions
(e.g. block, cyclic, recursive bisection, graph partitioning
algorithms) as part of its standard library. However, a pri-
mary goal of the language is to allow users to implement
their own distributions when they have application-
specific knowledge for how an array should be distrib-
uted that is not captured by the standard distributions.

Support for these user-defined distributions is one of
our most aggressive research areas in the Chapel project,
and a rich enough topic to warrant a paper of its own
(Diaconescu and Zima 2007). For this discussion, it suf-
fices to say that a distribution specifies how a domain’s
indices are mapped to a set of target locales, as well as
how domain indices and array elements should be stored
within each locale’s memory. Our current framework
requires distribution authors to create five classes that rep-
resent: the distribution; a domain declared using the dis-
tribution; a single locale’s portion of such a domain; an
array declared using the domain; and a single locale’s por-
tion of such an array. These classes will be expected to
support a standard interface of accessors, iterators, query
functions, and data transfer methods which the compiler
will target during its rewrites of the user’s global-view
code. Domain distributions are a key part of Chapel’s sep-
aration of concerns, allowing users to define data structures
independently of the computations that operate on them.

4.2.2 Task parallelism Chapel supports task paral-
lelism using stylized forms of specifying parallel state-
ments and synchronizing between them. The primary
way to launch a series of parallel tasks is to use the cobe-
gin statement, a compound statement which asserts that
each of its component statements can be executed in par-
allel. A variation on the cobegin statement is the begin
statement which identifies a statement that can execute in
parallel with the statements that follow it. Parallel tasks
can also be specified symmetrically using the forall loops
described in the previous section.

Chapel’s parallel tasks can coordinate with one another
using synchronization variables that support full/empty

Fig. 4 Forall loops in statement and expression form for the three domains declared at the beginning of Section 4.2.1.
The loop variables are declared implicitly to be the domain’s index type, and are scoped by the loop body. More spe-
cifically, ij is an index(D)—a 2-tuple of integers from domain D; i is an index(People)—a string from the People
domain; and p is an index(Point)—an opaque index from the Point domain.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

305PARALLEL PROGRAMMABILITY AND CHAPEL

semantics in addition to their normal data values. By
default, reads to a synchronization variable only complete
when the variable is “full” and leave it “empty”, while
writes do the opposite. The user may explicitly specify
alternate semantics such as writing to the variable and
leaving it full regardless of the initial state. Synchroniza-
tion variables support a structured form of producer/con-
sumer semantics on arbitrary variables. Begin statements
can store their results to synchronization variables as a
means of expressing futures in Chapel.

Chapel also supports atomic sections to indicate that a
group of statements should be executed as though they
occurred atomically from the point of view of any other
thread. Atomic sections have been of recent interest to the
software transactional memory community because of
their intuitiveness and ability to replace explicit lock man-
agement in user code (Fraser 2003; Harris et al. 2005,
2006; Adl-Tabatabai et al. 2006). By specifying intent
rather than mechanism, atomic sections result in a higher-
level abstraction for users than locks. We also value them
for their role in allowing code from different authors to
compose cleanly.

4.2.3 Composition of parallelism Because of its mul-
tithreaded execution model, Chapel does not restrict par-
allel code from appearing within the body of a forall loop
or a cobegin statement. As a result, each statement body
can contain statements of either type, resulting in arbitrar-
ily nested parallelism and general support for composi-
tion of parallel tasks. The key to achieving this in a scalable
manner is to realize that specifying that work may exe-
cute in parallel does not imply that the runtime must spawn
a new thread for each parallel computation. Instead, we
anticipate using work sharing and stealing techniques
combined with a certain degree of laziness in evaluation
to throttle the creation of parallel threads and avoid
swamping the system, as in Cilk and the Cray MTA (Blu-
mofe and Leiserson 1994; Alverson et al. 1995).

Parallelism summary Many of the desirable language
characteristics laid out in Section 2.2 are fulfilled in Chapel
by the concepts described in this section. Chapel’s multi-
threaded execution model and support for domains, arrays,
forall loops, and cobegin statements support its global view
of computation. Combining these concepts with synchroni-
zation variables and atomic sections fulfills our require-
ments for supporting general parallel computation. Domains,
arrays, and index types help support our need for rich data
abstractions, and the ability to change a domain’s distri-
bution and implementation at its declaration point without
touching the rest of the code supports Chapel’s goal of
separating algorithms from their implementing data struc-
tures. Similarly, in many codes a domain may be changed
from dense to sparse without altering the code that oper-

ates on it. As an example, the following loop can be used
to perform a matrix–vector multiplication in Chapel with-
out specifying whether the matrix A is sparse or dense,
how it is distributed between locales, or how the indices
and array elements are stored in each locale’s memory.

4.3 Locality Control in Chapel

Chapel’s goals include allowing the programmer to con-
trol where data is stored and where computation takes
place on the machine, and to allow this information to be
added to a program incrementally as additional perform-
ance tuning is required. Domain distribution is one exam-
ple of locality control that has been described here, and it
supports this principle: a domain can initially be declared
without distributing it, and later, a distribution can be
added without changing any of the code that refers to the
domain or its arrays. Similarly, users may initially wish
to use a distribution from the standard library, and later
write their own custom distribution once performance
concerns become more critical.

When iterating over a domain, each iteration will typi-
cally execute on the locale that owns that index, as speci-
fied by the domain’s distribution. Users can override this
behavior—or control the locality of any other executable
statement—using an on clause which references a locale
and specifies that the given computation should take
place there. An extreme example of an on clause can be
used to revert to a fragmented programming style:

On clauses can also be used in a data-driven manner by
naming a variable rather than a locale. This causes the
computation to take place on the locale that owns the var-
iable in question. For example, in the following forall
loop, the loop body will be executed on the locale that
owns element Aj/2,2·i.

On clauses can also be applied to variable declarations to
cause variables to be allocated on a specific locale. Typi-
cally, variables that are not explicitly managed in this
way are allocated in the locale on which the thread is
executing.

The locality-oriented features of this section are designed
to help Chapel programmers tune their program for per-
formance, since so much parallel performance is deter-

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

306 COMPUTING APPLICATIONS

mined by the relative placement of threads and the data
that they access. These features also provide an execution
model for Chapel programmers, albeit one that is fairly
low-level.

4.4 Object-Oriented Programming in Chapel

Object-oriented programming (OOP) has proven to be a
very useful concept in mainstream programming languages,
providing a foundation for separating interfaces from
implementations, enabling code reuse, and generally help-
ing programmers reason about their code using data
structures whose composition reflects the systems they
are striving to model. Chapel supports object-oriented fea-
tures in order to leverage this productivity boost in a par-
allel setting.

Chapel provides two basic flavors of classes: tradi-
tional classes and value classes. Traditional classes are
assigned and passed by reference, mimicking the semantics
of traditional object-oriented languages (Java being a nota-
ble recent example). Value classes are assigned and passed
by value, making them similar to structures or records in
traditional languages, yet ones that support method invo-
cation (making them similar to C++ classes). Chapel also
supports garbage collection due to its productivity bene-
fit in eliminating common memory management errors in
modern OOP languages.

We have decided against making Chapel a pure object-
oriented language, both to reflect the necessity of operating
on value types efficiently in the HEC market, and because
of the fact that a large fraction of the HEC community
has not been trained to think and program in the object-
oriented paradigm since Fortran and C have been the
dominant HEC languages for decades. As a result, though
Chapel supports OOP features, it typically does not require
users to adopt them unless they want to. In practice, Fortran
and C programmers are free to ignore Chapel’s classes
and program in a traditional block-imperative style while
Java and C++ programmers are likely to utilize a more
object-based style in their code.

The one exception to this rule is in the specification of
advanced Chapel concepts such as user-defined reduc-
tions, scans, and domain distributions. In these cases, the
OOP framework provides a very natural means of speci-
fying a required interface, as well as a mechanism for
specializing existing implementations without redefining
each component manually. For this reason, we have cho-
sen to express such concepts using a class library. Note
that even if Fortran and C programmers need to utilize
these advanced concepts in their codes, the bulk of their
programs can still be written in a non-OOP style.

The features described in this section are supported in
Chapel to provide broad-market language concepts in a
parallel programming language, and to leverage the pro-

ductivity improvements that mainstream computing has
enjoyed through their use. Support for classes also pro-
vides us with a strong foundation for building higher-
level language features such as domains and user-defined
distributions.

4.5 Generic Programming in Chapel

Chapel supports language features that enable generic pro-
gramming, which we define as the ability to write a sub-
computation that is flexible with respect to the variable
types to which it is applied. We implement this flexibility
in the source code by aggressive program analysis and
cloning, potentially creating multiple statically-typed
instances of the generic code to satisfy the cases that the
user’s program requires. In particular, these generic pro-
gramming features are implemented to avoid introducing
unnecessary runtime overhead.

Latent types In most cases, the declared type of a vari-
able or argument can be elided, in which case the com-
piler will infer the type from the program’s context. If a
variable’s type is elided, it is typically inferred by
inspecting its initializing expression. If it is a class mem-
ber, its initialization within the class constructor is ana-
lyzed to determine its type. Function argument types are
inferred by examining the actual arguments at the call-
sites for that function. If the inferred type of a variable or
argument is unclear, the compiler will declare an ambi-
guity and request additional information from the user
rather than making an arbitrary choice that may be sur-
prising. This is a performance-motivated policy, in order
to avoid storing dynamically tagged values to perform
semantic checks and dispatches at run-time.

As an example, consider the code in Figure 5a in
which a function is written to return the result of the +
operator applied to its two arguments. Note that the for-
mal arguments, the function’s return type, and the type of
the local variable are all elided. In this case, the available
callsites will be analyzed to determine the types of the
arguments, while the result value of the + operator will
determine the type of the local variable, and therefore the
function’s return value. Since the function is invoked
using integers and strings, two versions of the function
will be created by the compiler, one that adds integers
and the second which concatenates strings.

Type variables For programmers who prefer a more
structured approach to generic programming, function
arguments and classes may contain type variables that
can be used to explicitly parameterize variable types. For
example, Figure 5b contains the same function as before,
but with an initial type variable argument describing a
type t. This type is then used to declare the types of argu-

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

307PARALLEL PROGRAMMABILITY AND CHAPEL

ments x and y, as well as the function’s return type and
local variable. Note that this code differs slightly from
the previous version since it constrains x and y to have
the same type, whereas the previous version permitted
them to have different types (so long as the + operator
supported them). Apart from this distinction, the two ver-
sions would generate identical code.

Type variables may also be defined using a stylized
declaration syntax, using the “?” operator to mnemoni-
cally query the type of an argument and bind it to a type
variable. Using this syntax, our generic function would
appear as in Figure 5c and is semantically identical to the
previous case.

Users have the ability to express additional constraints
on the relationships between type variables via a where
clause which can follow a type variable’s declaration.
We refer the reader to the language specification for
more information on this feature (Cray Inc. 2005).

The features in this section are designed to help with
Chapel’s separation of algorithms from data structures.
They are also designed to narrow the gap between paral-
lel languages and mainstream languages. In particular,
Chapel’s type variables support generic programming in a
manner similar to C++, Java, and C#, yet using a more
intuitive syntax. Chapel’s latent types are designed to
emulate mainstream scripting languages that tend to sup-
port untyped variables. Our approach differs from most
scripting languages in that Chapel’s latently-typed varia-
bles must be declared and will only have a single static
type during their lifetime. These choices were made to
prevent common errors and to ensure that performance is
not compromised by dynamic changes to a variable’s
type.

4.6 Other Chapel Language Features

Chapel has several other features that are not covered in
this article because of lack of space. Primary among

these are its support for iterators, similar to those in CLU
(Liskov et al. 1977); curried function calls; and modules
for namespace management.

4.7 Chapel’s Execution Model Transparency

In any language design, there exists a tension between pro-
grammability and execution model transparency. A sim-
ple example of this in parallel language design can be seen
in specifying assignments between distributed arrays.

In a language geared toward programmability, two
arrays would likely be assigned using a single mecha-
nism regardless of whether or not they shared the same
distribution. In such a model, the simplicity of perform-
ing array assignment is favored over the desire to make
the anticipated differences in performance visible in the
source text. The programmer would therefore need to
rely on feedback from the compiler or performance anal-
ysis tools (or their own comprehension of the execution
model) to understand the difference in performance
between the two cases.

In a language geared toward execution model transpar-
ency, the assignment between two aligned arrays would
likely take a different—and simpler— form than the assign-
ment between two arrays with different distributions. Here,
the programmer must do more work, and potentially clone
code manually to handle multiple cases. The advantage is
that the program’s syntax keeps the execution model
clear to the programmer and compiler.

In Chapel’s design, we have chosen to emphasize pro-
grammability over execution model transparency, in part
to maximize genericity of the user’s code and in part
because of a belief that the 90/10 rule suggests that most
of the time users want to do what’s easiest and not worry
about performance.

As the project has evolved, we have considered whether
it might be useful and possible to statically switch
between two semantic models in order to support different

Fig. 5 Chapel functions showing a generic addition function in which (a) the types are elided, (b) a type variable t is
used, (c) a type t is set using the query syntax (?t) and then used.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

308 COMPUTING APPLICATIONS

degrees of execution transparency. For example, one
could imagine that for the 10% of a code where program-
mers really care about performance, they might use a spe-
cial scoping mechanism or keyword to switch into a
stricter semantic model (such as ZPL’s WYSIWYG
model), allowing them to keep a better grasp on the exe-
cution model. Such a mechanism would also support
Chapel’s goal of allowing programmers to write code
quickly and then tune it incrementally. This idea is still
under study.

4.8 Chapel Portability

Chapel was designed with an idealized, productive paral-
lel architecture in mind—in particular, one with a global
shared address space, hardware support for multithread-
ing, a high-bandwidth, low-latency network, and latency
tolerant processors. This choice was made believing that
to best improve productivity in a parallel language, one
should not assume a virtual architecture that represents
an unproductive least-common denominator for existing
machines.

One obvious result of this decision is that when com-
piling Chapel for a less-ideal architecture, certain features
are likely not to work as well. For example, on an archi-
tecture that lacks hardware support for a shared address
space or multithreading, one would expect there to be
greater overheads in software to make up for these defi-
ciencies. Similarly, on an architecture with a lesser net-
work or with no latency tolerance, one would expect the
impact of communication on a program’s performance to
be greater.

Our guiding principle here has been to design Chapel
features such that they can be implemented on various
architectures, though possibly at some cost. We are work-
ing on implementing Chapel so that when programmers
write code that matches their current programming model
on such architectures, the performance is comparable to
what they would achieve today with that model. If, on the
other hand, they use more advanced features on such archi-
tectures for the sake of programmability, they should
expect to take a performance hit due to the paradigm mis-
match.

Table 1
The ten design principles from Section 2.2 and how Chapel addresses them as described
in Section 4

Desiderata Chapel Response

Global view of parallelism supported via: distributed domains and arrays;
cobegin/begin statements; forall loops; iterators

General parallelism data and task parallelism supported;
cobegin statements and forall loops support composability;
synchronization variables and atomic sections for task cooperation

Separation of algorithm and implementation supported via: domains; user-defined distributions;
multidimensional iterators; OOP features

Broad-market language features support for: OOP; function and operator overloading;
garbage collection; latent types; modules; generic programming

Data abstractions support for: sequences; arithmetic (dense, strided, sparse) arrays;
indefinite and opaque arrays; OOP

Performance achieved by locality tuning via: domain distributions; “on” clause

Execution model transparency currently only supported in the program text via “on” clauses;
may add support for switching to stricter semantic models in
the future

Portability assumes abstract machine model supporting multithreading and
single-sided communication; if not supported by hardware, will
have to simulate in software at some cost

Interoperability anticipate supporting via Babel and domain distributions

Bells and Whistles implementation-dependent/TBD

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

309PARALLEL PROGRAMMABILITY AND CHAPEL

4.9 Chapel Interoperability with Other Languages

Chapel’s plan for interoperability with other languages is
to implement support for calling between Chapel and C.
We then intend to use the Babel tool for scientific lan-
guage interoperation (Dahlgren 2006) in order to inter-
face with Fortran, C++, Python, Java, and any other
languages that it supports at that time. In this way we
should be able to interoperate with most standard lan-
guages that are used by the HEC community.

With respect to the second aspect of interoperability—
that of operating on another parallel language’s data in-
place—our plan is to use Chapel’s domain distribution
capabilities to address this challenge. As an example, to
interoperate with an existing MPI code, the user would
need to use a Chapel distribution to describe the layout of
their MPI program’s data in memory in order to access
that data in-place. This could either be a custom distribu-
tion written by the user, or for simple decompositions
(e.g. a simple blocked array in MPI) it could be a distribu-
tion from Chapel’s standard library. As with Chapel dis-
tributions in general, this remains an area of active
research.

5 Summary

Table 1 lists our ten design principles for productive par-
allel languages from Section 2.2 and summarizes the dis-
cussion from Section 4 to describe how Chapel addresses
each area. Since we created both the wishlist of features
and the Chapel language itself, it should come as no sur-
prise that Chapel addresses most of our areas of concern
fairly well. The weakest area is in the realm of execution
model transparency, where we have chosen to emphasize
programmability over performance transparency. We
also have some work to do in constructing a proof-of-
concept portable implementation of Chapel, and to flesh
out our language interoperability story, particularly in the
area of domain distributions. This is work that is cur-
rently in progress.

In the coming years, Chapel will be evaluated by the
HPCS funding agencies, academics, other HPCS ven-
dors, and members of the HEC user community. The
goal is to work toward constructing a common set of fea-
tures that the HEC vendors and community would be
interested in supporting as a consortium language effort.
During this period of evaluation and experimentation, it
will be interesting to see how our design goals and pref-
erences compare to those of the broader community once
users have the chance to investigate Chapel more closely.
We encourage anyone who is interested in parallel lan-
guage design to explore chapel at our website (http://
chapel.cs.washington.edu) and to send us feedback on
where you believe we have made better and worse deci-

sions (chapel_info@cray.com). Language design clearly
involves making tradeoffs according to priorities and
taste, and we are interested in hearing how your tastes
compare with ours.

Acknowledgments

The authors would like to acknowledge John Plevyak,
Steven Deitz, Roxana Diaconescu, Shannon Hoffswell,
Mark James, Mackale Joyner, and Wayne Wong for their
many contributions to the Chapel language and its ongo-
ing implementation. Thanks also to Robert Bocchino,
Paul Cassella, and Greg Titus for reading and providing
valuable feedback on drafts of this article. This mate-
rial is based upon work supported by the Defense
Advanced Research Projects Agency under its Contract
No. NBCH3039003. The research described in this paper
was partially carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

Author Biographies

Bradford Chamberlain is a principal engineer at Cray
Inc., where he works on parallel programming models,
particularly on the design and implementation of the Chapel
parallel language. Before coming to Cray in 2002, he
spent time at a start-up working at the opposite end of the
hardware spectrum by designing SilverC, a parallel
language for reconfigurable embedded hardware. Brad
received his Ph.D. in computer science from the Univer-
sity of Washington in 2001 where his work focused on
the design and implementation of the region concept for
the ZPL parallel array language. While there, he also
dabbled in algorithms for accelerating the rendering of
complex 3D scenes. Brad remains associated with the
University of Washington as an affiliate faculty member.
He received his Bachelor’s degree in computer science
from Stanford University in 1992.

David Callahan is a distinguished engineer at Micro-
soft where he works on concurrency related issues as part
of the Visual Studio suite of developer tools. Prior to
Microsoft, he worked for many years at Cray Inc. and
Tera Computer Company developing language exten-
sions, compilers, runtime support and tools for developing
scalable parallel programs for high-performance comput-
ing. He is a graduate of Rice University and his interests
include optimizations compilers, parallel languages, par-
allel algorithms, and hardware architecture. He is a mem-
ber of the ACM.

Hans P. Zima is a Professor of Applied Computer Sci-
ence at the University of Vienna, Austria, and a Principal

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

310 COMPUTING APPLICATIONS

Scientist at the Jet Propulsion Laboratory in Pasadena.
His major research interests have been in the fields of
high-level programming languages, compilers, and advan-
ced software tools. In the early 1970s he designed and
implemented one of the first high-level real-time lan-
guages for the German Air Traffic Control Agency. Dur-
ing his tenure as a Professor of Computer Science at the
University of Bonn, Germany, he contributed to the Ger-
man supercomputer project “SUPRENUM”, leading the
design of the first Fortran-based compilation system for
distributed-memory architectures (1989). After his move
to the University of Vienna, he became the chief designer
of the Vienna Fortran language (1992) that provided a
major input for the High Performance Fortran de-facto
standard. Since 1997, Dr. Zima has been heading the Pri-
ority Research Program “Aurora”, a ten-year program
funded by the Austrian Science Foundation. His research
over the past four years focused on the design of the
Chapel programming language in the framework of the
DARPA-sponsored HPCS project “Cascade”.

Notes
1 Note that we use the term “parallel language” loosely in this

paper, since approaches like MPI and SHMEM are actually
library-based approaches. In defense of our laxness, consider
the impact of such libraries on the execution models of the
base languages with which they are used—particularly the
assumption that multiple program instances will be executing
simultaneously. Compared with the relative unobtrusiveness
of traditional libraries on a language’s programming model,
our casual use of the term “language” is not completely
unwarranted. If it helps, think of “language” in terms of “a
means of expressing something” rather than strictly as a “pro-
gramming language.”

2 Note that a language or library may support a global view of
computation and yet be implemented using SPMD or frag-
mented techniques. Here, we use the terms to characterize
the programmer’s model of writing computation, not the pro-
gram’s execution model.

3 Note that this is a completely distinct concept from Titanium’s
region, mentioned earlier.

References

Adl-Tabatabai, A.-R., Lewis, B. T., Menon, V., Murhpy, B. R.,
Saha, B., and Shpeisman, T. (2006). Compiler and run-
time support for efficient software transactional memory,
in PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pp. 26–37, ACM Press, New York, NY.

Albert, E., Knobe, K., Lukas, J. D., and Steele, Jr., G. L. (1988).
Compiling Fortran 8x array features for the Connection
Machine computer system, in PPEALS ‘88: Proceedings
of the ACM/SIGPLAN Conference on Parallel Program-
ming: Experience with Applications, Languages, and Sys-
tems, pp. 42–56, ACM Press, New York, NY.

Alverson, G., Kahan, S., Korry, R., McCann, C., and Smith, B.
(1995). Scheduling on the Tera MTA, in D. G. Feitelson,
and L. Rudolph, editors, Job scheduling strategies for
parallel processing, vol. 949 of Lecture Notes in Compu-
ter Science, pp. 19–44, Berlin: Springer Verlag.

Barriuso, R. and Knies, A. (1994). SHMEM user’s guide for C,
Technical Report, Cray Research Inc.

Blumofe, R. D. and Leiserson, C. E. (1994). Scheduling multi-
threaded computations by work stealing, in Proceedings
of the 35th Annual Symposium on Foundations of Compu-
ter Science (FOCS `94), pp. 356–368, New Mexico.

Bonachea, D. (2002). GASNet specification v1.1, Technical
Report UCB/CSD-02-1207, U.C. Berkeley. (newer ver-
sions also available at http://gasnet.cs.berkeley.edu)

Carlson, B., El-Ghazawi, T., Numerich, R., and Yelick, K.
(2003). Programming in the partitioned global address space
model, Tutorial at Supercomputing 2003. (notes available
at http://upc.gwu.edu)

Carlson, W. W., Draper, J. M., Culler, D. E., Yelick, K., Brooks,
E., and Warren, K. (1999). Introduction to UPC and lan-
guage specification, Technical Report CCS-TR-99-157,
Center for Computing Sciences, Bowie, MD.

Chamberlain, B. L. (2001). The design and implementation of a
region-based parallel language, Ph.D. thesis, University
of Washington.

Chamberlain, B. L., Choi, S.-E., Lewis, E. C., Lin, C., Snyder,
L., and Weathersby, W. D. (1998). ZPL’s WYSIWYG per-
formance model, in Proceedings of the Third International
Workshop on High-Level Programming Models and Sup-
portive Environments, pp. 50–61, IEEE Computer Society
Press.

Chamberlain, B. L., Lewis, E. C., Lin, C., and Snyder, L.
(1999). Regions: An abstraction for expressing array com-
putation, in ACM/SIGAPL International Conference on
Array Programming Languages, pp. 41–49.

Chamberlain, B. L. and Snyder, L. (2001). Array language sup-
port for parallel sparse computation, in Proceedings of the
2001 International Conference on Supercomputing, pp.
133–145, ACM SIGARCH.

Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., and
McDonald, J. (2000). Parallel programming in OpenMP,
Morgan Kaufmann, San Francisco, CA.

Chapman, B. M., Mehrotra, P., and Zima, H. P. (1992). Pro-
gramming in Vienna Fortran, Scientific Programming,
1(1): 31–50.

Chen, W.-Y., Bonachea, D., Duell, J., Husbands, P., Iancu, C.,
and Yelick, K. (2003). A performance analysis of the
Berkeley UPC compiler, in Proceedings of the Interna-
tional Conference of Supercomputing (ICS), San Fran-
cisco, CA.

Chen, W.-Y., Iancu, C., and Yelick, K. (2005). Communication
optimizations for fine-grained UPC applications, in 14th
International Conference on Parallel Architectures and
Compilation Techniques (PACT), St. Louis, MO.

Cray Inc. (2005). Chapel specification, Cray Inc., Seattle, WA,
0.4 edition. (http://chapel.cs.washington.edu).

Dagum, L. and Menon, R. (1998). OpenMP: An industry-stand-
ard API for shared-memory programming, IEEE Compu-
tational Science and Engineering, 5(1): 46–55.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

311PARALLEL PROGRAMMABILITY AND CHAPEL

Dahlgren, T., Epperly, T., Kumfert, G., and Leek, J. (2006).
Babel users’ guide, Lawrence Livermore National Labora-
tory, 0.11.0 edition.

Deitz, S. J. (2005). High-Level programming language abstrac-
tions for advanced and dynamic parallel computations,
Ph.D. thesis, University of Washington.

Deitz, S. J., Callahan, D., Chamberlain, B. L., and Snyder, L.
(2006). Global-view abstractions for user-defined reduc-
tions and scans, in PPoPP ‘06: Proceedings of the 11th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 40–47, ACM Press, New
York, NY.

Diaconescu, R. and Zima, H. P. (2007). An approach to data
distributions in Chapel, International Journal of High
Performance Computing Applications, 21(3): 313–334.

Dotsenko, Y., Coarfa, C., and Mellor-Crummey, J. (2004). A
multi-platform Co-Array Fortran compiler, in Proceed-
ings of the 13th International Conference of Parallel
Architectures and Compilation Techniques (PACT 2004),
Antibes Juan-les-Pins, France.

El-Ghazawi, T., Carlson, W., Sterling, T., and Yelick, K.
(2005). UPC: Distributed shared-memory programming,
Wiley-Interscience, Hobohen, NJ.

Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U.,
Tseng, C.-W., and Wu, M.-Y. (1990). Fortran D language
specification, Technical Report CRPC-TR 90079, Rice
University, Center for Research on Parallel Computation.

Fraser, K. (2003). Practical lock-freedom, Ph.D. thesis, King’s
College, University of Cambridge.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.,
and Sunderam, V. (1994a). PVM 3 user’s guide and refer-
ence manual, Technical Report ORNL/TM-12187, Oak
Ridge National Laboratory.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.,
and Sunderam, V. (1994b). PVM: Parallel virtual machine,
a user’s guide and tutorial for networked parallel comput-
ing, Scientific and Engineering Computation, Cambridge,
MA: MIT Press.

Gilbert, J. R., Moler, C., and Schreiber, R. (1992). Sparse matri-
ces in MATLAB: Design and implementation, SIMAX,
13(1): 333–356.

Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitz-
berg, B., Saphir, W., and Snir, M. (1998). MPI: The com-
plete reference, volume 2, Scientific and Engineering
Computation, Cambridge, MA: MIT Press.

Harris, T., Marlow, S., Jones, S. P., and Herlihy, M. (2005).
Composable memory transactions, in ACM SIGPLAN
Symposium on Principles and Practices of Parallel Pro-
gramming, Chicago, IC.

Harris, T., Plesko, M., Shinnar, A., and Tarditi, D. (2006). Opti-
mizing memory transactions, in PLDI ’06: Proceedings of
the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 14–25, ACM
Press, New York, NY.

High Performance Fortran Forum (1993). High Performance
Fortran language specification, Scientific Programming,
2(1–2): 1–170.

High Performance Fortran Forum (1997). High Performance
Fortran Language Specification Version 2.0.

Hilfinger, P. N., Bonachea, D. O., Datta, K., Gay, D., Graham,
S. L., Liblit, B. R., Pike, G., Su, J. Z., and Yelick, K. A.
(2005). Titanium language reference manual, Technical
Report UCB/EECS-2005-15, Electrical Engineering and
Computer Sciences, University of California at Berke-
ley.

Joerg, C. F. (1996). The Cilk system for parallel multithreaded
computing, Ph.D. thesis, MIT Department of Electrical
Engineering and Computer Science.

Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Guy L.
Steele, Jr., and Zosel, M. E. (1996). The High Perform-
ance Fortran handbook, Scientific and Engineering Com-
putation, Cambridge, MA: MIT Press.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. (1977).
Abstraction mechanisms in CLU, ACM SIGPLAN, 12(7):
75–81.

Message Passing Interface Forum (1994). MPI: A message
passing interface standard, International Journal of Super-
computing Applications, 8(3/4): 169–416.

Message Passing Interface Forum (1997). MPI-2: Extensions to
the message-passing interface.

Ngo, T. A., Snyder, L., and Chamberlain, B. L. (1997). Portable
performance of data parallel languages, in Proceedings of
SC97: High Performance Networking and Computing,
San Jose, CA.

Nieplocha, J. and Carpenter, B. (1999). ARMCI: A portable
remote memory copy library for distributed array libraries
and compiler run-time systems, in J. Rolim et al., editors,
Proceedings of the 3rd Workshop on Runtime Systems for
Parallel Programming, Lecture Notes in Computer Sci-
ence vol. 1586, pp. 533–546, San Juan, Puerto Rico, Ber-
lin: Springer Verlag.

Numerich, R. W. and Reid, J. (1998). Co-array Fortran for par-
allel programming, SIGPLAN Fortran Forum, 17(2): 1–31.

Numerich, R. W. and Reid, J. (2005). Co-arrays in the next For-
tran standard, SIGPLAN Fortran Forum, 24(2): 4–17.

Parzyszek, K., Nieplocha, J., and Kendall, R. A. (2000). A gen-
eralized portable SHMEM library for high performance
computing, in M. Guizani, and Z. Shen, editors, Twelfth
IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, pp. 401–406, Las Vegas,
Nevada.

Randall, K. H. (1998). Cilk: Efficient multithreaded computing,
Ph.D. thesis, MIT Department of Electrical Engineering
and Computer Science.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Don-
garra, J. (1998). MPI: The complete reference, volume 1,
Scientific and Engineering Computation, 2nd edition, Cam-
bridge, MA: MIT Press.

Snyder, L. (1999). The ZPL programmer’s guide, Scientific and
Engineering Computation, Cambridge, MA: MIT Press.

Su, J. and Yelick, K. (2005). Automatic support for irregular
computations in a high-level language, in 19th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), Denver, CO.

Supercomputing Technologies Group (2001). Cilk 5.3.2 Refer-
ence manual, MIT Laboratory for Computer Science.

Ujaldon, M., Zapata, E. L., Chapman, B. M., and Zima, H. P.
(1997). Vienna-Fortran/HPF extensions for sparse and

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

312 COMPUTING APPLICATIONS

irregular problems and their compilation, IEEE Transac-
tions on Parallel and Distributed Systems, 8(10).

UPC Consortium (2005). UPC Language specification (v 1.2).
(available at http://upc.gwu.edu)

von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K.
E. (1992). Active Messages: A mechanism for integrated
communication and computation, in 19th International
Symposium on Computer Architecture, Gold Coast, Aus-
tralia, pp. 256–266.

Yelick, K., Semenzato, L., Pike, G., Miyamato, C., Liblit, B.,
Krishnamurthy, A., Hilfinger, P., Graham, S., Gay, D.,
Colella, P., and Aiken, A. (1998). Titanium: A high-per-
formance Java dialect, Concurrency: Practice and Experi-
ence, 10(11–13): 825–836.

Zima, H., Brezany, P., Chapman, B., Mehrotra, P., and Schwald,
A. (1992). Vienna Fortran—a language specification ver-
sion 1.1, Technical Report NASA-CR-189629/ICASE-
IR-21, Institute for Computer Applications in Science and
Engineering.

 at UNIV OF DELAWARE LIB on September 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

