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ABSTRACT

This paper introduces hyperobjects, a linguistic mechanism that
allows different branches of a dynamic multithreaded program to
maintain coordinated local views of the same nonlocal variable.
We have identified three kinds of hyperobjects that seem to be
useful — reducers, holders, and splitters — and we have imple-
mented reducers and holders in Cilk++, a set of extensions to the
C++ programming language that enables “dynamic” multithreaded
programming in the style of MIT Cilk. We analyze a randomized
locking methodology for reducers and show that a work-stealing
scheduler can support reducers without incurring significant over-
head.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques—Concurrent pro-

gramming; D.3.3 [Software]: Language Constructs and Features—
Concurrent programming structures.

General Terms

Algorithms, Languages, Theory.

1. INTRODUCTION
Many serial programs use nonlocal variables — variables that

are bound outside of the scope of the function, method, or class in
which they are used. A global variable is bound outside of all local
scopes. Nonlocal variables have long been considered a problem-
atic programming practice [23], but programmers often find them
convenient to use, because they can be accessed at the leaves of a
computation without the overhead and complexity of passing them
as parameters through all the internal nodes. Thus, nonlocal vari-
ables have persisted in serial programming.

In the world of parallel computing, nonlocal variables may in-
hibit otherwise independent “strands” of a multithreaded program
from operating in parallel, because they introduce “race condi-
tions.” We define a strand to be a sequence of executed instruc-
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1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 walk(x->left);

10 walk(x->right);
11 }
12 }

Figure 1: C++ code to create a list of all the nodes in a binary tree that
satisfy a given property.

tions containing no parallel control. A determinacy race [7] (also
called a general race [19]) exists if logically parallel strands access
the same shared location, and at least one of the strands modifies
the value in the location. A determinacy race is often a bug, be-
cause the program may exhibit unexpected, nondeterministic be-
havior depending on how the strands are scheduled. Serial code
containing nonlocal variables is particularly prone to the introduc-
tion of determinacy races when the code is parallelized.

As an example of how a nonlocal variable can introduce a deter-
minacy race, consider the problem of walking a binary tree to make
a list of which nodes satisfy a given property. A C++ code to solve
the problem is abstracted in Figure 1. If the node x being visited
is nonnull, the code checks whether x has the desired property in
line 7, and if so, it appends x to the list stored in the global variable
output_list in line 8. Then, it recursively visits the left and right
children of x in lines 9 and 10.

Figure 2 illustrates a straightforward parallelization of this code
in Cilk++ [15], a set of simple extensions to the C++ programming
language that enables “dynamic” multithreaded programming in
the style of the MIT Cilk multithreaded programming language [8].
The keyword cilk_spawn preceding a function invocation causes
the currently executing “parent” function to call the specified func-
tion just like a normal function call. Unlike a normal function
call, however, the parent may continue executing in parallel with its
spawned child, instead of waiting for the child to complete as with
a normal function call. A cilk_spawn keyword does not say that
the parent must continue executing in parallel with its child, only
that it may. (The Cilk++ runtime system makes these scheduling
decisions in a provably efficient fashion, leaving the programmer
to specify the potential for parallelism.) In line 9 of the figure,
the walk function is spawned recursively on the left child, while
the parent may continue on to execute an ordinary recursive call of
walk in line 10. The cilk_sync statement in line 11 indicates that
control should not pass this point until the spawned child returns.
As the recursion unfolds, the running program generates a tree of
parallel execution that follows the structure of the binary tree. Un-
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1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 cilk_spawn walk(x->left);

10 walk(x->right);
11 cilk_sync;
12 }
13 }

Figure 2: A naive Cilk++ parallelization of the code in Figure 1. This code
has a determinacy race in line 8.

1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 mutex L;
4 // ...
5 void walk(Node *x)
6 {
7 if (x) {
8 if (has_property(x)) {
9 L.lock();

10 output_list.push_back(x);
11 L.unlock ();
12 }
13 cilk_spawn walk(x->left);
14 walk(x->right);
15 cilk_sync;
16 }
17 }

Figure 3: Cilk++ code that solves the determinacy race using a mutex.

fortunately, this naive parallelization contains a determinacy race.
Specifically, two parallel strands may attempt to update the shared
global variable output_list in parallel at line 8.

The traditional solution to fixing this kind of determinacy race is
to associate a mutual-exclusion lock (mutex) L with output_list,
as is shown in Figure 3. Before updating output_list, the mutex
L is acquired in line 9, and after the update, it is released in line 11.
Although this code now operates correctly, the mutex may create
a bottleneck in the computation. If there are many nodes that have
the desired property, the contention on the mutex can destroy all the
parallelism. For example, on one set of test inputs for a real-world
tree-walking code that performed collision-detection of mechanical
assemblies, lock contention actually degraded performance on 4
processors so that it was worse than running on a single processor.

In addition, the locking solution has the problem that it jumbles
up the order of list elements. For this application, that might be
okay, but some applications may depend on the order produced by
the serial execution.

An alternative to locking is to restructure the code to accumulate
the output lists in each subcomputation and concatenate them when
the computations return. If one is careful, it is also possible to keep
the order of elements in the list the same as in the serial execution.
For the simple tree-walking code, code restructuring may suffice,
but for many larger codes, disrupting the original logic can be time-
consuming and tedious undertaking, and it may require expert skill,
making it impractical for parallelizing large legacy codes.

This paper provides a novel approach to avoiding determinacy
races in code with nonlocal variables. We introduce “hyperob-
jects,” a linguistic construct that allows many strands to coordinate
in updating a shared variable or data structure independently by
providing different but coordinated views of the object to different
threads at the same time. Hyperobjects avoid problems endemic
to locking, such as lock contention, deadlock, priority inversion,
convoying, etc. We describe three kinds of hyperobjects: reducers,
holders, and splitters.

The hyperobject as seen by a given strand of an execution is

called the strand’s “view” of the hyperobject. A strand’s view is
not a value, but a stateful object with a memory address (a C++
“lvalue”). A strand can access and change its view’s state indepen-
dently, without synchronizing with other strands. Throughout the
execution of a strand, the strand’s view of the hyperobject is pri-
vate, thereby providing isolation from other strands. When two or
more strands join, their different views are combined according to
a system- or user-defined method, one or more of the views may
be destroyed, and one or more of the views may be transferred to
another strand. The identity of the hyperobject remains the same
from strand to strand, even though the strands’ respective views of
the hyperobject may differ. Thus, any query or update to the hyper-
object — whether free or bound in a linguistic construct, whether
accessed as a named variable, as a global variable, as a field in
an object, as an element of an array, as a reference, as a parame-
ter, through a pointer, etc. — may update the strand’s view. This
transparency of reference, whereby a strand’s query or update to
a hyperobject always refers to the strand’s view, is not tied to any
specific linguistic construct, but happens automatically wherever
and whenever the hyperobject is accessed. Hyperobjects simplify
the parallelization of programs with nonlocal variables, such as the
global variable output_list in Figure 1. Moreover, they preserve
the advantages of parallelism without forcing the programmer to
restructure the logic of his or her program.

The remainder of this paper is organized as follows. Section 2
describes prior work on “reduction” mechanisms. Section 3 de-
scribes reducer hyperobjects, which allow associative updates on
nonlocal variables to be performed in parallel, and Section 4 de-
scribes how we have implemented them in Cilk++. Section 5 de-
scribes and analyzes a randomized protocol for ensuring atomicity
in the reducer implementation which incurs minimal overhead for
mutual-exclusion locking. Section 6 describes holder hyperobjects,
which can be viewed as a structured means of providing thread-
local storage. Section 7 describes splitter hyperobjects, which pro-
vide a means of parallelizing codes that perform an operation on a
nonlocal variable; call a subroutine, perhaps recursively; and then
undo the operation on the nonlocal variable. Section 8 concludes
with a discussion of more general classes of hyperobjects.

2. BACKGROUND
The first type of hyperobject we shall examine is a “reducer,”

which is presented in detail in Section 3. In this section, we’ll
review the notion of a reduction and how concurrency platforms
have supported reductions prior to hyperobjects.

The idea of “reducing” a set of values dates back at least to the
programming language APL [12], invented by the late Kenneth
Iverson. In APL, one can “sum-reduce” the elements of a vector
A by simply writing +/A, which adds up all the numbers in the
vector. APL provided a variety of reduction operators besides ad-
dition, but it did not let users write their own operators. As parallel
computing technology developed, reductions naturally found their
way into parallel programming languages — including *Lisp [14],
NESL [2], ZPL [5], and High Performance Fortran [13], to name
only a few — because reduction can be easily implemented as a
logarithmic-height parallel tree of execution.

The growing set of modern multicore concurrency platforms all
feature some form of reduction mechanism:

• OpenMP [20] provides a reduction clause.

• Intel’s Threading Building Blocks (TBB) [21] provides a
parallel_reduce template function.

• Microsoft’s upcoming Parallel Pattern Library (PPL) [16]
provides a “combinable object” construct.
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1 int compute (const X& v);
2 int main()
3 {
4 const std::size_t n = 1000000;
5 extern X myArray [n];
6 // ...
7 int result (0);
8 #pragma omp parallel for \
9 reduction (+:result)

10 for (std::size_t i = 0; i < n; ++i) {
11 result += compute (myArray [i]);
12 }
13 std::cout << "The result is: " << result
14 << std::endl;
15 return 0;
16 }

Figure 4: An example of a sum reduction in OpenMP.

For example, the code snippet in Figure 4 illustrates the OpenMP
syntax for a sum reduction within a parallel for loop. In this code,
the variable result is designated as a reduction variable of a paral-
lel loop in the pragma preceding the for loop. Without this desig-
nation, the various iterations of the parallel loop would race on the
update of result. The iterations of the loop are spread across the
available processors, and local copies of the variable result are
created for each processor. At the end of the loop, the processors’
local values of result are summed to produce the final value. In
order for the result to be the same as the serial code produces, how-
ever, the reduction operation must be associative and commutative,
because the implementation may jumble up the order of the opera-
tions as it load-balances the loop iterations across the processors.

TBB and PPL provide similar functionality in their own ways.
All three concurrency platforms support other reduction operations
besides addition, and TBB and PPL allow programmers to supply
their own. Moreover, TBB does not require the reduction operation
to be commutative in order to produce the same result as serial code
would produce — associativity suffices.

3. REDUCERS
The hyperobject approach to reductions differs markedly from

earlier approaches, as well as those of OpenMP, TBB, and PPL.
Although the general concept of reduction is similar, Cilk++ re-
ducer hyperobjects provide a flexible and powerful mechanism that
offers the following advantages:

• Reducers can be used to parallelize many programs contain-
ing global (or nonlocal) variables without locking, atomic
updating, or the need to logically restructure the code.

• The programmer can count on a deterministic result as long
as the reducer operator is associative. Commutativity is not
required.

• Reducers operate independently of any control constructs,
such as parallel for, and of any data structures that con-
tribute their values to the final result.

This section introduces reducer hyperobjects, showing how they
can be used to alleviate races on nonlocal variables without sub-
stantial code restructuring. We explain how a programmer can de-
fine custom reducers in terms of algebraic monoids, and we give an
operational semantics for reducers.

Using reducers

Figure 5 illustrates how the code in Figure 4 might be written in
Cilk++ with reducers. The sum_reducer<int> template, which
we will define later in this section (Figure 8), declares result

to be a reducer hyperobject over integers with addition as the re-
duction operator. The cilk_for keyword indicates that all itera-
tions of the loop can operate in parallel, similar to the parallel for

1 int compute (const X& v);
2 int cilk_main()
3 {
4 const std::size_t n = 1000000;
5 extern X myArray [n];
6 // ...
7 sum_reducer <int> result (0);
8 cilk_for (std::size_t i = 0; i < n; ++i)
9 result += compute (myArray [i]);

10
11 std::cout << "The result is: "
12 << result.get_value()
13 << std::endl;
14 return 0;
15 }

Figure 5: A translation of the code in Figure 4 into Cilk++ with reducers.

1 bool has_property(Node *);
2 list_append_reducer<Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x) {
7 if (has_property(x))
8 output_list.push_back(x);
9 cilk_spawn walk(x->left);

10 walk(x->right);
11 cilk_sync;
12 }
13 }

Figure 6: A Cilk++ parallelization of the code in Figure 1 which uses a
reducer hyperobject to avoid determinacy races.

pragma in OpenMP. As with OpenMP, the iterations of the loop
are spread across the available processors, and local views of the
variable result are created. There, however, the similarity ends, be-
cause Cilk++ does not wait until the end of the loop to combine the
local views, as OpenMP does. Instead, it combines them in such a
way that the operator (addition in this case) need not be commuta-
tive to produce the same result as would a serial execution. When
the loop is over, the underlying integer value can be extracted from
the reducer using the get_value() member function.

As another example, Figure 6 shows how the tree-walking code
from Figure 1 might be parallelized using a reducer. Line 2 de-
clares output_list to be a reducer hyperobject for list append-
ing. (We will define the list_append_reducer later in this sec-
tion (Figure 9).) This parallelization takes advantage of the fact that
list appending is associative. As the Cilk++ runtime system load-
balances this computation over the available processors, it ensures
that each branch of the recursive computation has access to a pri-
vate view of the variable output_list, eliminating races on this
global variable without requiring locks. When the branches syn-
chronize, the private views are reduced by concatenating the lists,
and Cilk++ carefully maintains the proper ordering so that the re-
sulting list contains the identical elements in the same order as in a
serial execution.

By using reducers, all the programmer does is identify the global
variables as reducers when they are declared. No logic needs to
be restructured, and if the programmer fails to catch all the use
instances, the compiler reports a type error. By contrast, most
concurrency platforms have a hard time expressing race-free par-
allelization of this kind of code. The reason is that reductions in
most languages are tied to a control construct. For example, reduc-
tion in OpenMP is tied to the parallel for loop pragma. Moreover,
the set of reductions in OpenMP is hardwired into the language,
and list appending is not supported. Consequently, OpenMP can-
not solve the problem of races on global variables using its mech-
anism. TBB and PPL have similar limitations, although they do
allow programmer-defined reduction operators.
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1 struct sum_monoid : cilk::monoid_base <int> {
2 void reduce(int* left , int* right) const {
3 *left += *right;
4 }
5 void identity (int* p) const {
6 new (p) int(0);
7 }
8 };
9

10 cilk::reducer <sum_monoid > x;

Figure 7: A C++ representation of the monoid (Z,+,0), of integers (more
precisely, int’s) with addition. Line 10 defines x to be a reducer over
sum_monoid.

Defining reducers

Hyperobject functionality is not built into the Cilk++ language
and compiler. Rather, hyperobjects are specified as ordinary C++
classes that interface directly to the Cilk++ runtime system. A
Cilk++ reducer can be defined with respect to any C++ class
that implements an algebraic “monoid.” Recall that an algebraic
monoid is a triple (T,⊗,e), where T is a set and ⊗ is an associa-
tive binary operation over T with identity e. In Cilk++, a monoid
(T,⊗,e) is defined in terms of a C++ class M that inherits from the
base class cilk::monoid_base<T>, where T is a type that rep-
resents the set T . The class M must supply a member function
reduce() that implements the binary operator ⊗ and a member
function identity() that constructs a fresh identity e. (If the
identity() function is not defined, it defaults to the value pro-
duced by the default constructor for T.) Figure 7 shows a simple
definition for the monoid of integers with addition.

The template cilk::reducer<M> is used to define a reducer
over a monoid M, as is shown in line 10 of Figure 7, and it connects
the monoid to the Cilk++ runtime system. When the program ac-
cesses the member function x.view(), the runtime system looks
up and returns the local view as a reference to the underlying type
T upon which the monoid M is defined. The template also defines
operator() as a synonym for view(), so that one can write the
shorter x(), instead of x.view().

As a practical matter, the reduce() function need not actually
be associative — as in the case of floating-point addition — but
a reducer based on such a “monoid” may operate nondetermin-
istically. Similarly, identity() need not be a true identity. If
reduce() is associative and identity() is a true identity, how-
ever, the behavior of such a “properly defined” reducer is guar-
anteed to be the same no matter how the computation is scheduled.
Properly defined reducers greatly simplify debugging, because they
behave deterministically.

Although a definition such as that in Figure 7 suffices for obtain-
ing reducer functionality, it suffers from two problems. First, the
syntax for accessing reducers provided by Figure 7 is rather clumsy.
For example, in order to increment the reducer x from Figure 7, a
programmer needs to write x.view()++ (or x()++), rather than
the simpler x++, as is probably written in the programmer’s legacy
C++ code. Second, access to the reducer is unconstrained. For ex-
ample, even though the reducer in Figure 7 is supposed to reduce
over addition, nothing prevents a programmer from accidentally
writing x.view() *= 2, because x.view() is an ordinary refer-
ence to int, and the programmer is free to do anything with the
value he or she pleases.

To remedy these deficiencies, it is good programming practice
to “wrap” reducers into abstract data types. For example, one can
write a library wrapper, such as is shown in Figure 8, which allows
the code in Figure 5 to use the simple syntax result += X. More-
over, it forbids users of the library from writing result *= X,
which would be inconsistent with a summing reducer. Similarly,

1 template <class T>
2 class sum_reducer
3 {
4 struct Monoid : cilk:: monoid_base <T> {
5 void reduce(T* left , T* right) const {
6 *left += *right;
7 }
8 void identity (T* p) const {
9 new (p) T(0);

10 }
11 };
12
13 cilk::reducer <Monoid> reducerImp;
14
15 public:
16 sum_reducer() : reducerImp() { }
17
18 explicit sum_reducer(const T &init)
19 : reducerImp(init) { }
20
21 sum_reducer& operator +=(T x) {
22 reducerImp.view() += x;
23 return *this;
24 }
25
26 sum_reducer& operator -=(T x) {
27 reducerImp.view() -= x;
28 return *this;
29 }
30
31 sum_reducer& operator ++() {
32 ++reducerImp.view();
33 return *this;
34 }
35
36 void operator ++(int) {
37 ++reducerImp.view();
38 }
39
40 sum_reducer& operator --() {
41 --reducerImp.view();
42 return *this;
43 }
44
45 void operator --(int) {
46 --reducerImp.view();
47 }
48
49 T get_value() const {
50 return reducerImp.view();
51 }
52 };

Figure 8: The definition of sum_reducer used in Figure 5.

Figure 9 shows how the monoid of lists with operation append
might be similarly wrapped.

Cilk++ provides a library of frequently used reducers, which in-
cludes a summing reducer (called reducer_opadd), list append
reducers, and so on. Programmers can also write their own reduc-
ers in the style shown in Figure 8.

Semantics of reducers

The semantics of reducers can be understood operationally as fol-
lows. At any time during the execution of a Cilk++ program, a
view of the reducer is an object that is uniquely “owned” by one
strand in the Cilk++ program. If h is a reducer and S is a strand,
we denote by hS the view of h owned by S. When first created,
the reducer consists of a single view owned by the strand that cre-
ates the hyperobject. When a Cilk directive such as cilk_spawn
and cilk_sync is executed, however, ownership of views may be
transferred and additional views may be created or destroyed.

In particular, a cilk_spawn statement creates two new Cilk++
strands: the child strand that is spawned, and the parent strand that
continues after the cilk_spawn statement. Upon a cilk_spawn

statement:

• The child strand owns the view owned by the parent function
before the cilk_spawn.

• The parent strand owns a new view, initialized to e.
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1 template <class T>
2 class list_append_reducer
3 {
4 struct Monoid
5 : cilk::monoid_base <std::list <T> >
6 {
7 void identity (std::list <T>* p) const {
8 new (p) std::list <T>;
9 }

10 void reduce(std::list <T>* a,
11 std::list <T>* b) const {
12 a->splice(a->end(), *b);
13 }
14 };
15
16 cilk::reducer <Monoid > reducerImp;
17
18 public:
19 list_append_reducer() : reducerImp() { }
20
21 void push_back(const T& element ) {
22 reducerImp().push_back(element );
23 }
24
25 const std::list <T>& get_value() const {
26 return reducerImp();
27 }
28 };

Figure 9: The definition of list_append_reducer used in Figure 6.

After a spawned child returns, the view owned by the child is “re-
duced” with the view owned by the parent. To reduce the view xC

of a completed child strand C with the view xP of a parent strand P

means the following:

• xC ← xC ⊗ xP, where the symbol “←” denotes the assign-
ment operator and ⊗ is the binary operator implemented by
the appropriate reduce() function. As a “special” optimiza-
tion, if a view x is combined with the identity view e, Cilk++
assumes that the resulting view can be produced as x without
applying a reduce() function.

• Destroy the view xP.

• The parent strand P becomes the new owner of xC.

Why do we choose a spawned child to own the view owned by
the parent function before the cilk_spawn, rather than passing the
view to the continuation and creating a new view for the child? The
reason is that in a serial execution, the “special” optimization above
allows the entire program to be executed with a single view with no
overhead for reducing.

The Cilk++ runtime system guarantees that all children views
are reduced with the parent by the time the parent passes the
cilk_sync construct that waits for those children, and that all
reductions are performed in some order consistent with the serial
execution of the program. The Cilk++ runtime system does not
delay all reductions until a cilk_sync, however, because such a
delay may require an unbounded amount of memory to store all
unreduced views. Instead, we allow the views of completed chil-
dren to be reduced with each other at any time before passing the
cilk_sync, provided that the serial left-to-right order is preserved.

At an ordinary function call, the child inherits the view owned by
the parent, the parent owns nothing while the child is running, and
the parent reacquires ownership of the view when the child returns.
The fact that the parent owns no view while the child is running
does not cause an error, because the parent performing a function
call does not resume execution until the child returns.

No special handling of reducers is necessary for cilk_for

loops, because the Cilk++ compiler translates the loop into divide-
and-conquer recursion using cilk_spawn and cilk_sync so that
each iteration of the loop body conceptually becomes a leaf of a
logarithmic-depth tree of execution. Thus, the runtime system only
needs to manage reducers at cilk_spawn’s and cilk_sync’s.

H

frame

ll k
T

call stack

spawn deque

Figure 10: Runtime system data structures as seen by a single worker.
Each worker owns a spawn deque, each element of which is a call stack
implemented as a linked list of frames, ordered left to right in Figure 10 as
youngest to oldest. The deque itself is implemented as an array of pointers,
where array position X contains a valid pointer for H ≤ X < T .

4. IMPLEMENTATION OF REDUCERS
This section describes how we have implemented reducers in

Cilk++. We begin with a brief overview of the Cilk++ runtime
system, which mimics aspects of the MIT Cilk runtime system [8].
Then, we describe the changes necessary to implement reducers.
Finally, we discuss some optimizations.

The Cilk++ runtime system implements a work-stealing sched-
uler in the style of [3]. A set of worker threads (such as a Pthread
[11] or Windows API thread [10]) cooperate in the execution of a
Cilk++ program. As long as a worker has work to do, it operates
independently of other workers. When idle, a worker obtains work
by stealing it from another worker. Recall from Section 1 that the
cilk_spawn keyword indicates the potential for concurrent execu-
tion rather than mandating it. This potential parallelism is realized
only if stealing actually occurs.

Runtime data structures

Frames. Calling or spawning a Cilk++ procedure creates a new
procedure instance, which results in the runtime creation of an ac-

tivation record, or frame. As in C++ and many other languages,
the frame provides storage for the local variables of the procedure
instance, storage for temporary values, linkage information for re-
turning values to the caller, etc. In addition, Cilk++ frames main-
tain the following state needed for a parallel execution:

• a lock;

• a continuation, which contains enough information to re-
sume the frame after a suspension point;

• a join counter, which counts how many child frames are out-
standing;

• a pointer to the parent frame;

• a doubly-linked list of outstanding children — specifically,
each frame keeps pointers to its first child, its left sibling,
and its right sibling.

Although frames are created and destroyed dynamically during
the execution of the program, they always form a rooted tree (or
what is sometimes called a “cactus stack” reminiscent of [18]). We
say that a node in the cactus stack is older than its descendants and
younger than its ancestors.

Data structures of a worker. Figure 10 illustrates the runtime
system data structures from the point of view of a worker. The
primary scheduling mechanism is a spawn deque1 of call stacks,
where each call stack is implemented as a (singly) linked list of

1A deque [6, p. 236] is a double-ended queue.
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frames, each frame pointing to its parent. Each worker owns a
spawn deque. The spawn deque is an “output-restricted” deque, in
that a worker can insert and remove call stacks on the tail end of
its deque (indexed by T ), but other workers (“thieves”) can only
remove from the head end (indexed by H). In addition to the call
stacks stored within the spawn deque, each worker maintains a cur-

rent call stack — a call stack under construction that has not been
pushed onto the deque — as well as other ancillary structures such
as locks and free lists for memory allocation. Although we store the
current call stack separately, it is sometimes convenient to view it
as part of an extended deque, where we treat the current call stack
abstractly as an extra element of the deque at index T .

Stack frames and full frames. At any point in time during the
execution, frames stalled at a cilk_sync lie outside any extended
deque, but those that belong to an extended deque admit a sim-
plified storage scheme. The youngest frame of an extended deque
has no children, unless it is also the oldest frame in the extended
deque. All other frames in the extended deque have exactly one
child. Thus, there is no need to store the join counter and the list
of children for frames in an extended deque, except for the old-
est frame. Thus, Cilk++ partitions frames into two classes: stack

frames, which only store a continuation and a parent pointer (but
not a lock, join counter, or list of children), and full frames, which
store the full parallel state.

This partitioning improves the overall efficiency of the sys-
tem [8]. Roughly speaking, stack-frame manipulation is cheap and
is inlined by the Cilk++ compiler, whereas full-frame manipulation
is more expensive, usually involving the acquisition of a lock. Fig-
ure 11 shows a typical instance of the runtime-system data struc-
tures, illustrating deques, stack frames, and full frames.

Invariants

In order to understand the operation of the Cilk++ runtime system,
it is helpful to bear in mind the following invariants, which we state
without proof.

1. The oldest frame in an extended deque, if any, is a full frame.
All other frames are stack frames.

2. A frame not belonging to any extended deque is a full frame.

3. All descendants of a stack frame are stack frames. Equiva-
lently, all ancestors of a full frame are full frames.

4. In each extended deque, the youngest frame on a level-i call
stack is the parent of the frame on the level-i+1 call stack.

5. A stack frame belongs to one (and only one) extended deque.

6. The oldest frame in a call stack is either a stack frame created
by a spawn, or a full frame. That is, the oldest frame was not
created by a function call.)

7. Every frame in a call stack, except for the oldest (Invariant 6),
was created by a function call, that is, not by a spawn.

8. When a stack frame is stolen, it is promoted to a full frame.
Thus, a stack frame has never been stolen.

9. A frame being executed by a worker is the youngest frame in
the worker’s extended deque.

10. While a worker executes a stack frame, the frame has no chil-
dren, and thus the execution of a cilk_sync statement is a
no-op. (This invariant is false for full frames.)

Actions of the runtime system

A Cilk++ program executes most of the time as a C++ program. Its
execution differs from C++ at distinguished points of the program:
when calling and spawning functions, when synching, and when
returning from a function. We now describe the action of the run-
time system at these points. The actions we describe are intended

A

C

B

D

Figure 11: A global view of the Cilk++ runtime system data structures.
Rectangles represent frames, with the dark rectangles denoting full frames.
Frames A and C belong to no deque, and consequently they are full. In
particular, C stores an explicit pointer to its full-frame parent A. Frames B

and D are full because they are the oldest frames in their respective deques.
Their children are stored implicitly in the deque, but these frames maintain
an explicit pointer to their respective full-frame parents A and C.

to execute as if they were atomic, which is enforced using locks
stored in full frames, as described in Section 5.

Function call. To call a procedure instance B from a procedure
instance A, a worker sets the continuation in A’s frame so that the
execution of A resumes immediately after the call when B returns.
The worker then allocates a stack frame for B and pushes B onto
the current call stack as a child of A’s frame. The worker then
executes B.

Spawn. To spawn a procedure instance B from a procedure in-
stance A, a worker sets the continuation in A’s frame so that the
execution of A resumes immediately after the cilk_spawn state-
ment. The worker then allocates a stack frame for B, pushes the
current call stack onto the tail of its deque, and starts a fresh cur-
rent call stack containing only B. The worker then executes B.

Return from a call. If the frame A executing the return is a
stack frame, the worker pops A from the current call stack. The
current call stack is now nonempty (Invariant 6), and its youngest
frame is A’a parent. The worker resumes the execution from the
continuation of A’s parent.

Otherwise, the worker pops A (a full frame) from the current
call stack. The worker’s extended deque is now empty (Invari-
ant 1). The worker executes an unconditional-steal of the parent
frame (which is full by Invariant 3).

Return from a spawn. If the frame A executing the return is a
stack frame, the worker pops A from the current call stack, which
empties it (Invariant 7). The worker tries to pop a call stack S from
the tail of its deque. If the pop operation succeeds (the deque was
nonempty), the execution continues from the continuation of A’s
parent (the youngest element of S), using S as the new current call
stack. Otherwise, the worker begins random work stealing.

If A is a full frame, the worker pops A from the current call stack,
which empties the worker’s extended deque (Invariant 1). The
worker executes a provably-good-steal of the parent frame (which
is full by Invariant 3).

Sync. If the frame A executing a cilk_sync is a stack frame,
do nothing. (Invariant 10). Otherwise, A is a full frame with a
join counter. Pop A from the current call stack (which empties the
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extended deque by Invariant 1), increment A’s join counter,2 and
provably-good-steal A.

Randomly steal work. When a worker w becomes idle, it be-
comes a thief and steals work from a victim worker chosen at ran-
dom, as follows:

• Pick a random victim v, where v 6= w. Repeat this step while
the deque of v is empty.

• Remove the oldest call stack from the deque of v, and pro-
mote all stack frames to full frames. For every promoted
frame, increment the join counter of the parent frame (full
by Invariant 3). Make every newly created child the right-
most child of its parent.

• Let loot be the youngest frame that was stolen. Promote the
oldest frame now in v’s extended deque to a full frame and
make it the rightmost child of loot. Increment loot’s join
counter.

• Execute a resume-full-frame action on loot.

Provably good steal. Assert that the frame A begin stolen is a
full frame and the extended deque is empty. Decrement the join
counter of A. If the join counter is 0 and no worker is working
on A, execute a resume-full-frame action on A. Otherwise, begin
random work stealing.3

Unconditionally steal. Assert that the frame A being stolen is
a full frame, the extended deque is empty, and A’s join counter is
positive. Decrement the join counter of A. Execute a resume-full-
frame action on A.

Resume full frame. Assert that the frame A being resumed is
a full frame and the extended deque is empty. Set the current call
stack to a fresh stack consisting of A only. Execute the continuation
of A.

Modifications for reducers

The Cilk++ implementation of reducers uses the address of the re-
ducer object as a key into a hypermap hash table, which maps
reducers into local views for the worker performing the look-up.
Hypermaps are lazy: elements are not stored in a hypermap until
accessed for the first time, in which case the Cilk++ runtime system
inserts an identity value of the appropriate type into the hypermap.
Laziness allows us to create an empty hypermap /0, defined as a hy-
permap that maps all reducers into views containing identities, in
Θ(1) time.

For left hypermap L and right hypermap R, we define the opera-
tion REDUCE(L,R) as follows. For all reducers x, set

L(x)← L(x)⊗R(x) ,

where L(x) denotes the view resulting from the look-up of the ad-
dress of x in hypermap L, and similarly for R(x). The left/right
distinction is important, because the operation⊗might not be com-
mutative. If the operation ⊗ is associative, the result of the compu-
tation is the same as if the program executed serially. REDUCE is
destructive: it updates L and destroys R, freeing all memory asso-
ciated with R.

The Cilk++ implementation maintains hypermaps in full frames
only. To access a reducer x while executing in a stack frame, the
worker looks up the address of x in the hypermap of the least an-

2The counterintuitive increment of the join counter arises because we con-
sider a sync equivalent to a spawn of a fake child in which the parent is im-
mediately stolen and the child immediately returns. The increment accounts
for the fake child. This equivalence holds because in the Cilk++ scheduler,
the last spawned child returning to a parent continues the execution of the
parent.
3This steal is “provably good,” because it guarantees the space and time
properties of the scheduler [3].

cestor full frame, that is, the full frame at the head of the deque to
which the stack frame belongs.

To allow for lock-free access to the hypermap of a full frame
while siblings and children of the frame are terminating, each
full frame stores three hypermaps, denoted by USER, RIGHT, and
CHILDREN. The USER hypermap is the only one used for look-up
of reducers in the user’s program. The other two hypermaps are
used for bookkeeping purposes. The three hypermaps per node are
reminiscent of the three copies of values used in the Euler tour tech-
nique [22]. Informally, the CHILDREN hypermap contains the ac-
cumulated results of completed children frames, but to avoid races
with user code that might be running concurrently, these views have
not yet been reduced into the parent’s USER hypermap. The RIGHT

hypermap contains the accumulated values of the current frame’s
right siblings that have already terminated. (A “right” sibling of a
frame is one that comes after the frame in the serial order of exe-
cution, and its values are therefore on the right-hand side of the ⊗
operator.)

When the top-level full frame is initially created, all three hy-
permaps are initially empty. The hypermaps are updated in the
following situations:

• upon a look-up failure,

• upon a steal,

• upon a return from a call,

• upon a return from a spawn,

• at a cilk_sync.

We discuss each of these cases in turn.
Look-up failure. A look-up failure inserts a view containing an

identity element for the reducer into the hypermap. The look-up
operation returns the newly inserted identity.

Random work stealing. A random steal operation steals a full
frame P and replaces it with a new full frame C in the victim. At
the end of the stealing protocol, update the hypermaps as follows:

• USERC← USERP;

• USERP← /0;

• CHILDRENP← /0;

• RIGHTP← /0.

In addition, if the a random steal operation creates new full frames,
set all their hypermaps to /0. These updates are consistent with the
intended semantics of reducers, in which the child owns the view
and the parent owns a new identity view.

Return from a call. Let C be a child frame of the parent frame P

that originally called C, and suppose that C returns. We distinguish
two cases: the “fast path” when C is a stack frame, and the “slow
path” when C is a full frame.

• If C is a stack frame, do nothing, because both P and C share
the view stored in the map at the head of the deque to which
both P and C belong.

• Otherwise, C is a full frame. We update USERP ← USERC,
which transfers ownership of child views to the parent. The
other two hypermaps of C are guaranteed to be empty and do
not participate in the update.

Return from a spawn. Let C be a child frame of the parent
frame P that originally spawned C, and suppose that C returns.
Again we distinguish the “fast path” when C is a stack frame from
the “slow path” when C is a full frame:

• If C is a stack frame, do nothing, which correctly implements
the intended semantics of reducers, as can be seen as follows.
Because C is a stack frame, P has not been stolen since C was
spawned. Thus, P’s view of every reducer still contains the
identity e created by the spawn. The reducer semantics al-
lows for C’s views to be reduced into P’s at this point, and
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since we are reducing all views with an identity e, the reduc-
tion operation is trivial: all we have to do is to transfer the
ownership of the views from C to P. Since both P’s and C’s
views are stored in the map at the head of the deque to which
both P and C belong, such a transfer requires no action.

• Otherwise, C is a full frame. We update USERC ←
REDUCE(USERC, RIGHTC), which is to say that we reduce
the views of all completed right-sibling frames of C into the
views of C. Then, depending on whether C has a left sibling
or not4, we have two subcases:

1. If C has a left sibling L, we update RIGHTL ←
REDUCE(RIGHTL, USERC), accumulating into the
RIGHT hypermap of L.

2. Otherwise, C is the leftmost child of P, and we up-
date CHILDRENP ← REDUCE(CHILDRENP, USERC),
thereby storing the accumulated values of C’s views
into the parent, since there is no left sibling into which
to reduce.

Observe that a race condition exists between C reading
RIGHTC, and the right sibling of C (if any), who might be
trying to write RIGHTC at the same time. Resolving this race
condition efficiently is a matter of some delicacy, which we
discuss in detail in Section 5.

Sync. A cilk_sync statement waits until all children have com-
pleted. When frame P executes a cilk_sync, one of following two
cases applies:

• If P is a stack frame, do nothing. Doing nothing is correct
because all children of P, if any exist, were stack frames, and
thus they transferred ownership of their views to P when they
completed. Thus, no outstanding child views exist that must
be reduced into P’s.

• If P is a full frame, then after P passes the cilk_sync state-
ment but before executing any client code, we perform the
update USERP ← REDUCE(CHILDRENP, USERP). This up-
date reduces all reducers of completed children into the par-
ent.

Optimizations

To access a reducer x, the worker performs the associative look-up
described above. The overhead of this operation is comparable to
that of a few function calls, and thus it is desirable to optimize it.
The following paragraphs describe some optimizations.

Common subexpression elimination. The semantics of reduc-
ers ensures that two references to a reducer x return the same
view as long as the intervening program code does not contain
a cilk_spawn or cilk_sync statement or cross iterations of a
cilk_for loop. The intervening program code may call a func-
tion that spawns, however, because the operational semantics of re-
ducers guarantee that the view before the function call is the same
as the view after the function call. In these situations, the Cilk++
compiler emits code to perform the associative look-up only once
per fragment, reducing the overhead of accessing a reducer to a
single indirect reference. This optimization is a type of common-
subexpression elimination [1, p. 633] routinely employed by com-
pilers. It is especially effective at minimizing the reducer overhead
in cilk_for loops.

Dynamic caching of look-ups. The result of an associative
look-up can be cached in the reducer object itself. In this opti-
mization, each reducer object provides an array A of P pointers to

4Recall that a full frame stores pointers to its left and right siblings, and so
this information is available in O(1) time.
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Figure 12: Benchmark results for a code that detects collisions in mechan-
ical assemblies.

views, where P is the maximum number of workers in the system.
All such pointers are initially null. When accessing a reducer x,
worker w first reads the pointer x.A[w]. If the pointer is not null,
the worker can use the pointer to access the view. Otherwise, the
worker looks up the address of x in the appropriate hypermap and
caches the result of the look-up into x.A[w]. When the hypermap of
a worker changes, for example, because the worker steals a differ-
ent frame, the pointers cached by that worker are invalidated. This
optimization, which we have not yet implemented, can reduce the
cost of a look-up to the cost of checking whether a pointer is null.

Static storage class. When the reducer has the static C++ stor-
age class, the associative look-up can be avoided entirely. Since
the address of the reducer is known at link-time, we can allocate
a static global array of size P, where P is the maximum number
of workers, to store views of the reducer. The views are as in the
dynamic-caching optimization, but when a worker looks up a view,
it simply indexes the array with its unique worker ID. An alterna-
tive is to allocate the views of a reducer at a common fixed location
in worker-local storage. We have not yet implemented either of
these optimizations.

Loop variables. When a loop contains several reducers allo-
cated at the same level of nesting outside the loop, the compiler
can aggregate the reducers into a single data structure, and only
one associative look-up need be done for the entire data structure,
rather than one for each reducer. This scheme works, because the
knowledge of how the compiler packs the reducers into the fields of
the data structure outside the loop is visible to the compiler when
processing reducer accesses inside the loop. The Cilk++ compiler
does not currently implement this optimization.

Performance

Figure 12 compares the reducer strategy with locking and with
manually rewriting the code to pass the nonlocal variable as a pa-
rameter. The benchmark is a collision-detection calculation for me-
chanical assemblies, such as motivated the example in Figure 1,
although nodes in the tree may have arbitrary degree. As can be
seen from the Figure 12, all three methods incur some overhead on
1 processor. The locking solution bottoms out due to contention,
which gets worse as the number of processors increases. The re-
ducer solution achieves almost exactly the same performance as
the manual method, but without drastic code rewriting.

5. ANALYSIS OF WORK-STEALING

WITH REDUCERS
When a spawned child that is a full frame completes, we

provably-good-steal its parent and reduce the view of the child into
the view of either its parent or its left sibling. To do so atomically,
the runtime system must acquire locks on two frames. In this sec-
tion, we describe the locking methodology in detail and show that
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the Cilk++ work-stealing scheduler incurs no unusual overhead for
waiting on locks.

Recall from Section 4 that when full frame F returns from a
spawn, the Cilk++ runtime system accumulates the reducer map
of F into another node F.p, which is either the left sibling of F in
the spawn tree, or the parent of F in the spawn tree if no such sib-
ling exists5. The relation F.p can be viewed as defining a binary
tree in which F.p is the parent of F , and in fact such a steal tree

is just the left-child, right-sibling representation [6, p. 246] of the
spawn tree. After accumulating the reducers of F into F.p, the run-
time system eliminates F by splicing it out of the steal tree, in a
process similar to tree contraction [17].

When F completes, it has no children in the spawn tree, and thus
it has at most one child in the steal tree (its right sibling in the spawn
tree). Thus, the situation never occurs that a node is eliminated that
has two children in the steal tree.

Every successful steal causes one elimination, which occurs
when node F completes and its reducers are combined with those
of F.p. To perform the elimination atomically, the runtime sys-
tem engages in a locking protocol. The steal tree is doubly linked,
with each node F containing F.p, F. lchild, and F.rsib. In addi-
tion, these fields each have associated locks pL, lchildL, and rsibL,
respectively. The protocol maintains the invariant that to change ei-
ther of the cross-linked pointers between two adjacent nodes in the
tree, both locks must be held. Thus, to eliminate a node F , which
is a right sibling of its parent and having one child — without loss
of generality, F. lchild — the locks F.pL, F.p.rsibL, F. lchildL, and
F.rsib .pL must all be held, after which the F can be spliced out
by setting F.p.rsib = F. lchild and F. lchild .p = F.p. Before the
elimination, F’s hypermap is reduced into F.p’s.

The four locks correspond to two pairs of acquisitions, each of
which abstractly locks a single edge between two nodes in the steal
tree. That is, to abstractly lock an edge, the two locks at either
end of the edge must be acquired. To avoid deadlock, the locking
protocol operates as follows.

To abstractly lock the edge (F,F.p), do the following:

1. ACQUIRE(F.pL).

2. If F is a right sibling of F.p, then ACQUIRE(F.p.rsibL), else
ACQUIRE(F.p. lchildL).

To abstractly lock the edge (F,F.rsib), do the following:

1. ACQUIRE(F.rsibL).

2. If ¬TRY-ACQUIRE(F.rsib .pL), then RELEASE(F.rsibL)
and go to step 1.

The TRY-ACQUIRE function attempts to grab a lock and reports
whether it is successful without blocking if the lock is already held
by another worker. To abstractly lock the edge (F,F. lchild), the
code follows that of (F,F.rsib).

This protocol avoids deadlock, because a worker never holds a
lock in the steal tree while waiting for a lock residing lower in the
tree. Moreover, if two workers contend for an abstract lock on the
same edge, one of the two is guaranteed to obtain the lock in con-
stant time. Finally, the protocol is correct, circumventing the prob-
lem that might occur if abstractly locking (F,F.rsib) were imple-
mented by ACQUIRE(F.rsib .pL) followed by ACQUIRE(F.rsibL),
where the node F.rsib could be spliced out and deallocated by an-
other worker after F’s worker follows the pointer but before it can
acquire the pL lock in the node.

The remainder of the protocol focuses on abstractly locking the
two edges incident on F so that F can be spliced out. Perhaps
surprisingly, the two abstract locks can be acquired in an arbitrary

5F.p is undefined if F is the root of the spawn tree, which is never reduced
into any other node.

order without causing deadlock. To see why, imagine each node
F as containing an arrow oriented from the edge in the steal tree
that F’s worker abstractly locks first to the edge it abstractly locks
second. Because these arrows lie within the steal tree, they cannot
form a cycle and therefore deadlock cannot occur. Nevertheless,
while an arbitrary locking policy does not deadlock, some policies
may lead to a long chain of nodes waiting on each other’s abstract
locks. For example, if we always abstractly lock the edge to the
parent first, it could happen that all the nodes in a long chain up the
tree all need to be eliminated at the same time, and they all grab
the abstract locks on the edges to their parents, thereby creating a
chain of nodes, each waiting for the abstract lock on the edge to its
child. In this case, the time to complete all eliminations could be
proportional to the height of the steal tree.

Our strategy to avoid these long delay chains is to acquire the
two abstract locks in random order: with probability 1/2, a node
F abstractly locks the edge to its parent followed by the edge to
its child, and with probability 1/2 the other way around. This on-
line randomization strategy is reminiscent of the offline strategy
analyzed in [9] for locking in static graphs. We now prove that a
system that implements this policy does not spend too much time
waiting for locks.

LEMMA 1. If abstract locks are acquired in random order by

the P processors and the reduce() function takes Θ(1) time to

compute, then the expected time spent in elimination operations is

O(M) and with probability at least 1− ε, at most O(M + lgP +
lg(1/ε)) time is spent in elimination operations, where M is the

number of successful steals during the computation.

PROOF. Assuming that the reduce() function takes Θ(1) time
to compute, the two abstract locks are held for Θ(1) time. Since
only two nodes can compete for any given lock simultaneously,
and assuming linear waiting on locks [4], the total amount of time
nodes spend waiting for nodes holding two abstract locks is at most
proportional to the number M of successful steals. Thus, we only
need to analyze the time waiting for nodes that are holding only one
abstract lock and that are waiting for their second abstract lock.

Consider the eliminations performed by a given worker, and as-
sume that the worker performed m steals, and hence m eliminations
and 2m abstract lock acquisitions. Let us examine the steal tree
at the time of the ith abstract lock acquisition by the worker on
node F . Every other node G in the tree that has not yet been elim-
inated creates an arrow within the node , oriented in the direction
from the first edge it abstractly locks to the second. These edges
create directed paths in the tree. The delay for the worker’s ith lock
acquisition can be at most the length of such a directed path starting
at the edge the worker is abstractly locking. Since the orientation
of lock acquisition along this path is fixed, and each pair of acqui-
sitions is correctly oriented with probability 1/2, the waiting time
for F acquiring one of its locks can be bounded by a geometric
distribution:

Pr{the worker waits for ≥ k eliminations} ≤ 2−k−1 .

We shall compute a bound on the total time ∆ for all 2m abstract
lock acquisitions by the given worker. Notice that the time for the
ith abstract lock acquisition by the worker is independent of the
time for the jth abstract lock acquisition by the same worker for i <
j, because the worker cannot wait twice for the same elimination.
Thus, the probability that the 2m acquisitions take time longer than
∆ eliminations is at most

„

∆

2m

«

2−∆ ≤

„

e∆

2m

«2m

2−∆

≤ ε
′/P
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1 holder <T> global_variable;
2 // originally: T global_variable
3
4 void proc1() {
5 cilk_for (i = 0; i < N; ++i) { //was: for
6 global_variable = f(i);
7 proc2();
8 }
9 }

10
11 void proc2() { proc3 (); }
12 void proc3() { proc4 (); }
13
14 void proc4() {
15 use(global_variable);
16 }

Figure 13: An illustration of the use of a holder. Although Cilk++ does not
yet support this syntax for holders, programmers can access the functional-
ity, since holders are a special case of reducers.

by choosing ∆ = c(m + lg(1/ε
′)) for a sufficiently large constant

c > 1. The expectation bound follows directly.
Since there are at most P workers, the time for all the abstract

lock acquisitions is O(M + lgP+ lg(1/ε)) with probability at least
1− ε (letting ε

′ = ε/P), where M is the total number of successful
steals during the computation.

This analysis allows us to prove the following theorem.

THEOREM 2. Consider the execution of any Cilk++ computa-

tion with work T1 and span T∞ on a parallel computer with P pro-

cessors, and assume that the computation uses a reducer whose

reduce() function takes Θ(1) time to compute. Then, the ex-

pected running time, including time for locking to perform reduc-

tions, is T1/P + O(T∞). Moreover, for any ε > 0, with probabil-

ity at least 1− ε, the execution time on P processors is at most

TP ≤ T1/P +O(T∞ + lgP+ lg(1/ε)).

PROOF. The proof closely follows the accounting argument in
[3], except with an additional bucket to handle the situation where
a worker (processor) is waiting to acquire an abstract lock. Each
bucket corresponds to a type of task that a worker can be doing
during a step of the algorithm. For each time step, each worker
places one dollar in exactly one bucket. If the execution takes
time TP, then at the end the total number of dollars in all of the
buckets is PTP. Thus, if we sum up all the dollars in all the buck-
ets and divide by P, we obtain the running time. In this case, by
Lemma 1, the waiting-for-lock bucket has size proportional to the
number of successful steals, which is PT∞ and thus contributes at
most a constant factor additional to the “Big Oh” in the expected
running time bound T1/P + O(T∞) proved in [3]. Moreover, with
probability at least 1− ε, the waiting-for-lock bucket has at most
O(M+ lgP+ lg(1/ε)) dollars, again contributing at most a constant
factor to the “Big Oh” in the bound T1/P +O(T∞ + lgP+ lg(1/ε))
proved in [3].

6. HOLDERS
A holder is a hyperobject that generalizes the notion of thread-

local storage. In the code fragment shown in Figure 13, the global
variable is used as a mechanism to pass values from proc1 to
proc4 without passing spurious parameters to proc2 and proc3.
The original for loop in line 5 has been replaced by a cilk_for

loop, which appears to create races on global_variable. Races
are avoided, however, because global_variable is declared to
be a holder in line 1. This technique avoids the need to restructure
proc2 and proc3 to be aware of the values passed from proc1 to
proc4.

The implementation of holders turns out to be straightforward,
because a holder is a special case of a reducer whose (associative)

1 template <class T>
2 struct void_monoid : cilk::monoid_base <T>
3 {
4 typedef T value_type;
5 void reduce(T* left , T* right) const { }
6 void identity (T* p) const { new (p) T(); }
7 };
8
9 template <class T>

10 class holder
11 : public cilk::reducer <void_monoid <T> >
12 {
13 public:
14 operator T&() { return this ->view(); }
15 };

Figure 14: The definition of holder in terms of reducers.

1 int depth(0);
2 int max_depth(0);
3 /* ... */
4 void walk(Node *x)
5 {
6 switch (x->kind) {
7 case Node::LEAF:
8 max_depth = max(max_depth , depth);
9 break;

10 case Node:: INTERNAL :
11 ++depth;
12 walk(x->left);
13 walk(x->right);
14 --depth;
15 break;
16 }
17 }

Figure 15: A C++ program that determines the maximum depth of a node
in a binary tree using global variables.

binary operator ⊗ always returns the left input element. Figure 14
shows how a holder can be defined in terms of a reducer.

7. SPLITTERS
Another type of hyperobject that appears to be useful for paral-

lelizing legacy applications is a “splitter.”6 Consider the example
code in Figure 15 which walks a binary tree and computes the max-
imum depth max_depth of any leaf in the tree. The code maintains
a global variable depth indicating the depth of the current node. It
increments depth in line 11 before recursively visiting the children
of a node and decrements depth in line 14 after visiting the chil-
dren. Whenever the depth of a leaf exceeds the maximum depth
seen so far, stored in another global variable max_depth, line 8
updates the maximum depth. Although this code makes use of a
global variable to store the depth, the code could be rewritten to
pass the incremented depth as an argument.

Unfortunately, rewriting a large application that uses global vari-
ables in this way can be tedious and error prone, and the opera-
tions can be more complex than simple increments/decrements of
a global variable. In general, the kind of usage pattern involves an
operation paired with its inverse operation. The paired operations
might be a push/pop on a stack or a modification/restoration of a
complex data structure. To implement a backtracking search, for
example, one can maintain a global data structure that represents
the state of the search. Each step of the search involves modifying
the data structure to produce a new state from the old, and when the
search backtracks, undoing the modification.

Parallelizing the code in Figure 15 may at first seem straightfor-
ward. We can spawn each of the recursive walk() routines in lines
12–13. The max_depth variable can be made into a reducer with
the maximum operator. The depth variable is problematic, how-
ever. If nothing is done, then a determinacy race occurs, because

6We have not yet implemented splitters in Cilk++.
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1 splitter <int> depth;
2 reducer_max <int> max_depth;
3 /* ... */
4 void walk_s(Node *x)
5 {
6 switch (x->kind) {
7 case Node::LEAF:
8 max_depth = max(max_depth , depth);
9 break;

10 case Node:: INTERNAL :
11 ++depth;
12 cilk_spawn walk_s(x->left);
13 walk_s(x->right);
14 sync;
15 --depth;
16 break;
17 }
18 }

Figure 16: A Cilk++ program that determines the maximum depth of a
node in a binary tree using a reducer and a splitter.

the two spawned subcomputations both increment depth in par-
allel. Moreover, as these subcomputations themselves recursively
spawn, many more races occur. What we would like is for each of
the two spawned computations to treat the global variable depth as
if it were a local variable, so that it has the same value in a parallel
execution as it does in a serial execution.

A splitter hyperobject provides this functionality, allowing each
subcomputation to modify its own view of depth without inter-
ference. Figure 16 shows how the code from Figure 15 can be
parallelized by declaring the global variable depth to be a splitter.

Let us be precise about the semantics of splitters. Recall that a
cilk_spawn statement creates two new Cilk++ strands: the child
strand that is spawned, and the continuation strand that continues
in the parent after the cilk_spawn. Upon a cilk_spawn:

• The child strand owns the view C owned by the parent pro-
cedure before the cilk_spawn.

• The continuation strand owns a new view C′, initialized
nondeterministically to either the value of C before the
cilk_spawn or the value of C after the child returns from
the cilk_spawn.

Notice that in Figure 15, the value of the depth is the same before
and after each call to walk() in lines 12–13. Thus, for the corre-
sponding parallel code in Figure 15(b), the nondeterministic sec-
ond condition above is actually deterministic, because the values
of depth before and after a cilk_spawn are identical. Commonly,
a splitter obeys the splitter consistency condition: when executed
serially, the splitter value exhibits no net change from immediately
before a cilk_spawn to immediately after the cilk_spawn. That
is, if the spawned subcomputation changes the value of the splitter
during its execution, it must restore the value one way or another
before it returns.

Implementation of splitters

We now describe how to implement splitter hyperobjects. The main
idea is to keep a hypertree of hypermaps. Accessing a splitter x

involves a search from the hypermap associated with the executing
frame up the hypertree until the value is found. Splitter hypermaps
support the following two basic operations:

• HYPERMAP-INSERT(h,x,v) — insert the key-value pair
(x,v) into the hypermap h.

• HYPERMAP-FIND(h,x) — look up the splitter x in the hy-
permap h, and return the value stored in h that is associated
with x, or return NIL if the value is not found. If h = NIL (the
hypermap does not exist), signal an error.

The runtime data structures described in Section 4 can be be ex-
tended to support splitters. Recall that each worker owns a spawn

deque deque implemented as an array, where each index i stores a
call stack. The head and tail of the deque are indexed by worker-
local variables H and T , where array position i contains a valid
pointer for H ≤ i < T . We augment each deque location to store a
pointer deque[i] .h to a hypermap. Each worker worker also main-
tains an active hypermap worker.h. In addition, we store a parent

h.parent pointer with each hypermap h, which points to the par-
ent hypermap in the hypertree (or NIL for the root of the hyper-
tree). Each hypermap h has two children, identified as h.spawn and
h.cont.

The runtime system executes certain operations at distinguished
points in the client program:

• when the user program accesses a splitter hyperobject,

• upon a cilk_spawn,

• upon return from a cilk_spawn, and

• upon a random steal.

We now describe the actions of the runtime system in these cases.
Each action is executed as if it is atomic, which can be enforced
through the use of a lock stored with the worker data structure.

Accessing a splitter. Accessing a splitter hyperobject x in a
worker w can be accomplished by executing SPLITTER-LOOKUP

(w.h,x), where the SPLITTER-LOOKUP(h,x) function is imple-
mented by the following pseudocode:

• Set hiter = h.

• While (v = HYPERMAP-FIND(hiter,x)) == NIL:

• Set hiter = hiter .parent.

• If h 6= hiter, then HYPERMAP-INSERT(h,x,v).

This implementation can be optimized:

• For hypermaps in the deque, rather than following parent

pointers in the search up the hypertree, the auxiliary pointers
in hypermaps can be omitted and the search can walk up the
deque itself.

• After looking up a value in an ancestor hypermap, all in-
termediate hypermaps between the active hypermap and the
hypermap where the value was found can be populated with
the key-value pair.

Spawn. Let w be the worker that executes cilk_spawn.

• Set parent = w.h, and create child as a fresh empty hyper-
map.

• Set parent.spawn = child.

• Set parent.cont = NIL.

• Set child.parent = parent.

• Push parent onto the tail of w’s deque.

• Set w.h = child.

Return from a spawn. Let w be the worker that executes the
return statement. Let child = w.h, and let parent = child.parent.
We have two cases to consider. If the deque is nonempty:

• For all keys x that are both in child and parent, update the
value in parent to be the value in child.

• Destroy child.

• Set w.h = parent.

If the deque is empty:

• Destroy child.

• For all keys x that are in parent but not in parent.cont, insert
the parent value into parent.cont.

• Set w.h = parent.cont.

• Splice parent out the hypertree.

• Destroy parent.

In either case, control resumes according to the “Return from a
spawn” description in Section 4.
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Random steal. Recall that on a random steal, the thief worker
thief removes the oldest call stack from the victim worker victim’s
deque victim.deque. Let loot-h be the youngest hypermap on the
oldest call stack.

• Create a fresh empty hypermap h.

• Set h.parent = loot-h.

• Set loot-h.cont = h.

• Set thief .h = h.

This implementation copies a view when the splitter is accessed
(read or write), but it is also possible to implement a scheme which
copies a view only when it is written.

8. CONCLUSION
We conclude by exploring other useful types of hyperobjects be-

sides reducers, holders, and splitters. For all three types, the child
always receives the original view at a cilk_spawn, but for parents,
there are two cases:

COPY: The parent receives a copy of the view.

IDENTITY: The parent receives a view initialized with an identity
value.

The joining of views, which can happen at any strand boundary
before the cilk_sync, also provides two cases:

REDUCE: The child view is updated with the value of the parent
view according to a reducing function, the parent view is dis-
carded, and the parent view gets the view of the child.

IGNORE: The parent view is discarded, and the parent receives
the view of the child.

Of the four combinations, three are the hyperobjects we have dis-
cussed:

(IDENTITY, IGNORE): Holders.

(IDENTITY, REDUCE): Reducers.

(COPY, IGNORE): Splitters.

The last combination, (COPY, REDUCE), may also have some
utility, although we have not encountered a specific need for this
case in the real-world applications we have examined. We can
imagine a use in calculating the span of a computation, for example,
since the state variables for computing a longest path in a compu-
tation involve the behavior of both a splitter and a max-reducer.

We conjecture that there are other useful types of hyperobjects
than the four produced by this taxonomy, but discovering them is
future research.
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