Interoperating MPI and Charm++ for Productivity
and Performance

Nikhil Jain, Abhinav Bhatele, Jae-Seung Yeom, Mark F. Adams, Francesco Miniati, Chao Mei, Laxmikant V. Kale

I. OVERVIEW

Modern parallel codes are often written as a collection
of several diverse modules. Different programming languages
might be the best or natural fit for each of these modules or
for different libraries that are used together in an application.
For such applications, the restriction of implementing the
entire application in a single parallel language may impact
the application’s performance and programmer’s productivity
negatively. Effectively developing a rich, interoperable toolbox
that allows for seamless mixing of different parallel lan-
guages is fraught with challenges. In this poster, we describe
and address the challenges in enabling interoperation among
languages that differ with respect to the driver of program
execution — MPI [1], where the programmer explicitly defines
the control flow, and Charm++ [2], where a runtime system
drives the execution based on availability of data.

Control Flow: The first challenge is the ability to transfer
control flow between MPI and Charm++. Currently, if the ex-
ecution begins in MPI, there exists no mechanism to progress
Charm++ because its runtime system (RTS) is typically hidden
from the user. Similarly, if the execution begins in Charm++,
there exists no mechanism to transfer the control to MPI
because typically the RTS does not support yielding control to
the user. We tackle this challenge by exposing the scheduler
of the Charm++ RTS and empowering the user to control it.
In this approach, the execution of a program begins in MPI
wherein the semantics of MPI are followed. When required, the
exposed scheduler of Charm++ is activated. From this point,
the execution is driven by the RTS following the semantics
of Charm++. At a later time, the scheduler is explicitly
deactivated and the control is returned back to the MPI as
shown in Figure 1 in the poster.

Resource Sharing: The next challenge is that of sharing
resources among the two languages. Figure 2 in the poster
presents three schemes provided in our framework for sharing
resources — time division, space division and hybrid division.

In Time Division, during the execution of an application
on a system, all the processes switch from one language to
another synchronously. This method of interoperation is useful
for applications that have an ordering among the tasks to be
executed in different language modules.

In Space Division, instead of time slicing the resources,
subsets of processes are assigned to different languages for
the entire duration of program execution. Space division is
useful for making simultaneous progress in modules that are
loosely connected to one another.

Contact author: nikhil jain@acm.org

In Hybrid Division, combination of time division and space
division provides a hybrid method of resource sharing. In
this scheme, a subset of processes execute modules written
in different languages during an execution. Different subsets
may execute different modules independently of other subsets.
A hybrid model of interoperation can be particularly useful in
applications that require different subsets to perform different
tasks during application execution.

Data Sharing: The following simple methods are supported
for exchanging data among different languages in the presented
framework.

Pointer-based Data Sharing: This method is based on ex-
changing data by explicitly passing memory pointers. If data
is to be transferred between modules within a process, say from
PI-A to PI-B, it can be exchanged via use of reserved memory
space. PI-A copies the data to a predefined memory space, and
thereafter P/-B accesses it. For inter-process communication,
the data is first transferred within the source language to the
destination, and then exchanged via use of reserved memory
(Figure 3).

Data Transfer Repository: Alternatively, a generic data trans-
fer repository can be used for intra-process and inter-process
communication. An API is used for depositing and retrieving
data to and from the local client modules in various languages
(a pull model). Under the hood, the data transfer repository
communicates with its counterparts on other processes to
service the requests.

II. WRITING INTEROPERABLE MPI-CHARM++
PROGRAMS

For a programmer, interoperation between independent
MPI and Charm++ modules requires minor modifications to
both the modules. Other than including the necessary headers,
following is a list of all the required additional tasks a module
must perform:

Common Tasks: Initialize MPI, create sub-communicator(s),
initialize Charm++ instance(s), destroy Charm++ instance(s),
free sub-communicator(s), finalize MPI.

MPI module: Provide an interface function callable from
Charm++ (a C/C++ function); to transfer control to Charm++
modules, call interface function provided by the Charm++
modules.

Charm++ module: Provide an interface function callable from
MPI — this interface function should initiate start up messages
to the module and activate Charm++ RTS; to transfer control

TABLE 1.

PRODUCTIVITY AND PERFORMANCE BENEFITS FOR THE APPLICATION STUDIES PRESENTED IN THIS POSTER.

Application Library Productivity Performance
CHARM HistSort Efficient sorting requires support for asynchronous 48x speed up in sorting; Removes scaling bottleneck.
and unexpected messages — a feature provided by
Charm++; Reuse of Charm++’s HistSort.
EpiSimdemics MPI-IO EpiSimdemics I/O is a synchronous operation that 256x input speed up; Enables output at scale.
can be implemented efficiently using MPI collectives;
Enabled organized output to a single file (avoids post
processing); Reuse of a standard library, MPI-IO,
implemented by vendors.
NAMD FFTW Offloads development of the critical FFT component Similar performance.
to experts; Reuse of FFTW library.
kNeighbor ParMETIS Enables parallel graph partitioning based load bal- Better time per step for applications: 30-40% better
LeanMD ancing in Charm++; Reuse of ParMETIS. for LeanMD; 66-75% better for kNeighbor.

to MPI modules, call interface function provided by the MPI
modules.

The code snippet in the poster shows an MPI program
with all the changes required to interoperate with a Charm++
module. As usual, execution begins in main and MPI_Init
is invoked first. After that, the processes are divided into
two sets by creating sub-communicators. One set of processes
continues with MPI work while Charm++ is initialized on
the other. This second set of processes invokes the Charm++
module and on return, the Charm++ instance is destroyed.
If needed, control can be transferred back and forth multiple
times between MPI and Charm++ modules before the instance
is destroyed.

A standalone Charm++ program begins execution in the
constructor of a special C++ object called mainchare and exits
the program by calling CkExit. To enable interoperation,
we have modified this aspect of Charm++. When using a
Charm++ module for interoperation, execution in Charm++
begins only when it is invoked explicitly by initiating a
message to one of its objects and starting the Charm++ RTS
using StartCharmScheduler. In the code snippet in the
poster, HiStart is an interface function that performs these
tasks. On processor 0, a message is initiated to the mainHi
object after which all processes activate the Charm++ RTS. In
this simple example, when the RTS receives this message and
schedules it, calling CkExit collectively stops the scheduler
on all processes, thus returning the control to the interface
function.

III. APPLICATION STUDIES

For wide-spread acceptability, it is critical that the methods
for enabling interoperation are both easy-to-use and scalable.
In order to demonstrate these capabilities of the proposed
ideas, we have developed a generalized framework that en-
ables interoperation between MPI and Charm++. Using this
framework, we study the application of the proposed methods
and demonstrate the benefits of interoperation using produc-
tion parallel codes — CHARM [3], EpiSimdemics [4], and
NAMD [5], and libraries including FFTW [6], MPI-IO, and

ParMETIS [7] — executed on thousands of cores of IBM
Blue Gene/Q and Cray XE6 (summarized in Table I). These
examples establish the utility of interoperation in eliminating
performance bottlenecks in the applications with minimal
effort. At the same time, they demonstrate how interopera-
tion leads to code reuse and eases programmers’ burden by
allowing them to use features that match the requirements of
the individual application modules.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-ABS-
662816).

REFERENCES

[1] “MPI: A Message Passing Interface Standard,”
http://www.mpi-forum.org/.

[2] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable ob-
jects + active messages + adaptive runtime = productivity + performance
a submission to 2012 HPC class II challenge,” Parallel Programming
Laboratory, Tech. Rep. 12-47, November 2012.

[3] F. Miniati and P. Colella, “Block structured adaptive mesh and time
refinement for hybrid, hyperbolic+n-body systems,” J. Comput. Phys.,
vol. 227, no. 1, pp. 400-430, Nov. 2007.

[4] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V.
Kale, M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on blue
waters,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium (to appear), ser. IPDPS *14. IEEE Computer
Society, May 2014.

[5S] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V.
Kale, “Overcoming scaling challenges in biomolecular simulations across
multiple platforms,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, April 2008.

in MPI Forum,

[6] M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for
the FFT,” Acoustics, Speech and Signal Processing, 1998. Proceedings
of the 1998 IEEE International Conference on, vol. 3, pp. 1381-1384
vol.3, May 1998.

[71 G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” in Supercomputing '96: Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM), 1996, p. 35.

