
Introducing OpenSHMEM
SHMEM for the PGAS Community

Barbara Chapman
Computer Science Department,

University of Houston
bchapman@uh.edu

Tony Curtis
Computer Science Department,

University of Houston
arcurtis@mail.uh.edu

Swaroop Pophale
Computer Science Department,

University of Houston
spophale@cs.uh.edu

Stephen Poole
Oak Ridge National Laboratory, and
Open Source Software Solutions

spoole@ornl.gov

Jeff Kuehn
Oak Ridge National Laboratory

kuehn@ornl.gov

Chuck Koelbel
Oak Ridge National Laboratory

koelbelch@ornl.gov

Lauren Smith
Open Source Software Solutions

lauren.l.smith@ugov.gov

Abstract
The OpenSHMEM community would like to announce a new ef-
fort to standardize SHMEM, a communications library that uses
one-sided communication and utilizes a partitioned global address
space.
OpenSHMEM is an effort to bring together a variety of SHMEM

and SHMEM-like implementations into an open standard using a
community-driven model. By creating an open-source specifica-
tion and reference implementation of OpenSHMEM, there will be
a wider availability of a PGAS library model on current and fu-
ture architectures. In addition, the availability of an OpenSHMEM
model will enable the development of performance and validation
tools.
We propose an OpenSHMEM specification to help tie together a

number of divergent implementations of SHMEM that are currently
available.
To support an existing and growing user community, we will

develop the OpenSHMEM web presence, including a community
wiki and training material, and face-to-face interaction, including
workshops and conference participation.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages; D.3.4
[Processors]: Run-time environments; D.2.4 [Software/Program
Verification]: Validation

General Terms Performance, Languages, Standardization, Veri-
fication

Copyright (c) 2011 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
PGAS ’10 October 12-15, 2010, New York, New York USA.
Copyright c© 2010 ACM 978-1-4503-0461-0/10/10. . . $10.00

Keywords ACM proceedings, SHMEM, OpenSHMEM, PGAS

1. Introduction
SHMEM is a communications library that is used for Partitioned
Global Address Space (PGAS) [11] style programming. The
SHMEM communications library was originally developed as a
proprietary application interface by Cray for their T3D systems
[6]. Since then different vendors have come up with variations of
the SHMEM library implementation to match their individual re-
quirements. These implementations have over the years diverged
because of the lack of a standard specification. We aim to form a
community that will unify all SHMEM library development effort
and lead to the formulation of a standardized library to be called
OpenSHMEM. OpenSHMEM will be a community-driven, open
process.

1.1 SHMEM Features
In contrast to other language extensions such as Co-Array Fortran
[10] and Unified Parallel C (UPC) [14] which fall under the PGAS
programming model, SHMEM is a library-based approach that al-
lows an application programmer to start using an efficient one-sided
PGAS model incrementally in a known programming language.
The key features of SHMEM include one-sided point-to-point

and collective communication, a shared memory view, and atomic
operations that operate on globally visible, or “symmetric” vari-
ables in the program. Such symmetric variables can be either per-
process globals (on the heap) or allocated by SHMEM (from a spe-
cial symmetric heap) at runtime. These features allow the use of
remote direct memory access (rDMA) when supported by the net-
work.
Modern commodity networking technology such as Infiniband

enables the efficient use of this PGAS library on a wide range of
platforms. Runtime systems that have been developed for PGAS
languages can easily be used by SHMEM library implementations.

1.2 Comparison with two-sided models
Traditional message-passing in environments like MPI [1] has been
two-sided (although MPI 2 [2] introduced one-sided put and get
calls that operate on data “windows”). Communication occurs with
matching send and receive calls on both of the processors involved.
By contrast, one-sided communication does not have a matching
call pair: e.g. in a put, only the sender process participates; the
receiver is unaware of the data arriving in its memory. This can lead
to a simplified expression of parallelism and allows easier overlap
of computation and communication.

1.3 Comparison with other PGAS libraries
The best known PGAS programming interfaces are Co-Array For-
tran, UPC and Global Arrays. All of these provide global use of
memory, target distributed memory systems and rely on one-sided
communication. There also exist two commonly used communica-
tions libraries for the PGAS model: GASNet [3] and ARMCI [9].
These are targeted more at the developer level than the applica-
tion programmer, providing lower-level and finer-grained control
of data distribution and communication. The SHMEM library can
sit above GASNet or ARMCI, and is a more explicit programming
method intended for application programmers because of its ease
of use. The Chapel [7] language, for example, uses GASNet for
communication and data management in its runtime. SHMEM, on
the other hand, is intended more for programmer use in applica-
tions that exploit the PGAS model, but this does not preclude use
of SHMEM as a runtime implementation environment.

1.4 SHMEM Program Structure
SHMEM programs start with an initialization call, and then em-
ploy one-sided communication and synchronization routines to dis-
tribute data amongst processors (called processing elements, or PEs
in SHMEM) participating in the program. PEs are numbered 0, 1,
2, ... n - 1. As with MPI [1], SHMEM programs follow the Single
Program, Multiple Data (SPMD) model of operation. The code can
query its runtime environment to discover which PE is running, and
make decisions about what to do accordingly (e.g. PE 0 broadcasts
image processing data to all other PEs).
Synchronization employs fences and barriers to ensure PEs have

all finished dependent work. Point-to-point synchronizations are
also possible through “wait” routines that test remote updates of
global, symmetric variables.

1.5 History of SHMEM
SHMEM was developed originally by Cray for the Cray T3D and
subsequently the T3E models. These systems typically consisted
of a memory subsystem with a logically shared address space over
physically distributed memories, a memory interconnect network,
a set of processing elements, a set of input-output gateways, and
a host subsystem. The systems were designed to support latency
hiding mechanisms [8] such as prefetch queues, remote stores and
the Block Transfer Engine (BLT). The prefetch queues and remote
stores enabled fast transfer of small sized data, and the BLT could
hide latency while transferring thousands of words.
Since then, SHMEM has been ported to a variety of platforms

and has helped encourage the development of parallel program-
ming, including PGAS languages. Some existing SHMEM imple-
mentations include Cray [5], [4], Quadrics’ QsNet [12], SGI’s ver-
sions for their IRIX and Altix platforms, HP [13], IBM and the
SiCortex platforms [16], and the more portable but older GPSH-
MEM.

2. Towards an OpenSHMEM specification
2.1 Open Source Software Solutions
An umbrella organization called Open Source Software Solutions
(OSSS) has been formed as a “home” for OpenSHMEM and other
open source projects of interest to the U.S. government.

2.2 The current situation
There are several SHMEM implementations available at present.
These offer slightly different API syntax and subtly divergent be-
haviors, making portability an issue for codes written using dif-
ferent implementations. Moreover, performance portability suffers
as different implementors have focused on different aspects of the
software. It is therefore hard to maintain a single, high-performing
version of a code.
One simple example of this divergence is the initialization rou-

tine. In some versions it is called start pes and takes a parameter
(the number of PEs), in others it is called shmem init and takes no
parameters (the number of PEs is taken from the invoking environ-
ment).
Some, but not all, implementations provide an extra non-

blocking version of the “put” call, shmem put nb, in which the
reusability of memory is not guaranteed upon return from the put.
With the base shmem put call, local memory may be reused af-
ter return (although remote delivery can not be assumed in either
case). Applications that use these extra routines are therefore Anot
directly portable.

2.3 Extending the current specification
We propose an OpenSHMEM specification to help tie together a
number of divergent implementations of SHMEM that are currently
available. This specification will be termed version 1.0 and will
be based on the SGI version of SHMEM [15], in terms of both
the API and behavior. Also, we will produce a reference API
implementation with the required functionality.
Later, a new specification, version 2.0, will be produced with

input and guidance from the OpenSHMEM community, and there
will be a reference implementation of the new API. The purpose
of that implementation will be to enhance needed functionality
(beyond what is supported in version 1.0), and to resolve any
consistency or performance issues that are discovered in practice.

2.4 Validation and Verification
To make the validation and verification of any OpenSHMEM im-
plementation easy, we are developing a V&V suite that will merge
donated suites and include appropriate tests to exercise all compo-
nents of the library. In addition, a performance suite of tests will
also be made available to ensure that the performance of OpenSH-
MEM constructs within implementations is acceptable.

2.5 OpenSHMEM community
To support an existing and growing user community, we will de-
velop an OpenSHMEM web presence. This presence will include
documentation such as specifications, discussion documents, cheat-
sheets, a community-driven FAQ and tutorial material.
There will also be a wiki for development of 3rd. party mate-

rial for and by the community. Face-to-face interaction, including
discussion meetings, workshops and conference participation, will
be organized as needed. Interested developers and users are invited
to participate in this community-driven process. A mailing list al-
ready exists and is used for discussions about OpenSHMEM. To
subscribe, visit

https://email.ornl.gov/mailman/listinfo/openshmem

3. Conclusions
Currently there is a number of slightly different SHMEM imple-
mentations available. To allow the community of SHMEM pro-
grammers to move forward and develop programs that are portable
requires consolidation of the different APIs and behaviors of these
implementations. OpenSHMEM is a proposal to achieve exactly
that.
Making the OpenSHMEM process open to the SHMEM com-

munity will ensure that the project grows in the right direction, and
that materials produced by the project accurately reflect actual us-
age of OpenSHMEM in the real world.
As High Performance Computing systems continue to grow in

size and capacity, the overheads imposed by synchronization grow
too. Libraries like SHMEM that provide one-sided communication
and defer synchronization become ever more attractive for such
systems. SHMEM can be used either directly for application de-
velopment, or as a language implementation layer.

4. Acknowledgements
The OpenSHMEM project is supported by the U.S. Department of
Energy, and Oak Ridge National Laboratory.
SHMEM is a trademark of SGI, Inc.

References
[1] A Message Passing Interface standard. International Journal of Su-

percomputer, 8(3/4):159–416, June 1994.
[2] Message Passing Interface Forum: MPI2: A message passing interface

standard. High Performance Computing Applications, 12(1-2):1–299,
1998.

[3] D. Bonachea. GASNet specification, v1.1. Technical report, Computer
Science Department, University of California, Berkelely, 2002.

[4] Cray, Inc. Man Page Collection (Unicos LC): Shared Memory Access
SHMEM, .

[5] Cray, Inc. Man Page Collection (Unicos MP): Shared Memory Access
SHMEM, .

[6] Cray, Inc. CRAY T3D System Architecture Overview Manual, .
[7] Cray, Inc. Chapel language specification, 0.796. Technical report,

Cray, Inc, 2010.
[8] Cray Research, Inc. Cray T3D technical summary. Technical report,

Cray Research, Inc, 1993.
[9] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda. High perfor-

mance remote memory access comunications: The ARMCI approach.
International Journal of High Performance Computing and Applica-
tions, 20(2):233–253, 2006.

[10] R. Numrich and J. Reid. Co-Array Fortran for parallel programming.
Fortran Forum, 17(2), 1998.

[11] PGAS Forum. PGAS forum, http://www.pgas.org/.
[12] Quadrics Ltd. User Manual - Running Parallel Programs with RMS

and QsNet.
[13] Quadrics Supercomputers World Ltd. hp AlphaServer SC User Guide.
[14] Sébastien Chauvin and Proshanta Saha and François Cantonnet and

Smita Annareddy and Tarek El-Ghazawi. UPC Manual.
[15] SGI, Inc. SHMEM API Man Pages. http://docs.sgi.com/.
[16] SiCortex. SiCortex System Programming Guide.

