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Components of a Memory Model

A Short Intro

Traditionally, a memory model is described through two components:

I The addressing mode

I The memory consistency model

Basics

I Traditionally associated with an architecture’s given ISA

I Describe how memory can be accessed by a given process/thread

I e.g.: Can the thread simply write at address 0×800FA without
supervision?
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Memory Models
Physical (Flat) Memory Addressing

Physical (Flat) Memory Addressing

I No abstraction

I Often used in embedded systems (single-application-per-device)

I Usually: no hardware help to deal with memory isolation (e.g., no
TLB, etc.)

I Advantages:

I Simple
I Can specify specific memory ranges for specific applications at

compile/link time
I When you know what you are doing, probably leads to the most

efficient memory/resource usage

I Shortcomings:

I Makes it difficult to run more than one application at a time
I The system software is in charge of ensuring processes and threads do

not overlap when they are not collaborating
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Virtual Memory Addressing I

Principles

I Each process is given an address space (on Linux: 4GiB per process
by default)

I The operating system (OS) decides which physical address ranges to
assign to which process when it allocates memory

I Usually, the space is not contiguous: the physical memory is
partitioned:

I Into segments (the OS then computes the physical address using a
base address + offset scheme)

I In modern computer systems, pages are used (on x86 machines, one
regular page = 4KiB)

I When a process/thread accesses a virtual memory address, it is then
translated back to its corresponding physical address to access the
content
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Virtual Memory Addressing II

Features

I Use of both hardware and software mechanisms (interaction between
OS and TLB)

I Each process believes it has “all” of the memory to itself (in
Linux/UNIX, the limit is usually 4GiB/process)

I Mostly implemented through paging and segmenting

I If the physical memory is too small for the process’ needs, permanent
storage (i.e., HDDs, SSDs) are used

I Unused pages are stored on disk
I This is called swapping
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Virtual Memory Addressing III

Advantages

I Transparent to the user/programmer: no need to specify memory
ranges at link time

I Enhances portability: no need to know what is “under the hood”

I Naturally provides process isolation thanks to segmentation and
paging

I If a thread or process tries to access a virtual address outside of its
range, an exception is raised (Segmentation Fault)

I Very efficient to allow multiple processes to access and compete for
memory resources
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Virtual Memory Addressing IV

Shortcomings

I Address translation is not free:

I The system software (OS) is in charge of translating virtual pages to
physical ones

I There is a need for hardware assistance
I The memory manager must also handle memory fragmentation
I

I Translation Lookaside Buffers (TLBs) are small caches (often fully
associative) that help the OS map virtual to physical addresses (and
vice-versa)

I As a result, a TLB miss incurs a much more severe penalty than a
regular cache miss
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Addressing Physically Distributed Memory

Distributed Memory

I Fully distributed memory:

I Different compute nodes have separate address spaces
I To make nodes communicate, one needs to explicitly send data back

and forth
I Inside a given node, virtual memory may be used

I Distributed Shared Memory

I Provides the illusion that memory is shared across physically separated
nodes

I The programming environment software layer provdes the abstraction
I The system software (compiler, runtime) implements a communication

layer to transparently send data across nodes
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A 100,000-Mile View
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Advantages of Shared-Memory Systems

I No need to perform special operations to access memory locations

I State can be passed to multiple threads of execution implicitly

I Reduced overhead when read from/writing to memory

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 12 / 42



Shortcomings of Shared-Memory Systems

LOTS!

. . . But we will talk about them later.

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 13 / 42



Shortcomings of Shared-Memory Systems

LOTS!
. . . But we will talk about them later.

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 13 / 42



Symmetric MultiProcessor Systems
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Distributed Shared Memory Systems
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Why This Is More Complicated Than It Appears
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Putting It All Together
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The Advent of Chip Multi-Processors (CMP)
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Classical Compute Node in a Supercomputer
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Classical Compute Node in a Supercomputer
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Putting It All Together (Again!)
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A Motivating Example

Thread 0 Thread 1

x ← 1

y ← 1

r1← y

r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?
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What Memory Consistency is All About

Q What happens when at least two concurrent memory operations
arrive at the same memory location x?

→ What happens when a data-race (i.e. at least one of the two memory
operations is a write) occurs at some memory location x?

I Memory Consistency Models try to answer that question.
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The Answer of the Message Passing Crowd

It can never happen: data is explicitly sent and received. This answer is
fine, but. . .

I We do not live in a pure message-passing world

I Memory is shared on most super-computers, e.g.:

I Efficient MPI runtime systems make the distinction between intra-node
and inter-node communications

I Inter-node communications work as advertised, but. . .

I Efficient intra-node communications make the use of shared-memory
segments, i.e. shared memory
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Sequential Consistency (Lamport, 1978)

A system is SC if

I All memory operations appear to follow some total order

I Memory operations (appear to) follow program order

Definition: Sequential Consistency

A system is sequentially consistent if

. . . the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.
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Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?

NO −→ There is no total linear order which allows both Thread 0 and
Thread 1 to see memory operations happening in the same order such that
r1 = r2 = 0
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Sequential Consistency and its Popularity

I It behaves pretty much as one would expect in the context of a
uniprocessor-multithread execution

−→ It is considered very intuitive

I It offers strong guarantees: a modification to memory must be seen
by all other threads in a given program
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The Drawbacks of Sequential Consistency

It offers strong guarantees: a modification to memory must be seen
by all other threads in a given program

−→ How complicated is it to implement such a system in hardware ?

→ What about caches? Write buffers? etc.

−→ How scalable is it ?

−→ How expensive is it to implement that kind of consistency model?
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Coherence (Cache Consistency) (Kourosh Gharachorloo et al., 1990)

Coherence is achieved if

I for each memory location x , there is a total order of all the memory
operations dealing with x

I Memory operations on x follow the program order
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Is our First Example Coherent?

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0

Is it possible to get r1 = r2 = 0?

YES!

=⇒ r1← y , y ← 1, r2← x , x ← 1
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The Difference with Previous Models

I Previous models tried to define an order for memory operations,
regardless of their role in a program whatsoever

I Non-uniform MCMs make a difference between synchronizing memory
operations and ordinary ones
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Weak Consistency (Dubois, Scheurich, and Briggs, 1986)
Weak Ordering (S. V. Adve and Hill, n.d.)

A system is WC/WO if

I all synchronizing accesses have performed before any ordinary access
(load or store) is allowed to perform, and

I all ordinary accesses (load or store) have performed before any
synchronizing access is allowed to perform

I synchronizing accesses are SC
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Yet Another Example

Thread 0 Thread 1
· · · ← y , y = 2 · · · ← x , x = 1

z
sync← 3 z

sync← 4
x ← 1 y ← 2

Table: Is this WC?

No.
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Release Consistency (Kourosh Gharachorloo et al., 1990)

RC refines synchronizing accesses into two types: acquire and release.
They are used to label instructions (Gharachorloo speaks about properly
labeled programs). A system is RC if:

I all ordinary memory operations have performed before an acquire
operation is performed

I release accesses must have performed before any ordinary operation is
performed

I Synchronizing accesses (acquire or release) are SC
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More Examples (See (S. Adve, Pai, and Ranganathan, 1999))

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;

Data2 = 55 reg1 = Data1

Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0
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More Examples (See (S. Adve and K. Gharachorloo, 1996))

Thread 0 Thread 1
Flag1 = 1 Flag2 = 1

reg1 = Flag2 reg2 = Flag1

if reg1 == 0 if reg2 == 0

critical section critical section

Table: Ex2: What are the legal values in SC? PC? WC? RC?

Solution

SC Both reg1 and reg2 cannot be 0 (at the same time)

PC,WC,RC reg1 = 0 or 1 ; reg2 = 0 or 1
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A Brief Recap
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What to take home

I A memory consistency model defines which memory operations are
allowed, in which order

I It concerns both hardware and software points of view

I The weaker the MCM,

I the more optimizations can be performed
I the more scalable it is
I the heavier it is on a programmer’s shoulders
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If You Want to Know More. . .

I S.V. Adve and K. Gharachorloo (1996). “Shared memory consistency
models: a tutorial”. In: Computer 29.12, pp. 66–76. issn:
0018-9162. doi: 10.1109/2.546611

I David Mosberger (1993). “Memory consistency models”. In:
SIGOPS Oper. Syst. Rev. 27 (1), pp. 18–26. issn: 0163-5980. doi:
http://doi.acm.org/10.1145/160551.160553. url:
http://doi.acm.org/10.1145/160551.160553

I John L Hennessy and David A Patterson (2011). Computer
Architecture: A Quantitative Approach. Morgan Kaufmann. isbn:
9780123838728

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 40 / 42

http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/http://doi.acm.org/10.1145/160551.160553
http://doi.acm.org/10.1145/160551.160553


References I

I S.V. Adve and K. Gharachorloo (1996). “Shared memory consistency models: a tutorial”.
In: Computer 29.12, pp. 66–76. issn: 0018-9162. doi: 10.1109/2.546611

I David Mosberger (1993). “Memory consistency models”. In: SIGOPS Oper. Syst. Rev.
27 (1), pp. 18–26. issn: 0163-5980. doi:
http://doi.acm.org/10.1145/160551.160553. url:
http://doi.acm.org/10.1145/160551.160553

I Jeremy Manson, William Pugh, and Sarita V. Adve (2005). “The Java memory model”.
In: SIGPLAN Not. 40 (1), pp. 378–391. issn: 0362-1340. doi:
http://doi.acm.org/10.1145/1047659.1040336. url:
http://doi.acm.org/10.1145/1047659.1040336

I Hans-J. Boehm and Sarita V. Adve (2008). “Foundations of the C++ concurrency
memory model”. In: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation. PLDI ’08. Tucson, AZ, USA: ACM,
pp. 68–78. isbn: 978-1-59593-860-2. doi:
http://doi.acm.org/10.1145/1375581.1375591. url:
http://doi.acm.org/10.1145/1375581.1375591

I Phillip W. Hutto and Mustaque Ahamad (1990). “Slow Memory: Weakening Consistency
to Enchance Concurrency in Distributed Shared Memories”. In: ICDCS, pp. 302–309

I Guang R. Gao and Vivek Sarkar (1995). “Location Consistency: Stepping Beyond the
Memory Coherence Barrier”. In: ICPP (2), pp. 73–76

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 41 / 42

http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/http://doi.acm.org/10.1145/160551.160553
http://doi.acm.org/10.1145/160551.160553
http://dx.doi.org/http://doi.acm.org/10.1145/1047659.1040336
http://doi.acm.org/10.1145/1047659.1040336
http://dx.doi.org/http://doi.acm.org/10.1145/1375581.1375591
http://doi.acm.org/10.1145/1375581.1375591


References II

I Guang R. Gao and Vivek Sarkar (1997). “On the Importance of an End-To-End View of
Memory Consistency in Future Computer Systems”. In: Proceedings of the International
Symposium on High Performance Computing. London, UK: Springer-Verlag, pp. 30–41.
isbn: 3-540-63766-4. url: http://portal.acm.org/citation.cfm?id=646346.690059

I Guang R. Gao and Vivek Sarkar (2000). “Location Consistency-A New Memory Model
and Cache Consistency Protocol”. In: IEEE Trans. Comput. 49 (8), pp. 798–813. issn:
0018-9340. doi: 10.1109/12.868026. url:
http://portal.acm.org/citation.cfm?id=354862.354865

I Chen Chen et al. (2010). “A Study of a Software Cache Implementation of the OpenMP
Memory Model for Multicore and Manycore Architectures”. In: Euro-Par (2),
pp. 341–352

S.Zuckerman CPEG852 – Fall ’15 – Dataflow MoC 42 / 42

http://portal.acm.org/citation.cfm?id=646346.690059
http://dx.doi.org/10.1109/12.868026
http://portal.acm.org/citation.cfm?id=354862.354865

	Introduction to Memory Models
	Overview of Shared Memory Systems
	Memory Consistency Models
	A Motivating Example
	Uniform Memory Consistency Models
	Non-Uniform Memory Consistency Models
	Conclusion On MCMs


