
 Topic A

 Dataflow Model of Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 1

Guang R. Gao

ACM Fellow and IEEE Fellow

Endowed Distinguished Professor

Electrical & Computer Engineering

University of Delaware

ggao@capsl.udel.edu

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

Static

Recursive Program Graph

Dynamic

• Dataflow Architectures

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 2

Terminology Clarification

• Parallel Model of Computation

Parallel Models for Algorithm Designers

Parallel Models for System Designers

Parallel Programming Models

Parallel Execution Models

Parallel Architecture Models

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 3

What is a Program Execution

Model?

 Application Code

 Software Packages

 Program Libraries

 Compilers

 Utility Applications

(API) PXM

User Code

 Hardware

 Runtime Code

 Operating System

System

Features a User Program

Depends On

 Procedures; call/return

 Access to parameters and
 variables

 Use of data structures (static
 and dynamic)

Features expressed
within a Programming
language

 File creation, naming and
 access

 Object directories

 Communication: networks
 and peripherals

 Concurrency: coordination;
 scheduling

Features expressed
Outside a (typical)
programming language

But that’s not all !!

Developments in the 1960s,

1970s

1960

1970

1980

1990
 Personal Workstations  Distributed Systems  Internet

Drop in interest in Execution Models for 20+ Years

 Book on the B6700,
 Organick

 Rice University Computer

 Graph / Heap Model,
 Dennis

 IBM System 38

 Burroughs B5000 Project
 Started

 Vienna Definition Method

 Contour Model, Johnston

 Common Base Language,
 Dennis

Highlights Other Events

 IBM announces System 360

 Project MAC Funded at MIT

 Unravelling Interpreter,
 Arvind

 Burroughs builds Robert
 Barton’s DDM1

 RISC Architecture

 Monsoon (1989)

 Sigma 1 (1987)

 Tasking introduced in Algol
 68 and PL/I

 IBM AS / 400

Contour

Model:

Algorithm;

Nested Blocks

and Contours

- Johnston, 1971

Contour Model: Processor

- Johnston, 1971

Contour Model:

A Snapshot

- Johnston, 1971

Two Processors Sharing

Portions of Environment

- Berry, 1972

- Program with tasking - Record of Execution

Idea: A Common Base

Language

.

This is a report on the work of the Computation Structures Group of
Project MAC toward the design of a common base language for
programs and information structures. We envision that the meanings
of programs expressed in practical source languages will be defined
by rules of translation into the base language.

The meanings of programs in the base language is fixed by rules of
interpretation which constitute a transition system called the
interpreter for the base language.

We view the base language as the functional specification of a
computer system in which emphasis is placed on programming
generality -- the ability of users to build complex programs by
combining independently written program modules.

- Dennis, 1972

What Does Program Xecution

Model (PXM) Mean ?

• The notion of PXM

 The program execution model (PXM) is the basic

 low-level abstraction of the underlying system

 architecture upon which our programming model,

 compilation strategy, runtime system, and other

software components are developed.

• The PXM (and its API) serves as an interface

between the architecture and the software.

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 12

Program Execution Model

(PXM) – Cont’d

Unlike an instruction set architecture (ISA) specification, which

usually focuses on lower level details (such as instruction encoding

and organization of registers for a specific processor), the PXM

refers to machine organization at a higher level for a whole class of

high-end machines as view by the users

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 13

Gao, et. al., 2000

What is your

“Favorite”

 Program Execution Model?

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 14

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

Static

Recursive Program Graph

Dynamic

• Dataflow Architectures

 09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 15

Dataflow Model of

Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 16

+

+
*

a b c d e

1

3

4

3

Dataflow Model of

Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 17

+

+
*

a b c d e

4

3

4

Dataflow Model of

Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 18

+

+
*

a b c d e

7

4

Dataflow Model of

Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 19

+

+
*

a b c d e

28

Dataflow Model of

Computation

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 20

+

+
*

a b c d e

1

3

4

3

28

Dataflow Software Pipelining

A Base-Language

To serve as an intermediate-level

language for high-level languages

To serve as a machine language for

parallel machines

 - J.B. Dennis

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 21

~ Data Flow Graphs ~

Jac

MIT -1964

IBM announces System 360.

Project Mac selects GE 645 for Multics.

I decide to pursue research on relation of

 program structure to computer architecture.

“Machine Structures Group formed.”

By Jack B. Dennis

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 22

Karp, Miller

Parallel

Program

Schema

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 23

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 24

Data Flow Years at MIT
1974 – 1975

•􀂃 April 1974: Symposium on Programming, Paris. Dennis: “First

 Version of a Data Flow Procedure Language”.

•􀂃 January 1975: Second Annual Symposium on Computer

 Architecture, Houston. Dennis and Misunas: “A Preliminary

 Architecture for a Basic Data-Flow Processor”.

•􀂃 August 1975: 1975 Sagamore Computer Conference on

 Parallel Processing:

•􀂃 Rumbaugh: “Data Flow Languages”

•􀂃 Rumbaugh: “A Data Flow Multiprocessor”

•􀂃 Dennis: “Packet Communication Architecture”

•􀂃 Misunas: “Structure Processing in a Data-Flow Computer”

.

CPEG867-2011-F-Topic-A-Dataflow-Part1 25

•􀂃 Asynchronous Digital Logic [Muller, Bartky]

•􀂃 Control Structures for Parallel Programming:

 [Conway, McIlroy, Dijkstra]

•􀂃 Abstract Models for Concurrent Systems:

 [Petri, Holt]

•􀂃 Theory of Program Schemes [Ianov, Paterson]

•􀂃 Structured Programming [Dijkstra, Hoare]

•􀂃 Functional Programming [McCarthy, Landin]

Early Roots on Dataflow Work

at MIT in 70s

9/26/2011 09/07/2011

Symposium on Theoretical Programming

 Novosibirsk 1972

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 26

Notables Novosibirsk -1972

J. Schwartz

 Bahrs

 Luckham

M. Engeler

Ershov

Milner

Warren

McCarthy

 Miller

Igarashi

Hoare

Paterson

F. Allen

Dennis

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 27

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

Static

Recursive Program Graph

Dynamic

• Dataflow Architectures

 09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 28

Dataflow Operators

• A small set of dataflow operators can be used to
define a general programming language

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 29

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T



Dataflow Graphs

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 30

x = a + b;

z = b * 7;

z = (x-y) * (x+y);

7
a b

x y

1 2

3 4

5

Values in dataflow graphs are represented

as tokens of the form:

<ip, p, v>

Where ip is the instruction pointer p is the

port and v represents the data

<3, Left, value>

An operator executes when all its input

tokens are present; copies of the result

token are distributed to the destination

operators.
No separate control flow

Operational Semantics

(Firing Rule)

• Values represented by tokens

• Placing tokens on the arcs
 (assignment)

 - snapshot/configuration: state

• Computation

 configuration configuration

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 31

Operational Semantics

Firing Rule

• Tokens  Data

• Assignment  Placing a token in the
output arc

• Snapshot / configuration: state

• Computation

The intermediate step between snapshots /
configurations

• An actor of a dataflow graph is enabled if
there is a token on each of its input arcs

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 32

Operational Semantics

Firing Rule

• Any enabled actor may be fired to define the

“next state” of the computation

• An actor is fired by removing a token from each

of its input arcs and placing tokens on each of

its output arcs.

• Computation  A Sequence of Snapshots

Many possible sequences as long as firing rules are

obeyed

Determinacy

“Locality of effect”
09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 33

General Firing Rules

• A switch actor is enabled if a token is available
on its control input arc, as well as the
corresponding data input arc.
The firing of a switch actor will remove the input tokens

and deliver the input data value as an output token
on the corresponding output arc.

• A (unconditional) merge actor is enabled if there
is a token available on any of its input arcs.
An enabled (unconditional) merge actor may be fired

and will (non-deterministically) put one of the input
tokens on the output arc.

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 34

Conditional Expression

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 35

if (p(y)){

 f(x,y);

}

else{

 g(y);

}

T
p

f g

T F

x y

A Conditional Schema

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 36

D

(k,1)

P

(m,n)

Q

(m,n)

T F

m

m m

n n

n

k

A Loop Schema

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 37

Loop op

COND

T F

T F

Initial Loop value

F

Properties of Well-Behaved Dataflow

Schemata

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 38

.....

.....

An (m, n) Scheman

with no enabled actors

v1 vm

m 1

1 n

(a) Initial Snapshot

.....

.....

An (m, n) Scheman

with no enabled actors

m 1

1 n

(a) Final Snapshot

Well-behaved Data Flow

Graphs

• Data flow graphs that produce exactly
one set of result values at each
output arcs for each set of values
presented at the input arcs

• Implies the initial configuration is re-
established

• Also implies determinacy

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 39

Well Behaved Schemas

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 40

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

one-in-one-out
& self cleaning

f

p

T F

T F F

Loop

Well-formed Dataflow Schema

(Dennis & Fossen 1973)

• An operator is a WFDS

• A conditional schema is a WFDS

• A iterative (loop) schema is a WFDS

• An acyclic composition of component

WFDS is a WFDS

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 41

Theorem

 “A well-formed data flow graph is

well-behaved”

 proof by induction

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 42

Example of “Sick”

Dataflow Graphs

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 43

Arbitrary connections of data flow operators can result in pathological programs, such as the

following:

A

B

D

C

E

A

G H

I

K L

J

M N

1. Deadlock 2. Hangup 3. Conflict 4. Unclean

Well-behaved Program

• Always determinate in the sense that a

unique set of output values is determined by

a set of input values

• References:
 Rodriquez, J.E. 1966, “A Graph Model of Parallel Computation”,

 MIT, TR-64]

 Patil, S. “Closure Properties of Interconnections of Determinate

 Systems”, Records of the project MAC conf. on concurrent systems

 and parallel Computation, ACM, 1970, pp 107-116]

 Denning, P.J. “On the Determinacy of Schemata” pp 143-147

 Karp, R.M. & Miller, R.E., “Properties of a Model of Parallel

 Computation Termination, termination, queuing”, Appl. Math, 14(6), Nov.
1966

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 44

Remarks on Dataflow Models

• A fundamentally sound and simple parallel model
of computation (features very few other parallel
models can claim)

• Few dataflow architecture projects survived
passing early 1990s. But the ideas and models
live on ..

• In the new multi-core age: we have many
reasons to re-examine and explore the original
dataflow models and learn from the past

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 45

Graph / Heap Model

Of Program Execution

In our semantic model for extended data flow programs, values are

represented by a heap, which is a finite, acyclic, directed graph

having one or more root nodes, and such that each node of the heap

may be reached over some path from some root node.

 A snapshot of a data flow program in execution will now have two parts:

a token distribution on the graph of the program, and a heap.

 For each execution step some enabled link or actor is selected to

fire; the result of firing is a new token distribution,

 and in some cases, a modified heap.

- Dennis, 1974

The Graph and Heap Model

Select
Graph Heap

Select

Before:

After:

5

0 1 2 .. 5 ..

10

10

4/27/2009 ELEG652-09S 48

A Short Story

1960 1970 1980 1990 2000 2010

Carl Adam

Petri defines

Petri Nets

Estrin and Turn

proposed an early

dataflow model

Karp and Miller analyzed

Computation Graphs w/o

branches or merges

Rodriguez

proposes

Dataflow Graphs

Chamberlain proposes Single

Assignment language for dataflow

Dennis proposes a

dataflow language. Pure

Dataflow is born

Kahn proposes a simple

parallel processing language

with vertices as queues.

Static Dataflow is born

Dennis designs a dataflow

arch

Arvind and Gostelow, & separately Gurd and

Watson created a tagged token dataflow

model. Dynamic Dataflow is born

Arvind, Nikkel, et al designed the

Monsoon dataflow machine

http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://epubs.siam.org/siap/resource/1/smjmap/v14/i6/p1390_s1
http://publications.csail.mit.edu/lcs/specpub.php?id=632
http://dl.acm.org/citation.cfm?id=1479114
http://www.springerlink.com/content/f83tt1hk2n776390/
http://www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf
http://dl.acm.org/citation.cfm?id=642111
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://csg.csail.mit.edu/pubs/memos/Memo-297/Memo-297.pdf

Evolution of Multithreaded

Execution and Architecture Models

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 49

Non-dataflow
based

CDC 6600
1964

MASA
Halstead
1986

HEP
B. Smith
1978

Cosmic Cube
Seiltz
1985

J-Machine
Dally
1988-93

M-Machine
Dally
1994-98

Dataflow
model inspired

MIT TTDA
Arvind
1980

Manchester
Gurd & Watson
1982

*T/Start-NG
MIT/Motorola
1991-

SIGMA-I
Shimada
1988

Monsoon
Papadopoulos
& Culler
1988

P-RISC
Nikhil &
Arvind
1989

EM-5/4/X
RWC-1
1992-97

Iannuci’s
1988-92

Others: Multiscalar (1994), SMT (1995), etc.

Flynn’s
Processor
1969

CHoPP’77 CHoPP’87

TAM
Culler
1990

Tera
B. Smith
1990-

Alwife
Agarwal
1989-96

Cilk
Leiserson

LAU
Syre
1976

Eldorado

CASCADE

Static
Dataflow
Dennis 1972
MIT

Arg-Fetching
Dataflow
DennisGao
1987-88

MDFA
Gao
1989-93

MTA
HumTheobald
Gao 94

EARTH CARE
PACT95’,
ISCA96,
Theobald99

Marquez04

The technical contents

Jack’s History Note

Prof. Estrin was author of a number of paper

relating to parallel graph models for omputation.

The ones I recall were written with Prof. David

W--- (?) who was a visiting scientist at MIT for a

year or so (I don't recall what year).

The Dennis Static data flow model was implicit

in the Dennis,Misunas 1975 paper for ISCA and

was the subject of my lectures as IEEE

Distinguished speaker, but I can't quickly

determine the year. I presented a definitive

paper at the "Symposium on Theoretical

Programming", Novosibirsk, 1972, and it was

published in LNCS. If I recall correctly it was

CSG Memo 81, but a copy is not in my file. So I

think the date (1972) for static data flow on the

second slide is correct (and I believe precedes

Kahn). So I think the box "Dennis proposes ... "

is wrong (perhaps depending on what is meant

by "pure dataflow").

My view is that my 1974 paper is the first

treatment of a

reasonably complete "dynamic" data flow

model, including

arbitrary recursion and tree-structured

data objects (to be

followed in two or three years by

Arvin/Gostelow/Plouff

 Jack Dennis

 Personal Communication

 Sept. 11, 2011

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 50

Some Note on History

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 51

Some History on Dataflow

09/07/2011 CPEG867-2011-F-Topic-A-Dataflow-Part1 52

