
The UHPC/Runnemede Execution Model

S. ZUCKERMAN J.Suetterlein G.Gao

University of Delaware
Computer Architecture and Parallel Systems Laboratory (CAPSL)

October 25, 2011

Zuckerman The UHPC/Runnemede Execution Model 1 / 42



Outline
Introduction

Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion

Zuckerman The UHPC/Runnemede Execution Model 2 / 42



Introduction
Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion
Zuckerman The UHPC/Runnemede Execution Model 3 / 42



What You Already Know

I Power is the #1 issue for HPC nowadays.
I Processors will increase their core count dramatically in

the coming years
→ . . . In fact, they already are doing so

I The increase in the number of cores does not feature an
increase in ease of use/programmability.

I Did I mention power issues?

Zuckerman The UHPC/Runnemede Execution Model 3 / 42



What You Already Know

I Power is the #1 issue for HPC nowadays.
I Processors will increase their core count dramatically in

the coming years
→ . . . In fact, they already are doing so

I The increase in the number of cores does not feature an
increase in ease of use/programmability.

I Did I mention power issues?

Zuckerman The UHPC/Runnemede Execution Model 3 / 42



What You Already Know

I Power is the #1 issue for HPC nowadays.
I Processors will increase their core count dramatically in

the coming years
→ . . . In fact, they already are doing so

I The increase in the number of cores does not feature an
increase in ease of use/programmability.

I Did I mention power issues?

Zuckerman The UHPC/Runnemede Execution Model 3 / 42



What DARPA wants: Ubiquitous High-Performance
Computing

A “generic” computer, which can fit both in a tank or in
supercomputing center (with many other manycore computers
linked together). With a few additional constraints, as it must :

I fit into a cabinet
I provide ≈ 1 PFLOPS
I be power-efficient: ≈ 57KW
I be fault-tolerant
I self-aware (more on that later)
I provide security features
I be programmable

1000 cabinets −→ 1 exaflop supercomputer

Zuckerman The UHPC/Runnemede Execution Model 4 / 42



What DARPA wants: Ubiquitous High-Performance
Computing

A “generic” computer, which can fit both in a tank or in
supercomputing center (with many other manycore computers
linked together). With a few additional constraints, as it must :

I fit into a cabinet
I provide ≈ 1 PFLOPS
I be power-efficient: ≈ 57KW
I be fault-tolerant
I self-aware (more on that later)
I provide security features
I be programmable

1000 cabinets −→ 1 exaflop supercomputer

Zuckerman The UHPC/Runnemede Execution Model 4 / 42



The Four Selected Teams

DARPA has agreed to distribute 100 million dollars among
these four teams:

I Intel/Runnemede team
I Nvidia team
I MIT/Angstrom team
I Sandia/X-Caliber team

Zuckerman The UHPC/Runnemede Execution Model 5 / 42



How the Teams Will Be Evaluated

The teams will have to show how versatile their proposed
system is, by showing how they perform on five challenge
problems:

I Streaming sensors (SAR)
I Graphs traversal, connected component finding, etc.
I Decision problem: chess (minimax, alpha-beta)
I Molecular Dynamics
I Hydrodynamics (Lagrangian relaxation)

Zuckerman The UHPC/Runnemede Execution Model 6 / 42



The UHPC/Runnemede Team

Intel has decided to match DARPA’s funding (25M$). The
various partners of this team include:

I Intel for the hardware (well, duh!)
I UIUC for architecture research (led by J.Torrelas)
I ETI for the implementation of a runtime system (SWARM,

led by R.Kahn)
I Intel for CnC (Concurrent Collections, developed by Kath

Knobe)
I UIUC for the implementation of HTA/Chapel (led by

D.Padua)
I Reservoir Labs to adapt their R-Stream compiler to the

future UHPC runtime system (R.Lethin, N.Vasilache)
I . . . and the University of Delaware is in charge of designing

the parallel execution model (PXM)

Zuckerman The UHPC/Runnemede Execution Model 7 / 42



The UHPC/Runnemede Team

Intel has decided to match DARPA’s funding (25M$). The
various partners of this team include:

I Intel for the hardware (well, duh!)
I UIUC for architecture research (led by J.Torrelas)
I ETI for the implementation of a runtime system (SWARM,

led by R.Kahn)
I Intel for CnC (Concurrent Collections, developed by Kath

Knobe)
I UIUC for the implementation of HTA/Chapel (led by

D.Padua)
I Reservoir Labs to adapt their R-Stream compiler to the

future UHPC runtime system (R.Lethin, N.Vasilache)
I . . . and the University of Delaware is in charge of designing

the parallel execution model (PXM)

Zuckerman The UHPC/Runnemede Execution Model 7 / 42



The UHPC/Runnemede Team

Intel has decided to match DARPA’s funding (25M$). The
various partners of this team include:

I Intel for the hardware (well, duh!)
I UIUC for architecture research (led by J.Torrelas)
I ETI for the implementation of a runtime system (SWARM,

led by R.Kahn)
I Intel for CnC (Concurrent Collections, developed by Kath

Knobe)
I UIUC for the implementation of HTA/Chapel (led by

D.Padua)
I Reservoir Labs to adapt their R-Stream compiler to the

future UHPC runtime system (R.Lethin, N.Vasilache)
I . . . and the University of Delaware is in charge of designing

the parallel execution model (PXM)

Zuckerman The UHPC/Runnemede Execution Model 7 / 42



What Is an Execution Model?

A Definition
A program execution model defines the interactions between
the components of the whole computer system. It is a “vertical”
concept in that it traverses the whole software system stack
down to the HW (high-level languages and/or compilers,
runtime systems, OSes, hardware, and anything in-between,
such as libraries etc.). Traditionally, there are three components
to a program execution model:

I A threading/concurrency model
I A memory model
I A synchronization model

Zuckerman The UHPC/Runnemede Execution Model 8 / 42



The Big Picture

Zuckerman The UHPC/Runnemede Execution Model 9 / 42



Introduction
Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion
Zuckerman The UHPC/Runnemede Execution Model 10 / 42



UD’s Proposal: the Codelet Execution Model

I Fine-grain parallelism
I Scalable
I Expose maximal parallelism
I Limits non-determinism (determinate-by-default)
I Handles dynamic events (power,resiliency,resource

constraints in general)

Zuckerman The UHPC/Runnemede Execution Model 10 / 42



The Codelet Abstract Machine

Zuckerman The UHPC/Runnemede Execution Model 11 / 42



The Concept of Codelets

A codelet is a sequence of machine instructions which act as
an atomically-scheduled unit of computation.

Properties

I event driven
I availability of data and resources

I communicates through inputs and outputs
I non-preemptive

I may yield but never give up its register window
I requires all data and code to be “local”

Zuckerman The UHPC/Runnemede Execution Model 12 / 42



Codelet Graphs (CDG)

A CDG is a directed graph containing:
I Nodes — A node represents a codelet
I Arcs — An arc represents a data

dependency between two codelets
I Tokens — a token represent data

traveling along a given arc

Codelet graphs are analogous to dataflow graphs
[Dennis(1974),
Dennis et al.(1974)Dennis, Fosseen, and Linderman].

Zuckerman The UHPC/Runnemede Execution Model 13 / 42



CDGs: Operational Semantics

I Codelet Firing Rule
I Codelet actors are enabled once tokens are

on each input arc
I Codelet actors fire by

– consuming tokens
– performing the operations within the codelet
– producing a token on each of its output arcs

I States of a Codelet
– Dormant: Not all tokens are available
– Enabled: All data tokens are available
– Ready: All tokens are available
– Active: The codelet is executing internal

operations

Zuckerman The UHPC/Runnemede Execution Model 14 / 42



Control Structures

Codelets still require glue to
permit conditional execution
and loops. We provide:

I Conditional split
I Conditional merge
I T-gate and F-gate

(a) Conditional

(b) Loop

Zuckerman The UHPC/Runnemede Execution Model 15 / 42



Threaded Procedures (TP)

TPs are containers for codelet
graphs, with additional
meta-data.

Description

I invoked in a control-flow
manner

I called by a codelet from
another CDG

I feature a frame which
contains the context of the
CDG

Zuckerman The UHPC/Runnemede Execution Model 16 / 42



An Example of Computation Using Threaded
Procedures

Zuckerman The UHPC/Runnemede Execution Model 17 / 42



Well-Behaved

Basic rule
Upon the presentation of its inputs, an actor consumes all
tokens and places a token on all its output arcs.
Well-behaved codelets and codelet graphs ensure determinate
results.

How to ensure well-behaved codelet graphs?

I Build CDGs from the ground up
I Follow the DAG construction rules
I Use well-formed schema rules

It is highly inspired by dataflow schemas
[Dennis et al.(1972)Dennis, Fosseen, and Linderman].

Zuckerman The UHPC/Runnemede Execution Model 18 / 42



Introduction
Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion
Zuckerman The UHPC/Runnemede Execution Model 19 / 42



A Motivating Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

Zuckerman The UHPC/Runnemede Execution Model 19 / 42



A Motivating Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

Zuckerman The UHPC/Runnemede Execution Model 19 / 42



A Motivating Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

Zuckerman The UHPC/Runnemede Execution Model 19 / 42



What Memory Consistency is All About

Q What happens when at least two concurrent memory
operations arrive at the same memory location x?
→ What happens when a data-race (i.e. at least one of the

two memory operations is a write) occurs at some memory
location x?

I Memory Consistency Models try to answer that question.

Zuckerman The UHPC/Runnemede Execution Model 20 / 42



What Memory Consistency is All About

Q What happens when at least two concurrent memory
operations arrive at the same memory location x?
→ What happens when a data-race (i.e. at least one of the

two memory operations is a write) occurs at some memory
location x?

I Memory Consistency Models try to answer that question.

Zuckerman The UHPC/Runnemede Execution Model 20 / 42



What Memory Consistency is All About

Q What happens when at least two concurrent memory
operations arrive at the same memory location x?
→ What happens when a data-race (i.e. at least one of the

two memory operations is a write) occurs at some memory
location x?

I Memory Consistency Models try to answer that question.

Zuckerman The UHPC/Runnemede Execution Model 20 / 42



The Answer of the Message Passing and “Pure”
Dataflow Crowd

It can never happen: data is explicitly sent and received. This
answer is fine, but. . .

I We do not live in a pure message-passing world
I Memory is shared on most super-computers, e.g.:

I Efficient MPI runtime systems make the distinction between
intra-node and inter-node communications

I Inter-node communications work as advertised, but. . .
I Efficient intra-node communications make the use of

shared-memory segments, i.e. shared memory

Zuckerman The UHPC/Runnemede Execution Model 21 / 42



The Answer of the Message Passing and “Pure”
Dataflow Crowd

It can never happen: data is explicitly sent and received. This
answer is fine, but. . .

I We do not live in a pure message-passing world
I Memory is shared on most super-computers, e.g.:

I Efficient MPI runtime systems make the distinction between
intra-node and inter-node communications

I Inter-node communications work as advertised, but. . .
I Efficient intra-node communications make the use of

shared-memory segments, i.e. shared memory

Zuckerman The UHPC/Runnemede Execution Model 21 / 42



Sequential Consistency [Lamport(1978)]

A system is SC if
I All memory operations appear to follow some total order
I Memory operations (appear to) follow program order

Zuckerman The UHPC/Runnemede Execution Model 22 / 42



Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?
NO. −→ There is no total linear order which allows both Thread
0 and Thread 1 to see memory operations happening in the
same order such that r1 = r2 = 0

Zuckerman The UHPC/Runnemede Execution Model 23 / 42



Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?
NO. −→ There is no total linear order which allows both Thread
0 and Thread 1 to see memory operations happening in the
same order such that r1 = r2 = 0

Zuckerman The UHPC/Runnemede Execution Model 23 / 42



Sequential Consistency and its Popularity

I It behaves pretty much as one would expect in the context
of a uniprocessor-multithread execution
−→ It is considered very intuitive

I It offers strong guarantees: a modification to memory must
be seen by all other threads in a given program

Zuckerman The UHPC/Runnemede Execution Model 24 / 42



The Drawbacks of Sequential Consistency

It offers strong guarantees: a modification to memory
must be seen by all other threads in a given program

−→ How complicated is it to implement such a system in
hardware ?
→ What about caches? Write buffers? etc.

−→ How scalable is it ?
−→ How expensive is it to implement that kind of consistency

model?

Zuckerman The UHPC/Runnemede Execution Model 25 / 42



Weak Consistency
[Dubois et al.(1986)Dubois, Scheurich, and Briggs]
Weak Ordering [Adve and Hill(1990)]

A system is WC/WO if
I all synchronizing accesses have performed before any

ordinary access (load or store) is allowed to perform, and
I all ordinary accesses (load or store) have performed

before any synchronizing access is allowed to perform
I synchronizing accesses are SC

Zuckerman The UHPC/Runnemede Execution Model 26 / 42



Release Consistency
[Gharachorloo et al.(1990)Gharachorloo, Lenoski, Laudon, Gibbons, Gupta, and Hennessy]

RC refines synchronizing accesses into two types: acquire and
release. They are used to label instructions (Gharachorloo
speaks about properly labeled programs). A system is RC if:

I all ordinary memory operations have performed before an
acquire operation is performed

I release accesses must have performed before any
ordinary operation is performed

I Synchronizing accesses (acquire or release) are SC

Zuckerman The UHPC/Runnemede Execution Model 27 / 42



More Examples (See
[Adve et al.(1999)Adve, Pai, and Ranganathan])

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;
Data2 = 55 reg1 = Data1
Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0

Zuckerman The UHPC/Runnemede Execution Model 28 / 42



More Examples (See
[Adve et al.(1999)Adve, Pai, and Ranganathan])

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;
Data2 = 55 reg1 = Data1
Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0

Zuckerman The UHPC/Runnemede Execution Model 28 / 42



The Java Memory Model
There are two models:

I The first one [Gosling et al.(1996)Gosling, Joy, and Steele],
which is broken, and

I the new one
[Manson et al.(2005)Manson, Pugh, and Adve], which fixes
many problems of the first model

I . . . and which is also kinda broken
[Polyakov and Schuster(2006),
Botinčan et al.(2010)Botinčan, Glavan, and Runje] (w.r.t.
causality requirements)

However, even with all its problems, it still offers some
guarantees:

I accesses to synchronizing variables (declared with the
keyword volatile) are SC

I incorrectly synchronized programs should still provide
“out-of-thin-air” guarantees: no self-justifying write should
be allowed, and causality relations should be obeyed (this
last part has been proved to be undecidable).

Zuckerman The UHPC/Runnemede Execution Model 29 / 42



The Java Memory Model
There are two models:

I The first one [Gosling et al.(1996)Gosling, Joy, and Steele],
which is broken, and

I the new one
[Manson et al.(2005)Manson, Pugh, and Adve], which fixes
many problems of the first model

I . . . and which is also kinda broken
[Polyakov and Schuster(2006),
Botinčan et al.(2010)Botinčan, Glavan, and Runje] (w.r.t.
causality requirements)

However, even with all its problems, it still offers some
guarantees:

I accesses to synchronizing variables (declared with the
keyword volatile) are SC

I incorrectly synchronized programs should still provide
“out-of-thin-air” guarantees: no self-justifying write should
be allowed, and causality relations should be obeyed (this
last part has been proved to be undecidable).

Zuckerman The UHPC/Runnemede Execution Model 29 / 42



The Java Memory Model
There are two models:

I The first one [Gosling et al.(1996)Gosling, Joy, and Steele],
which is broken, and

I the new one
[Manson et al.(2005)Manson, Pugh, and Adve], which fixes
many problems of the first model

I . . . and which is also kinda broken
[Polyakov and Schuster(2006),
Botinčan et al.(2010)Botinčan, Glavan, and Runje] (w.r.t.
causality requirements)

However, even with all its problems, it still offers some
guarantees:

I accesses to synchronizing variables (declared with the
keyword volatile) are SC

I incorrectly synchronized programs should still provide
“out-of-thin-air” guarantees: no self-justifying write should
be allowed, and causality relations should be obeyed (this
last part has been proved to be undecidable).

Zuckerman The UHPC/Runnemede Execution Model 29 / 42



The C++ Memory Model

Very easy to understand:
I Synchronizing accesses (through the atomic keyword)

are SC
I any incorrectly synchronized behavior implies an undefined

behavior,
I . . . which really means by issuing a data-race you can have

initiated a new TCP connection in order to order 20
elephants to be delivered by next Saturday

I This is intentional: the C++0x committee wants to flag
data-races as bugs.

Zuckerman The UHPC/Runnemede Execution Model 30 / 42



The C++ Memory Model

Very easy to understand:
I Synchronizing accesses (through the atomic keyword)

are SC
I any incorrectly synchronized behavior implies an undefined

behavior,
I . . . which really means by issuing a data-race you can have

initiated a new TCP connection in order to order 20
elephants to be delivered by next Saturday

I This is intentional: the C++0x committee wants to flag
data-races as bugs.

Zuckerman The UHPC/Runnemede Execution Model 30 / 42



A Few Comments on the Previous Models

I Memory coherence is assumed by all the
“hardware-oriented” models

I “Software-oriented” models are weaker and do not assume
coherence, but they break the causality constraint (i.e.
arbitrary values can occur).

I In general, it is assumed that multiple stores to a given
location will be serialized in some order (each new store
erasing the previous one).

Location Consistency (LC) [Gao and Sarkar(2000)] takes a
different path.

Zuckerman The UHPC/Runnemede Execution Model 31 / 42



A Few Comments on the Previous Models

I Memory coherence is assumed by all the
“hardware-oriented” models

I “Software-oriented” models are weaker and do not assume
coherence, but they break the causality constraint (i.e.
arbitrary values can occur).

I In general, it is assumed that multiple stores to a given
location will be serialized in some order (each new store
erasing the previous one).

Location Consistency (LC) [Gao and Sarkar(2000)] takes a
different path.

Zuckerman The UHPC/Runnemede Execution Model 31 / 42



Can the Coherence Assumption Be Safely Removed?

I LC says yes.
=⇒ if the program needs coherence at a given level, it should

express this need explicitly.
I Each location which is written to is associated with a

partially-ordered multiset (pomset):
=⇒ as long as no chain of synchronizing accesses is performed

on a given location x , its pomset can only grow, and any
subsequent read request can return any of the values
contained in the pomset.

I If a given (set of) location is used in combination with
acquire-release pairs, then their pomset is reduced to one
element.

Zuckerman The UHPC/Runnemede Execution Model 32 / 42



An Example of Execution for LC

Thread 0 Thread 1
w1 : L← val1 w3 : L← val3
· · · · · ·
w2 : L← val2 · · ·
· · · · · ·
r1 : · · · ← L r2 : · · · ← L
sync(t1, t2) sync(t1, t2)

r3 : · · · ← L

Values read

r1 { val2, val3 }
r2 { val1, val2, val3 }
r3 { val2 } OR { val3 }

Zuckerman The UHPC/Runnemede Execution Model 33 / 42



Two Open Questions

I Should the hardware allow for more than one routing path
from one core to a given memory location?

I If the answer is yes, should the hardware allow for multiple
operations issued by the same core to arrive out-of-order?

LC’s answer is yes to both.

Zuckerman The UHPC/Runnemede Execution Model 34 / 42



Introduction
Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion
Zuckerman The UHPC/Runnemede Execution Model 35 / 42



Power

As with everything else in our model, self-awareness will have
to be handled in various hierarchies:

I at the user level: the user defines a goal for the overall
computation when starting a computation

I at the high-level programmer/compiler level: provide
locality hints to the underlying runtime system and
hardware to avoid useless data and/or code movement
(percolation).

I at the runtime level: some events come from hardware
probes (“Hot! Too hot!”), and the runtime system needs to
change its scheduling policy, clock-gate or power-gate
cores on the chip, etc.

Zuckerman The UHPC/Runnemede Execution Model 35 / 42



Resiliency

I With hundreds or thousands of cores, not all will have the
same reliability for all frequencies and all voltages .

I Near-threshold voltage and in general power-scaling or
frequency-scaling can make a (set of) core behave
strangely (read: compute incorrect results).

=⇒ The runtime system must be able to handle such cases.
For example:

I Run a same computation multiple times in parallel to verify
the correctness of a particularly important result.

I Give hints about where and when to perform
check-pointing.

I Have the hardware perform automatic check-pointing
anyway.

Zuckerman The UHPC/Runnemede Execution Model 36 / 42



Introduction
Why UHPC?
The UHPC Teams
What Is an Execution Model?

Our Concurrency Model: The Codelet Model
The Codelet Execution Model
Codelet Graphs
Well-Behaved Codelets

Memory Model
Hardware-Oriented Consistency Models
Software-Oriented Consistency Models
Our Basis for the Codelet Memory Model: Location
Consistency

Self-Awareness

Conclusion
Zuckerman The UHPC/Runnemede Execution Model 37 / 42



Quick Recap

I Codelets are small groups of machine instructions
scheduled atomically. They are grouped into codelet
graphs (CDG), which are contained in threaded
procedures. If CDGs are well-behaved, then the
computation is determinate.

I The memory consistency model we want to use as a basis
for the Codelet PXM is Location Consistency, where
everything is local by default. If some memory accesses
need to be synchronized, explicit instructions must be
added.

Zuckerman The UHPC/Runnemede Execution Model 37 / 42



Alright, alright, I know. You want the results.

. . . We don’t have any (for now!). But here is what we are about
to do:

I Create a “reference” runtime system, which will be usable
by all UHPC members (not only Intel, but Sandia, Nvidia,
MIT too). We are in the design phase.

I Create a “codelet-aware” C compiler, using LLVM. Some
work is already under way.

I Bridge the gap between the high-level languages (CnC,
HTA) and our codelet model / ETI’s runtime system
(SWARM) – and hopefully our reference runtime system.

Zuckerman The UHPC/Runnemede Execution Model 38 / 42



Alright, alright, I know. You want the results.

. . . We don’t have any (for now!). But here is what we are about
to do:

I Create a “reference” runtime system, which will be usable
by all UHPC members (not only Intel, but Sandia, Nvidia,
MIT too). We are in the design phase.

I Create a “codelet-aware” C compiler, using LLVM. Some
work is already under way.

I Bridge the gap between the high-level languages (CnC,
HTA) and our codelet model / ETI’s runtime system
(SWARM) – and hopefully our reference runtime system.

Zuckerman The UHPC/Runnemede Execution Model 38 / 42



Bibliography I
S. Adve, V. Pai, and P. Ranganathan.
Recent advances in memory consistency models for hardware shared memory
systems.
Proceedings of the IEEE, 87(3):445 –455, Mar. 1999.
ISSN 0018-9219.
doi: 10.1109/5.747865.

S. V. Adve and M. D. Hill.
Weak ordering—a new definition.
pages 2–14, 1990.

M. Botinčan, P. Glavan, and D. Runje.
Verification of causality requirements in java memory model is undecidable.
In Proceedings of the 8th international conference on Parallel processing and
applied mathematics: Part II, PPAM’09, pages 62–67, Berlin, Heidelberg, 2010.
Springer-Verlag.
ISBN 3-642-14402-0, 978-3-642-14402-8.
URL http://portal.acm.org/citation.cfm?id=1893586.1893595.

J. Dennis, J. Fosseen, and J. Linderman.
Data flow schemas.
In A. Ershov and V. A. Nepomniaschy, editors, International Symposium on
Theoretical Programming, volume 5 of Lecture Notes in Computer Science,
pages 187–216. Springer Berlin / Heidelberg, 1974.

Zuckerman The UHPC/Runnemede Execution Model 39 / 42

http://portal.acm.org/citation.cfm?id=1893586.1893595


Bibliography II

J. B. Dennis.
First version of a data-flow procedure language.
In Proceedings of the Colloque sur la Programmation, number 19 in Lecture
Notes in Computer Science, pages 362–376, Paris, France, April 9–11, 1974.
Springer-Verlag.

J. B. Dennis, J. B. Fosseen, and J. P. Linderman.
Data flow schemas.
In International Symposium on Theoretical Programming, number 5 in Lecture
Notes in Computer Science, pages 187–215. Springer-Verlag, Berlin, 1972.

M. Dubois, C. Scheurich, and F. Briggs.
Memory access buffering in multiprocessors.
In Proceedings of the 13th Annual International Symposium on Computer
Architecture, pages 434–442, Tokyo, Japan, June 1986.

G. R. Gao and V. Sarkar.
Location consistency-a new memory model and cache consistency protocol.
IEEE Trans. Comput., 49:798–813, August 2000.
ISSN 0018-9340.
doi: 10.1109/12.868026.
URL http://portal.acm.org/citation.cfm?id=354862.354865.

Zuckerman The UHPC/Runnemede Execution Model 40 / 42

http://portal.acm.org/citation.cfm?id=354862.354865


Bibliography III

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory
multiprocessors.
In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, Seattle, Washington, May 1990.

J. Gosling, B. Joy, and G. L. Steele.
The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1996.
ISBN 0201634511.

L. Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

J. Manson, W. Pugh, and S. V. Adve.
The java memory model.
SIGPLAN Not., 40:378–391, January 2005.
ISSN 0362-1340.
doi: http://doi.acm.org/10.1145/1047659.1040336.
URL http://doi.acm.org/10.1145/1047659.1040336.

Zuckerman The UHPC/Runnemede Execution Model 41 / 42

http://doi.acm.org/10.1145/1047659.1040336


Bibliography IV

S. Polyakov and A. Schuster.
Verification of the java causality requirements.
In S. Ur, E. Bin, and Y. Wolfsthal, editors, Hardware and Software, Verification
and Testing, volume 3875 of Lecture Notes in Computer Science, pages
224–246. Springer Berlin / Heidelberg, 2006.
URL http://dx.doi.org/10.1007/11678779_16.
10.1007/11678779_16.

Zuckerman The UHPC/Runnemede Execution Model 42 / 42

http://dx.doi.org/10.1007/11678779_16

	Introduction
	Why UHPC?
	The UHPC Teams
	What Is an Execution Model?

	Our Concurrency Model: The Codelet Model
	The Codelet Execution Model
	Codelet Graphs
	Well-Behaved Codelets

	Memory Model
	Hardware-Oriented Consistency Models
	Software-Oriented Consistency Models
	Our Basis for the Codelet Memory Model: Location Consistency

	Self-Awareness
	Conclusion
	Bibliography

