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What You Already Know

I Power is the #1 issue for HPC nowadays.
I Processors will increase their core count dramatically in

the coming years
→ . . . In fact, they already are doing so

I The increase in the number of cores does not feature an
increase in ease of use/programmability.

I Did I mention power issues?
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What DARPA wants: Ubiquitous High-Performance
Computing

A “generic” computer, which can fit both in a tank or in
supercomputing center (with many other manycore computers
linked together). With a few additional constraints, as it must :

I fit into a cabinet
I provide ≈ 1 PFLOPS
I be power-efficient: ≈ 57KW
I be fault-tolerant
I self-aware (more on that later)
I provide security features
I be programmable

1000 cabinets −→ 1 exaflop supercomputer
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The Four Selected Teams

DARPA has agreed to distribute 100 million dollars among
these four teams:

I Intel/Runnemede team
I Nvidia team
I MIT/Angstrom team
I Sandia/X-Caliber team
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How the Teams Will Be Evaluated

The teams will have to show how versatile their proposed
system is, by showing how they perform on five challenge
problems:

I Streaming sensors (SAR)
I Graphs traversal, connected component finding, etc.
I Decision problem: chess (minimax, alpha-beta)
I Molecular Dynamics
I Hydrodynamics (Lagrangian relaxation)
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The UHPC/Runnemede Team

Intel has decided to match DARPA’s funding (25M$). The
various partners of this team include:

I Intel for the hardware (well, duh!)
I UIUC for architecture research (led by J.Torrelas)
I ETI for the implementation of a runtime system (SWARM,

led by R.Kahn)
I Intel for CnC (Concurrent Collections, developed by Kath

Knobe)
I UIUC for the implementation of HTA/Chapel (led by

D.Padua)
I Reservoir Labs to adapt their R-Stream compiler to the

future UHPC runtime system (R.Lethin, N.Vasilache)
I . . . and the University of Delaware is in charge of designing

the parallel execution model (PXM)
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What Is an Execution Model?

A Definition
A program execution model defines the interactions between
the components of the whole computer system. It is a “vertical”
concept in that it traverses the whole software system stack
down to the HW (high-level languages and/or compilers,
runtime systems, OSes, hardware, and anything in-between,
such as libraries etc.). Traditionally, there are three components
to a program execution model:

I A threading/concurrency model
I A memory model
I A synchronization model
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The Big Picture
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UD’s Proposal: the Codelet Execution Model

I Fine-grain parallelism
I Scalable
I Expose maximal parallelism
I Limits non-determinism (determinate-by-default)
I Handles dynamic events (power,resiliency,resource

constraints in general)
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The Codelet Abstract Machine
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The Concept of Codelets

A codelet is a sequence of machine instructions which act as
an atomically-scheduled unit of computation.

Properties

I event driven
I availability of data and resources

I communicates through inputs and outputs
I non-preemptive

I may yield but never give up its register window
I requires all data and code to be “local”
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Codelet Graphs (CDG)

A CDG is a directed graph containing:
I Nodes — A node represents a codelet
I Arcs — An arc represents a data

dependency between two codelets
I Tokens — a token represent data

traveling along a given arc

Codelet graphs are analogous to dataflow graphs
[Dennis(1974),
Dennis et al.(1974)Dennis, Fosseen, and Linderman].
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CDGs: Operational Semantics

I Codelet Firing Rule
I Codelet actors are enabled once tokens are

on each input arc
I Codelet actors fire by

– consuming tokens
– performing the operations within the codelet
– producing a token on each of its output arcs

I States of a Codelet
– Dormant: Not all tokens are available
– Enabled: All data tokens are available
– Ready: All tokens are available
– Active: The codelet is executing internal

operations
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Control Structures

Codelets still require glue to
permit conditional execution
and loops. We provide:

I Conditional split
I Conditional merge
I T-gate and F-gate

(a) Conditional

(b) Loop
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Threaded Procedures (TP)

TPs are containers for codelet
graphs, with additional
meta-data.

Description

I invoked in a control-flow
manner

I called by a codelet from
another CDG

I feature a frame which
contains the context of the
CDG
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An Example of Computation Using Threaded
Procedures
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Well-Behaved

Basic rule
Upon the presentation of its inputs, an actor consumes all
tokens and places a token on all its output arcs.
Well-behaved codelets and codelet graphs ensure determinate
results.

How to ensure well-behaved codelet graphs?

I Build CDGs from the ground up
I Follow the DAG construction rules
I Use well-formed schema rules

It is highly inspired by dataflow schemas
[Dennis et al.(1972)Dennis, Fosseen, and Linderman].
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A Motivating Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?
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What Memory Consistency is All About

Q What happens when at least two concurrent memory
operations arrive at the same memory location x?
→ What happens when a data-race (i.e. at least one of the

two memory operations is a write) occurs at some memory
location x?

I Memory Consistency Models try to answer that question.
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The Answer of the Message Passing and “Pure”
Dataflow Crowd

It can never happen: data is explicitly sent and received. This
answer is fine, but. . .

I We do not live in a pure message-passing world
I Memory is shared on most super-computers, e.g.:

I Efficient MPI runtime systems make the distinction between
intra-node and inter-node communications

I Inter-node communications work as advertised, but. . .
I Efficient intra-node communications make the use of

shared-memory segments, i.e. shared memory
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Sequential Consistency [Lamport(1978)]

A system is SC if
I All memory operations appear to follow some total order
I Memory operations (appear to) follow program order
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Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?
NO. −→ There is no total linear order which allows both Thread
0 and Thread 1 to see memory operations happening in the
same order such that r1 = r2 = 0
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Sequential Consistency and its Popularity

I It behaves pretty much as one would expect in the context
of a uniprocessor-multithread execution
−→ It is considered very intuitive

I It offers strong guarantees: a modification to memory must
be seen by all other threads in a given program
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The Drawbacks of Sequential Consistency

It offers strong guarantees: a modification to memory
must be seen by all other threads in a given program

−→ How complicated is it to implement such a system in
hardware ?
→ What about caches? Write buffers? etc.

−→ How scalable is it ?
−→ How expensive is it to implement that kind of consistency

model?
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Weak Consistency
[Dubois et al.(1986)Dubois, Scheurich, and Briggs]
Weak Ordering [Adve and Hill(1990)]

A system is WC/WO if
I all synchronizing accesses have performed before any

ordinary access (load or store) is allowed to perform, and
I all ordinary accesses (load or store) have performed

before any synchronizing access is allowed to perform
I synchronizing accesses are SC
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Release Consistency
[Gharachorloo et al.(1990)Gharachorloo, Lenoski, Laudon, Gibbons, Gupta, and Hennessy]

RC refines synchronizing accesses into two types: acquire and
release. They are used to label instructions (Gharachorloo
speaks about properly labeled programs). A system is RC if:

I all ordinary memory operations have performed before an
acquire operation is performed

I release accesses must have performed before any
ordinary operation is performed

I Synchronizing accesses (acquire or release) are SC
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More Examples (See
[Adve et al.(1999)Adve, Pai, and Ranganathan])

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;
Data2 = 55 reg1 = Data1
Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0
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The Java Memory Model
There are two models:

I The first one [Gosling et al.(1996)Gosling, Joy, and Steele],
which is broken, and

I the new one
[Manson et al.(2005)Manson, Pugh, and Adve], which fixes
many problems of the first model

I . . . and which is also kinda broken
[Polyakov and Schuster(2006),
Botinčan et al.(2010)Botinčan, Glavan, and Runje] (w.r.t.
causality requirements)

However, even with all its problems, it still offers some
guarantees:

I accesses to synchronizing variables (declared with the
keyword volatile) are SC

I incorrectly synchronized programs should still provide
“out-of-thin-air” guarantees: no self-justifying write should
be allowed, and causality relations should be obeyed (this
last part has been proved to be undecidable).
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Botinčan et al.(2010)Botinčan, Glavan, and Runje] (w.r.t.
causality requirements)

However, even with all its problems, it still offers some
guarantees:

I accesses to synchronizing variables (declared with the
keyword volatile) are SC

I incorrectly synchronized programs should still provide
“out-of-thin-air” guarantees: no self-justifying write should
be allowed, and causality relations should be obeyed (this
last part has been proved to be undecidable).

Zuckerman The UHPC/Runnemede Execution Model 29 / 42



The C++ Memory Model

Very easy to understand:
I Synchronizing accesses (through the atomic keyword)

are SC
I any incorrectly synchronized behavior implies an undefined

behavior,
I . . . which really means by issuing a data-race you can have

initiated a new TCP connection in order to order 20
elephants to be delivered by next Saturday

I This is intentional: the C++0x committee wants to flag
data-races as bugs.
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A Few Comments on the Previous Models

I Memory coherence is assumed by all the
“hardware-oriented” models

I “Software-oriented” models are weaker and do not assume
coherence, but they break the causality constraint (i.e.
arbitrary values can occur).

I In general, it is assumed that multiple stores to a given
location will be serialized in some order (each new store
erasing the previous one).

Location Consistency (LC) [Gao and Sarkar(2000)] takes a
different path.
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Can the Coherence Assumption Be Safely Removed?

I LC says yes.
=⇒ if the program needs coherence at a given level, it should

express this need explicitly.
I Each location which is written to is associated with a

partially-ordered multiset (pomset):
=⇒ as long as no chain of synchronizing accesses is performed

on a given location x , its pomset can only grow, and any
subsequent read request can return any of the values
contained in the pomset.

I If a given (set of) location is used in combination with
acquire-release pairs, then their pomset is reduced to one
element.
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An Example of Execution for LC

Thread 0 Thread 1
w1 : L← val1 w3 : L← val3
· · · · · ·
w2 : L← val2 · · ·
· · · · · ·
r1 : · · · ← L r2 : · · · ← L
sync(t1, t2) sync(t1, t2)

r3 : · · · ← L

Values read

r1 { val2, val3 }
r2 { val1, val2, val3 }
r3 { val2 } OR { val3 }
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Two Open Questions

I Should the hardware allow for more than one routing path
from one core to a given memory location?

I If the answer is yes, should the hardware allow for multiple
operations issued by the same core to arrive out-of-order?

LC’s answer is yes to both.
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Power

As with everything else in our model, self-awareness will have
to be handled in various hierarchies:

I at the user level: the user defines a goal for the overall
computation when starting a computation

I at the high-level programmer/compiler level: provide
locality hints to the underlying runtime system and
hardware to avoid useless data and/or code movement
(percolation).

I at the runtime level: some events come from hardware
probes (“Hot! Too hot!”), and the runtime system needs to
change its scheduling policy, clock-gate or power-gate
cores on the chip, etc.
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Resiliency

I With hundreds or thousands of cores, not all will have the
same reliability for all frequencies and all voltages .

I Near-threshold voltage and in general power-scaling or
frequency-scaling can make a (set of) core behave
strangely (read: compute incorrect results).

=⇒ The runtime system must be able to handle such cases.
For example:

I Run a same computation multiple times in parallel to verify
the correctness of a particularly important result.

I Give hints about where and when to perform
check-pointing.

I Have the hardware perform automatic check-pointing
anyway.
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Quick Recap

I Codelets are small groups of machine instructions
scheduled atomically. They are grouped into codelet
graphs (CDG), which are contained in threaded
procedures. If CDGs are well-behaved, then the
computation is determinate.

I The memory consistency model we want to use as a basis
for the Codelet PXM is Location Consistency, where
everything is local by default. If some memory accesses
need to be synchronized, explicit instructions must be
added.
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Alright, alright, I know. You want the results.

. . . We don’t have any (for now!). But here is what we are about
to do:

I Create a “reference” runtime system, which will be usable
by all UHPC members (not only Intel, but Sandia, Nvidia,
MIT too). We are in the design phase.

I Create a “codelet-aware” C compiler, using LLVM. Some
work is already under way.

I Bridge the gap between the high-level languages (CnC,
HTA) and our codelet model / ETI’s runtime system
(SWARM) – and hopefully our reference runtime system.
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