
Introduction to Parallel
Programming

Haitao Wei

University of Delaware

Computer Architecture and
Parallel Systems Laboratory
http://www.capsl.udel.edu

http://www.udel.edu

http://www.capsl.udel.edu/
http://www.capsl.udel.edu/
http://www.capsl.udel.edu/

Outline

• Part1:Introduction to parallel programming

• Part2:Parallel Programming Tutorials

• MPI

• Pthreads

• OpenMP

09/16/2014 2 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Outline

• Models for Parallel Systems

• Parallelization of Programs

• Levels of Parallelism
• Instruction level
• Data Parallelism
• Loop Parallelism
• Functional/task Parallelism

• Parallel Programming Patterns

• Performance Metrics

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial 3

Models for Parallel System
• Machine Model

• Describe machines at lowest level of abstraction of hardware,
e.g., registers,

• Architecture Model
• Describe architecture at the level of how processing units,

memory organization, interconnect organized and execution
model of instructions

• Computation Model
• Formal model of AM for designing and analyzing algorithm, e.g.

RAM, PRAM

• Programming Model
• Describe the machine from the programmer point of view: how

the programmer to code

4 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallel Programming Model

• Parallel Programming model Influenced by
• Architecture Design
• Programming Language
• Compiler
• Runtime

• Several criteria make them different
• level of parallelism (instruction level, data level, loops level,

procedural level)
• implicit or use-defined explicit specified parallelism
• how parallel program parts are specified
• the execution model of parallel units (SIMD, SPMD, Sync,

Async)
• how to communicate (explicit comm or shared variables)

5 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Outline

• Models for Parallel Systems

• Parallelization of Programs

• Levels of Parallelism
• Instruction level
• Data Parallelism
• Loop Parallelism
• Functional/task Parallelism

• Parallel Programming Patterns

• Performance Metrics

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial 6

Parallelization of Programs

7

3.2 Parallelization of Programs 97

or thread should have about the same number of computations to perform. But

the number of memory accesses (for shared address space) or communication

operations for data exchange (for distributed address space) should also be taken

into consideration. For example, when using a shared address space, it is useful

to assign two tasks which work on the same data set to the same thread, since this

leads to a good cache usage. The assignment of tasks to processes or threads is

also called scheduling. For a static decomposition, the assignment can be done

in the initialization phase at program start (static scheduling). But scheduling can

also be done during program execution (dynamic scheduling).

3. Mapping of processes or threads to physical processes or cores: In the sim-

plest case, each process or thread is mapped to a separate processor or core, also

called execution unit in the following. If less cores than threads are available,

multiple threads must be mapped to a single core. This mapping can be done by

the operating system, but it could also be supported by program statements. The

main goal of the mapping step is to get an equal utilization of the processors or

cores while keeping communication between the processors as small as possible.

The parallelization steps are illustrated in Fig. 3.1.

P1

P3 P4

P2

gnippamgniludehcs

process 4process 2

process 1 process 3

partitioning

Fig. 3.1 Illustration of typical parallelization steps for a given sequential application algorithm.

The algorithm is first split into tasks, and dependencies between the tasks are identified. These

tasks are then assigned to processes by the scheduler. Finally, the processes are mapped to the

physical processors P1, P2, P3, and P4

In general, a scheduling algorithm is a method to determine an efficient execu-

tion order for a set of tasks of a given duration on a given set of execution units. Typ-

ically, the number of tasks is much larger than the number of execution units. There

may be dependencies between the tasks, leading to precedence constraints. Since

the number of execution units is fixed, there are also capacity constraints. Both

types of constraints restrict the schedules that can be used. Usually, the scheduling

algorithm considers the situation that each task is executed sequentially by one pro-

cessor or core (single-processor tasks). But in some models, a more general case is

also considered which assumes that several execution units can be employed for a

single task (parallel tasks), thus leading to a smaller task execution time. The overall

goal of a scheduling algorithm is to find a schedule for the tasks which defines for

each task a starting time and an execution unit such that the precedence and capacity

constraints are fulfilled and such that a given objective function is optimized. Often,

• Typical Parallelization Steps
• Partition/Decomposition: Algorithm is split into tasks

with dependencies

• Scheduling: Tasks are assigned to processes

• Mapping: Processes are mapped to physical processors

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallelization of Programs

8

• Partition/Task Decomposition

• Task: a sequence of computation unit of parallelism,
can be at different levels: instruction level, loop level,
functional level

• Task Granularity: Coarse grained and fine grained

• Compromise between number of tasks and
granularity: enough tasks to keep all processors busy
and enough granularity to amortize the
scheduling/mapping overhead

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallelization of Programs

9

• Assign tasks to processes/threads

• A process normally executes multiple different tasks

• The goal is load balance: each process should have
about the same number of computations to
perform

• Static (at the initialization phrase at program start)
or Dynamic (during program execution)

 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallelization of Programs

10

• Mapping processes to physical processor/cores

• Each process or thread is mapped to a separate
processor or core

• Goal: get an equal utilization of the physical
processors or cores while keeping communication
between the processors as small as possible.

 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Outline

• Models for Parallel Systems

• Parallelization of Programs

• Levels of Parallelism
• Instruction level
• Data Parallelism
• Loop Parallelism
• Functional/task Parallelism

• Parallel Programming Patterns

• Performance Metrics

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial 11

Parallelism at Instruction Level

12

• Task unit: one instruction
• Dependency: True, Anti, Out between instructions
• Scheduling: schedule instructions to execute in different

function unit

Loop:
 LD R1, @A
 LD R2, @B
 ADD R3, R1, R2
 MUL R4, R1, R2
 SUB R5, R3, R4
 ST R5, @C
 JNZ Loop

For i (1…n)
 C[i]=A[i]+B[i]-A[i]*B[i]

Loop:
 LD R1, @A
 LD R2, @B
 ADD R3, R1, R2 MUL R4, R1, R2
 SUB R5, R3, R4
 ST R5, @C
 JNZ Loop

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallelism at Instruction Level

13

• How to program Instruction Level Parallelism?

• Write assembly code by hand—find the
dependencies and schedule by hand

• Hardware helps you automatically—Superscalar
processor

• Compiler helps you automatically—scheduling
techniques for VLIW processor

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Data Parallelism

14

• Task unit: one operation on single element

• Dependency: None

• Schedule: Pack different data element into SIMD instruction

for(i=0;i<n;i++)
 C[i]=A[i]+B[i]-A[i]*B[i]

for i=0;i<n;i+=4){
 C[i…i+3+=A*i…i+3++B*i…i+3+-
A[i…i+3+*B[i…i+3+

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Data Parallelism

15

• How to program Data Parallelism?

• Write assembly code by hand—using SIMD
instructions, e.g. MMX, SSE

• Let compiler help you automatically—Using auto-
vectorization, e.g. gcc “-ftree-vectorize -msse2”, but
not as high efficient as hand coded

• Using data-parallel programming language

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Loop Parallelism

16

• Task unit: one iteration of the loop

• Dependency: dependencies between loop iterations

• Schedule: schedule different loop iterations to execute on
different processors/cores

for(i=0;i<n;i++)
 C[i]=A[i]+B[i]-A[i]*B[i]

without any dependencies
between iterations

for(i=0;i<n/2;i++)
 C[i]=A[i]+B[i]-A[i]*B[i]

for(i=n/2+1;i<n;i++)
 C[i]=A[i]+B[i]-A[i]*B[i]

Core0

Core1

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Loop Parallelism

17

• How to program Loop Parallelism?

• Write multithread code by hand—Decompose the
loop into different threads

• Using high level programming language—e.g.,
OpenMP

#pragma omp parallel
for(i=0;i<n;i++)
 C[i]=A[i]+B[i]-A[i]*B[i]

• Compiler do it—Under research, some experimental
compilers, e.g. PLUTO

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Functional Parallelism

18

• Task unit: code segments (statements, basic block, loops,
functions)

• Dependency: dependencies between tasks
• Schedule: schedule different tasks to execute on different

processors/cores

Fib(n)=Fib(n-1)+Fib(n-2)

f1=Fib(n-1)
f2=get_result_from_core1
return f1+f2;

f=Fib(n-2)
return f

Core0

Core1

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Functional Parallelism

19

• How to program Functional Parallelism?
• Write multithread code by hand—Decompose the

computation into different threads

• Using high level programming language—e.g.,
OpenMP, Cilk, Codelet

int fib(int n)
{
 if (n < 2)
 return n;
 int x = cilk_spawn fib(n-1);
 int y = fib(n-2);
 cilk_sync;
 return x + y;
}

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Outline

• Models for Parallel Systems

• Parallelization of Programs

• Levels of Parallelism
• Instruction level
• Data Parallelism
• Loop Parallelism
• Functional/task Parallelism

• Parallel Programming Patterns

• Performance Metrics

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial 20

Parallel Programming Patterns

21

• Parallel programs consists of a collection of tasks that are
executed by processes/threads

• Patterns: provide specific coordination structures for
processes/threads
• Fork-Join
• SPMD and SIMD
• Master–Slave
• Client–Server
• Pipelining
• Task Pools
• Producer–Consumer

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Fork-Join

22

Parallel tasks

Wake up all threads

Join

Parallel tasks

Sequential

Main thread
Work threads

Sequential task

Wake up all threads

Fork

Join

Fork

• Initial time, there is
only one main
thread do
sequential work

• Fork all work
threads to do the
work in parallel

• Join all the threads
and continue to do
sequential work

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Single Program and Multiple Data

23

• Each processor
executes the same
copy of the
program

• Each processor has
a logical copy of
data

• Each processor
uses p_id to find
their own part data

 P0 P1 P2

Multiple Data
shared/local

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Master and Slave

24

• Master control the
main function of
program
execution

• Slave does the
actual
computation
which is assigned
by Master thread

Slave0 Slave1 Slave2

Master

Control Control
Control

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Task Pool

25

• Tata structure in which
tasks to be performed
are stored and from
which they can be
retrieved for execution

• A fixed number of
threads is used for the
processing of the tasks

• a thread can generate
new tasks and insert
them into

Task Pool

Store Task

Thread 0

Retrieve Task

Thread 1

Thread 3

Thread 2

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Producer-Consumer

26

• Producer threads
produce data which are
used as input by
consumer threads

• Common data buffer is
used, which can be
accessed by both of
threads

• Synchronization has to
be used to ensure a
correct coordination
between producer and
consumer threads

Store

Producer1

Retrieve

Data Buffer

Store

Producer2

Producer3

Consumer1

Consumer2

Consumer3

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Outline

• Models for Parallel Systems

• Parallelization of Programs

• Levels of Parallelism
• Instruction level
• Data Parallelism
• Loop Parallelism
• Functional/task Parallelism

• Parallel Programming Patterns

• Performance Metrics

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial 27

Performance Metrics for Parallel
Programs

28

• Execution Time

• Sequential execution time:Ts

• Parallel execution time:Tp

• Overhead: To=pTp-Ts

• Speedup

• Speedup=Ts/Tp

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Adding N numbers using N processing
elements

29

1

2

3

4

5

6

7

8

P1

P2

P3

P4

P5

P6

P7

P8

• Communication: LogN

• Compute: LogN

• Sequential: N-1

• Speedup=(N-1)/(2LogN)

 =O(N/LogN)

comm

compute

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Amdahl’s law

30

• A program execution time Ts is composed of a
fraction of sequential execution time Ts* f and
a fraction of parallel execution time Ts* (1-f)

• Speedup=
Ts

Ts * f +Ts *
1- f

p

=
1

f +
1- f

p

£
1

f

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Amdahl’s law

31

• Do you really need parallel computing for
your program?

• Speedup is limited by the sequential part of
your program

• What is the bottleneck, how many benefits
can you get if you try to parallelize it?

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

References

32 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Parallel Programming: for Multicore and
Cluster Systems
http://www.amazon.com/Parallel-
Programming-Multicore-Cluster-
Systems/dp/364204817X

Introduction to Parallel Computing
http://www-
users.cs.umn.edu/~karypis/parbook/

MPI Programming: A Tutorial

Haitao Wei

Thanks to slides from Robert Pavel

and Daniel Orozco

 University of Delaware
http://www.udel.edu

Computer Architecture and
Parallel Systems Laboratory
http://www.capsl.udel.edu

http://www.udel.edu/
http://www.capsl.udel.edu/

MPI

• Stands for Message Passing application
programmer Interface.

• It is a specification. There is not one MPI.

• The specification describes primitives that can be
used to communicate and program.

• Inspired by the
Communicating
Sequential Processes
paper.

34 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Why Learn MPI?

• MPI is the de facto standard to program
MIMD systems.

• It can be used in SMP systems as well.

• Very versatile, can run on:

– Symmetric or asymmetric systems

– Local networks or over the internet

– On serial processors

35 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Why Learn MPI?

• Comparatively easy to use.

• All communication is explicit.

• Easy to learn

• Reasonably good performance

• Most importantly: Everyone already uses it

36 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

What is MPI?: An example

• MPI is like exchanging emails with your
advisor

• Your advisor gets hundreds of emails per day

• If he doesn’t know an email is coming, he can’t
respond

• But if he is expecting an email, he’ll read it

37 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

MPI: Execution Model

• There are P processes that are created at the
beginning.

• All processes execute the same program.

• Processes communicate and synchronize
using send and receive operations.

• Operations can be blocking or nonblocking.

38 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

The MPI Programming Model

• Write ONE program that everybody runs.

• Initialize the MPI library:

– MPI_Init

• Clean the MPI library at the end:

– MPI_Finalize

39 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

The Basics

40

MPI_Init

Initialize the MPI execution environment

int MPI_Init(int *argc, char ***argv)

Input Parameters

argc

Pointer to the number of arguments

argv

Pointer to the argument vector

MPI_Finalize

Terminates MPI execution environment

Synopsis
int MPI_Finalize(void)

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

The Basics

41

MPI_Comm_rank

Determines the rank of the calling process in the

communicator

Synopsis
int MPI_Comm_rank(MPI_Comm comm, int *rank)

 Input Argument
comm

communicator (handle)

Output Argument
rank

rank of the calling process in the group of comm (integer)

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

The Basics

42

MPI_Comm_size

Determines the size of the group associated with a

communicator

Synopsis
int MPI_Comm_size(MPI_Comm comm, int *size)

Input Parameter
comm

communicator (handle)

Output Parameter
size

number of processes in the group of comm (integer)

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Code Example
Hello World!

43

1 #include <mpi.h>
2
3 main(int argc, char *argv[])
4 {
5 int npes, myrank;
6
7 MPI_Init(&argc, &argv);
8 MPI_Comm_size(MPI_COMM_WORLD, &npes);
9 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
10 printf("From process %d out of %d, Hello World!\n",
11 myrank, npes);
12 MPI_Finalize();
13 }

./mpicc hello.c -o hello

./mpirun -np 3 hello
From process 2 out of 3, Hello
World!
From process 1 out of 3, Hello
World!
From process 0 out of 3, Hello
World!

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Sending and Receiving Data

• Now let’s actually do something useful

• MPI, at it simplest, is a series of matched
sends and receives

• Host A sends a message to Host B. Host B
receives the message

• These sends and receives are blocking by
default

• What is blocking?

44 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

45

Working Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

46

Should I use red
paint?

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

47

… Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

48

Yay, I got an
ack. Back to
work…

Yes. Use red
Ack

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

49

Working Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Now with code?

First, let’s learn us some syntax!

50 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

51

MPI_Send

Performs a blocking send

Synopsis
int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

Input Parameters

buf

 initial address of send buffer (choice)

count

 number of elements in send buffer (nonnegative integer)

datatype

 datatype of each send buffer element (handle)

dest

 rank of destination (integer)

tag

 message tag (integer)

comm

 communicator (handle)

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

52

MPI_Recv

Blocking receive for a message

Synopsis
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm, MPI_Status *status)

Output Parameters

buf

 initial address of receive buffer (choice)

status

 status object (Status)

Input Parameters

count

 maximum number of elements in receive buffer (integer)

datatype

 datatype of each receive buffer element (handle)

source

 rank of source (integer)

tag

 message tag (integer)

comm

 communicator (handle)
09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Now for Examples
The right way the wrong way

53

MPI_Comm_rank (comm, &myrank);
if (my rank == 0) {
 MPI_Send (sendbuf, count, MPI_INT, 1,
tag, comm);
 MPI_Recv (recvbuf, count, MPI_INT, 1,
tag, comm, &status);
}
else if (my rank == 1) {
 MPI_Recv (recvbuf, count, MPI_INT, 0,
tag, comm, &status);
 MPI_Send (sendbuf, count, MPI_INT, 0,
tag, comm);
}

MPI_Comm_rank (comm, &my rank);
if (my rank == 0) {
MPI_Recv (recvbuf, count, MPI_INT, 1, tag,
comm, &status);
MPI_Send (sendbuf, count, MPI_INT, 1, tag,
comm);
}
else if (my rank == 1) {
MPI_Recv (recvbuf, count, MPI_INT, 0, tag,
comm, &status);
MPI_Send (sendbuf, count, MPI_INT, 0, tag,
comm);
}

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Huh?

• Why didn’t the wrong way work?

• …

• Deadlock

• Both processes are waiting for a message to
arrive.

54 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Can we work around that?

Yes!

Non-blocking communication is one way

55 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

MPI_Isend and MPI_Irecv

• You can look online for the syntax

• And it is really long…

• The simple logic is

• Start a send/recv

• Do some work

• Only check when you need the data

56 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

57

Should I use red
paint?

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

58

Working with
the green

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

59

Working with
the green

Yes, use the
red paint.
Ack

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

60

Working with
the green

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

61

Oh, cool. I
can use red

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Visual Example

62

Working with
the red

Working

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

A Code Example
The Wrong Way done Right!

63

MPI_Comm_rank (comm, &my rank);
if (my rank == 0) {
MPI_IRecv (recvbuf, count, MPI_INT, 1, tag, comm, &recv_request);
MPI_ISend (sendbuf, count, MPI_INT, 1, tag, comm, &send_request);
MPI_Wait(&recv_request, &status);
MPI_Wait(&send_request, &status);
}
else if (my rank == 1) {
MPI_IRecv (recvbuf, count, MPI_INT, 0, tag, comm, &recv_request);
MPI_ISend (sendbuf, count, MPI_INT, 0, tag, comm, &send_request);
MPI_Wait(&recv_request, &status);
MPI_Wait(&send_request, &status);

}

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

The Last Must-Have Tool

• What if we need to ensure one phase is
complete before starting the next

• Finish washing your hands before you leave the
restroom

• How to guarantee that in MPI?

• A series of blocking sends and receives?

• Something else?

64 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Or just use Barrier

• A Barrier halts execution of code until all
processes have signaled that they have
reached a barrier

• Many ways to implement a barrier

• We may discuss these during the course

• Only use a Barrier if you need to

• Hurts performance due to idle processes

65 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Barrier!

MPI_Barrier

Blocks until all processes in the communicator have reached this routine.

Synopsis

int MPI_Barrier(MPI_Comm comm)

Input Parameter

comm

communicator (handle)

66 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Code Example
Let’s see how to use a Barrier

67

MPI_Comm_rank (comm, &myrank);
if (my rank == 0) {
 //p0 does something in stage 1
 MPI_Barrier(comm);
 //p0 does something in stage 2
 MPI_Barrier(comm);
}
else if (my rank == 1) {
 //p1 does something in stage 1
 MPI_Barrier(comm);
 //p1 does something in stage 2
 MPI_Barrier(comm);
}

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Advanced MPI

• Other types of Send/Recv

• Buffered: Copies data to another buffer

• MPI_Ssend: Won’t return until recv is completed

• MPI_Rsend: May only be used if matching recv is
already active

• MPI_SendRecv: Combines Send and Receive into
a single command

68 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Collective Operations

• An alternative to point to point operations.

• Involve communication and synchronization
between many processes.

• The two most common are:
• MPI_Bcast(…, root, ...):

• All processes call the same function.

• All processes receive data from process root.

• MPI_Reduce(…, root, …)
• A reduction operation is done with data from each process

and the result is given to the root process.

69 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Collective Example: Intuitive

• TA normally wants to inform you we have a
huge project.
• So TA “Broadcast” the information in a mass

email.

• TA will also collect the “quiz” after the
midterm exam
• a reduction is performed where all of you put

your quizzes in the basket of the root process(TA).

70 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Dot Product

71

#include "mpi.h”
main(int argc, char* argv[]) {
//Step 1:initialize vector a and b
float loc_dot=0.0f;
float dot=0.0f;
float a[N],b[N],loc_dots[N];
for (i = 0;i<N;i++) {
 a[i] = i;
 b[i] = i+1;}
//Step2 initialize MPI
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
MPI_Comm_size(MPI_COMM_WORLD,&p);
//Step3: Each processor computes a local dot product
 loc_n = N/p;
 bn = (my_rank)*loc_n;
 en = bn + loc_n;
 loc_dot = 0.0;
 for (i = bn;i <en; i++) {
 loc_dot = loc_dot + a[i]*b[i];
 }

// Step4: collect result
MPI_Reduce(&loc_dot, dot, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD);

if(my_rank==0)
 printf("dot product = %f",dot);

/* mpi is terminated. */
 MPI_Finalize();
}

09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Thoughts on Advanced MPI

• Be very careful

• Using collectives may kills performance

• If only because they are blocking

• There may be special cases where the
specialized send and recv are useful

• But unless you are in HPC, use whatever is
most intuitive

72 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

Can I use MPI with…

• Fortran?
• Yes

• C++?
• Yes, and it is actually a very intuitive interface that I really like

• Java?
• Not easily

• Python?
• Yes

• Matlab?
• Not easily

73 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

References

• The CSP paper

• http://portal.acm.org/citation.cfm?id=359576.35
9585

• A Reference for MPI

• http://www.mcs.anl.gov/research/projects/mpi/
www/www3/

74 09/16/2014 CAPSL – Introduction to Parallel Programming and MPI Tutorial

http://portal.acm.org/citation.cfm?id=359576.359585
http://portal.acm.org/citation.cfm?id=359576.359585
http://www.mcs.anl.gov/research/projects/mpi/www/www3/
http://www.mcs.anl.gov/research/projects/mpi/www/www3/
http://www.mcs.anl.gov/research/projects/mpi/www/www3/

