
MapReduce: The programming model,
motivation and practice 

Hao Tu

(Codes and Figures are from Tom White’s book and some
slides are from Pietro Michiardi’s Tutorial)

2014-10-28 652-14F-MR-intro 1

University of Delaware
Computer Architecture
and Parallel Systems
Laboratory
http://www.capsl.udel.eduhttp://www.udel.edu

http://www.capsl.udel.edu/
http://www.capsl.udel.edu/
http://www.capsl.udel.edu/

This slides
• Will talk about

– A very brief introduction to MapReduce
– Motivation: Different solutions form serial to parallel to easier

parallel, with a max temperature computation example
– Running the example code
– Setting up a development environment for Hadoop under the

Eclipse IDE
• Will not talk about

– Detail introduction to MapReduce/Hadoop, you need to figure
out the details by yourself and answer the question sets

652-14F-MR-intro 2

What is MapReduce

• A programming model
– Simple yet not too simple to express useful programs
– Restricted, yet powerful programming construct
– Inspired by functional programming
– Allows expressing distributed computations on massive

amounts of data

• An runtime implementation
– Automatic parallelization
– Across large-scale clusters of machines
– Tolerate failures
– Hide messy internals from users

652-14F-MR-intro 3

Brief introduction
• Key-value pairs are the basic data structure in MapReduce, the

programmer need:
– Imposing the key-value structure on arbitrary datasets
– defines a mapper and a reducer as follows

• map: (k1, v1) → [(k2, v2)]
• reduce: (k2, [v2]) → [(k3, v3)]

• A MapReduce job consists in:
– A dataset stored on the underlying distributed filesystem, which is split

in a number of files across machines
– The mapper is applied to every input key-value pair to generate

intermediate key-value pairs
– The reducer is applied to all values associated with the same

intermediate key to generate output key-value pairs

652-14F-MR-intro 4

652-14F-MR-intro 5

652-14F-MR-intro 6

Motivation

• Most computations are conceptually
straightforward.

• While parallelization conspire to obscure the
original simple computation with large amounts
of complex code.

• Can we design an abstraction that allows us to
express the simple computations we were trying
to perform but hides the messy details of
parallelization, fault tolerance, data distribution
and load balancing in a library?

652-14F-MR-intro 7

A Straightforward Example

• Considering we will write a program to mine weather
data.

• Objective
– Find the max temperature for every year

• Dataset
– Datafiles from National Climatic Data Center are organized

by year and weather station
– The data is stored using a line-oriented format, in which

each line is a record.
– The whole dataset is made up of a large number of

relatively small files.

652-14F-MR-intro 8

Data example

652-14F-MR-intro 9

Solution 1: straightforward

• Pseudo code

for each year in DataSet:
 for each line in year:
 temp = fetch_temperature_from_line()
 if temp > max:
 max = temp
 print year, max

Can it be parallelized?

652-14F-MR-intro 10

Idea

• Divide and Conquer
– A feasible approach to tackling big data problems
– Partition a large problem into smaller sub-problems
– Independent sub-problems executed in parallel
– Combine intermediate results from each individual

worker

• The workers can be:
– Threads in a processor core
– Multiple processors in a machine
– Many machines in a cluster

652-14F-MR-intro 11

Solution 2: parallel without MR

• In theory, it looks straightforward too

– Process different years in different worker(threads/
processes/machines using OpenMP/pthread/MPI)

• However

– Dividing the work into equal-size pieces isn’t easy or
obvious

– Distributing the work to and combining the results from
independent worker need further processing

– What if a worker fail to finish its job
– …

652-14F-MR-intro 12

Implementation details
• Developer needs to take care of (almost) everything,

including Synchronization, Concurrency, Resource
allocation …
– Decompose the original problem in smaller, parallel tasks
– Schedule tasks on workers distributed in a cluster

• Data locality
• Resource availability

– Ensure workers get the data they need
– Coordinate synchronization among workers
– Share partial results
– Handle failures

652-14F-MR-intro 13

Solution 3: parallel with MR

• All we need to do is

– Code of mappers and reducers

– Code for combiners and partitioners (optional)

– Configuration parameters

– All packaged together

• A MapReduce job is submitted to the cluster,
the framework takes care of everything else

652-14F-MR-intro 14

MR logical data flow

• Map

– <line_offsets, line> -> [<year, temperature>]
• Reduce

– <year, [temperature]> -> [<year, max_temperature>]

652-14F-MR-intro 15

Example - Mapper

652-14F-MR-intro 16

Example - Reducer

652-14F-MR-intro 17

Example - Job

652-14F-MR-intro 18

Run example code

652-14F-MR-intro 19

652-14F-MR-intro 20

When answer project question 1

• Take into account:

– Basic concept: such as Key/value, Map, Reduce,
Partition, Sort, Shuffle

– Describe the MapReduce data flow using
WordCount as a example

– Explain How the problems such as
Synchronization, data locality and failure are
solved in MapReduce/Hadoop

652-14F-MR-intro 21

Set up a development environment

• Step 1: Download and install Hadoop and Eclipse

A. One way is to install Hadoop and Eclipse on your
machine.

– Download Hadoop 2.5.1 http://hadoop.apache.org/
releases.html#Download

– Follow the tutorial[1] to install and test Hadoop

– Download and Eclipse(Juno) Eclipse IDE for Java
Developers on your machine https://www.eclipse.org/
downloads/

652-14F-MR-intro 22

Set up a development environment
• Step 1: Download and install Hadoop and Eclipse

B. Or alternatively, we can set up a virtual machine with already installed
Hadoop and Eclipse.

– Download and install VirtualBox on your machine: http://virtualbox.org/
wiki/ Downloads

– Download the Cloudera Quickstart VM for virtualbox at http://
www.cloudera.com/content/cloudera/en/downloads.html

– Uncompress the VM archive. It is compressed with 7-Zip. If needed,
you can download a tool to uncompress the archive at http://www.7-
zip.org/.

– Start VirtualBox(sudo virtualbox) and click Import Appliance. Click the
folder icon beside the location field. Browse to the uncompressed
archive folder, select the .ovf file, and click the Open button. Click the
Continue button. Click the Import button.

652-14F-MR-intro 23

Set up a development environment

• Step 2: Configure Eclipse

– Create a JAVA project

– Add External JARS:
• Install: $HADOOP/share/

– common/
– Common/lib
– Hdfs
– Mapreduce
– yarn

• VM: /usr/lib/Hadoop/client/

652-14F-MR-intro 24

Set up a development environment

• Step 3: Run

– A. Run in Eclipse

• Run -> Run Configurations

– B. Export a .jar and run with Hadoop command

• File -> Export ->Java ->JAR file

• Bash>hadoop jar wc.jar WordCount /in/data /out/
result

652-14F-MR-intro 25

Reference
• [1] Tom White, Hadoop: The Definitive Guide, 3rd Edition.

Publisher: O'Reilly Media / Yahoo Press, 2012
• [2] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

simplified data processing on large clusters."
Communications of the ACM 51.1 (2008): 107-113.

• [3]Pietro Michiardi, Tutorial: MapReduce - Theory and
Practice of Data-intensive Applications, http://
www.eurecom.fr/~michiard/teaching/slides/clouds/tutorial-
mapreduce.pdf

• [4] Jerry Zhao, Jelena Pjesivac-Grbovic, MapReduce - The
Programming Model and Practice, http://
static.googleusercontent.com/media/research.google.com/
en/us/archive/papers/mapreduce-sigmetrics09-tutorial.pdf

652-14F-MR-intro 26

Question?

652-14F-MR-intro 27

