
Distributed Shared Memory for
High-Performance Computing

Stéphane Zuckerman Haitao Wei Guang R. Gao

Computer Architecture & Parallel Systems Laboratory
Electrical & Computer Engineering Dept.

University of Delaware
140 Evans Hall Newark,DE 19716, USA

{szuckerm, hwei, ggao}@udel.edu

Tuesday, October 17, 2014

Zuckerman et al. PGAS 1 / 22



Outline

1 Introduction

2 Hardware Distributed Shared Memory: NUMA Systems
Uniform Memory Access Systems
Non-Uniform Memory Access Systems

3 Software Distributed Memory Systems
Introduction to Global Partition Address Space Systems

4 Where to Learn More

Zuckerman et al. PGAS 2 / 22



Introduction I

Why Distributed Shared Memory?
I To ease the programmer’s task ⇒ productivity
I . . . And that is mostly it, really.

Why Is Productivity Important?
Let’s ask Fred Brooks (Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 8):

IBM OS/360 experience, while not available in the detail of Harr’s data, confirms it.
Productivities in range of 600–800 debugged instructions per man-year were
experienced by control program groups. Productivities in the 2000–3000 debugged
instructions per man-year were achieved by language translator groups. These
include planning done by the group, coding component test, system test, and some
support activities (. . . )
Both Harr’s data and OS/360 data are for assembly language programming. Little
data seem to have been published on system programming productivity using
higher-level languages. Corbatò of MIT’s Project MAC reports, however, a mean
productivity of 1200 lines of debugged PL/I statements per man-year on the
MULTICS system (between 1 and 2 million words). (. . . )

Zuckerman et al. PGAS 3 / 22



Introduction II

Why Is Productivity Important? (Cont’d)
Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 8:

This number is very exciting. Like the other projects, MULTICS includes control
programs and language translators. Like the others, it is producing a system
programming product, tested and documented. The data seem to be comparable in
terms of kind of effort included. And the productivity number is a good average
between the control program and translator productivities of other projects. But
Corbatò’s number is lines per man-year, not words! Each statement in his system
corresponds to about three to five words of handwritten code! This suggests two
important conclusions.

I Productivity seems constant in terms of elementary statements, a conclusion
that is reasonable in terms of the thought a statement requires and the errors
it may include.

I Programming productivity may be increased as much as five times when a
suitable high-level language is used

Zuckerman et al. PGAS 4 / 22



Introduction III

Why Is Productivity Important? (cont’d)
Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 12:

The chief reasons for using a high-level language are
productivity and debugging speed (. . . ) There is not a lot of
numerical evidence [in the 1960s. . . ], but what there is
suggests improvement by integral factors, not just incremental
percentages. (. . . ) For me, these productivity and debugging
reasons are overwhelming. I cannot easily conceive of a
programming system I would build in assembly language.

So really, productivity solves two major problems: Time-to-solution
(i.e., software is produced faster), and how to produce bug-free code

Zuckerman et al. PGAS 5 / 22



Introduction IV

Different Ways of Implementing DSMs
I Hardware
I Software
I Hardware-software hybrids

Zuckerman et al. PGAS 6 / 22



Uniform Memory Access Systems I

Uniform Memory Access
I SMP systems used to propose a uniform access to memory banks

⇒ Example: for x86, a single front-side bus (FSB) to access DRAM
I Advantages:

I For the hardware, easier to design and implement
I For the programmer, guarantees on latency

I Drawbacks:
I To guarantee uniform access, throughput is somewhat slowed down
I In general, UMA architectures do not scale beyond a single

compute node.
I Even on a single compute node, UMA systems saturate easily

Zuckerman et al. PGAS 7 / 22



Non-Uniform Memory Access Systems I

Non-Uniform Memory Access Systems
I Hardware can be designed so memory banks are directly

attached to a given (set of) socket(s)
I To maintain a single address space, an interconnection system

must be implemented
I In theory NUMA systems need not be coherent
I In practice all NUMA systems currently available are really Cache

Coherent NUMA (ccNUMA)
I Examples: x86-based multi-processor compute nodes provide an

interconnection network:
I AMD Opteron-based systems use HyperTransport
I Intel Xeon-based systems use QuickPath Interconnect (QPI)
I SGI proposed the Altix multiprocessor NUMA system (based on

Intel Itanium2 processors) where an unmodified Linux OS could
access up to 1024 processors (so up to 2048 cores)

Zuckerman et al. PGAS 8 / 22



Non-Uniform Memory Access Systems II

Limits of (cc-)NUMA
I Even in the case of large-scale NUMA like Altix systems,

scalability remains an issue:
I At the hardware level: producing hardware for large-scale ccNUMA

requires it to be tightly coupled with the processors
I At the software level: ensuring data locality becomes a bigger

problem
I At the operating system level: a choice must be made (by the

user):
I Let the OS follow a “first-touch” page allocation policy ⇒ best for

when the software can easily be optimized for locality
I Require the OS to allocate pages in a random or round-robin way

(when data access is truly random-ish).

I For very large scale computations, an additional software layer
must be implemented to help access the fast network devices
(e.g., Infiniband, Quadrics, etc.).

Zuckerman et al. PGAS 9 / 22



Introduction to Global Partition Address Space Systems

Basic Concepts
I Maintain a programmer-centric global address space
I “Automagically” partition arrays and other shared data structures

across compute nodes
I Provide means to handle locality: if an object is supposed to be

available locally, there should be a way to inform the system
I When shared data structures are accessed, the software

automatically knows where to issue the request

How to Implement PGAS
I Using a library (e.g., Gasnet)
I Using a programming language (e.g., X10, Chapel, Titanium, . . . )

Zuckerman et al. PGAS 10 / 22



PGAS Languages

A Very Brief History
DARPA’s High Productivity Computing Systems (HPCS) program was
launched in 2002 with five teams, each led by a hardware vendor:
Cray Inc., Hewlett-Packard, IBM, SGI, and Sun Microsystems.

Examples of PGAS Languages
Several languages are following a PGAS approach: IBM’s X10, Cray’s
Chapel, HP and Berkeley’s Unified Parallel C (UPC), etc.
They all propose constructs to express parallelism in a more or less
implicit way. Most of these languages are either developed as an Open
Source package or propose an open implementationa

aThis is important: languages get popular thanks to their availability or
because they are the only ones on their “market segments!”

Zuckerman et al. PGAS 11 / 22



Chapel I
Overview

Chapel
I Official web site: http://chapel.cray.com
I Open Source (https://github.com/chapel-lang)
I Targets “general parallelism” (i.e. any algorithm should be

expressible as a Chapel program)
I Separates parallelism and locality: concurrent regions of code vs.

data placement.
I Multi-resolution parallelism: either use implicit parallelism, or if

parallel expert, use direct parallel constructs to drive parallel
execution

I Targets productivity (type inference, iterator functions, OOP,
various array types)

I Data-centric

Zuckerman et al. PGAS 12 / 22

http://chapel.cray.com
https://github.com/chapel-lang


Chapel II
Overview

Task Parallelism Constructs
I begin{...}: Creates an anonymous task using the code

between braces
I cobegin{...}: Fine-grain way to task creation – Creates a task

for each statement in the block

Data Parallelism Constructs
I forall elem in Range do ...: Creates a coarse-grain

parallel loop – akin to OpenMP’s #pragma omp for

I coforall elem in Collection do ...: Creates a
fine-grain parallel loop – each iteration is a task

Zuckerman et al. PGAS 13 / 22



Chapel III
Overview

Synchronization
I sync{statement;}: Creates a synchronization point for all tasks

created within a parallel region. Akin to a barrier (coarse-grain
synchronization)

I var variableName sync type;: Creates a (set of)
synchronization variable(s) which acts as a full/empty bit (set of)
location(s).

I var variableName atomic type;: Creates a (set of)
variable(s) that are accessed atomically (accesses are
sequentially consistent).

Zuckerman et al. PGAS 14 / 22



Chapel IV
Overview

Locality Constructs
I The Locale type: used to confine portions of computations and

data to a specific part of the machine (typically a compute node).
I The on clauses: to make a statement execute a specific locale.

Locality and parallelism constructs can be combined, e.g., begin on
Locale.left {...}

Zuckerman et al. PGAS 15 / 22



X10 I

X10
I Official web site: http://x10-lang.org
I Open Source

(http://sourceforge.net/projects/x10/files/x10dt/
2.5.0/x10dt-2.5.0-linux.gtk.x86.zip/download)

I Built on top of Java VM
I Partially inspired by Scala (a mostly functional, but multi-paradigm

language based on the JVM)
I Provides a back-end to both Java and C++ code

(source-to-source translation)
I Also distinguishes between parallelism and locality

Zuckerman et al. PGAS 16 / 22

http://x10-lang.org
http://sourceforge.net/projects/x10/files/x10dt/2.5.0/x10dt-2.5.0-linux.gtk.x86.zip/download
http://sourceforge.net/projects/x10/files/x10dt/2.5.0/x10dt-2.5.0-linux.gtk.x86.zip/download


X10 II

Parallel Constructs
I async{...}: Creates an anonymous task using the code

between braces
I finish{statement;}: Creates a synchronization point for all

async tasks created within a parallel region.
I Can be combined: finish async{...}

Locality Constructs: Accessing Places
I at: Place shifting operation
I when: Concurrency control within a place
I atomic: Concurrency control within a place
I GlobalRef[T]: Distributed heap management
I PlaceLocalHandle[T]: Distributed heap management

Zuckerman et al. PGAS 17 / 22



X10 III

Combining Locality and Parallelism Constructs
I at(p) function(...): Remote evaluation
I at(p) async function(...): Active message
I finish for (p in Places.places()) { at(p) async

runEverywhere(...)} : SPMD
I at(ref) async atomic ref() += v: Atomic remote update

Zuckerman et al. PGAS 18 / 22



X10 Examples
Hello World

import x10.io.Console;

class HelloWorld {
public static def main(Rail[String]) {

Console.OUT.println("Hello World!" );
}

}

import x10.io.Console;
class HelloWholeWorld {
public static def main(args:Rail[String]):void {

if (args.size < 1) {
Console.OUT.println("Usage: HelloWholeWorld message");
return;

}

finish for (p in Place.places()) {
at (p) async Console.OUT.println(here+" says hello and "+args(0));

}
Console.OUT.println("Goodbye");

}
}

Zuckerman et al. PGAS 19 / 22



X10 Examples
Hello World

import x10.io.Console;

class HelloWorld {
public static def main(Rail[String]) {

Console.OUT.println("Hello World!" );
}

}

import x10.io.Console;
class HelloWholeWorld {
public static def main(args:Rail[String]):void {

if (args.size < 1) {
Console.OUT.println("Usage: HelloWholeWorld message");
return;

}

finish for (p in Place.places()) {
at (p) async Console.OUT.println(here+" says hello and "+args(0));

}
Console.OUT.println("Goodbye");

}
}

Zuckerman et al. PGAS 19 / 22



X10 Examples
Fibonacci
import x10.io.Console;

public class Fibonacci {

public static def fib(n:long) {
if (n<2) return n;

val f1:long;
val f2:long;
finish {

async { f1 = fib(n-1); }
async { f2 = fib(n-2); }

}
return f1 + f2;

}

public static def main(args:Rail[String]) {
val n = (args.size > 0) ? Long.parse(args(0)) : 10;
Console.OUT.println("Computing fib("+n+")");
val f = fib(n);
Console.OUT.println("fib("+n+") = "+f);

}
}

Zuckerman et al. PGAS 20 / 22



Learning More About Multi-Threading and OpenMP

Internet Resources

I General PGAS web site: http://pgas.org

I Chapel: http://chapel.cray.com

I X10: http://x10-lang.org

I UPC: http://upc-lang.org, http://upc.lbl.gov/ and http://upc.gwu.edu

I The GASNet library (used in Berkeley’s UPC): http://gasnet.lbl.gov/

Tutorials Used for this Class

I Bradford L. Chamberlain’s overview of Chapel:
http://chapel.cray.com/papers/BriefOverviewChapel.pdf

I Chamberlain’s slides to present Chapel:
http://chapel.cray.com/presentations/ChapelForETH-distributeme.pdf

I X10 tutorial slides: http://x10.sourceforge.net/tutorials/x10-2.4/
APGASProgrammingInX10/APGASprogrammingInX10-slides-V7.pdf

I UPC tutorial slides: http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf

Food for Thoughts

I Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”
(available at http://www.gotw.ca/publications/concurrency-ddj.htm)

I Lee, “The Problem with Threads” (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

I Boehm, “Threads Cannot Be Implemented As a Library” (available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

Zuckerman et al. PGAS 21 / 22

http://pgas.org
http://chapel.cray.com
http://x10-lang.org
http://upc-lang.org
http://upc.lbl.gov/
http://upc.gwu.edu
http://gasnet.lbl.gov/
http://chapel.cray.com/papers/BriefOverviewChapel.pdf
http://chapel.cray.com/presentations/ChapelForETH-distributeme.pdf
http://x10.sourceforge.net/tutorials/x10-2.4/APGASProgrammingInX10/APGASprogrammingInX10-slides-V7.pdf
http://x10.sourceforge.net/tutorials/x10-2.4/APGASProgrammingInX10/APGASprogrammingInX10-slides-V7.pdf
http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf


References I

Boehm, Hans-J. “Threads Cannot Be Implemented As a Library”. In:
SIGPLAN Not. 40.6 (June 2005), pp. 261–268. ISSN: 0362-1340.
DOI: 10.1145/1064978.1065042. URL:
http://doi.acm.org/10.1145/1064978.1065042.

Brooks Jr., Frederick P. The Mythical Man-month (Anniversary Ed.)
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. ISBN: 0-201-83595-9.

Lee, Edward A. “The Problem with Threads”. In: Computer 39.5 (May
2006), pp. 33–42. ISSN: 0018-9162. DOI: 10.1109/MC.2006.180.
URL: http://dx.doi.org/10.1109/MC.2006.180.

Sutter, Herb. “The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software”. In: Dr. Dobb’s Journal 30.3 (2005).

Zuckerman et al. PGAS 22 / 22

http://dx.doi.org/10.1145/1064978.1065042
http://doi.acm.org/10.1145/1064978.1065042
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180

	Introduction
	Hardware Distributed Shared Memory: NUMA Systems
	Uniform Memory Access Systems
	Non-Uniform Memory Access Systems

	Software Distributed Memory Systems
	Introduction to Global Partition Address Space Systems

	Where to Learn More

