
Architecture and Programming Model
for High Performance Interactive

Computation

—Based on “Air Force Project—DDDAS”
UD Collaborates with MIT

Jack B. Dennis, Arvind, Guang R. Gao , Xiaoming Li and Lian-Ping Wang

Haitao Wei
CAPSL at UDEL

ECE Seminar 9/17/14

Outline

•  Introduction to DDDAS/Interaction Computation
–  An Example and Problems

•  Fresh Breeze Execution Model and Architecture
–  Execution Model
–  Memory Model
–  Task Model
–  Architecture

•  Compiler Framework for Fresh Breeze
•  Streaming and Transactions

–  Stream Type and Operations
–  Concurrency Operations of Transaction Style
 1

An Example of DDDAS/Interaction
 Computation —Radio Astronomy

2

Antenna	
Array

Local	
Processor

	
Observer

Data	
Analysis

Antenna	
Array

Local	
Processor

Receipt
signals

Filter signals
and control

Make decision and
change parameters

Analyze
signals

Dynamic Data Driven Application System
 (DDDAS)—Challenges

•  real time interaction with parts of the physical

 environment.

•  management of processing and memory resources
 according to dynamic needs generated by local events

•  input and output devices process streams of data items

•  make decisions about the work using transaction
 processing
 3

Our Solutions: Programming Model and
 Architecture Support

•  Fresh Breeze Execution Model and Architecture
–  based on codelet execution model
–  support fine-grained execution and memory management

•  Streaming
–  support streaming data expression and operations

•  Transaction
–  support concurrency operations of transaction style

4

Outline

•  Introduction to DDDAS/Interaction Computation
–  An Example and Problems

•  Fresh Breeze Execution Model and Architecture
–  Execution Model
–  Memory Model
–  Task Model
–  Architecture

•  Compiler Framework for Fresh Breeze
•  Streaming and Transactions

–  Stream Type and Operations
–  Concurrency Operations of Transaction Style
 5

Case Studies of  
Fine-Gran Execution Models

•  Dataflow Model (1970s -)
•  EARTH Model (1993 -2006)
•  HTVM Model (2000 -2010)
•  Fresh Breeze Model (2000 -)
•  Codelet Model (2010-)

6

Fresh Breeze Execution Model

Task Model
A	 set	 of	 rules	 for	 crea7ng,	 destroying	 and	 managing	 threads

Memory	 Model
Dictate	 the	 ordering	 of	 memory	 opera7ons

Synchronization Model
Provide	 a	 set	 of	 mechanisms	 to	 protect	 from	 data	 races

Execution
Model

The Abstract Machine
7

Fresh Breeze Memory Model 
-- Main Features and Vision

•  Global shared name space with “one-level store”
•  A single-update storage model to eliminate the

 cache-coherence problem
•  Concept of “sealed” memory chunks/sections

 with single assigned property
•  Trees of fixed-sized chuncks
•  Fine-Grain memory management support
•  memory allocation and data transfer is performed

 entirely by architecture/hardware mechanisms[nd
 security

8

Fresh Breeze Memory Model

9

Master
Chunk Data

Chunk
…

…

DAG heap

Arrays as Trees of Chunks

data item chunk handle

•  Write Once then Read only
•  Fix chunk size: 128 Bytes: 16

doubles, 32 integers,…
•  Chunk handle: 64 bits unique

identifier
•  Arrays: Three levels yields 4096

elements(longs)

Task/Concurrency	 Model
Master Task

spawn(n)

join_fetch

join_update join_update

Spawned Tasks

Join

Worker 0 Worker n-1

ContinuationTask

-  Asynchronous
tasking
-  Continuation
Task receives
children’s results
-  Non-blocking

continuation
-  Light-Weight

Tasks

10

Example—Dot	 Product

Step1:
Build
Vector

11

sum=0;
for(i=0;i<16*16*16;i++)
sum+=A[i]*B[i];

Build	
Vector

Build	
Vector

… Build	
Vector

Build	 	
Chunk

Build	
Chunk

Build	
Chunk

Build	
Chunk

… … …

A0~A15 A240~A255

… …

Build	 	
Done

Build	 	
Done

…

Con7nue	
Codelet

Data Chunk
16 elements

Sync
Chunk

…

…

Join-update

Example—Dot	 Product

Step2:
Compute

12

Traverse	
Vector

Traverse	
Vector

… Traverse	
Vector

Compute Compute Compute Compute … … …

A0~A15

… …

Reduce Reduce

…

Reduce	

partial
sum

…

…

B0~B15

sum

partial
sum

sum

… … …

sum=0;
for(i=0;i<16*16*16;i++)
sum+=A[i]*B[i];

Fresh Breeze Architecture  
-- a Massively Parallel Computing System

13

P

L1

P

L1

P

L1

P

L1

L2 Cache

P

L1

P

L1

P

L1

P

L1

L2 Cache

Switch

Many-Core Processing
Chips

P

L1

P

L1

P

L1

P

L1

L2 Cache

P

L1

P

L1

P

L1

P

L1

L2 Cache

Switch

AD SRAM AD SRAM AD SRAM AD SRAM

Switch

AD FLASH AD FLASH AD FLASH AD FLASH AD FLASH

Main Memory:
Associative Directories and

DRAM

Archive Memory Level:
Access Controllers and Flash

•  Many-core architecture with shared memory
•  Argument Fetching Dataflow Processor Design
•  Instruction Scheduler can be Sequential (single thread)

or Parallel (multithread)
•  The cache memories are organized around chunks
•  Memory system maps chunk handle to physical location

Outline

•  Introduction to DDDAS/Interaction Computation
–  An Example and Problems

•  Fresh Breeze Execution Model and Architecture
–  Execution Model
–  Memory Model
–  Task Model
–  Architecture

•  Compiler Framework for Fresh Breeze
•  Streaming and Transactions

–  Stream Type and Operations
–  Concurrency Operations of Transaction Style
 14

Fresh Breeze Compiler Framework

15

 Class Files Reader

Transform Graphs

Construct Code

DFGs of Methods

DFGs for Codelets

Fresh Breeze Codelets

Bytecode Class Files

 javac

java scala

Processor
Simulator

•  Javac compiles the source
code into java byte code

•  Class File Reader translates
bytecode into linear internal
representation and constructs
data flow graph

•  Transform identifies the data
parallelism,transform it into
for all parallel structure
Construct Code converts
each DFG representing a
codelet into FreshBreeze ISA

Data Flow Graph for Dot Product

16

•  Intermediate representation in
the compiler

•  Hierarchical graph structure
•  Each structure has source

and sink node
•  Using ports to connect

different components

Source

WHILE

LT

0

MUL

Get Get

ADD
1

ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Transform Component

17

•  Analyze the loop to extract
the data parallelism

•  Create codelets to construct
the chunk tree for the data
representation

•  Create codelets to traverse
the tree and compute using
fork-join parallel pattern

Source

WHILE

LT

0

MUL

Get Get

ADD

1

ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

…

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

Source

WHILE

LT

0

MUL

Get Get

ADD

1
ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

…

DFG for a loop in
one codelet

DFG for parallelized
multiple codelets

Code Generation

18

•  Build Attribute Tree: notate
constant node, literal
operands ect.

•  Perform Variable Assignment:
similar to register allocation

•  Build Codelet: convert each
dataflow node into
instructions

Source

WHILE

LT

0

MUL

Get Get

ADD
1

ADD

0.

Sink

Loop Ports

B A length

i

A[I] B[I]

sum

 0]: ISet LV: 0; -> D: 8
 1]: ISet LV: 1; -> D: 9
 2]: LSet LV: 0; -> D: 10
 3]: IMove S0: 8; -> D: 12
 4]: LMove S0: 10; -> D: 14
 5]: IfILeq S0: 12; S1: 3; Lab: 12
 6]: LoadFull H: 4; Off: 12; -> D: 16
 7]: LoadFull H: 6; Off: 12; -> D: 18
 8]: LMul S0: 16; S1: 18; -> D: 16
 9]: LAdd S0: 14; S1: 16; -> D: 14
 10]: IAdd S0: 12; S1: 9; -> D: 12
 11]: Jump Lab: 5
 12]: SyncUpdate Sync: 0; Off: 2; Data: 14
 13]: TaskQuit

DFG of one
codelet

Instruction of
FreshBreeze codelet

Outline

•  Introduction to DDDAS/Interaction Computation
–  An Example and Problems

•  Fresh Breeze Execution Model and Architecture
–  Execution Model
–  Memory Model
–  Task Model
–  Architecture

•  Compiler Framework for Fresh Breeze
•  Streaming and Transactions

–  Stream Type and Operations
–  Concurrency Operations of Transaction Style
 19

Stream Type and Operations 
 •  Stream: A sequence of values of type, maybe infinite

•  Define a stream
–  Stream <DataItem> inStream = new Stream <DataItem>();

 DateItem can be any data type

•  Concatenate two streams
–  Stream <DataItem> strm1 = 

strm0 + new Stream <DataItem>{i0, i1, ... }

•  Get first element in stream
–  strm.first();

20

Stream Type and Operations (cont’d) 
 •  Remove the first element in stream

–  Stream <DataItem> strm1 = strm0.rest ()
–  Stream <DataItem> strm = strm.first () + strm.rest ()

•  Append an data item to stream
–  strm.append(item) ;

•  It is the end of data stream
–  if (strm.moreData ()) { statement }

21

Stream Implementation in FreshBreeze

•  Stream representation
–  a linear chain of chunks, each chunk holds data items and a

 reference to the next chunk
•  Stream operations

–  FIFO queue operations on chain of chunks
–  read from the head of the chain of chunks, write to the tail of the

 chain of chunks
•  Synchronization between Producer and Consumer

–  Special Object: Future

22

Future
•  A future is a memory cell with a state waiting to receive

 a data value：status: undefined, defined, waiting
•  Future Read and Future Write are Atomic

23

undef	

1. create future 2. T1 write future

Data	 defined	 Data	 defined	

T2	 gets	
Data

3. T2 read future

Read After Write

Future (Cont’d)
•  A future is a memory cell with a state waiting to receive

 a data value：status: undefined, defined, waiting
•  Future Read and Future Write are Atomic

24

undef	

1. create future 2. T1 read future

wai7ng	

T1	 Read

wai7ng	

T1	 Read

T2	 Read

3. T2 read future

Data	 defined	

T1	 Data

T2	 Data

4. T3 write future

Write After Read

Stream Operation Based on Future

25

1. new stream

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

undef	

Stream Operation Based on Future

26

1. new stream

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

Data1	 defined	

2. append

undef	

Stream Operation Based on Future

27

1. new stream

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

Data1	 defined	

2. append

undef	

3. first

Data1

Stream Operation Based on Future

28

1. new stream

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

2. append

undef	

3. first

Data1

4. rest

Concurrent Transactions

29

User	 A

User	 B

Enter	
	

Requests

Request	
Queue

Process	
Queue

•  Scenario: A Simple Shared Hash Table
–  Shared by two concurrent users. Either user may search the

 value corresponding to a key, and either user may add or delete
 entries

–  Using concurrent shared queue

Support Transaction Using Guard In
 FreshBreeze

•  Guard object
–  special data object which can only be accessed by

 GuardSwap instruction
•  GuardSwap

–  atomic instruction
–  put the new data object into guard, and return the old data

 object in guard
•  For the Concurrent Request Example

–  using a guard to “lock” the tail of the queue
–  each request needs to get the guard before be added to the tail

 of the queue

30

Concurrent Requests

31

RA	 defined	 undef	

head

guard

RA	 defined	 undef	

RB	 defined	 undef	

Request A

Request B

Two requests arrive

Concurrent Requests

32

RA	 defined	 undef	

head

guard

RA	 defined	 undef	

RB	 defined	 undef	

Request A

Request B

guardSwap
(atomic)

guardSwap
(atomic)

Contend the guard

Concurrent Requests

33

RA	 defined	 undef	

head

guard

RA	 defined	 undef	

RB	 defined	 undef	

Request A

Request B

guardSwap
(atomic)

Request A gets the guard
and old tail

Concurrent Requests

34

RA	 defined	

head

guard

RA	 defined	 undef	

RB	 defined	 undef	

Request A

Request B

WriteFuture
(atomic)

Request A substitute the old
tail with the new request

Concurrent Requests

35

RA	 defined	

head

guard

RA	 defined	

RB	 defined	 undef	

Request A

Request B

Request B gets guard and
add to the tail

Project Status and Future Work

•  Project Status
–  SystemOne, the simulator of FreshBreeze with one core.
–  Compiler framework which can handle perfect loop

 transformation
•  Future Work

–  SystemTwo is under developing, simulator with multi-core
–  Compiler framework is under developing which tries to handle

 nested loops and complicated loops
–  Stream and Transaction
–  ISA improvements, for now only support integer
–  New benchmarks
…

36

Acknowledgement

MIT:Prof. Jack Dennis, Prof. Arvind	

UDEL: Prof. GuangR. Gao, Prof. Xiaoming Li and
 Prof. Lian-‐‑Ping Wang	

Students who worked and is working on the

 project : Xiaoxuan Meng,Tom St. John, Yao Wu,

 Chao Yang	

And all CAPSL members who helped…	

