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An Example of DDDAS/Interaction
 Computation —Radio Astronomy 
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Dynamic Data Driven Application System
 (DDDAS)—Challenges 


•  real time interaction with parts of the physical

 environment.

•  management of processing and memory resources
 according to dynamic needs generated by local events 

•  input and output devices process streams of data items 

•  make decisions about the work using transaction
 processing
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Our Solutions: Programming Model and
 Architecture Support 

•  Fresh Breeze Execution Model and Architecture 
–  based on codelet execution model
–  support fine-grained execution and memory management

•  Streaming
–  support streaming data expression and operations

•  Transaction
–  support concurrency operations of transaction style 
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Case Studies of  
Fine-Gran Execution Models

•  Dataflow Model  (1970s - )
•  EARTH Model (1993 -2006 )
•  HTVM Model  (2000 -2010 )
•  Fresh Breeze Model (2000 -)
•  Codelet Model (2010- )
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Fresh Breeze Execution Model

Task Model 
A	  set	  of	  rules	  for	  crea7ng,	  destroying	  and	  managing	  threads 

Memory	  Model 
Dictate	  the	  ordering	  of	  memory	  opera7ons 

Synchronization Model 
Provide	  a	  set	  of	  mechanisms	  to	  protect	  from	  data	  races 

Execution  
Model 

The Abstract Machine 
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Fresh Breeze Memory Model 
-- Main Features and Vision

•  Global shared name space with “one-level store”
•  A single-update storage model to eliminate the

 cache-coherence problem 
•  Concept of “sealed”  memory chunks/sections

 with single assigned property
•  Trees of fixed-sized chuncks
•  Fine-Grain memory management support
•  memory allocation and data transfer is performed

 entirely by architecture/hardware mechanisms[nd
 security
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Fresh Breeze Memory Model
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DAG heap 

Arrays as Trees of Chunks 

data item chunk handle 

•  Write Once then Read only 
•  Fix chunk size: 128 Bytes: 16 

doubles, 32 integers,…   
•  Chunk handle: 64 bits unique 

identifier 
•  Arrays: Three levels yields 4096 

elements(longs) 



Task/Concurrency	  Model 
Master Task

spawn(n)

join_fetch

join_update join_update

Spawned Tasks

Join

Worker 0 Worker n-1

ContinuationTask

-  Asynchronous 
tasking 
-  Continuation 
Task receives 
children’s results 
-  Non-blocking 

continuation 
-  Light-Weight 

Tasks 
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Example—Dot	  Product 

Step1:  
Build  
Vector 
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Example—Dot	  Product 

Step2:  
Compute 
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Fresh Breeze Architecture  
-- a Massively Parallel Computing System 
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•  Many-core architecture with shared memory  
•  Argument Fetching Dataflow Processor Design 
•  Instruction Scheduler can be Sequential (single thread) 

or Parallel (multithread) 
•  The cache memories are organized around chunks  
•  Memory system maps chunk handle to physical location 
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Fresh Breeze Compiler Framework 
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  Class Files Reader 

Transform Graphs 

Construct Code 

DFGs of Methods 

DFGs for Codelets 

Fresh Breeze Codelets 

Bytecode Class Files 

  javac 

java scala 

Processor 
Simulator 

•  Javac compiles the source 
code into java byte code 

•  Class File Reader translates 
bytecode into linear internal 
representation and constructs 
data flow graph 

•  Transform identifies the data 
parallelism,transform it into 
for all parallel structure 
Construct Code converts 
each DFG representing a 
codelet into FreshBreeze ISA 



Data Flow Graph for Dot Product 
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•  Intermediate representation in 
the compiler  

•  Hierarchical graph structure 
•  Each structure has source 

and sink node 
•  Using ports to connect 

different components 
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Transform Component 
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•  Analyze the loop to extract 
the data parallelism 

•  Create codelets to construct 
the chunk tree for the data 
representation 

•  Create codelets to traverse 
the tree and compute using 
fork-join parallel pattern  
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Code Generation 
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•  Build Attribute Tree: notate 
constant node, literal 
operands ect. 

•  Perform Variable Assignment: 
similar to register allocation 

•  Build Codelet: convert each 
dataflow node into 
instructions 
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  0]:  ISet LV: 0; -> D: 8 
  1]:  ISet LV: 1; -> D: 9 
  2]:  LSet LV: 0; -> D: 10 
  3]:  IMove S0: 8; -> D: 12 
  4]:  LMove S0: 10; -> D: 14 
  5]:  IfILeq S0: 12; S1: 3; Lab: 12 
  6]:  LoadFull H: 4; Off: 12; -> D: 16 
  7]:  LoadFull H: 6; Off: 12; -> D: 18 
  8]:  LMul S0: 16; S1: 18; -> D: 16 
  9]:  LAdd S0: 14; S1: 16; -> D: 14 
  10]: IAdd S0: 12; S1: 9; -> D: 12 
  11]: Jump Lab: 5 
  12]: SyncUpdate Sync: 0; Off: 2; Data: 14 
  13]: TaskQuit 
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Stream Type and Operations 
 •  Stream: A sequence of values of type, maybe infinite

•  Define a stream
–  Stream <DataItem> inStream = new Stream <DataItem>();

 DateItem can be any data type 

•  Concatenate two streams
–  Stream <DataItem> strm1 = 

strm0 + new Stream <DataItem>{i0, i1, ... } 

•  Get first element in stream
–  strm.first();
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Stream Type and Operations (cont’d) 
 •  Remove the first element in stream

–  Stream <DataItem> strm1 = strm0.rest ()
–  Stream <DataItem> strm = strm.first () + strm.rest () 

•  Append an data item to stream
–  strm.append(item) ; 

•  It is the end of data stream
–  if ( strm.moreData ()) { statement } 
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Stream Implementation in FreshBreeze 

•  Stream representation
–  a linear chain of chunks, each chunk holds data items and a

 reference to the next chunk 
•  Stream operations

–  FIFO queue operations on chain of chunks
–  read from the head of the chain of chunks, write to the tail of the

 chain of chunks
•  Synchronization between Producer and Consumer

–  Special Object: Future
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Future  
•  A future is a memory cell with a state waiting to receive

 a data value：status: undefined, defined, waiting
•  Future Read and Future Write are Atomic
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undef	  

1. create future 2. T1 write future 

Data	   defined	   Data	   defined	  

T2	  gets	  
Data 

3. T2 read future 

Read After Write 



Future (Cont’d)  
•  A future is a memory cell with a state waiting to receive

 a data value：status: undefined, defined, waiting
•  Future Read and Future Write are Atomic
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undef	  

1. create future 2. T1 read future 

wai7ng	  

T1	  Read 

wai7ng	  

T1	  Read 

T2	  Read 

3. T2 read future 
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Stream Operation Based on Future 
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1. new stream 

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

undef	  



Stream Operation Based on Future 
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1. new stream 

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

Data1	  defined	  

2. append 

undef	  



Stream Operation Based on Future 
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1. new stream 

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest
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Stream Operation Based on Future 
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1. new stream 

•  Fresh Breeze Instruction Set Support 4 stream
 operations
–  New, Append, First and Rest

2. append 
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3. first 
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Concurrent Transactions 
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User	  A 

User	  B 

Enter	  
	  

Requests 

Request	  
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•  Scenario: A Simple Shared Hash Table
–  Shared by two concurrent users. Either user may search the

 value corresponding to a key, and either user may add or delete
 entries

–  Using concurrent shared queue



Support Transaction Using Guard In
 FreshBreeze 

•  Guard object
–   special data object which can only be accessed by

 GuardSwap instruction
•  GuardSwap 

–  atomic instruction
–  put the new data object into guard, and return the old data

 object in guard 
•  For the Concurrent Request Example

–  using a guard to “lock” the tail of the queue
–  each request needs to get the guard before be added to the tail

 of the queue
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Concurrent Requests 
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Concurrent Requests 

32

RA	   defined	   undef	  

head 

guard 

RA	   defined	   undef	  

RB	   defined	   undef	  

Request A 

Request B 

guardSwap 
(atomic) 

guardSwap 
(atomic) 

Contend the guard



Concurrent Requests 
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Concurrent Requests 
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Concurrent Requests 
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Project Status and Future Work 

•  Project Status 
–  SystemOne, the simulator of FreshBreeze with one core.
–  Compiler framework which can handle perfect loop

 transformation
•  Future Work

–  SystemTwo is under developing, simulator with multi-core
–  Compiler framework is under developing which tries to handle

 nested loops and complicated loops
–  Stream and Transaction 
–  ISA improvements, for now only support integer 
–  New benchmarks
…
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