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Abstract

Today there is widespread interest in using o�-the-shelf computers to build economical

supercomputers. Clusters such as Beowulf can use packages such as MPI to run coarse-

grain parallel code. While this usually works well for applications with regular control

structures and data distributions, it is not so e�ective for many irregular applications. For

such problems, �ne-grain parallel programs express the algorithm more naturally, adapt

better to changing conditions, and balance the load more e�ectively. However, �ne-grain

parallel computing has overheads which have hurt performance, especially on o�-the-shelf

systems.

We show that �ne-grain parallel programming can be supported e�ciently on such sys-

tems, if there is a suitable program execution model and a small amount of specialized

hardware. We present a general model for a thread hierarchy based on �bers and threaded

procedures. The former are executed non-preemptively, which allows them to run e�ciently

on o�-the-shelf processors. We show how the remaining features of the model (e.g., interac-

tion between the �bers) can be supported e�ciently in a small amount of external hardware

assisting a commodity processor, and that this hardware can be added in an evolution-

ary manner. Experiments show our hardware support signi�cantly reduces multithreading

overheads and improves load balancing, leading to substantial improvements in processor

utilization and speedups, especially for the most �ne-grained benchmarks tested.
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1 Introduction

Most of today's general-purpose supercomputers are based on commercial o�-the-shelf (COTS)

processors. These systems range from high-end parallel computers, which typically use such

microprocessors in an otherwise custom-designed system, to economical clusters such as the

Beowulf [3], built entirely of mass-market PCs. Since the core processors are designed for

uniprocessor PCs and workstations, these systems have had to adapt to the limitations of those

processors, which lack the special parallel processing features found in full-custom multiproces-

sors such as Tera [2]. Most COTS-based machines support parallelism at the software level,

with packages such as MPI [4].

However, these machines have had a mixed record of success. For applications with highly-

regular data distribution and control structures, they can usually deliver high processor utiliza-

tion rates. Irregular applications, on the other hand, tend to do much worse on such machines.

In many cases, the high-end ASCI machine is only able to achieve 10% of peak performance,

with load imbalance, software overheads and poor scalability cited as major impediments [22].

These performance problems are mainly due to the lack of support for e�ective �ne-grain

parallelism. Coarse-grain parallelism is usually adequate for regular applications; their regular-

ity makes it easy to combine communication and computation tasks into large units, amortizing

the creation and startup overheads of these tasks. Irregular problems, on the other hand, work

better when grain sizes are small. Fine-grain parallel programs express the algorithm more

naturally, expose more parallelism, adapt better to changing conditions, and balance the load

more e�ectively.

We believe that irregular applications are best served by �ne-grain multithreaded systems

with the following characteristics:

1. There may be many threads per processor at runtime, and the number of threads may

vary dynamically.

2. There is support for automatic load-balancing of the threads.

3. The costs of creating, removing, and switching between threads are very small.

(These properties, and the bene�ts they provide, are covered in Section 2.) Unfortunately,

commodity microprocessors don't support e�cient low-cost multithreading. As a result, �ne-

grain programs run on such processors su�er the overheads associated with multithreading.

This paper demonstrates that e�cient �ne-grain parallel programming can be achieved with

COTS processors if they are augmented by a small amount of external hardware speci�cally

designed to support a �ne-grain parallel programming model. Using the EARTH multithread-

ing system [14] as a base, we accurately simulate several di�erent implementations, with and

without external hardware support. Experimental results show that a co-processor-augmented

COTS processor achieves signi�cant improvements with �ne-grain applications over comparable

processor-only systems. The performance gap widens further when this hardware support is
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added to a multiprocessor, because load balancing is much more e�ective than when processors

are used alone. Finally, we show that such support can be added incrementally, in an evolution-

ary manner, with further improvements in e�ciency as the specialized hardware is integrated

with the processors.

The rest of this paper presents our models and experiments. The next section elaborates

our de�nition of �ne-grain multithreading and contrasts this with the types of multithreading

used in other systems. In Section 3, we develop a threading model, based on �bers, which sup-

ports this type of �ne-grain programming and is tuned to the needs of o�-the-shelf processors.

Section 4 discusses the role of hardware support and explains how it can improve performance

on a machine running a �ber-based thread model. In Section 5, an accurate cycle-by-cycle

simulator is used to measure the performance of various platforms, based on the same pro-

cessor and running the same threading model, but with di�erent levels of hardware support.

Empirical observations of the various ways in which hardware support boosts multiprocessor

performance are discussed in this section. Related work is surveyed in Section 6. The �nal

section summarizes the paper.

2 Fine-Grain Parallelism and Multithreading

Terms such as \thread" and \�ne-grain" appear frequently in the literature, but the �eld is

still in 
ux and de�nitions vary widely from one paper to another. In this section, we clarify

what we mean by these terms. Our concepts are shaped by our goals of supporting parallel

applications (including irregular ones) e�ectively, and implementing a multithreaded system on

o�-the-shelf processors.

Essentially, we claim that the subtasks into which parallel applications are divided should

be plentiful, lightweight and cheap. Most conventional parallel programming takes the opposite

approach; tasks are made as coarse as possible to minimize the overheads associated with start-

ing and terminating tasks and communicating between them. Coarse-grain task decomposition

works well with many regular applications, because a regular application can be statically par-

titioned relatively easily, with simple techniques such as blocking used to combine tasks and

amortize overheads. However, for many irregular applications, determining a good static parti-

tion is di�cult or impossible, since the structure of the problem may depend on the input data.

Furthermore, the data distribution may change dynamically.

Consider the class of unstructured mesh problems [13], an important tool for physical mod-

eling applications. In one of these programs, a region of space is divided into an irregular grid

whose density varies both spatially and temporally. During the simulation, a region of space

may be re�ned or coarsened as the problem state changes.

A conventional parallel programming approach would try to divide the space into a small

number of regions, perhaps only one or a few threads per processor, to cut down on communi-

cation and threading overheads. However, from the perspective of the application, it is more

natural to think of each small region of space as a separate task or thread. It is an extra burden
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to the programmer to combine small regions into larger sections, and, more importantly, to

keep all sections at roughly the same size to balance the work among the processors. It would

be easier, to the programmer, to divide the mesh into many atomic regions, and let the system

balance these regions dynamically.

However, �ne-grain programming has had its own failures, mainly due to the overheads of

creating, terminating and managing a large number of threads. If �ne-grain programming is

ever to be an e�cient programming technique for unstructured meshes and other applications,

these overheads must be signi�cantly reduced.

Therefore, when we discuss �ne-grain multithreading, we are describing systems in which

threads are

Abundant: There may be many threads per processor, and, as a corollary, each thread will

be relatively short. Having an abundant pool of active threads on a processor increases

processor utilization, because if one thread is delayed (e.g., due to a remote fetch), another

thread can start execution. The system must make large-scale thread generation easy, if

su�cient parallelism is available in the application. (For example, some of the benchmarks

in Section 5 generate hundreds of thousands of threads.)

Balanced: A large pool of available threads provides better opportunities for load balancing

on a parallel machine. There must be e�ective mechanisms to take advantage of this.

Excess work generated on one processor should be readably and economically shifted to

other processors so that total execution time is minimized. This is essential to achieve

the adaptability required to support and manage dynamically changing data localities

and workloads.

Cheap: Frequent thread switching and load balancing are possible only if these threads are

extremely lightweight and have minimal overheads. For instance, creating or terminating

such a thread should only involve the saving or restoring of a tiny fraction of the processor

state { perhaps a few registers and nothing else. Communicating between threads and

coordinating their actions should also have as little overhead as possible.

This de�nition should be contrasted with other concepts of multithreading. The term \�ne-

grain multithreading" is sometimes used to refer to the rapid interleaving of instructions from

di�erent threads, as in Tera [2], Alewife [1], the M-Machine [10], and Simultaneous Multi-

threading processors [32]. During each cycle, instructions from one or more threads may be

selected for execution. The processor may switch to other threads when there is a cache miss,

as in Alewife, or as often as every clock cycle, as in the other designs listed. Such interleaving

can be an e�ective way to tolerate long latencies and increase instruction issue rates. But it is

orthogonal to the characteristics (length and quantity) of the threads themselves. Furthermore,

these techniques are unavailable to contemporary COTS processors.
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3 A Thread Model Based on Fibers

The previous section described the characteristics that threads need to have on a parallel system

to handle the most general problems, including irregular applications. This section presents a

model for a general, two-level thread hierarchy which is compatible with these requirements.

Threads in this model are (or can be) abundant, balanced and cheap. They also have additional

properties which make them suitable for e�cient execution on COTS processors.

3.1 Fibers

The main distinguishing characteristic of this model is the division of threads into two levels,

which we call �bers and threaded procedures [30]. We use the term \�ber," rather than the

more generic term \thread," to distinguish our notion of lightweight �ne-grain threads from

other threading concepts.

1

In our model, a �ber is a sequentially-executed, non-preemptive,

atomically-scheduled set of instructions.

Sequentially-executed means that when a �ber is executed, instructions within the �ber

are scheduled according to a sequential semantics. In other words, instructions within the

�ber are ordered using an ordinary program counter, which increments to the next instruction

unless modi�ed by a branch instruction. Both conditional and unconditional branches may be

used, but only to destinations within the same �ber. Modern processors perform sequential

execution very e�ciently, even when there are many dependences among the instructions, and

can takes advantage of the data locality which is usually present due to these dependences.

Techniques used by modern superscalar processors to increase the instruction issue rate, such as

multiple functional units, out-of-order execution and branch prediction, may be used to exploit

instruction-level parallelism within a �ber, so long as the results are the same as executing

the instructions in purely sequential order. \Sequentially-executed" in this case does not mean

\one instruction per cycle," but simply that the dynamic ordering of instructions within a �ber

obeys the sequential semantics of the code.

Fibers are also non-preemptive. Once a �ber begins execution, it remains active in the

CPU until the last instruction in the �ber is �nished. If the CPU should stall (e.g., due to a

cache miss), the �ber will not be swapped out. This is a fundamental design decision based on

the goal of using COTS processors. At any point in a �ber's execution, there is likely to be

some essential context (such as live register values). Ordinary processors don't support rapid

context switching, so if a �ber is interrupted, the CPU would have to save the live registers

and reload them when the �ber is restarted.

2

An automatic mechanism for �ber suspension,

such as one based on interrupts, would have to make conservative assumptions about which

registers are live and would probably save a large number of them. This takes time, both for

1

The term \�ber," like \thread" itself, comes from the lexicon of textile making. A �ber is typically a short

strand of material. It is the smallest unit in the \thread model" of textiles.

2

Fibers may be interrupted for special exceptions such as arithmetic traps, but these should be assumed to

be unusual cases and not common occurrences.
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int fib(int n) {

if (n<2) { /* S1 */

return 1 /* S2 */

} else {

int left = fib(n-1); /* S3 */

int right = fib(n-2); /* S4 */

return left+right; /* S5 */

}

}

Figure 1: Sequential Fibonacci Example

the triggering of the interrupt and the saving and restoring of registers, and the frequent use of

such a mechanism would severely limit system performance.

A corollary of non-preemptive execution is atomic scheduling. If a �ber cannot be inter-

rupted, then it should not be started until it is guaranteed to �nish without any major stalls.

The system (not the programmer) is responsible for making this determination and deciding

when a �ber can start according to this restriction. The basis on which this determination is

made depends on the speci�cs of the thread model; di�erent synchronizing rules are compatible

with our �ber model.

3.2 Threaded Procedures

Many threading systems have a single type of thread, for instance, where a thread corresponds

to a function call. However, if �bers in our model are to be preemptive, a second layer above

the �bers is needed. The need for this layer is illustrated with an example.

Figure 1 shows a simple recursive program for computing the n

th

Fibonacci number.

(Notwithstanding that this is actually a terrible way to compute Fibonacci numbers, it's a

good example to illustrate the basic threading model, as well as a good benchmark for mea-

suring multithreading overheads, as will be used later.) The call graph resulting from calling

fib(4) is shown in Figure 2.

An obvious way to parallelize this program is to run separate function calls in parallel. For

instance, the call to fib(4) could spawn separate processes to compute fib(3) and fib(2),

and these could run on other processors. But what should be done with the execution of fib(4)

before fib(3) and fib(2) have returned their results? If we want to use the processor for some

other computation (such as one of the child functions), we must suspend fib(4) and switch to

another context. Yet the property of non-preemptiveness disallows this.

The solution is to split the function into several �bers, each of which can run non-

preemptively. Since the recursive function calls take indeterminate time, the function body

should be split after these calls, into two �bers. The �rst �ber (f

0

) executes statements S

1

{S

4

,
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fib(2)

fib(3)

fib(4)

fib(2)

fib(1)

2 1
2 1

fib(0)fib(1)

1 0
1 1

fib(0)fib(1)

1 0
1 1

2 23
3

54
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Figure 2: Call Graph for Fibonacci

f f 

54
Input value
Result value

f 

2 12

f f 

f f 

1
1 0 1

f 

1

f f 

f f 

1
1 0 1

3
3 2

2

f 

f f 

f f f 

0 1

0 1

0 1 0 1

0 1
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Figure 3: Threaded Fibonacci

that is, tests n and either returns 1 or invokes the children. The second �ber (f

1

) executes

statement S

5

, adding the values produced by the children and returning the sum to its parent.

Figure 3 shows the threaded version of the call graph for fib(4). Each instance of fib has

been replaced by a pair of �bers f

0

and f

1

.

This example shows a tight coupling between f

0

and f

1

. Every instance of f

1

must have

been preceded by a corresponding instance of f

0

, and most instances of f

0

(except for leaves)

lead to a corresponding instance of f

1

. Furthermore, paired instances of f

0

and f

1

need to share

some data. For example, both f

0

and f

1

need access to the partial result variables left and

right.

This need leads to a two-level thread hierarchy. In the Fibonacci example of Figure 3, the
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�bers f

0

and f

1

are combined into a single threaded procedure. The context of an instance of a

threaded procedure is similar to the context of a function call in a conventional language such

as C. This context includes both local variables and parameters passed to the procedure. Both

are accessible by all �bers contained within the threaded procedure. Variables and parameters

persist from one �ber to the next, and thus can be used for exchanging values between �bers

within the same procedure instance. Fibers have a much smaller context, consisting only of

registers and specialized state variables (such as condition codes). Thus, �bers are extremely

lightweight, and can be entered and exited quickly, making them suitable for �ne-grained tasks

where the overheads of normal function context-switching would outweigh the costs of the

computation performed. Register values do not persist beyond a �ber's termination, but a

�ber can exchange values with other �bers in the same procedure by accessing variables in the

procedure context.

Procedures are invoked explicitly by the application program. When the program invokes a

procedure, the machine creates a context for this procedure, initializing the input parameters

with the values passed to this procedure. Each threaded procedure has one �ber designated as

the initial �ber, which starts automatically when the procedure is invoked. This �ber initializes

the frame and sets up any synchronization mechanisms required by the �bers in that procedure,

according to the speci�c synchronization mechanism in the particular threading system used.

A threaded procedure instance remains \live" even if none of its �bers are currently active; a

threaded procedure must explicitly terminate itself.

Thus, threaded procedures are collections of �bers sharing a common context which persists

beyond the lifetime of a single �ber. This context consists of a procedure's input parameters and

local variables. The context is stored in a frame, dynamically allocated from the heap when the

procedure is invoked. Threaded procedures are explicitly invoked by other procedures. When

a threaded procedure is invoked and its frame is ready, the initial �ber is enabled, and can only

run once. Other �bers in the same procedure instance may only be enabled using sync slots

and sync signals. An explicit terminate command is used to terminate both the �ber which

executes this command and its procedure instance, which causes the frame to be deallocated.

Since procedure termination is explicit, no garbage collection is needed for these frames.

3.3 Examples of Two-Level Systems

Two examples of �ne-grain systems with two-level thread hierarchies are EARTH [15, 20] and

Cilk [11]. Cilk has an e�ective method for reducing overheads. The Cilk system can compile

both parallel and sequential versions of recursive functions, and switch from running the parallel

versions to the sequential versions once enough parallelism has been achieved. However, it is

limited to shared-memory machines, and works primarily with divide-and-conquer algorithms,

while other programming paradigms such as producer-consumer do not work as well on Cilk.

EARTH-MANNA (discussed in the next section) works on distributed-memory machines and

a wider range of programming models, and its overheads are small compared to most parallel

programming systems. However, they are still large enough to become signi�cant when thread
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sizes are very small.

Both of these systems are currently implemented purely in software on o�-the-shelf mul-

tiprocessors. The limitations of both these systems suggest that implementing a �ne-grain

system, using COTS processors, with abundant, balanced and cheap threads will be di�cult.

We show in this paper that an o�-the-shelf processor can be assisted by a special, relatively

small hardware co-processor designed to support �bers. Replacing a software-based �ber man-

ager with a hardware manager has two major bene�ts. First, it reduces the overheads to an

acceptable level, improving the performance of threaded applications on a single node. The

degree of improvement is most signi�cant for the �nest-grain applications. Second, it improves

the speed of the threaded load-balancer, enabling it to make more optimal load-balance deci-

sions and improve speedups. Our results show near-linear speedups up to 120 processors for

nearly all benchmarks tested.

4 Hardware Support for E�cient Fibers

The previous sections made the case for having a programming model based on �ne-grain,

lightweight threads, and de�ned a general two-level thread hierarchy designed with COTS

processors in mind. This section considers how a �ber-based model could be implemented on

such processors e�ciently. We �rst discuss general implementation issues, and then describe

how e�cient support for �bers could be added to mainstream processors in an evolutionary

manner.

4.1 An Architecture with Hardware Co-Processors

Section 3.1 pointed out that modern conventional processors execute sequential code very e�-

ciently, and can exploit much of the limited ILP that exists within a �ber. Considerable e�ort

has been spent on the design of ILP logic within the CPU. We believe that far less would be

required to add e�ective support for �ne-grain multithreading as described in this paper, since

it is based on \�bers" of sequential code.

However, mainstream CPUmanufacturers are not likely to do this until the concept is proven

and the market demands it. Most parallel computer manufacturers, on the other hand, lack

the resources required to build components comparable to current mass-market processors.

3

In

the short term, therefore, parallel computers based on our two-level thread model will have to

use microprocessors which don't have built-in support for most of the features of the model,

such as �ber management, scheduling and load balancing.

One can simply live with the fact and program the support needed into the processors,

as is done in many multithreaded systems [5, 6, 11, 21]. An alternate approach is to use a

regular processor for that which it can do well (running sequential �bers), and move the tasks

3

Tera Computer is one notable exception.
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Figure 4: Architecture for Supporting Fibers

speci�c to the thread model to a custom co-processor. Such a machine might look something

like Figure 4. This computer would consist of one or more multithreading nodes connected by

a network. Each node would have the following �ve essential components:

1. An Execution Unit (EU) for executing active �bers;

2. A Synchronization Unit (SU) for scheduling and synchronizing �bers and procedures, and

handling remote accesses;

3. Two queues, the Ready Queue (RQ) and Event Queue (EQ), through which the EU and

SU communicate;

4. Local memory, shared by the EU and SU;

5. A link to the interconnection network.

The simplest implementation would use one single-threaded COTS processor for each EU.

However, the EU in this model can have processing resources for executing more than one �ber

simultaneously. This is shown in Figure 4 as a set of parallel Processing Elements (PEs). These

PEs could be separate processors (as in an SMP machine), or could abstractly represent the

di�erent streams of an interleaving processor (e.g., a Simultaneous Multithreading processor

[32]).

The SU performs all multithreading features speci�c to the two-level threading model (and

generally not supported by COTS processors). This includes EU and network interfacing, event

decoding, sync slot management, data transfers, �ber scheduling, and load balancing.

The EU and SU communicate to each other through queues called the Ready Queue (RQ)

and Event Queue (EQ). If a �ber running on the EU needs to perform an operation relating to
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other �bers (e.g., to spawn a new �ber or send data to another �ber), it will send a request (an

event) to the EQ for processing by the SU. The SU, meanwhile, manages the �bers, and places

any �ber ready to execute in the RQ. When the EU �nishes executing a �ber, it goes to the

RQ to get a new �ber to execute. The queues may be implemented using o�-the-shelf devices

such as FIFO chips, incorporated into a hardware SU, or kept in main memory.

4.2 Bene�ts of Hardware Support

What are the advantages of using a separate hardware SU instead of emulating the SU functions

in software? How would a hardware SU contribute to the goal of making �bers abundant,

balanced and cheap?

First, auxiliary tasks can be e�ciently o�oaded onto the SU. If a single processor were used

in each node, that processor would have to handle �ber support, diverting CPU resources from

the execution of �bers. Even a dual-processor con�guration, in which one processor is dedicated

to �ber support, would not be as e�ective. Most general-purpose processors would have to

communicate through memory, while a special-purpose device could use memory-mapped I/O,

which would allow for optimizations such as using di�erent addresses for di�erent operations.

This would speed up the dispatching of event requests from the EU.

Second, operations performed in hardware would be much faster in many cases. Many

of the operations for �ber support would involve simple subtasks such as checking counters

and following pointers. These could be combined and performed in parallel in perhaps only a

few clock cycles, whereas emulating them in software might require 10 or 20 instructions with

some conditional branches. Some operations might require tasks such as associative searches of

queues or explicit cache control, which can be performed quickly by custom hardware but are

generally not possible in general-purpose processors except as long loops.

Finally, many of the SU's tasks can be done in parallel. For instance, one part of the SU

can be making load-balancing decisions while another part is sending a packet to the network

and a third part is receiving an event from the EU. A conventional processor would have to

switch between these tasks.

In general, these three di�erences would contribute to �ber e�ciency in a system with a

hardware SU. O�oading �ber operations to the SU and speeding up those operations would

reduce the overheads associated with each �ber, making each �ber cheaper. A faster load-

balancer, running in parallel with other components, would be able to spread �bers around

more quickly, or alternately, to implement a more advanced load-balancing scheme to produce

more optimal results. In either case, work would be distributed more evenly. Finally, special-

purpose hardware would be able to handle more �bers in a given amount of time, allowing

programmers to make �bers more abundant.
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Figure 5: Evolving Fiber Architectures

4.3 An Evolutionary Approach

In spite of the potential bene�ts of �ber support, we aren't likely to see them incorporated into

mainstream processors soon. A major bene�t of this design is that the extra support can be

be added incrementally, in an evolutionary manner, rather than in a single large step. Smaller

steps are more feasible and present less risk, yet each step could yield tangible bene�ts. Figure 5

represents one possible evolutionary path toward a full-custom multithreaded processor, with

the following steps:

1. Use of an existing parallel system, based on o�-the-shelf microprocessors, to emulate a

multiprocessing model well enough to demonstrate its viability.

2. Construction of a hybrid system, using o�-the-shelf microprocessors to perform the regular

computations, and custom auxiliary hardware to support the instructions unique to the

multiprocessing model. The custom hardware should improve the performance of the

machine compared to the �rst machine (the emulated system).

3. Design of a hybrid chip containing the original core of the stock microprocessor and the ex-

tra custom hardware. The combination of the two components on one chip should reduce

communication delays between the two and allow better sharing of common resources,

such as caches.

4. Creation of a fully-integrated processor for a parallel system, one which also performs well

in a uniprocessor environment.

The experiments in the next section examine systems in the �rst three stages.
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5 Experiments

Section 2 argued that to achieve e�ciency in a �ne-grain multithreaded system on the most

general applications, threads need to be abundant, balanced and cheap. We show in this section

that all requirements can be met on a COTS-processor-based system if it is assisted by custom

hardware. In particular:

� Threads are cheaper because their overheads are much lower. For instance, EARTH

operations can be requested by the EU 1.5{7.5 times faster with an ASIC SU co-processor

than with a software-emulated SU.

� Balancing is much more e�ective because the hardware SU, being specialized to its tasks,

can make more optimal load balancing decisions without imposing excess software over-

heads. Therefore, the hardware-assisted implementations have much better speedups,

mainly due to a more even load distribution.

� Improving the other two properties allows threads to be more abundant. The bene�t of

this is shown by comparing the performance of a fully parallel program with an alter-

native version of the same program, which has been algorithmically \throttled" to limit

parallelism (and its overheads). The results show that the hardware-supported system

has less need for such throttling, reducing the burden on the programmer.

5.1 Experimental Platforms

To quantify the bene�ts of a hardware SU, we perform a case study comparing hardware and

software implementations. Our study is based on EARTH (E�cient Architecture for Running

THreads), a �ne-grain two-level multithreading model originally developed at McGill University

[15, 14, 20, 30]. The observations about the bene�ts of hardware support for �bers should be

applicable to other systems with a similar two-layer thread model.

EARTH uses a two-layer hierarchy of procedures and �bers compliant with the model de-

scribed in Section 3. Fibers are atomically scheduled (see Section 3.1), but the order among

�bers is not completely speci�ed. Instead, the EARTH model allows any �ber to execute, so

long as all data and control dependences needed by that �ber have been satis�ed. The SU

is responsible for keeping track of dependences and scheduling �bers whose dependences have

been met.

Dependences are made explicit in the EARTH code through the use of synchronization

signals and synchronization slots. A synchronization signal is sent from one �ber to another to

tell the recipient that a speci�c dependence has been satis�ed. For instance, the sending �ber

may have produced data required by the receiving �ber; since the latter can't run before that

data is produced, the producer must tell the consumer that the data is now ready. If a �ber

depends on more than one datum or control event, it needs to be sure that all dependences

have been satis�ed before it is enabled, since the �ber can't be preempted once started. A
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synchronization slot is used to count the incoming signals so it is known when a �ber is ready

to be enabled. (For more on the EARTH model, see the published papers on EARTH [15, 14, 20]

or the �rst author's dissertation [30].)

EARTH currently runs on �ve platforms. The study in this paper is based on the MANNA

platform, in which each node has two i860XP CPUs, memory, and a link to the interprocessor

network, which is based on low-latency crossbars. The local interface to the link chip is on the

main system bus and is memory-mapped. The con�guration is similar to the lower-left corner

of Figure 5.

There are two MANNA implementations. EARTH-MANNA-D uses both CPUs, using one

for the EU (executing �bers) and the other to emulate the behavior of the SU in software. The

latter CPU also polls the link for incoming messages and performs all load-balancing, which

is based on a work-stealing algorithm [14, 19]. The Event Queue and Ready Queue are kept

in memory and accessed by both CPUs. The second implementation, EARTH-MANNA-S,

uses only a single CPU, which means that the SU functions are emulated in the EU (usually

through inlining) [20]. In both implementations, network access and EARTH-speci�c operations

(sending events to the EQ and reading �bers from the RQ) are performed entirely in the user

code without kernel intervention.

In our study, we compare these implementations against implementations with special hard-

ware support. We assume the second CPU in EARTH-MANNA-D can be replaced by an ASIC

chip performing all the SU functions, such as synchronizing and scheduling �bers and perform-

ing load balancing, with all the optimizations described in Section 4.2. Furthermore, the Event

and Ready Queues can be moved from memory to the SU chip, and memory-mapped, so that

the EU can request EARTH operations simply by writing the event to the appropriate address,

and read the Ready Queue by reading a speci�c address. Finally, since the link chip itself is a

rather simple ASIC with two small queues, we assume it can be included in the SU. This will

give the SU direct access to the link, reducing tra�c on the system bus.

The experiments in this study were based on SEMi (Simulator for EARTH, MANNA and

the i860) [30], an accurate, complete cycle-by-cycle simulator of the i860XP processors, system

bus, memory system and interconnection network used in the MANNA. We used a simulator

both to extend the speedup curves of the EARTH benchmarks from 20 nodes (the size of the

MANNA) to 120 nodes,

4

and to simulate the bene�ts of the hardware extensions proposed in

this paper. The simulator is highly accurate, as was validated by comparing the timing results

of programs running side-by-side on the real MANNA and on SEMi. The timing discrepancies

between the two are typically less than 2% on real benchmarks. This gives us con�dence that

the results obtained for the modi�ed SEMi (simulating the specialized hardware in addition to

the regular CPU) are reasonably close to what could be achieved with real hardware, since the

specialized hardware is relatively simple compared to the CPU and other MANNA hardware.

Four systems are simulated in this study using SEMi. EARTH-MANNA-D and EARTH-

4

120 nodes is the maximum currently supported on EARTH-MANNA. Adding more nodes will require mod-

ifying the virtual memory system. Such an e�ort is currently in progress.
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Parameter Single-processor Dual-processor External SU Internal SU

Latency (ns) 2450 4091 1414 1200

Latency (cycles) 122.5 204.5 70.7 60.0

Bandwidth (MB/s) 28.8 42.0 44.4 44.4

Bandwidth (% of peak) 57.5 83.9 88.8 88.8

Table 1: Latency and Bandwidth on EARTH-MANNA

MANNA-S, described above, are completely o�-the-shelf. Two more systems are simulated to

measure the bene�ts of adding a hardware-based SU. The �rst assumes an external SU on the

system bus, as in the second point in the evolutionary path in Figure 5. The second assumes

the same SU placed on the same chip with an EU core, but with no additional integration of

the logic. The EU still needs to communicate with the SU through loads and stores to and

from memory-mapped I/O, but the internal memory-access logic will recognize these as internal

addresses and send them to the internal SU without putting them on the main bus.

To perform the latter two experiments, a module simulating the SU functions was written

and added to SEMi. To maintain the credibility of the simulation, the SU's two interfaces (the

bus interface and the network interface) were copied from the existing module simulating the

link chip, and run at the same speed. Therefore, in our simulations the EU communicates with

the SU at the same speed as the link chip, a piece of real hardware.

The MANNA is several years old, and therefore slow by current standards. The processors,

system bus and network all run at 50MHz. To con�rm that our �ndings are also valid for newer

processors, we modi�ed SEMi to simulate a MANNA with performance parameters as near

as possible to its successor, the PowerMANNA, which is based on PowerPC 620 processors.

Results from these experiments are presented in the appendix.

5.2 Performance of Low-Level Operations

The �rst two experiments compare the performance of individual low-level operations on the

four systems. The �rst test (Table 1) is a simple measurement of raw latency and bandwidth.

Latency is measured by invoking a simple procedure on two nodes connected through a single

crossbar. Each procedure has a small �ber, which sends a synchronization signal to the other

node, which starts the �ber on that node. The nodes have no other work during this time,

and are therefore idle when not running these �bers. The table lists the one-way latency. This

measurement includes the time it takes for the receiving node to start up the �ber. Thus, it

is a practical measure of latency as seen by the program. Bandwidth is measured by sending

large blocks from one node to another.

To put this in perspective, a survey of commercial parallel machines [8] found only two

machines (both shared-memory) with latencies under 10�s. The fastest is the Convex SPP1200

(2.2�s). This machine runs at 120MHz, so its latency is 264 processor cycles, more than the
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Operation Single CPU Dual CPU External SU Internal SU

Loc. Rem. Loc. Rem. Loc. Rem. Loc. Rem.

Synchronization 300 588 504 504 40 60 40 60

Spawn new �ber 323 640 721 580 40 100 40 100

Switch �bers 441 | 530 | 282 | 142 |

Send data and sync. 480 660 580 606 80 100 80 100

Fetch data and sync. 620 700 580 620 100 180 80 140

Invoke procedure (1 arg) 479 806 760 620 198 200 139 140

Terminate procedure (1 arg) 760 | 794 | 287 | 148 |

Table 2: EU Costs (nsec.) of Various Operations on EARTH-MANNA

slowest EARTH-MANNA implementation.

Though the COTS-based systems already have low latency, there is a signi�cant improve-

ment when a hardware SU is introduced. The improvement is entirely due to faster communi-

cation within each node, because the network is the same.

A more dramatic demonstration of the bene�t of a hardware SU can be seen by measuring

the costs, on the EU, of performing various EARTH operations. Table 2 lists the costs to the

EU of various operations, such as sending a synchronization to another �ber (in accordance

with the EARTH �ber model), involving either local or remote nodes. For the single-CPU

version, this is the cost of stopping and performing the entire operation (if local) or forming a

request message and writing it to the link chip (if remote). For all other versions, this is the

cost of sending the request to the SU (CPU or special hardware). This is not the total time

required for the operation to be completed, but merely the time for the EU to �nish making

the request.

5.3 Performance on Real Programs

The �nal experiments measure the speedups of actual programs. Five benchmarks were used in

this study. Table 3 lists the sequential running time of each benchmark running on one i860XP

processor of the MANNA, i.e., without the execution of multithreading instructions (and their

overheads).

The Fibonacci program is the code used for illustration in Section 3. While this is a contrived

application, it is a useful benchmark for parallel systems because very little computation is done

within the function body. Almost all the code is involved with �ber linkage. Since many of

the overheads in parallel programs involve interactions between di�erent �bers, this benchmark

gives a good upper bound on the overheads encountered by a parallel system.

The N-Queens problem is a familiar benchmark that typi�es recursive searching problems.

Two versions are used in this study. N-Queens-P is maximally parallel, invoking new threaded
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Benchmark Input T

seq

(sec.) Description

Fibonacci 30 0.969 Recursive; high overheads

N-Queens-P 10 queens 0.541 Fully para. recursive enumeration

N-Queens-T 10 queens " Partially sequentialized

Para�ns N = 20 0.228 Recursive enumeration

Tomcatv N = 257 48.6 Regular, data-parallel, barrier

Table 3: Benchmarks and Sequential Performance

procedures at each recursion. Over 60,000 procedures are generated, with 2{3 �bers executed

each. N-Queens-T is a modi�ed form of N-Queens-P in which the parallelism is \throttled"

algorithmically. When the search depth reaches a threshold (4 in this case), the program

switches from parallel execution to sequential execution. Comparing the performance of these

two benchmarks allows us to explore the tradeo� between expressing maximal parallelism in

a program and restraining parallelism through program modi�cations. The latter is generally

more di�cult for the programmer (especially if good performance across a large number of

machine sizes is desired) but generally yields better speedups by reducing overheads.

Para�ns is one of the four \Salishan problems," considered challenging to parallelize [24].

This application enumerates all distinct isomers of each para�n (molecule of the form C

n

H

2n+2

)

up to a given size. Parallelism is exploited by invoking functions on all the processors to compute

the radicals (basic reaction units to form larger molecules) and then invoking procedures to

compute the para�ns for the required sizes.

Tomcatv (SPEC92), is representative of traditional coarse-grain applications and was se-

lected to show that one can use EARTH without sacri�cing the good performance obtained on

such applications with conventional parallel programming. This code uses static work distri-

bution rather than the automatic load-balancer. Each iteration updates a pair of 257 � 257

meshes, using calculations with horizontal loop-carry dependences. Iterations continue until

the change drops below a threshold; this involves a global reduction and barrier. Separate rows

synchronize with each other using a producer-consumer paradigm illustrated in Figure 6.

For comparing multithreaded implementations, the programs were rewritten in Threaded-

C, an explicitly threaded language in which EARTH operations are added to standard ANSI

C [14, 30]. All four platforms tested used the same compiler as the sequential programs,

but provisions were made (using custom-written pre- and post-processors) for translating the

EARTH operations into native instructions.

Results for the �ve benchmarks are shown in Figures 7{11. Each graph shows both the

absolute and relative speedups for all four systems. Absolute speedups (speedup relative to

the sequential running time in Table 3) should be used for judging the overall performance

of a system. From the absolute speedup, one can see the combined losses due to both �ber

overheads and an imbalanced load. The relative speedup (speedup relative to the running

time of the threaded program on 1 node) is primarily an indication of the e�ectiveness of the
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Figure 6: Producer-Consumer Synchronization
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Figure 7: Speedups for Fibonacci (30)
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Figure 8: Speedups for N-Queens-P (10)
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Figure 9: Speedups for N-Queens-T (10)
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Figure 10: Speedups for Para�ns (20)

load balancer (this was veri�ed using SEMi [30]), while the ratio between absolute and relative

speedup mostly shows the e�ects of local �ber and communication overheads.

As expected, Fibonacci has the worst performance. It represents a worst-case measurement,

since there are many multithreading operations and very little actual computations. Analysis

with SEMi showed that in all four systems, the local buses were saturated by the tra�c between

the EU and SU or the EU and the link, while the sequential code's stack, 30 frames deep, �ts

entirely in the L1 cache. In such a case it is crucial to eliminate overheads as much as possible.

The data in Table 2 show a substantial reduction in overheads, and this is re
ected dramatically

in the results for Fibonacci; a hardware SU doubles single-node performance compared to the

best o�-the-shelf implementation. Removing the EU-SU tra�c from the bus (with an internal

SU) doubles performance again, so that overheads are less than half the total execution cost

(compared to sequential code).

The other, more realistic benchmarks show better performance by all the multithreaded

systems, with a steady improvement seen along the evolutionary path (software SU �! external

hardware SU �! internal SU). The overheads, as indicated by the ratio between absolute and
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Figure 11: Speedups for Tomcatv (257)

relative speedups, are modest for the fully-parallel N-Queens program and very small for the

other, coarser-grain programs. For N-Queens, the di�erence in performance (almost a factor of

3) along the evolutionary path is due both to the reduction in overheads and the greater e�cacy

of the load-balancer. For the other benchmarks, the performance gains are almost entirely due

to improved load balancing. Thus, it can be seen that hardware support for �bers contributes

both to their cheapness (reducing overheads) and their balance.

A comparison of Figures 8 and 9 shows the potential bene�ts of having many �bers, and how

hardware support can contribute to this abundance. The former benchmark generates 67,150

threaded procedures, each of which generates two or three �bers. The latter benchmark was

produced by limiting parallelism in the code, as a programmer may want to do in a coarse-grain

system where overheads are large. While this throttling was relatively simple in this program, it

can be far more di�cult in complex programs. The �gures show that given adequate hardware

support, program throttling is unnecessary (in fact, sometimes the fully-parallel version has

a faster absolute speedup). This is a bene�t to the programmer, for it allows highly-parallel

programs to be expressed in a more natural form expressing their inherent parallelism.

Also, abundance of �bers also helps to keep the code scalable into the realm of massively-

parallel processors. In this example, since the fully-parallel code was able to produce parallelism

more than 2 orders of magnitude beyond what was required (at 120 nodes), and the speedup

curve is nearly linear at 120 nodes with little sign of tapering, this would suggest that, if the

simulator were modi�ed to allow larger simulations, speedups could be extended well into the

hundreds.

6 Related Work

A number of articles have been published on multithreaded execution and architecture models

and an introduction to the subject can be found in a survey article by Dennis and Gao [7].

19



Principal projects and representative work before 1995 have been discussed in two mono-

graphs [17, 12].

Multithreading models with �ne-grain �ber models similar to EARTH include Cilk [11]

(discussed in Section 3.3), Iannucci's hybrid multithreaded model [16], P-RISC [23], StarT [5],

Berkeley TAM [6], and several projects in Japan [18, 25]. Many have been implemented on

COTS-based systems using either one or two CPUs per node, and some have advocated the

use of specialized hardware to support their threading models. We believe that these systems

would bene�t from such hardware, much like EARTH.

An entirely di�erent form of multithreading is the interleaving approach, discussed in Sec-

tion 2 [1, 2, 10, 32]. While these processors currently are not \o�-the-shelf" and available for

use in an EARTH-like system, there is considerable interest in them as they have demonstrated

an ability to increase processor performance. Should this type of design become mainstream,

it would open up exciting possibilities combining their bene�ts with �ne-grain �ber models as

described in this paper [30].

Other recent multithreaded architecture models include SPSM [9], Multiscalar [28], Su-

perthreads [31], Trace Processor [27], and STAMPede [29]. Some of those new models, such

as Multiscalar, Superthreads, and STAMPede, apply aggressive control and data (memory)

speculation techniques to improve single-thread program performance. IRAM technology [26]

permits memory-intensive data-movement operations to be placed directly next to the memo-

ries where full use of the local bandwidth can be achieved. Again, the possibility of a marriage

between these processor techniques and a �ne-grain �ber model opens up interesting research

areas.

7 Conclusion

More and more, supercomputers are being built from o�-the-shelf processors. These processors,

being designed for the uniprocessor mass-market, can exploit local ILP, but are not equipped

to support �ne-grain multithreading. On the other hand, many general-purpose parallel appli-

cations, especially irregular problems, are di�cult to program well using coarse-grain program-

ming. We argued that such applications would have much better performance on a system in

which threads are abundant, balanced and cheap (have low overheads).

We presented a general model for a thread hierarchy based on �bers and threaded procedures.

The former are executed non-preemptively, which allows them to run e�ciently on o�-the-shelf

processors. Such a model can run on a multiprocessor built entirely of commodity parts, but

�ne-grain multithreading can be much more e�cient if a small amount of hardware is added

to handle the tasks not supported well by the main processor, such as creating, switching, and

synchronizing �bers. This hardware support can be added incrementally, along an evolutionary

path, so that a quantum leap in hardware design is not mandatory.

An accurate, cycle-by-cycle simulation of four systems, based on the same processor and

running the same programs, but di�ering in the amount of hardware support for multithread-
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ing, demonstrates empirically that such hardware support indeed improves performance. The

improvement is most signi�cant for the more �ne-grain applications.
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A Experiments with a Faster CPU

This appendix presents the data from the enhanced-CPU experiments, �rst described in Sec-

tion 5.1. Experiments from Section 5.3 are repeated on the SEMi simulator with di�erent

parameters for the processor and memory system. These parameters are listed, along with the

original parameters of the i860XP and MANNA, in Table 4. The parameters for the faster

\MANNA" are mostly taken from the new PowerMANNA, which is based on the PowerPC

620 processor. Also, multi-issue capability is included and some architectural limitations of the

i860 are removed (e.g., the lack of a reservation table for FP registers). The miss penalty (in

CPU cycles) is increased, but an L2 cache is added.
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Module Parameter Original Faster

MANNA \MANNA"

CPU Clock speed (MHz) 50 200

IPC single or dual multiple

(explicit) (in order)

FP reservation table no yes

FP load stalls CPU yes no

L1 cache (I,D) Size (Kibytes) 16 32

Line size (bytes) 32 32

Set associativity 4 8

Hit read time (CPU cycles) 1 1

Access blocking non-blocking

Bus Clock speed (MHz) 50 66.7

L2 cache (uni�ed) Size (Mibytes) N/A 1

Line size (bytes) N/A 32

Set associativity N/A 1

Hit read time (CPU cycles) N/A 6

Memory Miss read time (CPU cycles) 8 20

Network Clock speed (MHz) 50 66.7

Bandwidth (Mbytes/sec) 50 133.3

Table 4: Parameters of Original and Modi�ed MANNA
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Figure 12: Speedups on Fast EARTH-MANNA for Fibonacci (30)

The following �gures show absolute and relative speedups, and can be compared with the

corresponding curves in Section 5.3. For the most part, the results here are consistent with the

previous �ndings of improved performance from a hardware SU.

The results show some reductions in absolute speedups for Fibonacci and N-Queens. This

is mainly due to the problems of bus saturation (mentioned in Section 5.3), which a�ect the

parallel programs far more than the sequential programs because the working sets of the latter
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Figure 13: Speedups on Fast EARTH-MANNA for N-Queens-P (10)
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Figure 14: Speedups on Fast EARTH-MANNA for N-Queens-T (10)

�t entirely in the L1 cache. The di�erence between the two is likely to be far less with the types

of applications intended for large parallel machines. In other words, if increasing the issue rate

of the CPU causes the memory bus to become the bottleneck, this will probably be true for

any parallel system, and here again, the overhead reductions o�ered by the hardware SU can

still lead to an increase in performance.

Some anomolous results can also be seen with the last benchmark. For the software-SU sys-

tems, the absolute speedups are substantially lower than for the original MANNA (Figure 16),

and the problem is compounded by relative speedups that level o� far below their theoretical

maxima. Cache statistics gathered by SEMi showed that the large data moves inherent in this

application are the cause; there is signi�cant contention in the EU on-chip caches between the

�bers running in the EU and the SU copying or transferring entire rows, and a high volume
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Figure 15: Speedups on Fast EARTH-MANNA for Para�ns (20)
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Figure 16: Speedups on Fast EARTH-MANNA for Tomcatv (257)

of cache-coherence tra�c on the memory bus, exacerbated by the lower relative performance

of the main memory. It is interesting to note that this problem disappears in both of the

hardware-SU-based platforms.

The results from these experiments suggest that the main conclusions of this paper, the

ability to support multithreading on o�-the-shelf systems and the bene�ts of custom hardware

to support the multithreading program execution model, apply not only to older processors

such as the i860, but to higher-performance superscalar processors with multiple-instruction

issue and higher clock speeds.
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