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Abstract

The recent development of complementary DNA microarray technology pro-
vides a powerful analytical tool for genetic research. This tool allows one to study
expression levels in parallel which represents an enormous gain in terms of exper-
imental time invested. But always while carrying out comparisons of expression
data using measurements from a single array or multiple arrays, the question of
normalizing data arises. An essential answer is needed to be established to the fol-
lowing question: Does the variation in the intensity data represent true variation
in the expression level of the genes present in the analysis or is this variation the
result of experimental variability? If the problem addressed by this question is not
resolved, any further type of data mining process on the data is worthless. The role
of normalization is to separate true variation in expression values from differences
due to experimental variability. As mentioned before the microarray technology is
a powerful tool that permits to study the expression level of thousands of genes
at the same time, but usually in an experiment involving thousands of genes there
are only few genes that are really of interest, those genes that overexpress as a
“response”to the experiment practiced. Therefore it is useful to develop a method
that will provide statistical information about these genes avoiding the processing
of the data on the whole set of genes. In this technical memo it is proposed a new
normalization method and error analysis that ultimately will provide the scientist
with a statistical tool that wil allow to focus on a considerably reduced subset of
genes from an originally much larger dataset. The usefullness of this type of re-
duction is justified under the scope of further analysis as for instance subsequent

clustering techniques applied over the reduced data set.
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1 Why normalization?

When performing several experiments over the same set of genes, which is the case of
microarray gene expression experiments, it is desirable to maintain an environment where
all the conditions remain constant through all the experiments, except the condition that
is purposely varied in order to record change in expression level with respect to this
newly changed parameter. Unfortunately the experimental process of working with gene
microarrays does not fulfill this requirement. During a typical microarray experiment,
many different variables and parameters different than the one being surveyed can affect
the measured expression levels. Among these are the amount of applied target, extent
of target labelling, efficiencies of fluor excitation and emission, detector efficiency, slide
quality, dye characteristics, scanner quality, and quantification software characteristics,
just to name a few. The various methods of normalization aim at removing or at least
minimizing expression differences due to variability in these parameters.

2 Introduction

Normalization is the process that helps us to separate true variation in expression val-
ues from differences due to experimental variability and it is a challenge to devise a
normalization method that will remove experimental variability without modifying the
information of gene expression level. A very popular normalization method is the one
that uses two-color fluorescence. For instance, a red labeled probe (from a healthy tissue)
can be used as control to examine expression profiles in a green labeled probe prepared
from an “ill” tissue. The normalized expression values for every gene are calculated as
the ratio of the control and ill expression levels. Even more sophisticated methods have
been devised using three colors where one color serves as control for the amount of spot-
ted DNA and the other two colors are used to compare the samples. Another type of
normalization method consists of using a set of control spots (genes) on the array. With
a set of control spots it is possible to control for global variation in overall slide qual-
ity or scanning differences. The procedures mentioned above are array based methods
to normalize data. However, even with multiple color fluorescence and control spots,
undesired experimenttal variation can contaminate expression data. In some cases it is
possible that this physical measurements for normalization are missing, making the need
for additional ways of normalization an important issue. Fortunately there are other
statistically based normalization methods. There are esentially two strategies that are
used while performing the statistical normalization process. The first is based on a con-
sideration of all the genes in the sample (global normalization), and the second one, on
a designated subset of the genes expected to be unchanging over most circumstances. In



those cases where the expression level change is expected to be small and thus the levels
are going to be close to each other the choice of global normalization is a wise decision. As
the level samples become more divergent, the fraction of genes showing changed expres-
sion levels incresases, and global normalization yields a poorer estimate of normalization
than would be achieved using a subset of constantly expressed genes. On this technical
memo we propose a new global normalization method and error analysis so that intensity
expression levels may be used for deciding significant differences in sample expressions
across the gene population discernible on a microarray, by first normalizing the data and
afterwards developing an error curve which identifies outliers. The new normalization
method normalizes each intensity value for a specific gene at agiven experiment by taking
into account all the values of that particular gene through all the experiments performed.

3 Microarray Data Normalization: A Problem For-

mulation

The necessity of normalization arises whenever handling gene expression data from mi-
croarrays. Every measurement as every experiment has a random component of experi-
ment variability which does not allow to compare directly (raw intensity measurements)
after obtaining the measurements between experiments for instance. This random com-
ponent which is different for every experiment has to be removed. This is what we know
as the normalization process. The key intuition of the normalization method is that we
normalize each experiment vector independently with respect to the same variable (the
norm of the expression vector), thus achieving the normalization of every experiment
vector with respect to all the others.

For the normalization analysis it is assumed that there are N experiments which
correspond to N microarrays. Each microarray chip contains K different genes or species.
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Figure 1: Basic Experiment Setup

Figure 1 exemplifies the definition of the expression vectors. An expression vector is
a vector in the N dimensional space where each component (spot) represents a physical



intensity value (this measurement is achieved by processing digitized microarray images)
for a given gene in a given experiment. Let us give a more complete definition of the
terms involved in the analysis:

We define an expression vector as:

v = {61176127613, ...,eiN} fori=1,.. K. (1)

where e;; with j=1..N represents the intensity value obtained for the i-th gene in the j-th
experiment. An expression vector contains all the expression levels related to a particular
gene.

We define an experiment vector as:

gj = {eij, e, i€yt for j=1,..,N. (2)

where e;; with i=1..K represents the intensity value obtained for the i-th gene in
the j-th experiment. An experiment vector contains all the intensities belonging to a
particular experiment.

The whole data for the N experiments are thought as a matrix as shown below in (3)

and (4).

El1 E2 E3 .. EN
vl ell el2 €13 ... elN
v2 €21 €22 €23 ... e2N

vK eK1 eK2 eK3 ... eKN
ell el2 el3 ... elN
e2l €22 €23 ... e2N

eK1l eK2 eK3 ... eKN
Where the rows are expression vectors and the columns are experiment vectors. We

have K expression vectors of dimension N. Therefore we can consider we are working in
the N dimensional intensity space.

It is possible, and usually this is the case, that if we pairwise compare the experiment
vectors (taken from the raw data) there will be one or more pairs that are consistently
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Figure 2: Effect of Normalization on intensity data

and significantly different from each other. Where the differences are due to experimental

variability. For example it might be very misleading to compare the intensity values of

the two experiment vectors in figure 2(a). The same two experiment vectors plotted after

normalization figure 2(b) show clearly that most of the genes fall in the identity line as
would be expected for two different experiments performed over the same set of genes.

In the general case we have in total N experiment vectors that have to be normalized.

The key intuition of the normalization method is that we normalize each experiment

vector independently with respect to the same variable (the norm of the expression

vector), thus achieving the normalization of every experiment vector with respect to
all the others. This idea can be better understood through the following analysis:
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Figure 3: Normalization for experiment vector E1



We assume that for each experiment vector ; the experimental variability can be
modeled as a linear average and therefore we perform a linear regression [1] over the set
of pairs of data (Norm(v;), e;;) for i=1,....K. As can be seen in figure 3.

The Norm (v;) is defined as:

Norm (v;) = \/(en)? + (ei2)? + ... + (ein)? (5)

In other words, to each component e;; of the experiment vector we associate the
corresponding norm of the i-th expression vector (Norm(v;)). This idea can be better
understood under the scope of the following analysis:

The linear average of the data E; is assumed to be given by:
E; = (NF) « Norm + BCKGND

E, is represented by the line in figure 3(a).
Where :

BCKGND = Background, NF = Normalization Factor

The NF (representing the slope of the line fitting the intensity values) and the BCK-
GND (representing the cross of this line with the intensity axis) are given by the linear
regression.

If we perform the following operation over E; to obtain Eq,, figure 3(b), we will move
the whole line, corresponding to the fit, towards the identity line shifting at the same
time all the intensity values towards the identity line:

El* — E1-BCKGND

N = Norm

And if this procedure is repeated for all experiment vectors, we will obtain the desired
normalization, given by:

E~1* = E~2* = E;* =..= Norm

This means that all the expression vectors were moved towards the Reference Line
(identity) as seen in figure 2(b) for two dimensions.

The actual process of normalization is implemented in each compenent of the exper-
iment vector as shown:



NF

€ijN =

Because this is a global normalization method, it is assumed that all the expression
vectors will be around the Reference Line (weakly disturbed), in order for the normal-
ization to give an accurate result. Once done the normalization we are certain of the
“cleanness” of our data but still we are faced with the challenge of analyzing thousands
of genes. We will show through our error analysis that many of those genes can be dis-
carded due to their low statistical significance and therefore we will find a smaller more
manageable subset of genes.

4 Error Analysis

The main objective of the error analysis is to provide information about genes that had a
statistically significant expression with respect to the expression of the rest of the genes
in the same set. This partition of the genes in two sets benefits any further analysis
processing.

4.1 Definition of terms

First let us define the following terms in order to make the error analysis easier to
understand:

Any expression vector has, in the N dimensional intensity space, the following char-
acteristics associated with it.

e The Norm or vector length

Norm = Veil? 4 ¢i22 4 ... + ¢iN2 (7)

e The angle € which is defined as the angle between each particular expression vector
and the Reference Line.

e The projection P ( dot product between the expression vector and the Reference
Line ) which is the projection of the expression vector over the Reference Line
defined as:

(8)



e The deviation ¢ defined as the Euclidean distance between the expression vector
and its projection vector on the Reference Line.

0 = lvi = pill (9)

Where in this case p; is the vector with the same direction as the Reference Line
and Norm = F,.

It is important to mension that the Reference Line is a unit vector in direction
—— (1, 1, 1, ..., 1).

VN

Intensity 1
0 .
Reference Line
Norm
Projection

0

Intensity 2

Figure 4: Characteristics of an expression vector

These characteristics of an expression vector are defined for the N dimensional inten-
sity space. These concepts can be better grasped if we consider them in two dimensions
as shown in figure 4.

4.2 Analysis

The analysis is subdivided in two main steps:

e Variance of Deviation

e Error Curve Analysis



4.2.1 Variance of Deviation

Figure 5: Representation of the distribution for the deviation at a particular projection

value

As was mentioned previously it is assumed that the experiments are weakly disturbed
and therefore all the expression vectors will be distributed as a type of “cloud” around the
reference line. It is also assumed that for each projection value on the reference line the
deviations of all expression vectors with this particular projection value will be normally
distributed around the reference line. This concept is illustrated for two dimensions in
figure 5. Because the expression vectors are normally distributed around the Reference
Line a good statistical delimiter is the standard deviation ¢ of the deviation §. In order
to calculate o we calculate first the variance of ¢ which is o2. This is done by making a
nonliner regression where the independent variable is the Norm of the expression vector
and the dependent variable is the square of the deviation 62 which will give us a fit that
represents the variance of § as explained below. We define the variance of the deviation
for a particular Norm value as:

VAR[] = E{(0 — ps)"} (10)
Since ps =10 (11)
Then V AR[S] = F{(6)*} (12)



Where E{(d§)?} is equivalent to the fit done by the non linear regression. Then after
the regression the variance for the deviation is approximated as:

VAR[§] = C + Ax Norm? = o* (13)

Where A, B, and C are coefficients given by the non linear regression analysis [1].

2
AS va[d) o
°
Norm
>

Figure 6: Curve fit to calculate Var[d] in plot §? vs Norm

This type of approximation is illustrated in figure 6.

4.2.2 FError Curve Analysis

After the previous step in the analysis we will now define the outlier genes. In other
words, those genes that should really be considered for subsequent analysis. After having
calculated the standard deviation o we can now proceed to use this information to apply a
statistical delimiter that will show us which genes have a significant statistical expression
level. If in this case we calculate, with the coefficients already obtained through the
nonlinear regression, the standard deviation ¢ in terms of the projection, we obtain:

VAR[§] =C + Ax PP =0 (14)

We will be able to give for each projection value a delimiter consisting in a value pro-
portional to the calculated standard deviation o. This type of analysis can be visualized
in two dimensions in the figure 7, where the constant of proportionality in this case is 1.



Figure 7: Distribution of expression vectors around the Reference Line in a perpendicular
plane. The circle represents the delimiter imposed by the standard deviation o

Imagine the circle is in a plane perpendicular to the reference line as shown in figure 5.
Taking into account this type of analysis, we now can make a 2-dimensional plot were
all this information (in the n dimensional intensity space) about genes that lie within or
outside the delimiting region will be condensed. For each projection value P; there is an
associated perpendicular plane and circular delimiting region. Thus this can be plotted
in two dimensions using as the independent variable the projection, and as the dependent
varible the tangent of the angle between the expression vector and the Reference Line
which is directly related with the deviation by:

4}
tan(;) = = 15
%) =3 (15
The function tangent is used in order to give a better resolution for larger values of 6.
The delimiting circular region (what we have called the error curve) will be represented
as a single value for each projection value given by:

errorcurve(P;) = % (16)

This is like we had folded the whole circle (see figure 7) into a single point with a
distance o from the Reference Line. The values above the error curve will be considered

10



outlier genes. The result of such analysis will be a plot like the one of figure 8.

tan( 0 )

Figure 8: Error Curve analysis: tan (0) vs P,

5 A visualization tool for the analysis

For the purpose of implementing the analysis it was developed an application as a means
for visualization of the results. This tool was developed in java (jdk 1.2) programming
language. The JClass Chart API was used to produce the charts that implement the
graphics previously mentioned in the analysis. The values in both axes (“z”and "y”)
were presented in logarithmic scale due to the large range of the data. The data used as
input for the application with the information about gene identifiers and intensity values
must be in a simple text format. The graphics created by the application are shown in
figures 9 -14.

6 Applying the analysis to real data

The analysis previously proposed was applied to two different set of data. The first set
of data belongs to Dupont and consisted in 8 experiments with a total of 4598 different
genes. And the second set of data was the same set of data used in [3] with a total of
6151 genes (Pat Brown Data).

e Variance of Deviation

11



Dupont's Data

Figure 9: Dupont’s Data: Square Deviation vs Vect.Length

For the Dupont set of data we present the results for the curve fit (figure 9) in
order to obtain the variance of the deviation. We can observe that the fit performs
well under this set of data. In this case in particular we can observe that for small
intensity values (small values in the Vector Length axis) the fit is unaffected by the
noise and converges to a constant value.

SQUARE DEVIATION Il VARIANCEIDEW]

Figure 10: Brown’s Data: Square Deviation vs Vect.Length (Without background cor-
rection)

For the Brown Data set (figure 10) we present the results obtained in the variance of
the deviation analysis. Initially the curve fit done by the linear regression converged
for small intensity values towards very small values. This was because for very small
intensity values the proportional noise in the signal is too significative.

In order to perform the appropriate curve fit to the data it was necessary to back-
ground correct the values of the variance. Basically the constant expression for

12



Brown Data, Bkgnd Corrected

Figure 11: Brown’s Data: Square Deviation vs Vect.Length (With background correction)

the variance was limited to 1xE-4 which was the average intensity value (noise)
calculated from the original data (figure 11).

e Error Analysis

For the final error analysis we present the curves obtained for both sets of data.

Figure 12: Dupont Data tan(f) vs. Projection (Delimiter value = 1 * o)

In figure 12 we can see the outlier set definition for a delimiting value of one standard
deviation in this case the outlier set of genes is about one half of the original gene
set.

In figure 13 (Dupont data set) we can observe the curve for the error analysis with
a delimiting value for the error curve of two times the standard deviation. It can
be seen that the number of outliers obviously depends on the delimiting value for
the error curve.

13
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Figure 13: Dupont’s Data tan(f) vs. Projection (Delimiter value = 2 * o)

For the Brown data we present the error analysis curve for a delimiting value of
two standard deviations in figure 14.

Brown Data. Error ( 25td.Dev.)

1.0

ion @ TANIO] MEERROR CURVE

Figure 14: Brown Data tan(f) vs. Projection (Delimiter Value = 2 * o)

Knowing that the statistics for each particular system are not the same, the best
option would be to “fine tune” the delimiting value according to the statistics
of the system under consideration and to the trade off between quality of data
obtained versus not taking into account real weakly expressed genes. In the table
below we show the exact number of outliers for different values of the delimiting
value that were obtained for both data sets. After the set of outlier genes has been
obtained in this manner the application of a clustering algorithm on this data set
would deliver better results.

14



Data Set | Delimiting Value Total number of genes
o 2x0

Dupont | 2002 475 | 4598

Brown 854 112 | 6151

7 Conclusions and Future Work

e In this new field of bioinformatics researchers all over the world are trying their
own methods for the different processes necessary to analyze the information com-
ing from the genetic analysis experiments. The standard procedures for all these
processes are being defined by the scientific community right now. Therefore any
new method that proves to work succesfully with the problem it addresses will be
of great contribution for the field. Even those methods that prove not to work will
have their own value as a learning experience.

e This particular method of normalization is proposed as a tool to analyze gene
expression data. The main characteristics of the normalization algorithm proposed
are that it facilitates the error analysis performed afterwards and the calculation
of the Pearson Correlation which is a correlation used extensively by biologists. It
is based on the assumption that it is very important to separate noise from real
change in expression.

e The data obtained by the analysis provide valuable information about genes that
have a statistically significant change in expression level.

e The error curve used in the analysis has to be defined according to the statistics of
the particular system in order to be meaningful.

e For some data sets it would be necessary to perform background correction, where
the background constant would be calculated as an average of the low intensity
values. This would lower bound the calculated variance curve and therefore give
meaningful values for the low intensity range of intensities.

e Additionaly it would be interesting to define an error threshold instead of an error
curve. This threshold would be implemented using some error tolerances given to
the intensity value measurements of the data instead of using one single value.

e [t would be interesting to continue this work with a clustering analysis. The original
main objective of this type of error estimation method is to improve the clustering
analysis of error profiles. For instance Pearson correlation can be used to construct
a distance matrix for expression profiles. The error analysis would indicate which of

15



the expression profiles are suitable for clustering and provide a score or probability
for the match between a given expression profile and a cluster.

e Possible future work is to make this tool available as an application in the webpage
of our group.
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