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Abstract

This paper presents a new power-aware software pipelining method edmaminimize power
consumption of software pipelined loops on VLIW architecture withgacrificing performance.
Our method is motivated by the following facts: (1) functional umitsnodern architectures are
fully pipelined; (2) in a loop body, there exists instructionsiethare not on critical (recurrence)
cycle(s). Traditional software pipelining approach schedules insbngas long as the required re-
sources are available irrespective of whether the instructions are dfrcatioal cycle(s). However,
intuitively from the angle of power reduction, if no performance pgnaltl be incurred, it may be
reasonable to postpone the issue of certain non-critical instruct@mti®ey can be scheduled to the
same functional unit of a prior instruction. The idea here is to retheaumber of functional units
which are in use in each cycle, thereby reducing the power consumed by thespiroces

In this paper we formulate the power consumption problem in softwgrelined loops as an
integer linear programming(ILP) problem. Within this model, thgetined functional unit usage
in each cycle are modeled precisely, and the power minimization acts as thewebjaciition.
The power-aware software pipelining approach for an Intel Itaniumdiichitecture is evaluated on
loops extracted fronSPEC2000 integer benchmarks using the SGI Pro64 open source compiler.
Our experimental results show that the our method can save power fetth@or 59% loops without
any degradation in performance. For these cases, the average power saiadlorctional units
is 15.9%.
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1 Introduction

Power dissipation is becoming one of the major design issfidgture high performance processor
architectures and embedded systems. In this paper, we docte impact ofoftware pipelining [21]

on power consumption. Software pipelining is an importampilation technique applied on loops
to exploit instruction level parallelism. In the past, neste constrained software pipelining has been
studied extensively by several researchers and a numbmeoaflo scheduling algorithms have been
proposed in the literature [6, 16, 21, 31]. The objective ebtiware pipelining method is to construct
a schedule that satisfies both the resource constraints afthitecture and the dependence constraints
imposed by the program, such that the constructed schedala tiery lowinitiation interval (11). The
schedule which achieves the lowest possible Il for the giesource constraint is said to beaie-
optimal schedule. For a comprehensive survey of software pipglimethods the reader is referred
to [30].

This paper presents a new power-aware software pipelingthad for VLIW architectures, which
can minimize the power consumption of software pipelinegbtowithout sacrificing performance. This
is possible due to the following facts: first, a large numbénsiructions havecheduling slacks—i.e.,
each of these instructions can be scheduled in one of maeystieps without degrading the performance
of the schedule. This is because either these instructi@efhthe critical (recurrence) cycles in the
loop or they do not use the critical resource(s). Such slack een profitably used to reduce the
register pressure in some of the software pipelining mettib6é, 25]. For instruction scheduling, it is
found that a significant number of instructions have slaaggohd 1 cycle [4]. Second, in a modern
VLIW architecture, functional units are usually fully pipeed and multiple instances of the same kind
of functional units are provided to unleash instructioneleparallelism [19]. For a fully pipelined
functional unit, on each cycle, a new instruction can bedddwo it. Thus a number of instructions can
be present in different stages of the functional unit in @gitime step. This increases the utilization
of a functional unit and other functional units of the samedkéan be released. This in turn leads to
reduced power consumption &l -or-nothing clock-gating model [3].

The target processor we are modeling use all-or-nothingkelating to gate the clock of idle func-
tional units.Clock-gating is a circuit technique to gate input clock of unused parngithus disable need-
less toggling at each cycle. It is pervasively used in mogeocessor design to realize power saving.
However, aggressive clock-gating cannot be used indigeait@ly since it may generate glitches, cause
clock skew and severely increase the complexity of timingfieation at high frequency [13, 36, 14].
Thus in practical design, the granularity at which the clgelting is applied differs from processor to
processor. Clock-gating on functional unit level is a readie design choice and itis adopted in pratice.
Alpha 21264 microprocessor [13] is a working example, itéddir datapath is operated on one condi-
tional clock. Since clock is the major contributor to CPU jeoyd0], under all-or-nothing clock-gating
model, it is reasonable to assume that the functional ueis bnly two states — active or inactive, and
nothing in between. Correspondingly, throughout this pape assume that for each functional unit,
constant amount of power is consumed in active state, imgudynamic power and leakage power;
whereas in inactive state, only leakage power is consunied [9

Traditional software pipelining approaches scheduletiegibns in each cycle based on certain pri-



ority order, as long as there are available resources. Pipigea not only tccritical instructions, those
that are on critical recurrence cycle(s) or those that usealrresource(s), but also to all other instruc-
tions as well. In certain software pipelining methods, instions are scheduled at the earliest possible
time [31]. However, issuing instruction as early as possibhy schedule non-critical instructions along
with critical instructions at the same time step, requiringltiple instances of functional units to be
active simultaneously. As explained earlier, since we ragsa power model in which all or none of
the stages of a functional unit is switched off, many ins¢ésnef the functional units being active si-
multaneously increases power consumption. As opposedstaftieertain non-critical instructions are
scheduled at later cycles to an already active functiond) ue., which have instructions in some of
stages of the pipeline, some other functional units of ttmeskind can be completely powered down,
resulting in reduced power consumption. Thus, from theeanfpower reduction, it may be reasonable
to delay the schedule of some of the non-critical instruntieo that they can be issued in the available
empty slot of an active functional unit at a later cycle. T¢oslld be done in such a way that there is no
performance degradation be introduced.

One interesting question in software pipelining contextrdfore is: Is it possible to schedule in-
structions in such a way that rate-optimality, in terms ohimium initiation interval (Il), is obtained
while reducing the power consumption by reducing the totehber of function units in use? To an-
swer this question, we define the power aware software pipglias below:

Problem Given a loopL and a machine architectufd, construct a schedule that achieves rate-
optimality for L under the given resource constraintdvafand consumes thminimal power.

In this paper we formulate the power-aware software pipwirproblem as an integer linear pro-
gramming(ILP) problem. As illustrated in an earlier work[3while an integer linear programming
based method may not directly be used in a production comiiis still useful for the evaluation of
(performance) bounds that can be achieved by any heuriagedomethod. Unlike some of the ear-
lier (simpler) ILP formulation for pipelined functional ita [11], the proposed power aware software
pipelining ILP formulation models precisely the pipelingthctional unit usage in each clock cycle.
This in turn helps to model the power consumed accuratelyutdLP formulation, we use the minimal
power consumption as the objective function.

The proposed ILP formulation is implemented on an Itaniilka-architecture [18, 19] in SGI Pro64
compiler. We have tested our method on 1983 loops extracdetSPEC2000 integer benchmarks. Our
experimental results show that for 59% of the loops, the gsegd power-aware software pipelining
method can achieve better schedules in terms of power c@tstimn a performance-oriented power-
unaware approach, within the same performance. For thesss,cthe average percentage of power
saving on functional units is 15.9%. It should be noted hiea¢ dur approach considers only the power
savings in functional units, and hence the 15.9% reducsamly with regard to power consumed by
functional units.

This paper is organized as follows. In section 2 we motivatepmwer-aware software pipelining
method with the help of an example. Our integer linear progning formulation is described in Sec-
tion 3. The experimental results on loops extracted fBREC2000 integer benchmark are reported in
Section 4. A discussion on related work is presented in @2&ti Section 6 concludes our work.
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2 Motivation

In this section, we motivate power-aware software pipefinvith the help of a motivating example.

Figure 1: Data Dependence Graph

Consider a VLIW architecture with the machine configurat&anshown in Table 1. As shown in
the table, there are 1 adder and 2 multipliers in the ardhitec The adder only takes one cycle (i.e., a
trivial case of a fully pipelined unit). The two multiplieese fully pipelined with two cycle latency (2
stages). We use normalized data for power and assume thatiaa@dder consumes 1 unit of power,
while an inactive adder consumes 0.1 unit of power. The plidticonsumes 2.0 or 0.2 units of power
depending on its state as in the Cai-Lim model [9]. In thisgsapre focus on the power consumption
of functional units while neglecting other components lg®ue logic, data cache and instruction cache,
memory, etc.

Functional unit type| Adder | Multiplier
Numbers 1 2
Stages 1 2
Active power 1 2
Inactive power 0.1 0.2

Table 1: Target Machine Configuration

Consider the DDG shown in Figure 1, where there are thremiigins (one add and two multiply
instructions) in the loop. The directed arcs and the numadjacent to nodes in the DDG indicate,
respectively, data dependences and dependence distance.

First, we calculate the lower bound on the initiation ing¢\), which is the maximum of the bound
imposed by the recurrences in the loop and the bound impaoséaelresource constraints. They are
referred to as RecMIl and ResMiII respectively [30]. RecMlbiven by :

_ d(©)
RecMI| = max{ {m(C)w | VC € cycles ofG}
whered(C) is the sum of the latencies of the nodes in cyClef the dependence graph, am(C) is the
sum of the dependence distances around ¢yclim the given DDG, there is a critical cycle involving
0 andS1, which makes the RecMll to be 3.



The lower bound of Il governed by the resource constrainivisrgby:
ResMI| = max{ [@w | Vre [O,h—l]}

where((r) is the set of all instructions in the DDG that use functional unit for its executionR; is
the number of functional units of typedefined by the micro-architecturk,is the number of different
types of the functional units. For the given DDG, ResMll is 1.

The lower bound of Il for the given DDG under the resource traitgs of architecturév is thus
max(3,1) = 3. Table 2 gives a possible schedule with=4l 3. Thus we note that 3 is a feasible I for
the given DDG.

Iteration Time Steps
o|1]|2 314|565 6
0 sO sl || s2
1 sO sl || s2
2 sO

Table 2: A Feasible Schedule for DDG in Figure 1

Let us calculate the power consumption of the loop based®adtivities of functional units in the
repetitive pattern. Without loss of generality, we choassetudy power consumption in the repetitive
pattern from cycle 3 to cycle 5. At cycle 3, both multiply ingttions@ andS2) in the loop are issued,
and they must be issued to two different multipliers to awbidctural hazard. At cycle 5, add instruction
Sl is issued to the adder. Thus the two multipliers are busyworconsecutive cycles and idle for one
cycle. The adder is busy for one cycle and idle for the remgiivo cycles. During a single I, the
energy consumed by the adder is

1x142x01=12

And the energy consumed by each of the two multipliers is
2x2+1x02=42
Thus the total energy consumed by all the functional units is

12+42x2=96

An interesting question to ask is: does there exist any a#teroptimal schedule which consumes
less energy? The answer is yes because the issue tiiff2 cdn be delayed by one cycle without
changing I, sinceX? is not on the critical cycle, and the proposed delay shoatdntrease Il of the
loop, hence its total execution time. Further, since theiplidr is fully pipelined, scheduling? at time
step 4 in the linear schedule, i.e., time step 1 in the repetiattern does not conflict with schedule
time of SL which is in the critical cycle. ThuS2 can be scheduled at time step 4 without affecting the
value of Il. Applying this observation, we construct aneteehedule which is shown in Table 3.

Let us calculate the energy consumed by the new scheduleych 8, 0 is issued, it goes to one
of the two multipliers. At cycle 42 is issued. Since the multiplier is fully pipeline® can be issued
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Iteration Time Steps

01| 2 3 4 5 6
0 sO sl s2
1 sO sl
2 sO

Table 3: The Energy Saving Schedule for DDG in Figure 1

to the same multiplier aS0, causing higher utilization of one of the two multipliensdalow (zero)
utilization of the otherS2 completes its execution at the end of time step 5, thusjsmtaw schedule,
one of the two multipliers is active for all 3 cycles (from #rstep 3 to 5) while the other one is always
idle. Thus energy consumed by them during a single I1is2+ 0.2 x 3= 6.6. As for the adder is
concerned, it consumes the same amount of energy as theysegéhedule, which is2. Taking all
the functional units into account, power consumption ofrtee schedule is.6+ 1.2 = 7.8. Compared
to the prior one, the new schedule consumes 18.8% less offpowe

One key observation that can be made from the two schedulbsitishe latter schedule makes
a better use of the multiplier pipeline. Only one of the twoltipliers is active while the other can
be completely powered down, resulting in reduction in pderergy. As our motivating example
shows, indeed, there exist considerable opportunity taaegower/energy consumption of the soft-
ware pipelined loop by taking advantage of the slack of natical instructions.

In the following section we formulate the power-aware saf®@vpipelining problem as an integer
linear programming problem.

3 Integer Linear Programming Formulation

Let the number of nodes in the DDG & We formulate the problem of constructing a software
pipelined schedule with a specifit as below. To achieve a rate-optimal schedule, we need to try
successive values of Il fromlll (minimum initiation interval) until a schedule is found. téahat in

our formulationN andl| are constants. Further, in our formulation, we considey orddulo schedules
which are periodic. In a periodic schedule, instructan theith iteration is scheduled at timé-i +tg,
wherets is the schedule time of in the first iteration, starting from zero. The schedule tiofieall
instructions in the first iteration is represented by an &teint vector

[ = [to,ty, -, ty—g] TP
Resource constraints can be checked in the repetitiverpafidne repetitive pattern is represented by
anll x N matrix A. Matrix A is a 0-1 matrix witha,; = 1 if instructioni is issued at time stefpin the

repetitive pattern; otherwis; = 0. In our formulation, vector is related to matriXA as

=11 _K_|_IA\Transpose>< [0’1,_‘_ ,(” _1)]Transpose



That is,

to ko ) B a-10 0
t1 k. ag1 B a-11 1
=1lx . + . . . X . @

tN—1 k-1 8N-1 v AI_1N-1 -1

To help understanding whatis, each elemerk of k is associated with in vectorl” as:

- 18

Intuitively ATranspose 101 ... (11 — 1)]Transpese jg the offset of instructions in the repetitive pattern.
The matrixI',k andA for the schedule shown in Table 3 are:

0 0
r = 2 K = 0 A =
4 1

o O -
= O O
o O

The following equation guarantees that each instructistigeduled exactly once in the repetitive
kernel:

-1
=1, Vie[O,N—1 2
tZDaL S ] (2)

If a dependence arc exists from nod@ nodej with dependence distaneg j and the latency is
dij, then Inequality 3 must hold.

ti—t >dj—I-mj, V(i,j)€E ()

Next we formulate resource constraints. Lét) denote the set of all instructions bound to func-
tional units of typer. For a fully pipelined functional unit, it is exclusively cgpied by some instruction
only at the issue cycle of that instruction. The number otfiomal units of type that are needed for
the schedule at time stefs

Z a

ie((r)

Thus the following inequality enforces the resource camstrfor all functional unit types and all time
steps in the repetitive kernel.

Z ai <R, WVtel0ll—-1],vre[0,h—-1] 4)
ieC(r)

whereR; is the number of available functional units of typeh is the number of different types of
functional units.



The resource and dependence constraints in our formulat®msame as that in [11, 12]. Next we
formulate the power consumption of the software pipelingtedule which is our contribution in this
paper. To model the power consumption for each functionélaireach time step, we need to know
the number of active functional units. For this purposejdessthe starting time of each instruction,
we also need to know how long each instruction takes to emdouthe pipeline. Furthermore, it is
important to know exactly for how many time steps each funmeti unit is active, taking into consider-
ation overlapped execution of different instructions oa same functional units. For example, in the
schedule shown in Table 3 one of the two multipliers is busy3foycles in the repetitive pattern, taking
the overlapped execution of instructiof3 and2.

An instructioni issued at time in the repetitive pattern will be in stageat time step(t + )
mod II. To model the usage of the stages of different functionaisumie introduce a 3-dimensional
arrayU = [l ¢]. In the array each element is defined as:

Ui s = 1 <=instructioni is in stages
of the pipeline at time step

Derived from above discussion, s is defined by matrixA in Equation 5 and 6 as below. It should
be noted here that different types of instructions may takerdnt cycles on the functional unit, it is
interpreted as that some instructions don't go throughhallstages of the functional unit pipeline for
their execution. That is why Equation 6 is needed.

Utis = &t_gmodi,
Vie [O,N—1],Vt € [0,11 —1],Vse [0,di —1]

(5)

Ujs=0

: (6)
Vie [O,N—1],vt € [0, Il —1],Vs€e [d, L, — 1]

whered; is the latency of instruction andL, is the maximum latency of all instructions that can be
executed on functional unit of type

Theorem 3.1 Two ingtructions i and j bound to functional unit of the same type can be issued to the
same functional unitif and only if ujs+uw js<1forallte[0,11 —1]andse [0,L, — 1] in the software
pipelined loop.

Theorem 3.2 |n a software pipelined schedule, number of functional units of type r being used at time
steptis

Ry = max{ > Wisls€ (0L — 1]} :
ieC(r)

The above equation can be expressed in a linear form as:

Rr> z Uis Vse [0,Ly—1] (7)
ieq(r)



The above inequality must hold for allnd for all function unit types.

Let us assume that the power consumed by functional unipefrtys P, when it is active and?, /10
when it is inactive. The energy consumed by the active fonetiunits of type during period of length
Ilis:

-1

t; Rr-P

The energy consumed by the inactive functional units is:

-1 =
> R=Ro) 15

Thus, the total energy consumed by function units of all $yparing each period dt is:

g h-1 -1 T h1

=. P . —_. P .

10 %( ) e TR
Since the second term in the above expression correspottis leakage power of the functional units,
which is consumed irrespective of whether or not the fumetianit is active, the power-aware software

pipelining formulation only need to minimize the first terifo reduce the overall energy consumed by
functional units of all types, the objective function shibbk:

hi/ 11
minr;) (Pr : t; Ft,r> (8)

The above objective function should be minimized subjetbégualities 1 — 7.

4 Results

4.1 Experimental Framework

We implemented our power-aware software pipelining apgrdaa framework that uses the SGI Pro64
compiler [33], which is an open source compiler targetechtellitanium processor [18, 19]. The SGI
Pro64 compiler is invoked with optimization level 3. At apization level 3, extensive high level
optimization including dead code elimination, copy pragté@n, common subexpression elimination,
induction variable elimination and strength reduction applied on the intermediate representation
WHIRL. Then the WHIRL is lowered to another form of intermaidi representation, which is called
TOP. The transformations applied on TOP before the softwgrelining are control flow optimiza-
tion, block level optimization, if-conversion and critigaath reduction. We extract data dependence
graphs(DDG) at the beginning phase of software pipelining.

Using this compiler framework we apply our approach on loexsacted fromSPEC2000 integer
benchmarks. The statistics on the data dependence gragdhisur experiments is summarized in Ta-
ble 4. For these DDGs, using a simple program, we generatstéger linear programming formulation
(as given in Section 3) and solve these ILP problem using ameenial ILP solverCPLEX [17].
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Benchmark|| # of avg # avg# | avg

DDGs | of nodes | of edges| MIl
gzip 69 7.3 12.8 3
vpr 93 154 47.6 12
gcc 415 11.2 26.4 8
mcf 22 12.8 62.6 9
crafty 86 11.4 335 5
parser 116 7.4 16.1 5
eon 101 7.7 19.9 4
perlbmk 182 9.7 25.7 7
gap 620 11.2 28.8 7
vortex 49 18.8 81.3 14
bzip2 63 9.4 21.0 6
twolf 317 18.7 63.8 12

[ total | 2133 120] 340] 78|

Table 4: Statistics on SPEC 2000 Benchmark Evaluated

The target processor for which our integer linear programgmdrmulation is applied is an Itanium-
like processor. We use the ISA defined by Intel 1A-64 and dpmrdatency defined by Itanium. The
total number of instructions defined by the IA-64 architeetis 759. For the 759 different instructions,
each of them falls into one of these six categori&sype instruction, I-type instruction, M-type instruc-
tion, B-type instruction, F-type instruction andX-typeinstruction. The detailed description of each class
is given in [18]. Since our power aware software pipeliningtinod applies only to inner-most loops
without conditionals, all the instructions in the loop baahg non-control-flow instructions. Hence we
only need to consider instructions of typ&sl, M andF. In the micro-architecture defined by Itanium,
the binding relation between instructions and functiomdisuare as followsA-type instructions can be
executed by either I-unit(integer ALU) or M-unit(memoryitinl-type instructions, M-type instructions
and F-type instructions are mapped to I-unit, M-unit and F-unit(floating-point gmespectively. The
complex binding of instruction types to functional unitdided in [19] necessitates the ILP formula-
tion given in Section 3 to be refined in order to accurately ehdlde resource usage in the Itanium
architecture. Interested reader is referred to [39] fordfimed formulation.

Lastly, in this study we assume that the power consumptioeach functional units as given in
Table 5, based on available literature on the DEC Alpha [b8]latel PentiumPro [26]. Power data in
the table is normalized since we are not counting the alEslotver, but evaluating the improvement
can be made by our approach. We use the power model in Tableabid® power details of Itanium
processor is not publicly available, however our ILP foratign can be smoothly re-targetted to Itanium
architecture once we have more knowledge on Itanium lowtdgsign details .

FU l-unit | M-unit | F-unit
numbers 2 2 2
active power 1 1 1
inactive power|| 0.1 0.1 0.1

Table 5: Power Model



4.2 Experimental Results

We implemented our minimum power software pipelining folation by integer linear programming
usingCPLEX. For comparison, also we implemented a power-unaware amtpipelining formulation,
which only use constraints 1 - 4 in Section 3. The power sayiimgpercentage, is given by:

P— I:)min

P

R= x 100%

whereP and Py are, respectively, the power consumed by the power-unaaradehe power-aware
software pipelining schedules.

Out of the 2133 loops in Table 4, 146 of them is too large forltie solver and cannot be solved
in a reasonable amount of time. The results for all the othepd are tabulated in Table 6. For each
benchmark, we report the number of loops in which (i) no poseasting is obtained, (ii) power saving
is obtained by applying our power-aware software pipetiripproach. For each case, we report the
average Il. Also for the second case, we report the averagerpsaving in percentage. We observe
that in 1174 loops — about 59% cases — the power aware sofpi@tning approach results in power
saving. The overall average power saving in the 1174 loopS.8%. For the remaining 813 loops there
is no power saving. The reason could be that: (i) the ingomstin these DDGs doesn't have slack
and thus cannot be moved around to effect power savings; iarel/én in cases where instructions
have slack, the slack may not be sufficient enough to movauttgins to reduce the number of active
functional units.

Benchmark || DDGs no saving DDGs with saving

# avg Il # avg Il | avg saving
gzip 36 1.8 33 4.8 19.1%
vpr 25 9.3 60 15.2 9.2%
gce 184 6.5 224 8.7 16.3%
mcf 5 2.2 16 10.2 15.5%
crafty 45 2.8 40 6.8 22.0%
parser 64 3.3 52 6.8 15.6%
eon 39 2.7 58 5.4 22.9%
perlbmk 82 5.2 97 8.8 16.5%
gap 206 5.6 347 8.0 16.4%
vortex 14 13.6 30 17.1 12.4%
bzip2 33 3.6 28 7.1 18.4%
twolf 80 11.3 189 12.7 12.5%

[ total [ 813] 58 [1174] 92 | 159% |

Table 6: Power Saving for SPEC 2000 Benchmarks

Our studies reveal that the average value of Il in the poweingdoops is typically greater that
that for the no-power saving loops in each benchmark. Thigtisurprising, as higher the value of I,
higher is slack for different instructions and there is n&gepe for the power aware scheduling method
to schedule instructions to achieve power reduction.
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5 Reated Work

Software pipelining has been studied extensively in therdiure. Several modulo scheduling meth-
ods [6, 16, 21, 31] have been proposed. An extensive surviesé work have been presented in [30].
While many of these work concentrate on getting a rate-adtsthedule, other equally important issues
to achieve high performance including register allocatod spill code generation [40, 24], prefetch-
ing in both numerical and non-numerical programs [28, 34EHaeen getting recent attention. Integer
linear programming formulation is widely used to deriveeraptimal schedules [11, 12, 1]. Compar-
ison between the rate-optimal scheduling formulation dedsbftware pipelining in MIPSpro, which
is a production quality compiler has been made in [32]. A Ibefforts have been put on applying
ILP on instruction scheduling [38], register allocatioh §&d software pipelining [7] while reducing its
time-complexity thus applicability of ILP approach can belened.

Applying compilation techniques to reduce power consuampis a relatively new topic. Power
consumption on a per-instruction basis is analyzed in [9%,Rower-aware instruction scheduling [22]
and register renaming [27] methods are studied to reducentitagndistance of adjacent instruction
words thus minimizing switching activities on the instiootcache data bus.

There are a lot of ongoing research in micro-architectuatll power analysis [9, 3, 37] and reduc-
tion [8, 41, 20]. Synergy between compilation techniques micro-architectural level power-reducing
mechanisms is a must to achieve significant power savingatticplar, compiler researchers studied
the interaction between program transformation and fregyfgoltage scaling [15, 5, 23]. Exploiting
schedule slacks to reduce power consumed by executionsuatiracting increasing attention [41, 20].
In contrast to aforementioned works, this paper is focusedwrent micro-architecture, without the
need of introducing frequency and voltage scaling.

6 Conclusions

In this paper we address the problem of generating a softpipetined schedule for loop body that is
optimal in terms of the power consumed by the functionalauditring the execution. This problem is
motivated by two observations: (1) functional units in madprocessor are fully pipelined; (2) there
are instructions in the loop that are not on the critical eydBy exploiting slacks in the rate-optimal
schedule, we can come up with a schedule that consumes l&gs. pbhis problem is formulated as
an integer linear programming(ILP) problem and solved gisitommercial solver. We evaluated this
approach orsPEC2000 benchmark and our experimental results show that, out df2B& loops tested,
our power aware software pipelining approach producesdsitée which consume less power in 59%
cases. In these cases, the average power saving is 15.9%.
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On the Itanium Architecture, three types of functional sinitamely integer ALU, memory unit, and
floating-point ALU There are two instances for each type oictional units, and are referred to as 10,
11, MO, M1, FO and F1. The instructions in Itanium are classifais ofA-unit, I-unit, M-unit andF-unit
type instructions. The binding relation between the irgttom types and functional units is as follows:
A-unit instruction can be executed on either integer ALUs or memaits, i.e., on 10, 11, MO or M1.
I-unit instructions are bound only to integer ALU (i.e., 10 or I1)-Wit instructions to memory unit
(i.e., MO or M1), andF-unit instructions to floating point ALU (i.e., FO or F1). The twestances of
the functional units in each type are slightly different. M¥ta large majority oM-unit, I-unit, F-unit
instructions can be executed on any of the two instances,adl portion of instruction can only be
bound to one of them, nameMy, lo or F.

Hence, the ILP formulation in Section 3 should be refined tiecethe flexibility in schedulingh-
unit instructions to either Integer ALUs or Memory units, as veallto account the asymmetry between
two instances in each functional unit type. We define thetfanal unit set as:

R= {|o,|17M07M17F07F1}

For anA-unit instructioni, the following equation relates ; and the specific functional unit (one I
I1, Mg andM3) to which it is mapped to.

aj =10+ 11 + MG + ML VieA ©)

where the right hand side variables are all 0-1 integer bl 0, is true if and only if instruction
is mapped tdo and is scheduled at time stepsimilarly for variabled 1; j,MG; j, andM1; ;. Likewise,
we can define similar variable to indicate the mapping-oit, M-unit, and F-unit instructions. The
respective equations are:

&j=MG; +ML; VieM (10)
&= |0[,i +1 1t,i Viel (12)
aj=FO0+F1 VieF (12)

For specific instructions which can only go to 10, MO or FO flimcal units we have:

aj =10 Vi€l (13)
a = FQ; Vi€ Fo (14)
& = MG Vi e Mg (15)
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The resource constraints on the functional uRits formulated as:

Iot7i < 13
ie((10)
Z Ilt7i < 17

vt € [0,11 — 1]
vt € [0,11 — 1]
vt € [0,11 — 1]
vt € [0,11 — 1]
vt € [0,11 — 1]
vt € [0,11 — 1]

(16)
17
(18)
(19)
(20)

(21)

Lastly we note thaty j s can still defined in terms ad ; as in Equations 5 and 6. Similarly, ; in
Equation 7 is same as before, except that the definitioncof (r) changed appropriately as= {(10),
etc. formulation in Section 3 to the variable, 11, ;, etc.
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