
University of Delaware

Department of Electrical and Computer Engineering

Computer Architecture and Parallel Systems Laboratory

Maximizing Pipelined Functional

Units Usage for Minimum Power

Software Pipelining

Hongbo Yang

R.Govindarajan

]

Guang R. Gao

George Cai

†

CAPSL Technical Memo 41

Sep 27, 2001

Copyright

c

 2001 CAPSL at the University of Delaware

]Supercomputer Education & Research Centre, Dept. of Computer Science & Automation,

Indian Institute of Science

†Intel Corp

University of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USA

http://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu

Abstract

This paper presents a new power-aware software pipelining method whichcan minimize power
consumption of software pipelined loops on VLIW architecture without sacrificing performance.
Our method is motivated by the following facts: (1) functional unitsin modern architectures are
fully pipelined; (2) in a loop body, there exists instructions which are not on critical (recurrence)
cycle(s). Traditional software pipelining approach schedules instructions as long as the required re-
sources are available irrespective of whether the instructions are on or off critical cycle(s). However,
intuitively from the angle of power reduction, if no performance penalty will be incurred, it may be
reasonable to postpone the issue of certain non-critical instructionsso they can be scheduled to the
same functional unit of a prior instruction. The idea here is to reducethe number of functional units
which are in use in each cycle, thereby reducing the power consumed by the processor.

In this paper we formulate the power consumption problem in softwarepipelined loops as an
integer linear programming(ILP) problem. Within this model, the pipelined functional unit usage
in each cycle are modeled precisely, and the power minimization acts as the objective function.
The power-aware software pipelining approach for an Intel Itanium-like architecture is evaluated on
loops extracted fromSPEC2000 integer benchmarks using the SGI Pro64 open source compiler.
Our experimental results show that the our method can save power for more than 59% loops without
any degradation in performance. For these cases, the average power saving onthe functional units
is 15.9%.

i

Contents

1 Introduction 1

2 Motivation 3

3 Integer Linear Programming Formulation 5

4 Results 8
4.1 Experimental Framework 8
4.2 Experimental Results 10

5 Related Work 11

6 Conclusions 11

List of Figures

1 Data Dependence Graph .. . 3

List of Tables

1 Target Machine Configuration 3
2 A Feasible Schedule for DDG in Figure 1 4
3 The Energy Saving Schedule for DDG in Figure 1 5
4 Statistics on SPEC 2000 Benchmark Evaluated 9
5 Power Model . 9
6 Power Saving for SPEC 2000 Benchmarks 10

ii

1 Introduction

Power dissipation is becoming one of the major design issuesof future high performance processor
architectures and embedded systems. In this paper, we focuson the impact ofsoftware pipelining [21]
on power consumption. Software pipelining is an important compilation technique applied on loops
to exploit instruction level parallelism. In the past, resource constrained software pipelining has been
studied extensively by several researchers and a number ofmodulo scheduling algorithms have been
proposed in the literature [6, 16, 21, 31]. The objective of asoftware pipelining method is to construct
a schedule that satisfies both the resource constraints of the architecture and the dependence constraints
imposed by the program, such that the constructed schedule has a very lowinitiation interval (II). The
schedule which achieves the lowest possible II for the givenresource constraint is said to be arate-
optimal schedule. For a comprehensive survey of software pipelining methods the reader is referred
to [30].

This paper presents a new power-aware software pipelining method for VLIW architectures, which
can minimize the power consumption of software pipelined loops without sacrificing performance. This
is possible due to the following facts: first, a large number of instructions havescheduling slacks — i.e.,
each of these instructions can be scheduled in one of many time steps without degrading the performance
of the schedule. This is because either these instructions are off the critical (recurrence) cycles in the
loop or they do not use the critical resource(s). Such slack has been profitably used to reduce the
register pressure in some of the software pipelining methods [16, 25]. For instruction scheduling, it is
found that a significant number of instructions have slacks beyond 1 cycle [4]. Second, in a modern
VLIW architecture, functional units are usually fully pipelined and multiple instances of the same kind
of functional units are provided to unleash instruction level parallelism [19]. For a fully pipelined
functional unit, on each cycle, a new instruction can be issued to it. Thus a number of instructions can
be present in different stages of the functional unit in a given time step. This increases the utilization
of a functional unit and other functional units of the same kind can be released. This in turn leads to
reduced power consumption inall-or-nothing clock-gating model [3].

The target processor we are modeling use all-or-nothing clock-gating to gate the clock of idle func-
tional units.Clock-gating is a circuit technique to gate input clock of unused partitions thus disable need-
less toggling at each cycle. It is pervasively used in modernprocessor design to realize power saving.
However, aggressive clock-gating cannot be used indiscriminately since it may generate glitches, cause
clock skew and severely increase the complexity of timing verification at high frequency [13, 36, 14].
Thus in practical design, the granularity at which the clock-gating is applied differs from processor to
processor. Clock-gating on functional unit level is a reasonable design choice and it is adopted in pratice.
Alpha 21264 microprocessor [13] is a working example, its divider datapath is operated on one condi-
tional clock. Since clock is the major contributor to CPU power [10], under all-or-nothing clock-gating
model, it is reasonable to assume that the functional units bear only two states – active or inactive, and
nothing in between. Correspondingly, throughout this paper we assume that for each functional unit,
constant amount of power is consumed in active state, including dynamic power and leakage power;
whereas in inactive state, only leakage power is consumed [9].

Traditional software pipelining approaches schedule instructions in each cycle based on certain pri-

1

ority order, as long as there are available resources. This applies not only tocritical instructions, those
that are on critical recurrence cycle(s) or those that use critical resource(s), but also to all other instruc-
tions as well. In certain software pipelining methods, instructions are scheduled at the earliest possible
time [31]. However, issuing instruction as early as possible may schedule non-critical instructions along
with critical instructions at the same time step, requiringmultiple instances of functional units to be
active simultaneously. As explained earlier, since we assume a power model in which all or none of
the stages of a functional unit is switched off, many instances of the functional units being active si-
multaneously increases power consumption. As opposed to this, if certain non-critical instructions are
scheduled at later cycles to an already active functional unit, i.e., which have instructions in some of
stages of the pipeline, some other functional units of the same kind can be completely powered down,
resulting in reduced power consumption. Thus, from the angle of power reduction, it may be reasonable
to delay the schedule of some of the non-critical instructions so that they can be issued in the available
empty slot of an active functional unit at a later cycle. Thiscould be done in such a way that there is no
performance degradation be introduced.

One interesting question in software pipelining context therefore is: Is it possible to schedule in-
structions in such a way that rate-optimality, in terms of minimum initiation interval (II), is obtained
while reducing the power consumption by reducing the total number of function units in use? To an-
swer this question, we define the power aware software pipelining as below:

Problem Given a loopL and a machine architectureM, construct a schedule that achieves rate-
optimality for L under the given resource constraints ofM, and consumes theminimal power.

In this paper we formulate the power-aware software pipelining problem as an integer linear pro-
gramming(ILP) problem. As illustrated in an earlier work [32], while an integer linear programming
based method may not directly be used in a production compiler, it is still useful for the evaluation of
(performance) bounds that can be achieved by any heuristic based method. Unlike some of the ear-
lier (simpler) ILP formulation for pipelined functional units [11], the proposed power aware software
pipelining ILP formulation models precisely the pipelinedfunctional unit usage in each clock cycle.
This in turn helps to model the power consumed accurately. Inour ILP formulation, we use the minimal
power consumption as the objective function.

The proposed ILP formulation is implemented on an Itanium-like architecture [18, 19] in SGI Pro64
compiler. We have tested our method on 1983 loops extracted fromSPEC2000 integer benchmarks. Our
experimental results show that for 59% of the loops, the proposed power-aware software pipelining
method can achieve better schedules in terms of power consumed than a performance-oriented power-
unaware approach, within the same performance. For these cases, the average percentage of power
saving on functional units is 15.9%. It should be noted here that our approach considers only the power
savings in functional units, and hence the 15.9% reduction is only with regard to power consumed by
functional units.

This paper is organized as follows. In section 2 we motivate our power-aware software pipelining
method with the help of an example. Our integer linear programming formulation is described in Sec-
tion 3. The experimental results on loops extracted fromSPEC2000 integer benchmark are reported in
Section 4. A discussion on related work is presented in Section 5. Section 6 concludes our work.

2

2 Motivation

In this section, we motivate power-aware software pipelining with the help of a motivating example.

 0

 1

 0

 1

 S0

 S1

 S2

*

+

*

Figure 1: Data Dependence Graph

Consider a VLIW architecture with the machine configurationas shown in Table 1. As shown in
the table, there are 1 adder and 2 multipliers in the architecture. The adder only takes one cycle (i.e., a
trivial case of a fully pipelined unit). The two multipliersare fully pipelined with two cycle latency (2
stages). We use normalized data for power and assume that an active adder consumes 1 unit of power,
while an inactive adder consumes 0.1 unit of power. The multiplier consumes 2.0 or 0.2 units of power
depending on its state as in the Cai-Lim model [9]. In this paper, we focus on the power consumption
of functional units while neglecting other components likeissue logic, data cache and instruction cache,
memory, etc.

Functional unit type Adder Multiplier
Numbers 1 2
Stages 1 2

Active power 1 2
Inactive power 0.1 0.2

Table 1: Target Machine Configuration

Consider the DDG shown in Figure 1, where there are three instructions (one add and two multiply
instructions) in the loop. The directed arcs and the numbersadjacent to nodes in the DDG indicate,
respectively, data dependences and dependence distance.

First, we calculate the lower bound on the initiation interval(II), which is the maximum of the bound
imposed by the recurrences in the loop and the bound imposed by the resource constraints. They are
referred to as RecMII and ResMII respectively [30]. RecMII is given by :

RecMII = max

��

d(C)

m(C)

�

j 8C 2 cycles ofG

�

whered(C) is the sum of the latencies of the nodes in cycleC of the dependence graph, andm(C) is the
sum of the dependence distances around cycleC. In the given DDG, there is a critical cycle involving
S0 andS1, which makes the RecMII to be 3.

3

The lower bound of II governed by the resource constraint is given by:

ResMII = max

��

jζ(r)j
Rr

�

j 8r 2 [0;h�1]

�

whereζ(r) is the set of all instructions in the DDGG that use functional unitr for its execution,Rr is
the number of functional units of typer defined by the micro-architecture,h is the number of different
types of the functional units. For the given DDG, ResMII is 1.

The lower bound of II for the given DDG under the resource constraints of architectureM is thus
max(3;1) = 3. Table 2 gives a possible schedule with II= 3. Thus we note that 3 is a feasible II for
the given DDG.

Iteration Time Steps
0 1 2 3 4 5 6

0 s0 s1 s2
1 s0 s1 s2
2 s0

Table 2: A Feasible Schedule for DDG in Figure 1

Let us calculate the power consumption of the loop based on the activities of functional units in the
repetitive pattern. Without loss of generality, we choose to study power consumption in the repetitive
pattern from cycle 3 to cycle 5. At cycle 3, both multiply instructions(S0 andS2) in the loop are issued,
and they must be issued to two different multipliers to avoidstructural hazard. At cycle 5, add instruction
S1 is issued to the adder. Thus the two multipliers are busy fortwo consecutive cycles and idle for one
cycle. The adder is busy for one cycle and idle for the remaining two cycles. During a single II, the
energy consumed by the adder is

1�1+2�0:1= 1:2

And the energy consumed by each of the two multipliers is

2�2+1�0:2= 4:2

Thus the total energy consumed by all the functional units is

1:2+4:2�2= 9:6

An interesting question to ask is: does there exist any otherrate-optimal schedule which consumes
less energy? The answer is yes because the issue time ofS2 can be delayed by one cycle without
changing II, sinceS2 is not on the critical cycle, and the proposed delay should not increase II of the
loop, hence its total execution time. Further, since the multiplier is fully pipelined, schedulingS2 at time
step 4 in the linear schedule, i.e., time step 1 in the repetitive pattern does not conflict with schedule
time of S1 which is in the critical cycle. ThusS2 can be scheduled at time step 4 without affecting the
value of II. Applying this observation, we construct another schedule which is shown in Table 3.

Let us calculate the energy consumed by the new schedule. At cycle 3,S0 is issued, it goes to one
of the two multipliers. At cycle 4,S2 is issued. Since the multiplier is fully pipelined,S2 can be issued

4

Iteration Time Steps
0 1 2 3 4 5 6

0 s0 s1 s2
1 s0 s1
2 s0

Table 3: The Energy Saving Schedule for DDG in Figure 1

to the same multiplier asS0, causing higher utilization of one of the two multipliers and low (zero)
utilization of the other.S2 completes its execution at the end of time step 5, thus, in this new schedule,
one of the two multipliers is active for all 3 cycles (from time step 3 to 5) while the other one is always
idle. Thus energy consumed by them during a single II is 2�3+0:2�3 = 6:6. As for the adder is
concerned, it consumes the same amount of energy as the previous schedule, which is 1:2. Taking all
the functional units into account, power consumption of thenew schedule is 6:6+1:2= 7:8. Compared
to the prior one, the new schedule consumes 18.8% less of power.

One key observation that can be made from the two schedules isthat the latter schedule makes
a better use of the multiplier pipeline. Only one of the two multipliers is active while the other can
be completely powered down, resulting in reduction in power/energy. As our motivating example
shows, indeed, there exist considerable opportunity to reduce power/energy consumption of the soft-
ware pipelined loop by taking advantage of the slack of non-critical instructions.

In the following section we formulate the power-aware software pipelining problem as an integer
linear programming problem.

3 Integer Linear Programming Formulation

Let the number of nodes in the DDG beN. We formulate the problem of constructing a software
pipelined schedule with a specificII as below. To achieve a rate-optimal schedule, we need to try
successive values of II fromMII (minimum initiation interval) until a schedule is found. Note that in
our formulationN andII are constants. Further, in our formulation, we consider only modulo schedules
which are periodic. In a periodic schedule, instructions in theith iteration is scheduled at timeII � i+ ts,
wherets is the schedule time ofs in the first iteration, starting from zero. The schedule timeof all
instructions in the first iteration is represented by an N-element vector

Γ = [t0; t1; � � � ; tN�1]
Transpose

Resource constraints can be checked in the repetitive pattern. The repetitive pattern is represented by
an II�N matrix A. Matrix A is a 0-1 matrix withat;i = 1 if instruction i is issued at time stept in the
repetitive pattern; otherwiseat;i = 0. In our formulation, vectorΓ is related to matrixA as

Γ = II �κ+ATranspose
� [0;1; � � � ;(II�1)]Transpose

5

That is,
2

6

6

6

6

6

4

t0
t1
.
.
.

tN�1

3

7

7

7

7

7

5

= II�

2

6

6

6

6

6

4

k0
k1

.

.

.
kN�1

3

7

7

7

7

7

5

+

2

6

6

6

6

6

4

a0;0 � � � aII�1;0
a0;1 � � � aII�1;1

.

.

.
.
.
.

.

.

.
a0;N�1 � � � aII�1;N�1

3

7

7

7

7

7

5

�

2

6

6

6

6

6

4

0
1

.

.

.
II�1

3

7

7

7

7

7

5

(1)

To help understanding whatκ is, each elementki of κ is associated withti in vectorΓ as:

ki =

j ti
II

k

Intuitively ATranspose
� [0;1; � � � ;(II�1)]Transpose is the offset of instructions in the repetitive pattern.

The matrixΓ;κ andA for the schedule shown in Table 3 are:

Γ =

2

6

4

0
2
4

3

7

5

κ =

2

6

4

0
0
1

3

7

5

A =

2

6

4

1 0 0
0 0 1
0 1 0

3

7

5

The following equation guarantees that each instruction isscheduled exactly once in the repetitive
kernel:

II�1

∑
t=0

at;i = 1; 8i 2 [0;N�1] (2)

If a dependence arc exists from nodei to node j with dependence distancemi; j and the latency is
di j, then Inequality 3 must hold.

t j� ti � di j� II �mi j; 8(i; j) 2 E (3)

Next we formulate resource constraints. Letζ(r) denote the set of all instructions bound to func-
tional units of typer. For a fully pipelined functional unit, it is exclusively occupied by some instruction
only at the issue cycle of that instruction. The number of functional units of typer that are needed for
the schedule at time stept is

∑
i2ζ(r)

at;i

Thus the following inequality enforces the resource constraint for all functional unit types and all time
steps in the repetitive kernel.

∑
i2ζ(r)

at;i � Rr; 8t 2 [0; II�1];8r 2 [0;h�1] (4)

whereRr is the number of available functional units of typer, h is the number of different types of
functional units.

6

The resource and dependence constraints in our formulationare same as that in [11, 12]. Next we
formulate the power consumption of the software pipelined schedule which is our contribution in this
paper. To model the power consumption for each functional unit at each time step, we need to know
the number of active functional units. For this purpose, besides the starting time of each instruction,
we also need to know how long each instruction takes to execute in the pipeline. Furthermore, it is
important to know exactly for how many time steps each functional unit is active, taking into consider-
ation overlapped execution of different instructions on the same functional units. For example, in the
schedule shown in Table 3 one of the two multipliers is busy for 3 cycles in the repetitive pattern, taking
the overlapped execution of instructionsS0 andS2.

An instruction i issued at timet in the repetitive pattern will be in stages at time step(t + s)
mod II. To model the usage of the stages of different functional units, we introduce a 3-dimensional
arrayU = [ut;i;s]. In the array each element is defined as:

ut;i;s = 1()instructioni is in stages

of the pipeline at time stept

Derived from above discussion,ut;i;s is defined by matrixA in Equation 5 and 6 as below. It should
be noted here that different types of instructions may take different cycles on the functional unit, it is
interpreted as that some instructions don’t go through all the stages of the functional unit pipeline for
their execution. That is why Equation 6 is needed.

ut;i;s = a
(t�s)modII;i

8i 2 [0;N�1];8t 2 [0; II�1];8s 2 [0;di�1]
(5)

ut;i;s = 0

8i 2 [0;N�1];8t 2 [0; II�1];8s 2 [di;Lr�1]
(6)

wheredi is the latency of instructioni andLr is the maximum latency of all instructions that can be
executed on functional unit of typer.

Theorem 3.1 Two instructions i and j bound to functional unit of the same type can be issued to the
same functional unit if and only if ut;i;s +ut; j;s � 1 for all t 2 [0; II�1] and s 2 [0;Lr�1] in the software
pipelined loop.

Theorem 3.2 In a software pipelined schedule, number of functional units of type r being used at time
step t is

Ft;r = max

(

∑
i2ζ(r)

ut;i;sjs 2 [0;Lr�1]

)

:

The above equation can be expressed in a linear form as:

Ft;r � ∑
i2ζ(r)

ut;i;s 8s 2 [0;Lr�1] (7)

7

The above inequality must hold for allt and for all function unit typesr.

Let us assume that the power consumed by functional unit of typer is Pr when it is active andPr=10
when it is inactive. The energy consumed by the active functional units of typer during period of length
II is:

II�1

∑
t=0

Ft;r �Pr

The energy consumed by the inactive functional units is:

II�1

∑
t=0

(Rr�Ft;r) �
Pr

10

Thus, the total energy consumed by function units of all types during each period ofII is:

9
10
�

h�1

∑
r=0

Pr �

II�1

∑
t=0

Ft;r

!

+

T
10
�

h�1

∑
r=0

(Pr �Rr)

Since the second term in the above expression corresponds tothe leakage power of the functional units,
which is consumed irrespective of whether or not the functional unit is active, the power-aware software
pipelining formulation only need to minimize the first term.To reduce the overall energy consumed by
functional units of all types, the objective function should be:

min
h�1

∑
r=0

Pr �

II�1

∑
t=0

Ft;r

!

(8)

The above objective function should be minimized subject toInequalities 1 – 7.

4 Results

4.1 Experimental Framework

We implemented our power-aware software pipelining approach in a framework that uses the SGI Pro64
compiler [33], which is an open source compiler targeted to Intel Itanium processor [18, 19]. The SGI
Pro64 compiler is invoked with optimization level 3. At optimization level 3, extensive high level
optimization including dead code elimination, copy propagation, common subexpression elimination,
induction variable elimination and strength reduction areapplied on the intermediate representation
WHIRL. Then the WHIRL is lowered to another form of intermediate representation, which is called
TOP. The transformations applied on TOP before the softwarepipelining are control flow optimiza-
tion, block level optimization, if-conversion and critical path reduction. We extract data dependence
graphs(DDG) at the beginning phase of software pipelining.

Using this compiler framework we apply our approach on loopsextracted fromSPEC2000 integer
benchmarks. The statistics on the data dependence graphs used in our experiments is summarized in Ta-
ble 4. For these DDGs, using a simple program, we generate theinteger linear programming formulation
(as given in Section 3) and solve these ILP problem using a commercial ILP solver,CPLEX [17].

8

Benchmark # of avg # avg # avg
DDGs of nodes of edges MII

gzip 69 7.3 12.8 3
vpr 93 15.4 47.6 12
gcc 415 11.2 26.4 8
mcf 22 12.8 62.6 9
crafty 86 11.4 33.5 5
parser 116 7.4 16.1 5
eon 101 7.7 19.9 4
perlbmk 182 9.7 25.7 7
gap 620 11.2 28.8 7
vortex 49 18.8 81.3 14
bzip2 63 9.4 21.0 6
twolf 317 18.7 63.8 12

total 2133 12.0 34.0 7.8

Table 4: Statistics on SPEC 2000 Benchmark Evaluated

The target processor for which our integer linear programming formulation is applied is an Itanium-
like processor. We use the ISA defined by Intel IA-64 and operation latency defined by Itanium. The
total number of instructions defined by the IA-64 architecture is 759. For the 759 different instructions,
each of them falls into one of these six categories:A-type instruction, I-type instruction, M-type instruc-
tion, B-type instruction, F-type instruction andX-type instruction. The detailed description of each class
is given in [18]. Since our power aware software pipelining method applies only to inner-most loops
without conditionals, all the instructions in the loop bodyare non-control-flow instructions. Hence we
only need to consider instructions of typesA, I, M andF. In the micro-architecture defined by Itanium,
the binding relation between instructions and functional units are as follows:A-type instructions can be
executed by either I-unit(integer ALU) or M-unit(memory unit), I-type instructions, M-type instructions
andF-type instructions are mapped to I-unit, M-unit and F-unit(floating-point unit) respectively. The
complex binding of instruction types to functional units defined in [19] necessitates the ILP formula-
tion given in Section 3 to be refined in order to accurately model the resource usage in the Itanium
architecture. Interested reader is referred to [39] for therefined formulation.

Lastly, in this study we assume that the power consumption ofeach functional units as given in
Table 5, based on available literature on the DEC Alpha [13] and Intel PentiumPro [26]. Power data in
the table is normalized since we are not counting the absolute power, but evaluating the improvement
can be made by our approach. We use the power model in Table 5 because power details of Itanium
processor is not publicly available, however our ILP formulation can be smoothly re-targetted to Itanium
architecture once we have more knowledge on Itanium low-level design details .

FU I-unit M-unit F-unit
numbers 2 2 2

active power 1 1 1
inactive power 0.1 0.1 0.1

Table 5: Power Model

9

4.2 Experimental Results

We implemented our minimum power software pipelining formulation by integer linear programming
usingCPLEX. For comparison, also we implemented a power-unaware software pipelining formulation,
which only use constraints 1 - 4 in Section 3. The power savings, in percentage, is given by:

R =

P�Pmin

P
�100%

whereP andPmin are, respectively, the power consumed by the power-unawareand the power-aware
software pipelining schedules.

Out of the 2133 loops in Table 4, 146 of them is too large for theILP solver and cannot be solved
in a reasonable amount of time. The results for all the other loops are tabulated in Table 6. For each
benchmark, we report the number of loops in which (i) no powersaving is obtained, (ii) power saving
is obtained by applying our power-aware software pipelining approach. For each case, we report the
average II. Also for the second case, we report the average power saving in percentage. We observe
that in 1174 loops – about 59% cases – the power aware softwarepipelining approach results in power
saving. The overall average power saving in the 1174 loops is15.9%. For the remaining 813 loops there
is no power saving. The reason could be that: (i) the instructions in these DDGs doesn’t have slack
and thus cannot be moved around to effect power savings; and (ii) even in cases where instructions
have slack, the slack may not be sufficient enough to move instructions to reduce the number of active
functional units.

Benchmark DDGs no saving DDGs with saving
avg II # avg II avg saving

gzip 36 1.8 33 4.8 19.1%
vpr 25 9.3 60 15.2 9.2%
gcc 184 6.5 224 8.7 16.3%
mcf 5 2.2 16 10.2 15.5%

crafty 45 2.8 40 6.8 22.0%
parser 64 3.3 52 6.8 15.6%
eon 39 2.7 58 5.4 22.9%

perlbmk 82 5.2 97 8.8 16.5%
gap 206 5.6 347 8.0 16.4%

vortex 14 13.6 30 17.1 12.4%
bzip2 33 3.6 28 7.1 18.4%
twolf 80 11.3 189 12.7 12.5%

total 813 5.8 1174 9.2 15.9%

Table 6: Power Saving for SPEC 2000 Benchmarks

Our studies reveal that the average value of II in the power saving loops is typically greater that
that for the no-power saving loops in each benchmark. This isnot surprising, as higher the value of II,
higher is slack for different instructions and there is morescope for the power aware scheduling method
to schedule instructions to achieve power reduction.

10

5 Related Work

Software pipelining has been studied extensively in the literature. Several modulo scheduling meth-
ods [6, 16, 21, 31] have been proposed. An extensive survey ofthese work have been presented in [30].
While many of these work concentrate on getting a rate-optimal schedule, other equally important issues
to achieve high performance including register allocationand spill code generation [40, 24], prefetch-
ing in both numerical and non-numerical programs [28, 34] have been getting recent attention. Integer
linear programming formulation is widely used to derive rate-optimal schedules [11, 12, 1]. Compar-
ison between the rate-optimal scheduling formulation and the software pipelining in MIPSpro, which
is a production quality compiler has been made in [32]. A lot of efforts have been put on applying
ILP on instruction scheduling [38], register allocation [2] and software pipelining [7] while reducing its
time-complexity thus applicability of ILP approach can be widened.

Applying compilation techniques to reduce power consumption is a relatively new topic. Power
consumption on a per-instruction basis is analyzed in [35, 29]. Power-aware instruction scheduling [22]
and register renaming [27] methods are studied to reduce Hamming distance of adjacent instruction
words thus minimizing switching activities on the instruction cache data bus.

There are a lot of ongoing research in micro-architectural level power analysis [9, 3, 37] and reduc-
tion [8, 41, 20]. Synergy between compilation techniques and micro-architectural level power-reducing
mechanisms is a must to achieve significant power saving. In particular, compiler researchers studied
the interaction between program transformation and frequency/voltage scaling [15, 5, 23]. Exploiting
schedule slacks to reduce power consumed by execution unit is attracting increasing attention [41, 20].
In contrast to aforementioned works, this paper is focused on current micro-architecture, without the
need of introducing frequency and voltage scaling.

6 Conclusions

In this paper we address the problem of generating a softwarepipelined schedule for loop body that is
optimal in terms of the power consumed by the functional units during the execution. This problem is
motivated by two observations: (1) functional units in modern processor are fully pipelined; (2) there
are instructions in the loop that are not on the critical cycle. By exploiting slacks in the rate-optimal
schedule, we can come up with a schedule that consumes less power. This problem is formulated as
an integer linear programming(ILP) problem and solved using a commercial solver. We evaluated this
approach onSPEC2000 benchmark and our experimental results show that, out of the1987 loops tested,
our power aware software pipelining approach produces schedules which consume less power in 59%
cases. In these cases, the average power saving is 15.9%.

References

[1] Erik R. Altman, R. Govindarajan, and Guang R. Gao. Scheduling and mapping: Software pipelin-
ing in the presence of structural hazards. InProc. of the ACM SIGPLAN ’95 Conf. on Program-

11

ming Language Design and Implementation, La Jolla, Calif., Jun. 18–21, 1995.SIGPLAN Notices,
30(6), Jun. 1995.

[2] Andrew W. Appel and Lal George. Optimal spilling for CISCmachines with few registers. In
Proc. of the ACM SIGPLAN ’01 Conf. on Programming Language Design and Implementation,
Snowbird, Utah, Jun. 20–22, 2001.SIGPLAN Notices, 36(5), May 2001.

[3] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for architectural-level
power analysis and optimizations. InProc. of the 27th Ann. Intl. Symp. on Computer Architecture,
pages 83–94, Vancouver, Brit. Col., Jun. 12–14, 2000.

[4] Jason Casmira and Dirk Grunwald. Dynamic instruction scheduling slack. InProceedings of the
2000 KoolChips workshop, Monterey, California, Dec 10th 2000.

[5] C.Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic voltage/frequency scheduling for
energy reduction in microprocessors. InProceedings of International Symposium on Low Power
Electronics and Design(ISLPED) 2001, 2001.

[6] James C. Dehnert and Ross A. Towle. Compiling for Cydra 5.Journal of Supercomputing, 7:181–
227, May 1993.

[7] Alexandre E. Eichenberger and Edward S. Davidson. Efficient formulation for optimal modulo
schedulers. InProc. of the ACM SIGPLAN ’97 Conf. on Programming Language Design and
Implementation, pages 194–205, Las Vegas, Nev., Jun. 15–18, 1997.SIGPLAN Notices, 32(6),
Jun. 1997.

[8] Daniele Folegnani and Antonio González. Energy-effective issue logic. InProc. of the 28th Ann.
Intl. Symp. on Computer Architecture, pages 230–239, Göteborg, Sweden, Jun. 30–Jul. 4, 2001.
IEEE Comp. Soc. and ACM SIGARCH.Computer Arch. News, 29(2), May 2001.

[9] G.Cai and C.H.Lim. Architectural level power/performance optimization and dynamic power es-
timation. Cool Chips Tutorial, in conjunction with 32nd Annual International Symposium on
Microarchitecture. Haifa, Israel, Nov 1999.

[10] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors.IEEE
Journal of Solid-State Circuits, 31(9), 1996.

[11] R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirements under
resource-constrained rate-optimal software pipelining.In Proc. of the 27th Ann. Intl. Symp. on
Microarchitecture, pages 85–94, San Jose, Calif., Nov. 30–Dec.2, 1994.

[12] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-constrained rate-
optimal software pipelining.IEEE Transactions on Parallel and Distributed Systems, 7(11):1133–
1149, November 1996.

[13] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power considerations in the design of
the Alpha 21264 microprocessor. In35th Design Automation Conference Proceedings 1998, San
Francisco, CA, June 15-19 1998.

12

[14] Stephen H. Gunther, Frank Binns, Douglas M. Carmean, and Jonathan C. Hall. Managing the
impact of increasing microprocessor power consumption.Intel Technology Journal, Feb 2001.

[15] C-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic frequency and voltage schedul-
ing. In Workshop on Power-Aware Computer Systems (PACS’00), Cambridge, MA, Nov 2000.

[16] Richard A. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the ACM SIGPLAN ’93 Conf.
on Programming Language Design and Implementation, pages 258–267, Albuquerque, N. Mex.,
Jun. 23–25, 1993.SIGPLAN Notices, 28(6), Jun. 1993.

[17] ILOG. CPLEX mixed integer solver. http://www.cplex.com.

[18] Intel. Intel IA-64 Architecture Software Developer’s Manual, Aug 2000.

[19] Intel. Itanium Processor Microarchitecture Reference for Software Optimization, Aug 2000.

[20] J.Seng, E.Tune, and D.Tullsen. Reducing power with dynamic critical path information. InPro-
ceedings of the 34th Annual International Symposium on Micro-architecture, Austin, TX, Dec
2001.

[21] Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines. In
Proc. of the SIGPLAN ’88 Conf. on Programming Language Design and Implementation, pages
318–328, Atlanta, Geor., Jun. 22–24, 1988.SIGPLAN Notices, 23(7), Jul. 1988.

[22] Chingren Lee, Jenq Kuen Lee, and TingTing Hwang. Compiler optimization on instruction
scheduling for low power. InProceedings of 13th International Symposium on System Synthe-
sis, Madrid, Spain, Sept 20-22 2000.

[23] Tao Li and Chen Ding. Instruction balance and its relation to program energy consumption. InPro-
ceedings of International Workshop on Languages and Compilers for Parallel Computing, Ken-
tucky, Aug 2001.

[24] Josep Llosa, Eduard Ayguadé, Antonio Gonzalez, MateoValero, and Jason Eckhardt. Lifetime-
sensitive modulo scheduling in a production environment.IEEE Transactions on Computers,
50(3):234–249, Mar 2001.

[25] Josep Llosa, Mateo Valero, Eduard Ayguadé, and Antonio González. Hypernode reduction modulo
scheduling. InProc. of the 28th Ann. Intl. Symp. on Microarchitecture, pages 350–360, Ann Arbor,
Mich., Nov. 29–Dec.1, 1995.

[26] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:Speculation control for energy reduction.
In Proceedings of the 25th Annual International Symposium on Computer Architecture (ISCA-98),
volume 26,3 ofACM Computer Architecture News, pages 132–141, New York, June 27–July 1
1998. ACM Press.

[27] M.Kandemir, N. Vijaykrishnan, M. J. Irwin, W. Ye, and I.Demirkiran. Register relabeling: A post-
compilation technique for energy reduction. InWorkshop on Compilers and Operating Systems
for Low Power 2000 (COLP’00), 2000.

13

[28] T. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD thesis, Stan-
ford University, 1994.

[29] M.T.-C.Lee, V.Tiwari, S.Malik, and M.Fujita. Power analysis and minimization techniques for
embedded DSP software.IEEE Trans on Very Large Scale Integration(VLSI) Systems, 5(1), Mar
1997.

[30] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview and perspective.
Journal of Supercomputing, 7:9–50, May 1993.

[31] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.
In Proc. of the 27th Ann. Intl. Symp. on Microarchitecture, pages 63–74, San Jose, Calif., Nov.
30–Dec.2, 1994.

[32] John Ruttenberg, G. R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipelining showdown:
Optimal vs. heuristic methods in a production compiler. InProc. of the ACM SIGPLAN ’96 Conf.
on Programming Language Design and Implementation, pages 1–11, Philadelphia, May 22–24,
1996.SIGPLAN Notices, 31(6), Jun. 1996.

[33] SGI. Pro64 compiler. http://open64.sourceforge.net.

[34] Artour Stoutchinin, José Nelson Amaral, Guang R. Gao,Jim Dehnert, Suneel Jain, and Alban
Douillet. Speculative prefetching of induction pointers.In Proceedings of The International Con-
ference on Compiler Construction, Lecture Notes in Computer Science. Springer-Verlag, April
2001.

[35] Vivek Tiwari, AHARAD MALIK, and Andrew Wolfe. Instruction level power analysis and opti-
mization of software.Journal of VLSI Signal Processing, 1996.

[36] Vivek Tiwari, Deo Singh, Suresh Rajgopal, Gaurav Mehta, Rakesh Patel, and Franklin Baez. Re-
ducing power in high-performance microprocessors. InProceedings of the 1998 Conference on
Design Automation (DAC-98), pages 732–737, Los Alamitos, CA, June 15–19 1998. ACM/IEEE.

[37] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven integrated
hardware-software optimizations using SimplePower. InProc. of the 27th Ann. Intl. Symp. on
Computer Architecture, pages 95–106, Vancouver, Brit. Col., Jun. 12–14, 2000. IEEE Comp. Soc.
and ACM SIGARCH.Computer Arch. News, 28(2), May 2000.

[38] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling using integer pro-
gramming. InProc. of the ACM SIGPLAN ’00 Conf. on Programming Language Design and
Implementation, pages 121–133, Vancouver, Brit. Col., Jun. 18–21, 2000.SIGPLAN Notices,
35(5), May 2000.

[39] Hongbo Yang, R.Govindarajan, Guang R. Gao, and George Cai. Maximizing pipelined
functional units usage for minimum power software pipelining. Technical Report 41,
Computer Architecture and Parallel Systems Laboratory, University of Delaware, 2001.
ftp://ftp.capsl.udel.edu/pub/doc/memos/memo041.ps.gz.

14

[40] Javier Zalamea, Josep Llosa, Eduard Ayguade, and MateoValero. Improved spill code generation
for software pipelined loops. InProceedings of ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, Vancouver B.C., Canada, June 18-21 2000.

[41] W. Zhang, N.Vijaykrishnan, M.Kandemir, M.Irwin, D.Duarte, and Y. Tsai. Exploiting vliw sched-
ule slacks for dynamic and leakage energy reduction. InProceedings of the 34th Annual Interna-
tional Symposium on Micro-architecture, Austin, TX, Dec 2001.

On the Itanium Architecture, three types of functional units, namely integer ALU, memory unit, and
floating-point ALU There are two instances for each type of functional units, and are referred to as I0,
I1, M0, M1, F0 and F1. The instructions in Itanium are classified as ofA-unit, I-unit, M-unit andF-unit
type instructions. The binding relation between the instruction types and functional units is as follows:
A-unit instruction can be executed on either integer ALUs or memoryunits, i.e., on I0, I1, M0 or M1.
I-unit instructions are bound only to integer ALU (i.e., I0 or I1), M-unit instructions to memory unit
(i.e., M0 or M1), andF-unit instructions to floating point ALU (i.e., F0 or F1). The two instances of
the functional units in each type are slightly different. While a large majority ofM-unit, I-unit, F-unit
instructions can be executed on any of the two instances, a small portion of instruction can only be
bound to one of them, namelyM0, I0 or F0.

Hence, the ILP formulation in Section 3 should be refined to reflect the flexibility in schedulingA-
unit instructions to either Integer ALUs or Memory units, as wellas to account the asymmetry between
two instances in each functional unit type. We define the functional unit set as:

R = fI0; I1;M0;M1;F0;F1g

For anA-unit instructioni, the following equation relatesat;i and the specific functional unit (one ofI0,
I1, M0 andM1) to which it is mapped to.

at;i = I0t;i + I1t;i +M0t;i +M1t;i 8i 2 A (9)

where the right hand side variables are all 0-1 integer variables. I0t;i is true if and only if instructioni
is mapped toI0 and is scheduled at time stept; similarly for variablesI1t;i;M0t;i, andM1t;i. Likewise,
we can define similar variable to indicate the mapping ofI-unit, M-unit, andF-unit instructions. The
respective equations are:

at;i = M0t;i +M1t;i 8i 2M (10)

at;i = I0t;i + I1t;i 8i 2 I (11)

at;i = F0t;i +F1t;i 8i 2 F (12)

For specific instructions which can only go to I0, M0 or F0 functional units we have:

at;i = I0t;i 8i 2 I0 (13)

at;i = F0t;i 8i 2 F0 (14)

at;i = M0t;i 8i 2M0 (15)

15

The resource constraints on the functional unitsF is formulated as:

∑
i2ζ(I0)

I0t;i � 1; 8t 2 [0; II�1] (16)

∑
i2ζ(I1)

I1t;i � 1; 8t 2 [0; II�1] (17)

∑
i2ζ(M0)

M0t;i � 1; 8t 2 [0; II�1] (18)

∑
i2ζ(M1)

M1t;i � 1; 8t 2 [0; II�1] (19)

∑
i2ζ(F0)

F0t;i � 1; 8t 2 [0; II�1] (20)

∑
i2ζ(F1)

F1t;i � 1; 8t 2 [0; II�1] (21)

Lastly we note thatut;i;s can still defined in terms ofat;i as in Equations 5 and 6. Similarly,Ft;r in
Equation 7 is same as before, except that the definition ofi 2 ζ(r) changed appropriately asi 2 ζ(I0),
etc. formulation in Section 3 to the variablesI0t;i, I1t;i, etc.

16

