University of Delaware
(1)) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

A Quantitative Study on Performance-Power Impact of
Dual-Speed Pipeline Architectures

Hongbo Yang
R. Govindarajant
Guang R. Gao
Kevin B. Theobald

CAPSL Technical Memo 42
June 10, 2002

Copyright (©) 2002 CAPSL at the University of Delaware

tSupercomputer Education & Research Centre, Dept. of Computer Science & Automation,
Indian Institute of Science

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

The drastic increase in power consumption by modern processors emphasizes the need
for power-performance trade-offs in architecture design space exploration and compiler op-
timizations. This paper reports a quantitative study on the power-performance trade-offs in
software pipelined schedules for an Itanium-like EPIC architecture with dual-speed pipelines,
in which functional units are partitioned into fast ones and slow ones. We have developed
an integer linear programming formulation to capture the energy/performance tradeoffs for
software pipelined loops. The proposed integer linear programming formulation and its so-
lution method have been implemented and tested on a set of SPEC2000 benchmarks. The
results are compared with an Itanium-like architecture(baseline) in which there are four
functional units(FUs) and all of them are fast units.

Our quantitative study reveals:

1. There is considerable energy saving by introducing a few slow FUs in place of fast
FUs in the baseline architecture. When 2 out 4 FUs are set as slow, the total energy
consumed by FUs is reduced by up to 31.1% (with an average reduction of 25.2%)
compared to the baseline configuration.

2. Although using slow FUs may cause some performance degradation, our results show
that such degradation is small in a large majority of cases. The average performance
degradation for a configuration with 2 out of 4 FUs being slow is only 6.2%. Even
when 3 out of the 4 FUs are slow units, the average performance degradation is within
15% compared to that achieved by the baseline configuration with all fast FUs.

3. If performance demand is less critical, then further energy reduction can be achieved
by trading performance for energy. For example, if 30% decrease in the performance
can be tolerated, then an energy saving of up to to 40.3% can be achieved, with an
average of 34%.

Keywords: Low power micro-architecture, low power compilation techniques, integer linear
programming, software pipelining.

Contents

Introduction
1.1 Example e e e
1.2 Synopsis

Integer Linear Programming Formulation
2.1 Initial Formulation Lo
2.2 Refined ILP Formulation o

Experimental Framework

3.1 Target Architecture
3.2 Emnergy Model
3.3 Compare The Analytic Energy Model With Simulation Result
3.4 Experimental Methodology o

Experimental Results
4.1 Energy Gain and Performance Degradation by Slow Functional Units
4.2 Trading Performance for Energyo o000

Related Work

Conclusions

List of Figures

Motivating Exampleo Lo
A Feasible Schedule for the DDG for Architectureal
A Feasible Schedule for the DDG for Architecture a2
A Feasible Schedule for the DDG for Architecture a3
Rising Edges in Fast and Slow FUs
Comparing Our Analytical Energy Model with Simulation Results
Energy Saving and Performance Penalty of Different Configurations
Energy saving for Three Different Slowdown Factors

O~ UL W —

List of Tables

1 Statistics on DDGs Extracted from SPEC 2000 Benchmarks

ii

1 Introduction

The past decade has seen a tremendous increase in the performance of general purpose micropro-
cessors. However, this higher performance is often accompanied by an undesirable, sometime
excessive, power consumption. This is predicted soon to become a limiting factor in high-
performance processor design [3]. Consequently, architects must consider power-performance
tradeoffs when exploring the processor design space.

This paper deals with low power architectures, compiler techniques, and their interplay.
Recent research in low power design proposes architectures with components operating at dif-
ferent pipeline speeds [17]. In such processors, some functional units (FUs) operate at full CPU
speed (“fast” FUs) while others run at a slower speed, typically half of the full speed (“slow”
FUs). Slow FUs can run at lower voltages, which lead to a better-than-linear energy reduction

per operation [10].

The rationale behind such a design is that schedule slack is present for some instructions,
i.e., they are not on the critical path, so prolonging their execution time should not hurt
performance. A limit study [5] demonstrates that more than 75% of execution cycles have at
least one instruction that has slack. By issuing instructions on the critical path to fast pipelines
and those which are off the critical path to slower functional units, significant power and energy

reduction can be achieved [14, 26].

This paper reports a quantitative study of power-performance tradeoffs in the design space
by exploring the interplay between low-power architecture features and compiler optimizations.
Our study concentrates on software pipelining [15, 19], a compile-time instruction schedul-
ing technique for loops. In our prior work, performance-oriented software pipelining under
given timing and resource constraints has been formulated as an integer linear programming
problem [1, 8, 9] and was successfully used in evaluating the software pipelining algorithm im-
plemented in a production-quality compiler [22]. However in the context of low power, effective
software pipelining algorithm which strives for both optimal performance and minimal energy
is still unexplored. The problem that we are addressing in this paper is:

Given a loop L and a machine configuration M with slow and fast FUs, find a
rate-optimal software pipelined schedule in which the schedule consumes minimal

enerqy.

We use the termrate-optimal schedule to imply that no other schedule for the loop £ can have
a lower initiation interval(1l) for the machine configuration M. And we use the term minimal
energy schedule refers no other schedule for the loop £ can have a lower energy consumption
with given II for the given architecture M. This paper formulates the above problem as an
ILP problem and explores both the architecture and compiler side of design space using the
ILP formulation and its solution method. In particular, this study explores:

[Architecture side:] In order to achieve significant power reduction without incurring per-
formance degradation, how many of the FUs in an architecture can be slow FUs? By

NP

Figure 1: Motivating Example

increasing the number of slow FUs, how does the application performance degrade?

[Compiler side:] To what extent can the compiler exploit this knowledge of slow and fast FUs
in the architecture, and schedule instructions in such a way to reduce energy without
significant degradation in performance?

1.1 Example

We illustrate the benefits of slow FUs with a simple example. Figure 1 shows a data dependence
graph (DDQG) for a loop body, with a loop-carried dependence (from one iteration of the loop
to the next) from s5 to s4. Suppose we want to run this loop on an architecture al with 3
Integer Add units and 2 Integer Multiply units. All FUs are fast and fully pipelined, and their
latencies are 1 cycle for Add and 3 for Mult. The cycle containing s4 and s5 imposes a lower
bound on how frequently the loop body can be initiated. This is the Recurrence Minimum
Initiation Interval (RecMII), given by

RecMI1I = max {M—‘
Veycles C m(C’)
where d(C) is the sum of the latencies of the instructions in cycle C' and m(C') is the sum of

the loop-carried dependences around cycle C' [21]. In our example, there is only one cycle, and
RecMIl is [(1+1)/1] = 2.

We can compute another lower bound for the initiation interval by considering available
resources. The Resource Minimum Initiation Interval (ResMII) is given by

dimax,r * NTD

ResMII = max (ResMII,) = max <{
T T Fr

where N, is the number of instructions which are executed in FU type r, F, is the number of
FUs in type 7, and dpax,r is the maximum number of cycles for which the FU is used by an
instruction. If the FUs are pipelined, then dpax» is 1. In our example, the individual ResMII
for Add and Mult FUs are [(5/3)] and [(1/2)] respectively. Thus, the overall ResMII is 2.
The minimum initiation interval (MII) is the maximum of ResMII and RecMII; MII=2 in our
example. (Several papers on software pipelining [15, 18, 19] discuss computing RecMII, ResMII,
and MII.)

Iteration Time Steps

0 1 2 3 4 5 6 | 71819 |10
0 sO | s1,s2 | s3 sd sH
1 sO | s1,s2 | s3 sd | sb
2 sO | 81,52 | s3 s4 | sb

Figure 2: A Feasible Schedule for the DDG for Architecture al

Iteration Time Steps
0 1 2 3 4 5 6 7 8 9 | 10
0 s0,s2 | sl s3 s4 Sh)
1 s0,s2 | sl 53 sd | sb
2 s0,s2 | sl 53
3 s0,s2 | sl 83
4 s0,s2 | sl | s3

Figure 3: A Feasible Schedule for the DDG for Architecture a2

Figure 2 shows one possible “rate-optimal” schedule with an initiation interval /1 = 2 for
this DDG. The repetitive kernel in cycles 4 and 5 is shaded. We can see that there is some
slack in the schedule, and not all FUs are fully utilized. If one Add FU and one Mult FU in
al were replaced with slow FUs operating at half the frequency, we could achieve the same 11
with this modified architecture a2, as shown in Figure 3. In this schedule, instructions s2 and
s3 are scheduled in the slow Add and Mult FUs; these are shown in italics. Although the kernel
appears later, i.e., the prologue is longer, the schedule is still optimal with 17 = 2. Architecture

a2 may save power relative to al, without slowing down the loop.

On the other hand, if two of the Add units were slow (architecture a3), the schedule in
Figure 3 would not work. Each loop iteration would require 5 additions, but each of the two
slow units can perform only one addition every 2 cycles, so that all three Add units together
can perform only 4 additions every 2 cycles. The best initiation interval that we can achieve for
this DDG would be I7 = 3. One possible schedule is shown in Figure 4. This example shows

Iteration Time Steps
0 1123 |4 |56 71819 |10 |11
0 s0 | s2 sl | s3 sd | sb
1 s0 | s2 sl | s3
2 sO | s2 sl | s3
3 s0 | s2

Figure 4: A Feasible Schedule for the DDG for Architecture a3

o S

o 1 2 3 4 5 6 7

Triggers(FastCIock)T T T T T T T T

Slow Clock J ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7
Triggers (Slow Clock) T T T T

Figure 5: Rising Edges in Fast and Slow FUs

that by varying the number of fast and slow FUs, the architecture can be made more power
efficient, but at some point this efficiency will lead to a performance penalty.

The difference in clock speeds, and therefore input rates, between fast and slow FUs present
a few complications when scheduling instructions in a slow FU. If the slow FU is operating at
half the clock frequency of the fast FU, then the slow FU will only have half the number of
rising/falling edges on which activities can be triggered. Thus if an instruction is scheduled on
a slow FU at an odd-numbered cycle, then the activities will not take place in the slow FU
until the next even-numbered cycle on which the rising edge occurs (refer to Figure 5). Thus
an instruction scheduled on a slow FU at an odd-numbered cycle will experience an additional
cycle delay. Any other instruction dependent on this will have to be scheduled after 2¢ + 1
cycles, where £ is the latency of the fast FU. Furthermore, if the II is odd, then each instruction
will occur in an odd cycle in alternate iterations; when this occurs, the additional latency will
be incurred. Thus, we assume that the latency of a slow FU is uniformly 2¢ + 1. Fortunately,
for the schedule shown in Figure 4 this is already satisfied. Lastly, as an instruction scheduled
at odd cycle in a slow FU will have to wait for an extra cycle to get the rising/falling edge, we
should also assume, conservatively, that a new instruction can be initiated on a slow FU only
once every three cycles. Again, in the schedule shown in Figure 4, as instructions s0 and s2 are
scheduled on different slow FUs, this constraint is also satisfied.

1.2 Synopsis

Given an architecture with a fixed number of FUs in each resource class, it is interesting to find
out how many of these FUs in each class could be operated at a slower clock rate, and hence
at a reduced power consumption, and what is the degradation in performance, if any. In this
paper, we propose an integer linear programming formulation for the above problem based on
our earlier work. We apply our approach on SPEC2000 integer benchmarks to evaluate different
configurations (with different number of slow and fast FUs) of Itanium processor from both the
performance and power angles. Also we study the additional power savings that can be obtained
when the compiler trades performance for energy. Our results show that by introducing two
slow FUs in the architecture, in the place of fast FUs, an average energy savings of 25.2% can

be obtained while the performance degradation is within 6.2% on the average.

Before proceeding to our study, a few remarks are in order. As the focus of this paper is
on studying the architecture design space, admittedly, we use a somewhat approximate power
model, and consequently, an approximate energy model. Also in this study we do not consider
the power consumed by other components such as issue logic and caches. Finally, we ignore the
power consumed by inactive functional units. Our experience obtained by using architectural-
level power simulator [7] and Synopsys gate-level power simulator is that leakage power(power
consumed by inactive functional units) is only a very small fraction of the total power. Although
the case might change in the future, the increased leakage power problem can accordingly be
addressed by related techniques like input vector control [26]. Our initial investigations show
that it is possible to relax some of these assumptions and incorporate a more accurate power
model in our integer linear program formulation, although at the expense of complicating the
integer program formulation. We leave the details of these accurate models as well as making
their formulation efficient for future work, as the emphasis of this paper is not on developing a

power-aware software pipelining method.

The rest of the paper is organized as follows. The next section presents an elegant ILP
formulation for power-aware software pipelining based on our previous work. In Section 3 we
derive an analytical expression for energy consumption and validate it. Section 4 deals with
the experimental evaluation and results. Related work is elaborated in Section 5. Lastly, we
provide concluding remarks in Section 6.

2 Integer Linear Programming Formulation

In this section first we extend the integer linear programming formulation [8, 9] for software
pipelining to handle dual speed pipelines. Subsequently in Section 2.2, we refine the formulation
to more accurately model structural hazards in dual speed pipelines.

2.1 Initial Formulation

Let the number of nodes in the DDG be N and let 11 be the initiation interval [19, 15, 18]. In
this paper we consider only repetitive schedules or modulo scheduling. The software pipelining
methods attempts to find a schedule for each value of initiation interval I, starting from the
minimum initiation interval (MII) [19, 15, 18]. The methods stops as soon as a schedule is
found for the first I greater than or equal to the minimum initiation interval.

In modulo scheduling, the schedule time of operation 7 in the jth iteration is given by
ti,j =1t —I—j x I

where t; is the schedule time of operation 7 in the first iteration. We use a N x 1 vector I' to
represent the schedule time of the operations in the first iteration. The vector I' is composed
of variables tg,---,tny_1. We use a Il x N matrix A to represent the repetitive pattern of

instructions in the modulo schedule. The matrix A = [a;;] where a;; = 1 if and only if node i
is scheduled at time step ¢ in the modulo schedule, where ¢ is the range [0..11 — 1]. It is easy
to see that

At = 1, if ti mod I] =t.

Further I' and A are related by the following equation.

P=1II-k+ A" x[0,1,---, 1T —1]" (1)
The vector x is an N x 1 vector composed of kg, ---,kny_1. Equation 1 implicitly defines k; as
t;
k=77

Since each instruction 7 is scheduled in the repetitive pattern exactly once, the following
equation must be satisfied for a legal schedule:

> ai=1 forallie[0,N 1] (2)

For resources that operate on a single speed, that is those which are not partitioned to fast
and slow ones, e.g., the issue unit, the resource constraint can be specified using the following
simple inequality.

> ai<R, forallte[0,1I—1] (3)

ie¢(r)
where R, is the number of resources of type r and ((r) represent the set of instructions in the
loop that use resource type r. Note that resources like issue unit are used by all instructions,
and hence ((Issue Unit) consists of all instructions; whereas in the floating point divide re-
source type, there may be only one function unit, and {(FP Divide) consists of only FP divide

instructions, if any, in the loop.

Next we formulate the resource constraints for resources types which have slow and fast
FUs. For example, in our motivating example, the Add and Multiply FUs have slow and fast
FUs. For an instructions which goes to these resource types r, we also need to know whether
the instruction is scheduled on slow or fast FU. We use two sets of variables u;; and v;; for
this purpose: wu;; = 1 if instruction ¢ is scheduled on fast FU and a;; = 1; likewise v;; = 1 if
instruction 7 is scheduled on slow FU and a;; = 1. Since the resource assignment for instruction
1 can be either fast FU or slow FU but not both, the following equation holds:

ap; =u;+ve; forallt €[0,11 —1], and for all i € [0, N — 1] (4)

If there are R, fq5 fast FUs and R, g0, slow FUs in resource type r, then the resource constraint
for software pipelined schedule can be enforced using the inequality

Z Ui < Ry pqe for all £ € [0,11 — 1] and for all r (5)
ie((r)

Z Vi < Ry sion for all t € (0,11 — 1] and for all r (6)
ieq(r)

Next we will express the precedence constraint. For this, we define a variable f; for each
instruction 4 to indicate whether instruction ¢ is scheduled on fast FU (in which case f; = 1) or
on slow FU (in which case f; = 0). The variable f; is defined as:

171-1
fi = Z “t,’i for all 4 € [O,N - 1] (7)
t=0

Now, for each dependence arc (i,) in the DDG, the precedence constraint between i and j is
formulated as [21]:

tj—tiZdij—IIXmij

where d;; is the latency from instruction ¢ to j and m;; is the dependence distance [19, 15, 18].
In the dual-speed architecture, the latency d;; will be d;; tq5t and d;j 504 for fast and slow FUs.
The precedence constraints can be expressed as:

ti —ti > fi- dijfast + (1 = fi) - dijsiow — I1 x my; for all (i, 5) (8)

A power/energy aware software pipelining method should try to construct a schedule that
does not incur any performance degradation and also consumes the minimum energy. The
performance a software pipelined schedule is related to the initiation interval (IT) for which
the integer programming method attempts to find a solution. A simple objective function to
minimize the energy consumption for the same initiation interval /7, is the one which minimizes
the number of instructions issued to fast FUs. This objective function is based on the simple
model that the energy consumed can be approximated to number of the instructions executed
in that FU [16]. Assuming C, fqst and C; g4y are the weights for fast and slow functional units
of type r, the objective function is given by:

minz Z (Cr,fast-fi + Cr,slow * (1 - fz)) (9)
)

T4 ((r

The full ILP formulation has the objective function as Equation 9 under the constraints given
by Equations 1 8. In the above ILP formulation, Equations 1 4 are same as in [8, 9].
However, Equations 5 8, which are used for modeling slow and fast FUs, are contributions of
this paper.

2.2 Refined ILP Formulation

The formulation presented in the previous section is simple, but does not account the resource
usage of slow FUs accurately. More specifically, when an instruction is scheduled on a slow FU,
not only its latency (d;;) is increased (to djj si0), but also the slow FU has a slower throughput.
As explained in Section 1.1, instructions can be initiated in the slow FU only on alternate cycles
(of the fast clock). Since the time steps in our schedule is based on the fast clock, slow FUs
(operating at half the clock frequency) have a structural hazard, and can have instructions
scheduled on them only once every two cycles.

We will explain the above using an example. Assume instructions ¢ and j are executed on
the same resource type r, and both are scheduled on the slow FU. Further assume that there
is only one slow FU of type r. Then if instruction ¢ is scheduled at time ¢, then j cannot be
scheduled at time (£ 4+ 1) mod II or vice-versa. In other words, instructions scheduled on a
slow FU occupy the pipeline for more cycles (two in this case), even though the slow FU is also
fully pipelined (on the slower clock). Thus our resource constraints for slow FUs (Equations 6)
should be modified to reflect this. We do this by including the following constraint. If (v;; = 1)
and (a;; = 1) then (v(q 1)) should also be 1, where ¢ @ 1 represents (f + 1) mod I1. Logically
this is equivalent to

- ((Ut,i = 1) A (at,i = 1)) V (U(tEB 1), = 1)
which is equivalent to

(Ut,i = 0) V (atyi = 0) \Vi (U(tEB 1),i — 1)

The above can be expressed in the form of a linear constraint as:
Ui + Qi — V(g 1), < 2. (10)

Note that if both (vz; = 1) and (az; = 1) then v 1), should be 1 in order to make the left
hand side (strictly) less than 2. Note that in the above constraint we could have eliminated the
term (a;; = 1), as (v;; = 1) already implies the former. However including the former, ensures
that the inequality is not applied successively to v(yg9) i, V(@ 3),i» €tc., and make them 1 too.

Lastly, to account for the additional cycle involved when instructions are scheduled at odd-
numbered cycles on slow FUs (refer to Section 1.1), we consider (i) djj siow = 2 * djj fast + 1
and (ii) if v;; = 1, and then both vg 1 and vg9 must be 1. Note that we apply conditions (i)
and (ii) uniformly on all instructions (scheduled on slow FUs). This is because, even if an
instruction is scheduled at even-numbered cycle, if the II is odd, the above conditions should
hold. Now condition (i) can be easily incorporated in Equation 8. To incorporate condition (ii),
we add the equation

Vti i — V(e)i < 2- (11)

Including Equations 10 and 11 in the ILP formulation accounts for resource constraints
accurately. However, a consequence of this — the fact that an instruction scheduled on a slow
FU uses the FU exclusively for 3 cycles — disallows loops with initiation interval 1 or 2. This
is in order to adhere to modulo scheduling constraint [18] which states that a functional unit
cannot be used by an instruction in time steps that differ by a multiple of 11. As a consequence,
the lowest II for which a schedule can be found in the architecture involving slow and fast FU
is 3.

3 Experimental Framework

Using the ILP formulation proposed in the previous section, we explore how the design space
of an Itanium-like architecture can be made power-efficient by introducing slow FUs. In this

study we focus on the performance of software pipelineable loops in the SPEC2000 integer
benchmarks. The following subsection briefly describes the Itanium architecture. Section 3.2
describes the analytical energy model used in evaluating energy-efficiency of different variants
of Itanium architecture by introducing slow FUs. Our experimental methodology is detailed in
Section 3.4.

3.1 Target Architecture

The target processor in our study is an Itanium-like processor [12, 13], the first microproces-
sor of the Intel Itanium Processor Family (IPF). Itanium is an Ezplicitly Parallel Instruction
Computing (EPIC) processor, which can issue 6 instructions in a single cycle, and supports
predicated execution, speculative execution, rotating registers, etc., to increase instruction-level
parallelism. It has four types of functional units: M-unit, I-unit, F-unit, and B-unit, which work
primarily for memory access, integer operations, floating-point operations and branch instruc-
tions respectively. Each instruction falls into one of the six categories: A-type, I-type, M-type,
B-type, F-type and X-type. Since our power-aware software pipelining is applied only to loop
bodies with single basic blocks, the instructions in the loop body are of A-type, I-type, and
M-type only. There are no F-type instructions because we used integer benchmarks only.

I-type and M-type instructions are executed on I-units and M-units respectively, whereas
A-type instructions can be executed on either type of FU. There are two of each functional
unit type, and both are fully pipelined. One of the two FUs in each type can execute any of
the instructions in that category while the other cannot execute a small subset of them. The
difference is minor and the two instances of the FUs in each FU type are otherwise identical.
Latency values used in our experiments are taken from the instruction timing of Itanium as
defined in its micro-architecture manual [13].

3.2 Energy Model

We use a simple power model in our experiments. It is known that dynamic power dissipation
P is given by P = C' - Vde - f where C is the effective switching capacitance, Vg4 is the supply
voltage and f is the clock frequency. In slow FUs, the clock speed is reduced and voltage can
be accordingly reduced, leads to better-than-linear energy saving. Empirically, it was found
that FUs working on half frequency consume about 40% (represented by C in the computation

below) of the energy consumed by fast FUs. It is represented as follow:

Eslow,i = C1*-Efa,st,i (12)

Also we assume the total energy consumed by FUs incurred for the software pipelined
schedule is the sum of the energy incurred for each instruction in the schedule. This is based
on the same approximation that we used in our objective function in Section 2, namely, the
total energy consumed is related to the number of instructions executed [16]. Admittedly, in
this simple model we focus on FUs only and ignore the power used by other components such

as issue logic and caches, and we assume inactive functional units consume no energy due to
clock gating. Thus, the total energy consumed in the dual speed pipeline architecture is:

Edual = Z Efast,i + Z Eslow,i

Lfast Lslow

As dual speed pipelines are considered only for integer FUs, we assume the energy consumed
by the I-unit and M-unit FUs are the same, i.e., Etqst 1—unit = Epast, M —unit, a0d Egjou 1—unit =

Eslow,Mfum‘t-

Next, we compute the energy consumed by a single iteration of the schedule of a loop [as:
E’&ual,é = Nfast,l * Efast + Nslow,f * Egiow

where Nyqg 0 and Ny ¢ represent the number of instructions scheduled on fast and slow FUs
in a single iteration of loop [, thus Ny ¢ + Nyeste = N¢. The above equation can be derived
to:

Eéual,l = Nfast,f * Efast + Nslow,f * C x Efast (13)

Compared to Equation 13, the energy consumed by a single iteration of loop [in the baseline
architecture is
gblase = NZ * Efast (14)

From this, we can approximate the energy consumed by a loop [, whose trip count is Ty, for
the dual speed and baseline architectures as:

5dual,£ = 5d1ual,é * Ty = (Nfast,f + Nslow,f * O) * Efast * Ty (15)

gbase,ﬁ = NZ * Efast * TZ (16)

Lastly, the energy consumed by all the software pipelineable loops in a benchmark for dual and

baseline architectures are:

Equat = Y, Edual ¢ (17)
¢

gbase = ngast,ﬁ (18)
¢

Similarly the performances of the benchmark or the execution time spent in software pipeline-
able loops are given by:

Exec. Timeg,q = ZTg * Il gyal e (19)
?

Exec. Timep,se = ZTe * Ilpgser (20)
V4

where 114,40 and Ily,s. 0 are the initiation intervals for loop [in the dual speed and base
architectures.

10

T T T T T
S~ —o— analytical
S —x— Wattch simulation

Normalized energy
° o ° o o o ° o
N w = o =y < ® ©
T T T T T T T
/
A
/
/
!
I I I I I I

o
[
I

I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Binding ratio of slow instructions

o

Figure 6: Comparing Our Analytical Energy Model with Simulation Results

3.3 Compare The Analytic Energy Model With Simulation Result

To estimate the accuracy of our energy model, we enhanced the Wattch power simulator [2] with
dual-speed pipelines. We use the annotation bits of SimpleScalar [4] instruction word to mark
whether instructions should be issued to fast or slow FUs. We “mimicked” the compiler behavior
by manually adding annotation fields to the assembly program and running the executable
program on Wattch with clock-gating [2] enabled. We performed these steps on a matriz
multiply program and iterated several times to get programs where the number of instructions
sent to slow FUs varied. We use the term binding ratio to refer to the ratio of number of
instructions issued to the slow FUs to the total number of instructions. In this experiment, we
considered instructions from all basic blocks, and simulated the energy consumed in executing
them from the Wattch simulator. We compare this with the estimated energy using Equation 17
for the matrix multiply program in Figure 6. Comparison reveals that our analytical energy
model and the results obtained from Wattch simulation are very close. This shows that our
analytical energy model for FUs closely track the activity-based dynamic power simulation [2, 7].

3.4 Experimental Methodology

We implemented our ILP formulation on the Delaware Power-Aware Computing Testbed (Del-
PACT) platform [24]. The ILP formulation works with the Open64 compiler [23], which is
an open-source compiler from SGI targeting Itanium processors. Open64 has a rich set of
optimizations and we enabled them in our experiments by setting the highest optimization level.
Our workload came from the SPEC2000 integer benchmark suite. Benchmarks were compiled by
Open64, executed on the “train” data sets to collect profiling information, then recompiled using
this profiling information. DDGs were extracted and an integer linear programming problem
was formed for each DDG. These were then passed to CPLEX [11], a commercial integer linear
programming solver, which gave us the schedule, the initiation interval of the loop (denoted by

11

11y) and instruction partitioning (to fast and slow FUs) of each DDG.

For each of the benchmarks considered, we obtained the trip counts of all software pipelin-
eable loops for the train input set by profiling. Using Equations 17 and 18 we computed the
energy consumed by the software pipelineable loops in each benchmark. The execution time
incurred on the software pipelineable loops are given by Equations 19 and 20. Since our work
focuses only on software pipelining, we use the former as the energy measure for the benchmark
and the latter as performance.

We report our results for only those benchmarks which were successfully compiled by Open64
compiler and produced correct results. These benchmarks, the number of software pipelineable
loops in them, and characteristics of the DDGs associated with these loops are summarized
in Table 1. In our experiment, each loop is given a fixed time limit for CPLEX to derive a
solution, and within this time limit, 91% of the loops could be scheduled by CPLEX.

Benchmark || # of Loops | # of nodes # of edges Minimum II

(avg) [(max) | (avg) | (max) | (avg) | (max)
164.gzip 69 7.3 19 | 12.8 37 3 14
175.vpr 93 15.4 75| 47.6 621 12 95
181.mcf 22 12.8 54 | 62.6 495 9 27
186.crafty 86 114 64 | 335 833 5 92
197.parser 116 7.4 29 | 16.1 69 18
256.bzip2 63 9.4 32 | 21.0 108 6 100
300.twolf 317 18.7 101 | 63.8 349 12 192

Table 1: Statistics on DDGs Extracted from SPEC 2000 Benchmarks

4 Experimental Results

The main observations from our experiments are summarized as follows:

1. Making some of the functional units as slow FUs can significantly reduce energy consump-
tion for these benchmarks. Changing two fast functional units to slow ones can lower FU
energy requirements up to 31.1% with an average reduction of 25.2% compared to the
baseline configuration.

2. Despite the considerable energy saving, judicious use of slow functional units generally
leads to a surprisingly small performance degradation. Even when 2 out of the 4 func-
tional units are slow units, the average performance degradation experienced is only 6.2%
compared to that achieved by configuration with all fast FUs.

3. If performance is less critical, more energy savings can be achieved by an energy-aware
compiler. On a processor with 2 fast and 2 slow functional units, a maximum of 40.3%

12

60 T T T T T T T 60 T T T T T T T
Il C1 M [e

cs Jc3

50 1 50

IS
S
T

401

301

Energy saving
w
S
Performance loss

N
S
T

20

10 I b
0
ozip vpr mcf crafty parser bzip2 twolf avg ozip vpr mcf crafty parser bzip2 twolf avg
Benchmarks Benchmarks

10

Figure 7: Energy Saving and Performance Penalty of Different Configurations

energy saving on FUs can be achieved over the baseline model if a maximum of 30%
increase on the individual IT values for the different loops is acceptable.

4.1 Energy Gain and Performance Degradation by Slow Functional Units

The performance degradation and energy gain in introducing some slow FUs in the place of fast
FUs is depicted in Figure 7. In this experiment, we considered fast and slow FUs for the I-unit
FUs and M-unit FUs only. Together we refer to these as integer FUs. In all experiments, there
are 4 integer FUs, while the number of slow and fast FUs varies among the configurations. We
consider the following four configurations:

CO0 2 fast I-unit and 2 fast M-unit FUs — this is the baseline architecture
C1 1 fast I-unit, 1 slow [-unit, and 2 fast M-unit FUs
C2 1 fast I-unit, 1 slow I-unit, 1 fast M-unit and 1 slow M-unit FUs

C3 2 slow [-unit, 1 slow M-unit, and 1 fast M-unit FUs

Figure 7 shows the energy gain and performance loss of configurations C1-C3 on all bench-
marks, compared against the energy and performance of the baseline configuration C0. The
last set of bars indicate the average energy reduction and performance degradation taken across
all benchmarks. For configuration C1, we observe an energy gain of 12% or more in all the
applications. With configurations C2, the energy savings increase to 18% and more. Lastly,
for configuration C3, the energy gain is higher, ranging from 20% to 41%. It is important
to note that the above energy savings are obtained only by trading off a little or no perfor-
mance in many cases. For configuration C1, except for benchmarks gzip and crafty which
show relatively large performance degradation, 19.6% and 10% respectively, all other bench-
marks incur very little performance degradation, often less than 1%. With configurations C2,
the performance degrades, by 5% — 20%, in 4 of the benchmarks, while for other three (mcf,

13

parser and twolf) the performance degradation is negligible. Lastly, for configuration C3,
both the performance degradation and the energy gain are higher. It should be noted here that
even with configurations C2 and C3 (with, respectively, 2 and 3 slow FUs), the degradation in
performance is within 15% for all the benchmarks, except gzip.

It is important to note here that our method obtains rate-optimal schedules where the
optimality is for a given configuration (C1, C2, or C3); i.e., there can be no other schedule that
has a lower initiation interval for the given configuration. Among the rate-optimal schedules
for a given configuration, our approach obtains one that consumes the minimum energy (as
calculated by our energy model). In this sense, the schedules obtained by our approach are
optimal in terms of both performance and energy for the given configuration.

Lastly, we observe that gzip suffers relatively large performance loss when slow functional
units are introduced. This observation agrees with that of related work by Seng et al [14].
Interestingly, two benchmarks, namely mcf and parser, incur no performance degradation
even when 3 of the 4 integer units act as slow FUs. To summarize, for the benchmarks we
studied, configurations C1, C2 and C3 consume, respectively, 17.5%, 25.3%, and 30.2% less
energy, on the average, compared to the baseline architecture.

4.2 Trading Performance for Energy

Next we address the question that whether further energy savings can be obtained in dual
speed architectures if the compiler is allowed to trade performance. To answer this question,
we conduct a set of experiments on configuration C2 (with 2 fast and 2 slow FUs). Here, for
each software pipelineable loop, we set the optimal II obtained for configuration C2 as the base
1T value. We allow our compiler to choose an II value which is within a performance degradation
threshold (PDT) from the base II value, and try to obtain energy-efficient schedules. We chose
PDTs as 10%, 20%, 30% for each application.

50

T
Il rate-optimal
[PDT =10%

45 [PDT=20% H

[1 PDT =30%

Energy saving with performance slack
= = N N w w B
5 & S & 8 & S
T T T T T T
]
|

o
T

gzip7 vpr7 mcf7 craﬂ; parse? bzip{ Iwolr avg
Benchmarks

Figure 8: Energy saving for Three Different Slowdown Factors

14

In Figure 8 we plot the energy savings compared to the baseline configuration (C0) for
various PDT values. The bar corresponding to rate-optimal refers to a PDT value of 0%,
which necessarily means that the compiler does not trade performance for power, and tries to
obtain the optimal schedule for configuration C2. As shown in the figure, energy gains in three
benchmarks, namely vpr, mcf, and twolf, increase with increased PDT value. However, in
the other benchmarks, the energy savings appear only when the PDT is increased from 10%
to 20%. The insignificant benefit in performance when the PDT is increased from 0% to 10%
can be explained by the fact that these benchmarks have a lower average Minimum IT(MII)
than the three benchmarks, as shown in Table 1. For those DDGs with small minlI, 10% PDT
leaves no space for them to increase its II. Hence their schedules are not changed for a large
fraction of loops compared with the rate-optimal schedules obtained under configuration C2.
The actual performance degradation for these benchmarks is less than 1% when 10% PDT is
applied. When PDT of 20% is given, energy gain is more apparent for all benchmarks. The
average energy saving for PDTs of 20% and 30% is 31.8% and 34% respectively.

Lastly, we note that a PDT value refers to an increase in the individual II. Hence a PDT
of, say 20%, does not necessarily mean a 20% degradation on the execution time. The average
performance degradation for the benchmarks is only 15.4% when the PDT is 20%.

5 Related Work

Exploiting instruction schedule slack to reduce power consumption with minimal performance
degradation is extensively studied in literature. A limit study on available schedule slack was
performed by Casmira et al [5]. Their result shows that in the course of program execution,
for more than 75% of the execution cycles there exists at least one instruction that has slack.
However they didn’t mention any work on techniques to exploit such instruction scheduling
slack for energy saving.

Pyreddy et al [17] extend this idea by partitioning functional units to fast ones and slow
ones, operating the slow ones at half the rate of fast ones, and using run-time profiling to guide
instruction issue to these two sets of functional units. It is their assumption that profiling
needs to be done in a separate pass other than the actual run. In contrast, Seng et al proposed
to analyze instruction criticality dynamically and issue critical instructions to fast functional
units while non-critical instructions to slow ones [14]. The mechanism they adopt to predict
instruction criticality is the critical path predictor buffer [6]. Although interesting, the buffer
consumes additional power which may offset the power gain in functional units.

The work by Zhang et al [26] uses compilation techniques to determine the fast or slow
functional units where each instruction should be issued to. They designed a energy-oriented
heuristic algorithm to re-order a schedule made by some performance-oriented scheduling algo-
rithm to achieve energy saving with minimal performance degradation. Our work complements
theirs in the following aspects. First, our study focuses on loop software pipelining while their
study is on global scheduling with acyclic dependence graphs. Second, we use an integer linear

15

programming based approach to evaluate the limits of performance energy tradeoffs an “optimal
scheduler” can do. Our method can be used to evaluate heuristic, more practical, algorithms
and potentials of their improvements [22].

A relevant work by Yun et al [25] targets power-aware software pipelining. They proposed
a heuristic algorithm which extended iterative modulo scheduling [20], tries to minimize step
power for a software pipelined loop on a cycle-by-cycle basis. Their objectives are to derive
a schedule under which “power consumption are better balanced” under a VLIW architecture

where the speed of function units are fixed.

6 Conclusions

This paper reports a quantitative study of power-performance tradeoffs in the design space of
energy efficient architectures. It studies the interplay between low-power architecture features
and compiler optimization techniques, specifically software pipelining. It explores both the
architecture and the compiler side of design space. An Itanium-like architecture model involving
dual speed pipelines (slow and fast FUs) is used in this study.

This design space exploration is performed under the Delaware Power-Aware Computing
Testbed (Del-PACT) platform on SPEC2000 integer benchmark programs. We have proposed
an elegant integer linear programming formulation for rate-optimal software pipelining on ar-
chitectures involving dual-speed pipelines. Using the integer linear programming approach we
explore the design space for Itanium-like architectures, assuming that some of the FUs are slow

FUs.

The main results and observations of this paper are:

1. Energy gain by introducing a few slow FUs in the place of fast FUs is considerable. The
energy consumed by all FUs is reduced by up to 31.1% (25.2% on average) when 2 out of
4 FUs are set as slow.

2. Performance degradation caused by slowing down some of the FUs is small in a large
majority of the cases. The average performance degradation for a moderate setting, i.e.,
2 out of 4 FUs are set as slow, is only 6.2%.

3. Further energy gains can be achieved by the compiler if performance slack is available.
When the performance degradation threshold is set at 30%, energy savings rise to 40.3%

in the best cases (34% on average).

Further research directions include making comparison with heuristic approaches for energy-
optimal scheduling approaches, reducing leakage power and incorporating run-time information
in software pipelining algorithm to achieve even larger energy saving.

16

Acknowledgment

The authors would like to express especial thanks to George Cai from Intel for his support

on building our power-aware computing testbed, to Roy Ju from Intel who carefully reviewed

this paper and gave helpful suggestions. Our thanks also goes to Chenyong Wu from Open

Research Compiler(ORC) team of Chinese Academy of Sciences and Peng Zhao from Univer-

sity of Alberta, who has helped us a lot in compiling and profiling SPEC 2000 benchmarks.

Besides, support from DARPA, DOE and NSF is crucially important in building our compiler

infrastructure.

References

1]

Erik R. Altman, R. Govindarajan, and Guang R. Gao. Scheduling and mapping: Software
pipelining in the presence of structural hazards. In Proc. of the ACM SIGPLAN ’95 Conf.
on Programming Language Design and Implementation, pages 139-150, La Jolla, Calif.,
Jun. 1995.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc. of the 27th Ann. Intl. Symp.
on Computer Architecture, pages 83 94, Vancouver, Brit. Col., Jun. 2000.

D.M. Brooks, P. Bose, S.E. Schuster, H.Jacobson, P .K. Kudva, A. Buyuktosunoglu, J-D.
Wellman, V. Zyuban, M. Gupta, and P.W. Cook. Power-aware microarchtiecture: Design
and modelling challenges for next-generation microprocessors. IEEE Micro, 20(6), Nov
2000.

Doug Burger and Todd Austin. The SimpleScalar tool set, version 2.0. Technical Report
1342, Computer Sciences Department, Univ of Wisconsin, 1997.

Jason Casmira and Dirk Grunwald. Dynamic instruction scheduling slack. In Proceedings
of the 2000 KoolChips workshop, Monterey, California, Dec 10th 2000.

E.Tune, D.Liang, D.Tullsen, and B.Calder. Dynamic prediction of critical path instruc-
tions. In Proceedings of the 7th International Symposium on High Performance Computer
Architecture, Feb 2001.

G.Cai and C.H.Lim. Architectural level power/performance optimization and dynamic
power estimation. Cool Chips Tutorial, in conjunction with 32nd Annual International
Symposium on Microarchitecture. Haifa, Israel, Nov 1999.

R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirements
under resource-constrained rate-optimal software pipelining. In Proc. of the 27th Ann. Intl.
Symp. on Microarchitecture, pages 85-94, San Jose, Calif., Nov.—Dec. 1994.

17

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[20]

21]

22]

R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-
constrained rate-optimal software pipelining. IEEE Trans. on Parallel and Distrib. Sys-
tems, 7(11):1133-1149, Nov. 1996.

C-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic frequency and voltage
scheduling. In Workshop on Power-Aware Computer Systems (PACS’00), Cambridge, MA,
Nov 2000.

ILOG. CPLEX mixed integer solver. http://www.cplex.com.
Intel. Intel IA-64 Architecture Software Developer’s Manual, Aug 2000.
Intel. Itanium Processor Microarchitecture Reference for Software Optimization, Aug 2000.

J.Seng, E.Tune, and D.Tullsen. Reducing power with dynamic critical path information.
In Proceedings of the 3/th Annual International Symposium on Micro-architecture, Austin,
TX, Dec 2001.

Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines. In
Proc. of the SIGPLAN 88 Conf. on Programming Language Design and Implementation,
pages 318-328, Atlanta, Geor., Jun. 1988.

M.T.-C.Lee, V.Tiwari, S.Malik, and M.Fujita. Power analysis and minimization techniques
for embedded DSP software. IEEE Trans on Very Large Scale Integration(VLSI) Systems,
5(1), Mar 1997.

Ramu Pyreddy and Gary Tyson. Evaluating design tradeoffs in dual speed pipelines. In
Workshop on Complexity-Effective Design, Goteborg, Sweden, Jun 30 2001.

B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview and
perspective. J. of Supercomputing, 7:9-50, May 1993.

B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In Proc. of the 14th
Ann. Microprogramming Work., pages 183-198, Chatham, Mass., Oct. 1981.

B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Ann. Intl. Symp. on Microarchitecture, pages 63—74, San Jose,
Calif., Nov.—Dec. 1994.

Raymond Reiter. Scheduling parallel computations. J. of the ACM, 15(4):590-599, Oct.
1968.

John Ruttenberg, G. R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipelining
showdown: Optimal vs. heuristic methods in a production compiler. In Proc. of the ACM
SIGPLAN °96 Conf. on Programming Language Design and Implementation, pages 1-11,
Philadelphia, May 1996.

18

[23] SGI. Open64 open source compiler. http://open64.sourceforge.net.

[24] Hongbo Yang, Guang R. Gao, Andres Marquez, George Cai, and Ziang Hu. Power and
energy impact by loop transformations. In Workshop on Compilers and Operating Systems
for Low Power 2000 (COLP’01), Spain, 2001.

[25] Han-Saem Yun and Jihong Kim. Power-aware modulo scheduling for high-performance
vliw processors. In Proceedings of the International Symposium on Low Power Electronics
and Design 2001, Aug 2001.

[26] W. Zhang, N.Vijaykrishnan, M.Kandemir, M.Irwin, D.Duarte, and Y. Tsai. Exploiting
VLIW schedule slacks for dynamic and leakage energy reduction. In Proceedings of the
34th Annual International Symposium on Micro-architecture, Austin, TX, Dec 2001.

19

