
University of DelawareDepartment of Electrical and Computer EngineeringComputer Architecture and Parallel Systems LaboratoryA Quantitative Study on Performance-Power Impact ofDual-Speed Pipeline ArchitecturesHongbo YangR. GovindarajanyGuang R. GaoKevin B. TheobaldCAPSL Technical Memo 42June 10, 2002
Copyright c 2002 CAPSL at the University of Delaware

ySupercomputer Education & Research Centre, Dept. of Computer Science & Automation,Indian Institute of ScienceUniversity of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USAhttp://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu

AbstractThe drastic increase in power consumption by modern processors emphasizes the needfor power-performance trade-o�s in architecture design space exploration and compiler op-timizations. This paper reports a quantitative study on the power-performance trade-o�s insoftware pipelined schedules for an Itanium-like EPIC architecture with dual-speed pipelines,in which functional units are partitioned into fast ones and slow ones. We have developedan integer linear programming formulation to capture the energy/performance tradeo�s forsoftware pipelined loops. The proposed integer linear programming formulation and its so-lution method have been implemented and tested on a set of SPEC2000 benchmarks. Theresults are compared with an Itanium-like architecture(baseline) in which there are fourfunctional units(FUs) and all of them are fast units.Our quantitative study reveals:1. There is considerable energy saving by introducing a few slow FUs in place of fastFUs in the baseline architecture. When 2 out 4 FUs are set as slow, the total energyconsumed by FUs is reduced by up to 31.1% (with an average reduction of 25.2%)compared to the baseline con�guration.2. Although using slow FUs may cause some performance degradation, our results showthat such degradation is small in a large majority of cases. The average performancedegradation for a con�guration with 2 out of 4 FUs being slow is only 6.2%. Evenwhen 3 out of the 4 FUs are slow units, the average performance degradation is within15% compared to that achieved by the baseline con�guration with all fast FUs.3. If performance demand is less critical, then further energy reduction can be achievedby trading performance for energy. For example, if 30% decrease in the performancecan be tolerated, then an energy saving of up to to 40.3% can be achieved, with anaverage of 34%.Keywords: Low power micro-architecture, low power compilation techniques, integer linearprogramming, software pipelining.

i

Contents1 Introduction 11.1 Example . 21.2 Synopsis . 42 Integer Linear Programming Formulation 52.1 Initial Formulation . 52.2 Re�ned ILP Formulation . 73 Experimental Framework 83.1 Target Architecture . 93.2 Energy Model . 93.3 Compare The Analytic Energy Model With Simulation Result 113.4 Experimental Methodology . 114 Experimental Results 124.1 Energy Gain and Performance Degradation by Slow Functional Units 134.2 Trading Performance for Energy . 145 Related Work 156 Conclusions 16List of Figures1 Motivating Example . 22 A Feasible Schedule for the DDG for Architecture a1 33 A Feasible Schedule for the DDG for Architecture a2 34 A Feasible Schedule for the DDG for Architecture a3 35 Rising Edges in Fast and Slow FUs . 46 Comparing Our Analytical Energy Model with Simulation Results 117 Energy Saving and Performance Penalty of Di�erent Con�gurations 138 Energy saving for Three Di�erent Slowdown Factors 14List of Tables1 Statistics on DDGs Extracted from SPEC 2000 Benchmarks 12

ii

1 IntroductionThe past decade has seen a tremendous increase in the performance of general purpose micropro-cessors. However, this higher performance is often accompanied by an undesirable, sometimeexcessive, power consumption. This is predicted soon to become a limiting factor in high-performance processor design [3]. Consequently, architects must consider power-performancetradeo�s when exploring the processor design space.This paper deals with low power architectures, compiler techniques, and their interplay.Recent research in low power design proposes architectures with components operating at dif-ferent pipeline speeds [17]. In such processors, some functional units (FUs) operate at full CPUspeed (\fast" FUs) while others run at a slower speed, typically half of the full speed (\slow"FUs). Slow FUs can run at lower voltages, which lead to a better-than-linear energy reductionper operation [10].The rationale behind such a design is that schedule slack is present for some instructions,i.e., they are not on the critical path, so prolonging their execution time should not hurtperformance. A limit study [5] demonstrates that more than 75% of execution cycles have atleast one instruction that has slack. By issuing instructions on the critical path to fast pipelinesand those which are o� the critical path to slower functional units, signi�cant power and energyreduction can be achieved [14, 26].This paper reports a quantitative study of power-performance tradeo�s in the design spaceby exploring the interplay between low-power architecture features and compiler optimizations.Our study concentrates on software pipelining [15, 19], a compile-time instruction schedul-ing technique for loops. In our prior work, performance-oriented software pipelining undergiven timing and resource constraints has been formulated as an integer linear programmingproblem [1, 8, 9] and was successfully used in evaluating the software pipelining algorithm im-plemented in a production-quality compiler [22]. However in the context of low power, e�ectivesoftware pipelining algorithm which strives for both optimal performance and minimal energyis still unexplored. The problem that we are addressing in this paper is:Given a loop L and a machine con�guration M with slow and fast FUs, �nd arate-optimal software pipelined schedule in which the schedule consumes minimalenergy.We use the termrate-optimal schedule to imply that no other schedule for the loop L can havea lower initiation interval(II) for the machine con�guration M. And we use the term minimalenergy schedule refers no other schedule for the loop L can have a lower energy consumptionwith given II for the given architecture M. This paper formulates the above problem as anILP problem and explores both the architecture and compiler side of design space using theILP formulation and its solution method. In particular, this study explores:[Architecture side:] In order to achieve signi�cant power reduction without incurring per-formance degradation, how many of the FUs in an architecture can be slow FUs? By1

s0
+

s1
+

s3

+
s2 s4

+

s5
+*Figure 1: Motivating Exampleincreasing the number of slow FUs, how does the application performance degrade?[Compiler side:] To what extent can the compiler exploit this knowledge of slow and fast FUsin the architecture, and schedule instructions in such a way to reduce energy withoutsigni�cant degradation in performance?1.1 ExampleWe illustrate the bene�ts of slow FUs with a simple example. Figure 1 shows a data dependencegraph (DDG) for a loop body, with a loop-carried dependence (from one iteration of the loopto the next) from s5 to s4. Suppose we want to run this loop on an architecture a1 with 3Integer Add units and 2 Integer Multiply units. All FUs are fast and fully pipelined, and theirlatencies are 1 cycle for Add and 3 for Mult. The cycle containing s4 and s5 imposes a lowerbound on how frequently the loop body can be initiated. This is the Recurrence MinimumInitiation Interval (RecMII), given byRecMII = max8cycles C � d(C)m(C)�where d(C) is the sum of the latencies of the instructions in cycle C and m(C) is the sum ofthe loop-carried dependences around cycle C [21]. In our example, there is only one cycle, andRecMII is d(1 + 1)=1e = 2.We can compute another lower bound for the initiation interval by considering availableresources. The Resource Minimum Initiation Interval (ResMII) is given byResMII = maxr (ResMIIr) = maxr ��dmax;r �NrFr ��where Nr is the number of instructions which are executed in FU type r, Fr is the number ofFUs in type r, and dmax;r is the maximum number of cycles for which the FU is used by aninstruction. If the FUs are pipelined, then dmax;r is 1. In our example, the individual ResMIIfor Add and Mult FUs are d(5=3)e and d(1=2)e respectively. Thus, the overall ResMII is 2.The minimum initiation interval (MII) is the maximum of ResMII and RecMII; MII=2 in ourexample. (Several papers on software pipelining [15, 18, 19] discuss computing RecMII, ResMII,and MII.) 2

Iteration Time Steps0 1 2 3 4 5 6 7 8 9 100 s0 s1,s2 s3 s4 s51 s0 s1,s2 s3 s4 s52 s0 s1,s2 s3 s4 s5Figure 2: A Feasible Schedule for the DDG for Architecture a1Iteration Time Steps0 1 2 3 4 5 6 7 8 9 100 s0,s2 s1 s3 s4 s51 s0,s2 s1 s3 s4 s52 s0,s2 s1 s33 s0,s2 s1 s34 s0,s2 s1 s3Figure 3: A Feasible Schedule for the DDG for Architecture a2Figure 2 shows one possible \rate-optimal" schedule with an initiation interval II = 2 forthis DDG. The repetitive kernel in cycles 4 and 5 is shaded. We can see that there is someslack in the schedule, and not all FUs are fully utilized. If one Add FU and one Mult FU ina1 were replaced with slow FUs operating at half the frequency, we could achieve the same IIwith this modi�ed architecture a2, as shown in Figure 3. In this schedule, instructions s2 ands3 are scheduled in the slow Add and Mult FUs; these are shown in italics. Although the kernelappears later, i.e., the prologue is longer, the schedule is still optimal with II = 2. Architecturea2 may save power relative to a1, without slowing down the loop.On the other hand, if two of the Add units were slow (architecture a3), the schedule inFigure 3 would not work. Each loop iteration would require 5 additions, but each of the twoslow units can perform only one addition every 2 cycles, so that all three Add units togethercan perform only 4 additions every 2 cycles. The best initiation interval that we can achieve forthis DDG would be II = 3. One possible schedule is shown in Figure 4. This example showsIteration Time Steps0 1 2 3 4 5 6 7 8 9 10 110 s0 s2 s1 s3 s4 s51 s0 s2 s1 s32 s0 s2 s1 s33 s0 s2Figure 4: A Feasible Schedule for the DDG for Architecture a33

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
Fast Clock

Triggers (Fast Clock)

Slow Clock

Triggers (Slow Clock)Figure 5: Rising Edges in Fast and Slow FUsthat by varying the number of fast and slow FUs, the architecture can be made more powere�cient, but at some point this e�ciency will lead to a performance penalty.The di�erence in clock speeds, and therefore input rates, between fast and slow FUs presenta few complications when scheduling instructions in a slow FU. If the slow FU is operating athalf the clock frequency of the fast FU, then the slow FU will only have half the number ofrising/falling edges on which activities can be triggered. Thus if an instruction is scheduled ona slow FU at an odd-numbered cycle, then the activities will not take place in the slow FUuntil the next even-numbered cycle on which the rising edge occurs (refer to Figure 5). Thusan instruction scheduled on a slow FU at an odd-numbered cycle will experience an additionalcycle delay. Any other instruction dependent on this will have to be scheduled after 2` + 1cycles, where ` is the latency of the fast FU. Furthermore, if the II is odd, then each instructionwill occur in an odd cycle in alternate iterations; when this occurs, the additional latency willbe incurred. Thus, we assume that the latency of a slow FU is uniformly 2`+ 1. Fortunately,for the schedule shown in Figure 4 this is already satis�ed. Lastly, as an instruction scheduledat odd cycle in a slow FU will have to wait for an extra cycle to get the rising/falling edge, weshould also assume, conservatively, that a new instruction can be initiated on a slow FU onlyonce every three cycles. Again, in the schedule shown in Figure 4, as instructions s0 and s2 arescheduled on di�erent slow FUs, this constraint is also satis�ed.1.2 SynopsisGiven an architecture with a �xed number of FUs in each resource class, it is interesting to �ndout how many of these FUs in each class could be operated at a slower clock rate, and henceat a reduced power consumption, and what is the degradation in performance, if any. In thispaper, we propose an integer linear programming formulation for the above problem based onour earlier work. We apply our approach on SPEC2000 integer benchmarks to evaluate di�erentcon�gurations (with di�erent number of slow and fast FUs) of Itanium processor from both theperformance and power angles. Also we study the additional power savings that can be obtainedwhen the compiler trades performance for energy. Our results show that by introducing twoslow FUs in the architecture, in the place of fast FUs, an average energy savings of 25.2% can4

be obtained while the performance degradation is within 6.2% on the average.Before proceeding to our study, a few remarks are in order. As the focus of this paper ison studying the architecture design space, admittedly, we use a somewhat approximate powermodel, and consequently, an approximate energy model. Also in this study we do not considerthe power consumed by other components such as issue logic and caches. Finally, we ignore thepower consumed by inactive functional units. Our experience obtained by using architectural-level power simulator [7] and Synopsys gate-level power simulator is that leakage power(powerconsumed by inactive functional units) is only a very small fraction of the total power. Althoughthe case might change in the future, the increased leakage power problem can accordingly beaddressed by related techniques like input vector control [26]. Our initial investigations showthat it is possible to relax some of these assumptions and incorporate a more accurate powermodel in our integer linear program formulation, although at the expense of complicating theinteger program formulation. We leave the details of these accurate models as well as makingtheir formulation e�cient for future work, as the emphasis of this paper is not on developing apower-aware software pipelining method.The rest of the paper is organized as follows. The next section presents an elegant ILPformulation for power-aware software pipelining based on our previous work. In Section 3 wederive an analytical expression for energy consumption and validate it. Section 4 deals withthe experimental evaluation and results. Related work is elaborated in Section 5. Lastly, weprovide concluding remarks in Section 6.2 Integer Linear Programming FormulationIn this section �rst we extend the integer linear programming formulation [8, 9] for softwarepipelining to handle dual speed pipelines. Subsequently in Section 2.2, we re�ne the formulationto more accurately model structural hazards in dual speed pipelines.2.1 Initial FormulationLet the number of nodes in the DDG be N and let II be the initiation interval [19, 15, 18]. Inthis paper we consider only repetitive schedules or modulo scheduling. The software pipeliningmethods attempts to �nd a schedule for each value of initiation interval II, starting from theminimum initiation interval (MII) [19, 15, 18]. The methods stops as soon as a schedule isfound for the �rst II greater than or equal to the minimum initiation interval.In modulo scheduling, the schedule time of operation i in the jth iteration is given byti;j = ti + j � IIwhere ti is the schedule time of operation i in the �rst iteration. We use a N � 1 vector � torepresent the schedule time of the operations in the �rst iteration. The vector � is composedof variables t0; � � � ; tN�1. We use a II � N matrix A to represent the repetitive pattern of5

instructions in the modulo schedule. The matrix A = [at;i] where at;i = 1 if and only if node iis scheduled at time step t in the modulo schedule, where t is the range [0::II � 1]. It is easyto see that at;i = 1; if ti mod II = t:Further � and A are related by the following equation.� = II � �+AT � [0; 1; � � � ; II � 1]T (1)The vector � is an N � 1 vector composed of k0; � � � ; kN�1. Equation 1 implicitly de�nes ki aski = � tiII �Since each instruction i is scheduled in the repetitive pattern exactly once, the followingequation must be satis�ed for a legal schedule:II�1Xt=0 at;i = 1 for all i 2 [0; N � 1] (2)For resources that operate on a single speed, that is those which are not partitioned to fastand slow ones, e.g., the issue unit, the resource constraint can be speci�ed using the followingsimple inequality. Xi2�(r) at;i � Rr for all t 2 [0; II � 1] (3)where Rr is the number of resources of type r and �(r) represent the set of instructions in theloop that use resource type r. Note that resources like issue unit are used by all instructions,and hence �(Issue Unit) consists of all instructions; whereas in the oating point divide re-source type, there may be only one function unit, and �(FP Divide) consists of only FP divideinstructions, if any, in the loop.Next we formulate the resource constraints for resources types which have slow and fastFUs. For example, in our motivating example, the Add and Multiply FUs have slow and fastFUs. For an instructions which goes to these resource types r, we also need to know whetherthe instruction is scheduled on slow or fast FU. We use two sets of variables ut;i and vt;i forthis purpose: ut;i = 1 if instruction i is scheduled on fast FU and at;i = 1; likewise vt;i = 1 ifinstruction i is scheduled on slow FU and at;i = 1. Since the resource assignment for instructioni can be either fast FU or slow FU but not both, the following equation holds:at;i = ut;i + vt;i for all t 2 [0; II � 1]; and for all i 2 [0; N � 1] (4)If there are Rr;fast fast FUs and Rr;slow slow FUs in resource type r, then the resource constraintfor software pipelined schedule can be enforced using the inequalityXi2�(r) ut;i � Rr;fast for all t 2 [0; II � 1] and for all r (5)Xi2�(r) vt;i � Rr;slow for all t 2 [0; II � 1] and for all r (6)6

Next we will express the precedence constraint. For this, we de�ne a variable fi for eachinstruction i to indicate whether instruction i is scheduled on fast FU (in which case fi = 1) oron slow FU (in which case fi = 0). The variable fi is de�ned as:fi = II�1Xt=0 ut;i for all i 2 [0; N � 1] (7)Now, for each dependence arc (i; j) in the DDG, the precedence constraint between i and j isformulated as [21]: tj � ti � dij � II �mijwhere dij is the latency from instruction i to j and mij is the dependence distance [19, 15, 18].In the dual-speed architecture, the latency dij will be dij;fast and dij;slow for fast and slow FUs.The precedence constraints can be expressed as:tj � ti � fi � dij;fast + (1� fi) � dij;slow � II �mij for all (i; j) (8)A power/energy aware software pipelining method should try to construct a schedule thatdoes not incur any performance degradation and also consumes the minimum energy. Theperformance a software pipelined schedule is related to the initiation interval (II) for whichthe integer programming method attempts to �nd a solution. A simple objective function tominimize the energy consumption for the same initiation interval II, is the one which minimizesthe number of instructions issued to fast FUs. This objective function is based on the simplemodel that the energy consumed can be approximated to number of the instructions executedin that FU [16]. Assuming Cr;fast and Cr;slow are the weights for fast and slow functional unitsof type r, the objective function is given by:minXr Xi 2 �(r)(Cr;fast:fi + Cr;slow � (1� fi)) (9)The full ILP formulation has the objective function as Equation 9 under the constraints givenby Equations 1 { 8. In the above ILP formulation, Equations 1 { 4 are same as in [8, 9].However, Equations 5 { 8, which are used for modeling slow and fast FUs, are contributions ofthis paper.2.2 Re�ned ILP FormulationThe formulation presented in the previous section is simple, but does not account the resourceusage of slow FUs accurately. More speci�cally, when an instruction is scheduled on a slow FU,not only its latency (dij) is increased (to dij;slow), but also the slow FU has a slower throughput.As explained in Section 1.1, instructions can be initiated in the slow FU only on alternate cycles(of the fast clock). Since the time steps in our schedule is based on the fast clock, slow FUs(operating at half the clock frequency) have a structural hazard, and can have instructionsscheduled on them only once every two cycles.7

We will explain the above using an example. Assume instructions i and j are executed onthe same resource type r, and both are scheduled on the slow FU. Further assume that thereis only one slow FU of type r. Then if instruction i is scheduled at time t, then j cannot bescheduled at time (t + 1) mod II or vice-versa. In other words, instructions scheduled on aslow FU occupy the pipeline for more cycles (two in this case), even though the slow FU is alsofully pipelined (on the slower clock). Thus our resource constraints for slow FUs (Equations 6)should be modi�ed to reect this. We do this by including the following constraint. If (vt;i = 1)and (at;i = 1) then (v(t� 1);i) should also be 1, where t� 1 represents (t+1) mod II. Logicallythis is equivalent to : ((vt;i = 1) ^ (at;i = 1)) _ (v(t� 1);i = 1)which is equivalent to (vt;i = 0) _ (at;i = 0) _ (v(t� 1);i = 1):The above can be expressed in the form of a linear constraint as:vt;i + at;i � v(t� 1);i < 2: (10)Note that if both (vt;i = 1) and (at;i = 1) then v(t� 1);i should be 1 in order to make the lefthand side (strictly) less than 2. Note that in the above constraint we could have eliminated theterm (at;i = 1), as (vt;i = 1) already implies the former. However including the former, ensuresthat the inequality is not applied successively to v(t� 2);i, v(t� 3);i, etc., and make them 1 too.Lastly, to account for the additional cycle involved when instructions are scheduled at odd-numbered cycles on slow FUs (refer to Section 1.1), we consider (i) dij;slow = 2 � dij;fast + 1and (ii) if vt;i = 1, and then both vt� 1 and vt� 2 must be 1. Note that we apply conditions (i)and (ii) uniformly on all instructions (scheduled on slow FUs). This is because, even if aninstruction is scheduled at even-numbered cycle, if the II is odd, the above conditions shouldhold. Now condition (i) can be easily incorporated in Equation 8. To incorporate condition (ii),we add the equation vt;i + at;i � v(t� 2);i < 2: (11)Including Equations 10 and 11 in the ILP formulation accounts for resource constraintsaccurately. However, a consequence of this | the fact that an instruction scheduled on a slowFU uses the FU exclusively for 3 cycles | disallows loops with initiation interval 1 or 2. Thisis in order to adhere to modulo scheduling constraint [18] which states that a functional unitcannot be used by an instruction in time steps that di�er by a multiple of II. As a consequence,the lowest II for which a schedule can be found in the architecture involving slow and fast FUis 3.3 Experimental FrameworkUsing the ILP formulation proposed in the previous section, we explore how the design spaceof an Itanium-like architecture can be made power-e�cient by introducing slow FUs. In this8

study we focus on the performance of software pipelineable loops in the SPEC2000 integerbenchmarks. The following subsection briey describes the Itanium architecture. Section 3.2describes the analytical energy model used in evaluating energy-e�ciency of di�erent variantsof Itanium architecture by introducing slow FUs. Our experimental methodology is detailed inSection 3.4.3.1 Target ArchitectureThe target processor in our study is an Itanium-like processor [12, 13], the �rst microproces-sor of the Intel Itanium Processor Family (IPF). Itanium is an Explicitly Parallel InstructionComputing (EPIC) processor, which can issue 6 instructions in a single cycle, and supportspredicated execution, speculative execution, rotating registers, etc., to increase instruction-levelparallelism. It has four types of functional units: M-unit, I-unit, F-unit, and B-unit, which workprimarily for memory access, integer operations, oating-point operations and branch instruc-tions respectively. Each instruction falls into one of the six categories: A-type, I-type, M-type,B-type, F-type and X-type. Since our power-aware software pipelining is applied only to loopbodies with single basic blocks, the instructions in the loop body are of A-type, I-type, andM-type only. There are no F-type instructions because we used integer benchmarks only.I-type and M-type instructions are executed on I-units and M-units respectively, whereasA-type instructions can be executed on either type of FU. There are two of each functionalunit type, and both are fully pipelined. One of the two FUs in each type can execute any ofthe instructions in that category while the other cannot execute a small subset of them. Thedi�erence is minor and the two instances of the FUs in each FU type are otherwise identical.Latency values used in our experiments are taken from the instruction timing of Itanium asde�ned in its micro-architecture manual [13].3.2 Energy ModelWe use a simple power model in our experiments. It is known that dynamic power dissipationP is given by P = C � V 2dd � f where C is the e�ective switching capacitance, Vdd is the supplyvoltage and f is the clock frequency. In slow FUs, the clock speed is reduced and voltage canbe accordingly reduced, leads to better-than-linear energy saving. Empirically, it was foundthat FUs working on half frequency consume about 40%(represented by C in the computationbelow) of the energy consumed by fast FUs. It is represented as follow:Eslow;i = C � Efast;i (12)Also we assume the total energy consumed by FUs incurred for the software pipelinedschedule is the sum of the energy incurred for each instruction in the schedule. This is basedon the same approximation that we used in our objective function in Section 2, namely, thetotal energy consumed is related to the number of instructions executed [16]. Admittedly, inthis simple model we focus on FUs only and ignore the power used by other components such9

as issue logic and caches, and we assume inactive functional units consume no energy due toclock gating. Thus, the total energy consumed in the dual speed pipeline architecture is:Edual = XifastEfast;i + Xislow Eslow;iAs dual speed pipelines are considered only for integer FUs, we assume the energy consumedby the I-unit andM-unit FUs are the same, i.e., Efast;I�unit = Efast;M�unit, and Eslow;I�unit =Eslow;M�unit.Next, we compute the energy consumed by a single iteration of the schedule of a loop l as:E1dual;` = Nfast;` �Efast +Nslow;` � Eslowwhere Nfast;` and Nslow;` represent the number of instructions scheduled on fast and slow FUsin a single iteration of loop l, thus Nslow;` +Nfast;` = N`. The above equation can be derivedto: E1dual;` = Nfast;` � Efast +Nslow;` � C � Efast (13)Compared to Equation 13, the energy consumed by a single iteration of loop l in the baselinearchitecture is E1base = N` � Efast (14)From this, we can approximate the energy consumed by a loop l, whose trip count is T`, forthe dual speed and baseline architectures as:Edual;` = E1dual;` � T` = (Nfast;` +Nslow;` � C) �Efast � T` (15)Ebase;` = N` �Efast � T` (16)Lastly, the energy consumed by all the software pipelineable loops in a benchmark for dual andbaseline architectures are: Edual = X̀ Edual;` (17)Ebase = X̀ Efast;` (18)Similarly the performances of the benchmark or the execution time spent in software pipeline-able loops are given by: Exec. Timedual = X̀T` � IIdual;` (19)Exec. Timebase = X̀T` � IIbase;` (20)where IIdual;` and IIbase;` are the initiation intervals for loop l in the dual speed and basearchitectures. 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Binding ratio of slow instructions

N
or

m
al

iz
ed

 e
ne

rg
y

analytical
Wattch simulation

Figure 6: Comparing Our Analytical Energy Model with Simulation Results3.3 Compare The Analytic Energy Model With Simulation ResultTo estimate the accuracy of our energy model, we enhanced the Wattch power simulator [2] withdual-speed pipelines. We use the annotation bits of SimpleScalar [4] instruction word to markwhether instructions should be issued to fast or slow FUs. We \mimicked" the compiler behaviorby manually adding annotation �elds to the assembly program and running the executableprogram on Wattch with clock-gating [2] enabled. We performed these steps on a matrixmultiply program and iterated several times to get programs where the number of instructionssent to slow FUs varied. We use the term binding ratio to refer to the ratio of number ofinstructions issued to the slow FUs to the total number of instructions. In this experiment, weconsidered instructions from all basic blocks, and simulated the energy consumed in executingthem from the Wattch simulator. We compare this with the estimated energy using Equation 17for the matrix multiply program in Figure 6. Comparison reveals that our analytical energymodel and the results obtained from Wattch simulation are very close. This shows that ouranalytical energy model for FUs closely track the activity-based dynamic power simulation [2, 7].3.4 Experimental MethodologyWe implemented our ILP formulation on the Delaware Power-Aware Computing Testbed (Del-PACT) platform [24]. The ILP formulation works with the Open64 compiler [23], which isan open-source compiler from SGI targeting Itanium processors. Open64 has a rich set ofoptimizations and we enabled them in our experiments by setting the highest optimization level.Our workload came from the SPEC2000 integer benchmark suite. Benchmarks were compiled byOpen64, executed on the \train" data sets to collect pro�ling information, then recompiled usingthis pro�ling information. DDGs were extracted and an integer linear programming problemwas formed for each DDG. These were then passed to CPLEX [11], a commercial integer linearprogramming solver, which gave us the schedule, the initiation interval of the loop (denoted by11

II`) and instruction partitioning (to fast and slow FUs) of each DDG.For each of the benchmarks considered, we obtained the trip counts of all software pipelin-eable loops for the train input set by pro�ling. Using Equations 17 and 18 we computed theenergy consumed by the software pipelineable loops in each benchmark. The execution timeincurred on the software pipelineable loops are given by Equations 19 and 20. Since our workfocuses only on software pipelining, we use the former as the energy measure for the benchmarkand the latter as performance.We report our results for only those benchmarks which were successfully compiled by Open64compiler and produced correct results. These benchmarks, the number of software pipelineableloops in them, and characteristics of the DDGs associated with these loops are summarizedin Table 1. In our experiment, each loop is given a �xed time limit for CPLEX to derive asolution, and within this time limit, 91% of the loops could be scheduled by CPLEX.Benchmark # of Loops # of nodes # of edges Minimum II(avg) (max) (avg) (max) (avg) (max)164.gzip 69 7.3 19 12.8 37 3 14175.vpr 93 15.4 75 47.6 621 12 95181.mcf 22 12.8 54 62.6 495 9 27186.crafty 86 11.4 64 33.5 833 5 92197.parser 116 7.4 29 16.1 69 5 18256.bzip2 63 9.4 32 21.0 108 6 100300.twolf 317 18.7 101 63.8 349 12 192Table 1: Statistics on DDGs Extracted from SPEC 2000 Benchmarks4 Experimental ResultsThe main observations from our experiments are summarized as follows:1. Making some of the functional units as slow FUs can signi�cantly reduce energy consump-tion for these benchmarks. Changing two fast functional units to slow ones can lower FUenergy requirements up to 31.1% with an average reduction of 25.2% compared to thebaseline con�guration.2. Despite the considerable energy saving, judicious use of slow functional units generallyleads to a surprisingly small performance degradation. Even when 2 out of the 4 func-tional units are slow units, the average performance degradation experienced is only 6.2%compared to that achieved by con�guration with all fast FUs.3. If performance is less critical, more energy savings can be achieved by an energy-awarecompiler. On a processor with 2 fast and 2 slow functional units, a maximum of 40.3%12

gzip vpr mcf crafty parser bzip2 twolf avg
0

10

20

30

40

50

60

Benchmarks

E
ne

rg
y

sa
vi

ng

C1
C2
C3

gzip vpr mcf crafty parser bzip2 twolf avg
0

10

20

30

40

50

60

Benchmarks

P
er

fo
rm

an
ce

 lo
ss

C1
C2
C3

Figure 7: Energy Saving and Performance Penalty of Di�erent Con�gurationsenergy saving on FUs can be achieved over the baseline model if a maximum of 30%increase on the individual II values for the di�erent loops is acceptable.4.1 Energy Gain and Performance Degradation by Slow Functional UnitsThe performance degradation and energy gain in introducing some slow FUs in the place of fastFUs is depicted in Figure 7. In this experiment, we considered fast and slow FUs for the I-unitFUs and M-unit FUs only. Together we refer to these as integer FUs. In all experiments, thereare 4 integer FUs, while the number of slow and fast FUs varies among the con�gurations. Weconsider the following four con�gurations:C0 2 fast I-unit and 2 fast M-unit FUs | this is the baseline architectureC1 1 fast I-unit, 1 slow I-unit, and 2 fast M-unit FUsC2 1 fast I-unit, 1 slow I-unit, 1 fast M-unit and 1 slow M-unit FUsC3 2 slow I-unit, 1 slow M-unit, and 1 fast M-unit FUsFigure 7 shows the energy gain and performance loss of con�gurations C1{C3 on all bench-marks, compared against the energy and performance of the baseline con�guration C0. Thelast set of bars indicate the average energy reduction and performance degradation taken acrossall benchmarks. For con�guration C1, we observe an energy gain of 12% or more in all theapplications. With con�gurations C2, the energy savings increase to 18% and more. Lastly,for con�guration C3, the energy gain is higher, ranging from 20% to 41%. It is importantto note that the above energy savings are obtained only by trading o� a little or no perfor-mance in many cases. For con�guration C1, except for benchmarks gzip and crafty whichshow relatively large performance degradation, 19.6% and 10% respectively, all other bench-marks incur very little performance degradation, often less than 1%. With con�gurations C2,the performance degrades, by 5% { 20%, in 4 of the benchmarks, while for other three (mcf,13

parser and twolf) the performance degradation is negligible. Lastly, for con�guration C3,both the performance degradation and the energy gain are higher. It should be noted here thateven with con�gurations C2 and C3 (with, respectively, 2 and 3 slow FUs), the degradation inperformance is within 15% for all the benchmarks, except gzip.It is important to note here that our method obtains rate-optimal schedules where theoptimality is for a given con�guration (C1, C2, or C3); i.e., there can be no other schedule thathas a lower initiation interval for the given con�guration. Among the rate-optimal schedulesfor a given con�guration, our approach obtains one that consumes the minimum energy (ascalculated by our energy model). In this sense, the schedules obtained by our approach areoptimal in terms of both performance and energy for the given con�guration.Lastly, we observe that gzip su�ers relatively large performance loss when slow functionalunits are introduced. This observation agrees with that of related work by Seng et al [14].Interestingly, two benchmarks, namely mcf and parser, incur no performance degradationeven when 3 of the 4 integer units act as slow FUs. To summarize, for the benchmarks westudied, con�gurations C1, C2 and C3 consume, respectively, 17.5%, 25.3%, and 30.2% lessenergy, on the average, compared to the baseline architecture.4.2 Trading Performance for EnergyNext we address the question that whether further energy savings can be obtained in dualspeed architectures if the compiler is allowed to trade performance. To answer this question,we conduct a set of experiments on con�guration C2 (with 2 fast and 2 slow FUs). Here, foreach software pipelineable loop, we set the optimal II obtained for con�guration C2 as the baseII value. We allow our compiler to choose an II value which is within a performance degradationthreshold (PDT) from the base II value, and try to obtain energy-e�cient schedules. We chosePDTs as 10%, 20%, 30% for each application.

gzip vpr mcf crafty parser bzip2 twolf avg
0

5

10

15

20

25

30

35

40

45

50

Benchmarks

E
ne

rg
y

sa
vi

ng
 w

ith
 p

er
fo

rm
an

ce
 s

la
ck

rate−optimal
PDT = 10%
PDT = 20%
PDT = 30%

Figure 8: Energy saving for Three Di�erent Slowdown Factors14

In Figure 8 we plot the energy savings compared to the baseline con�guration (C0) forvarious PDT values. The bar corresponding to rate-optimal refers to a PDT value of 0%,which necessarily means that the compiler does not trade performance for power, and tries toobtain the optimal schedule for con�guration C2. As shown in the �gure, energy gains in threebenchmarks, namely vpr, mcf, and twolf, increase with increased PDT value. However, inthe other benchmarks, the energy savings appear only when the PDT is increased from 10%to 20%. The insigni�cant bene�t in performance when the PDT is increased from 0% to 10%can be explained by the fact that these benchmarks have a lower average Minimum II(MII)than the three benchmarks, as shown in Table 1. For those DDGs with small minII, 10% PDTleaves no space for them to increase its II. Hence their schedules are not changed for a largefraction of loops compared with the rate-optimal schedules obtained under con�guration C2.The actual performance degradation for these benchmarks is less than 1% when 10% PDT isapplied. When PDT of 20% is given, energy gain is more apparent for all benchmarks. Theaverage energy saving for PDTs of 20% and 30% is 31.8% and 34% respectively.Lastly, we note that a PDT value refers to an increase in the individual II. Hence a PDTof, say 20%, does not necessarily mean a 20% degradation on the execution time. The averageperformance degradation for the benchmarks is only 15.4% when the PDT is 20%.5 Related WorkExploiting instruction schedule slack to reduce power consumption with minimal performancedegradation is extensively studied in literature. A limit study on available schedule slack wasperformed by Casmira et al [5]. Their result shows that in the course of program execution,for more than 75% of the execution cycles there exists at least one instruction that has slack.However they didn't mention any work on techniques to exploit such instruction schedulingslack for energy saving.Pyreddy et al [17] extend this idea by partitioning functional units to fast ones and slowones, operating the slow ones at half the rate of fast ones, and using run-time pro�ling to guideinstruction issue to these two sets of functional units. It is their assumption that pro�lingneeds to be done in a separate pass other than the actual run. In contrast, Seng et al proposedto analyze instruction criticality dynamically and issue critical instructions to fast functionalunits while non-critical instructions to slow ones [14]. The mechanism they adopt to predictinstruction criticality is the critical path predictor bu�er [6]. Although interesting, the bu�erconsumes additional power which may o�set the power gain in functional units.The work by Zhang et al [26] uses compilation techniques to determine the fast or slowfunctional units where each instruction should be issued to. They designed a energy-orientedheuristic algorithm to re-order a schedule made by some performance-oriented scheduling algo-rithm to achieve energy saving with minimal performance degradation. Our work complementstheirs in the following aspects. First, our study focuses on loop software pipelining while theirstudy is on global scheduling with acyclic dependence graphs. Second, we use an integer linear15

programming based approach to evaluate the limits of performance energy tradeo�s an \optimalscheduler" can do. Our method can be used to evaluate heuristic, more practical, algorithmsand potentials of their improvements [22].A relevant work by Yun et al [25] targets power-aware software pipelining. They proposeda heuristic algorithm which extended iterative modulo scheduling [20], tries to minimize steppower for a software pipelined loop on a cycle-by-cycle basis. Their objectives are to derivea schedule under which \power consumption are better balanced" under a VLIW architecturewhere the speed of function units are �xed.6 ConclusionsThis paper reports a quantitative study of power-performance tradeo�s in the design space ofenergy e�cient architectures. It studies the interplay between low-power architecture featuresand compiler optimization techniques, speci�cally software pipelining. It explores both thearchitecture and the compiler side of design space. An Itanium-like architecture model involvingdual speed pipelines (slow and fast FUs) is used in this study.This design space exploration is performed under the Delaware Power-Aware ComputingTestbed (Del-PACT) platform on SPEC2000 integer benchmark programs. We have proposedan elegant integer linear programming formulation for rate-optimal software pipelining on ar-chitectures involving dual-speed pipelines. Using the integer linear programming approach weexplore the design space for Itanium-like architectures, assuming that some of the FUs are slowFUs.The main results and observations of this paper are:1. Energy gain by introducing a few slow FUs in the place of fast FUs is considerable. Theenergy consumed by all FUs is reduced by up to 31.1% (25.2% on average) when 2 out of4 FUs are set as slow.2. Performance degradation caused by slowing down some of the FUs is small in a largemajority of the cases. The average performance degradation for a moderate setting, i.e.,2 out of 4 FUs are set as slow, is only 6.2%.3. Further energy gains can be achieved by the compiler if performance slack is available.When the performance degradation threshold is set at 30%, energy savings rise to 40.3%in the best cases (34% on average).Further research directions include making comparison with heuristic approaches for energy-optimal scheduling approaches, reducing leakage power and incorporating run-time informationin software pipelining algorithm to achieve even larger energy saving.16

AcknowledgmentThe authors would like to express especial thanks to George Cai from Intel for his supporton building our power-aware computing testbed, to Roy Ju from Intel who carefully reviewedthis paper and gave helpful suggestions. Our thanks also goes to Chenyong Wu from OpenResearch Compiler(ORC) team of Chinese Academy of Sciences and Peng Zhao from Univer-sity of Alberta, who has helped us a lot in compiling and pro�ling SPEC 2000 benchmarks.Besides, support from DARPA, DOE and NSF is crucially important in building our compilerinfrastructure.References[1] Erik R. Altman, R. Govindarajan, and Guang R. Gao. Scheduling and mapping: Softwarepipelining in the presence of structural hazards. In Proc. of the ACM SIGPLAN '95 Conf.on Programming Language Design and Implementation, pages 139{150, La Jolla, Calif.,Jun. 1995.[2] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework forarchitectural-level power analysis and optimizations. In Proc. of the 27th Ann. Intl. Symp.on Computer Architecture, pages 83{94, Vancouver, Brit. Col., Jun. 2000.[3] D.M. Brooks, P. Bose, S.E. Schuster, H.Jacobson, P .K. Kudva, A. Buyuktosunoglu, J-D.Wellman, V. Zyuban, M. Gupta, and P.W. Cook. Power-aware microarchtiecture: Designand modelling challenges for next-generation microprocessors. IEEE Micro, 20(6), Nov2000.[4] Doug Burger and Todd Austin. The SimpleScalar tool set, version 2.0. Technical Report1342, Computer Sciences Department, Univ of Wisconsin, 1997.[5] Jason Casmira and Dirk Grunwald. Dynamic instruction scheduling slack. In Proceedingsof the 2000 KoolChips workshop, Monterey, California, Dec 10th 2000.[6] E.Tune, D.Liang, D.Tullsen, and B.Calder. Dynamic prediction of critical path instruc-tions. In Proceedings of the 7th International Symposium on High Performance ComputerArchitecture, Feb 2001.[7] G.Cai and C.H.Lim. Architectural level power/performance optimization and dynamicpower estimation. Cool Chips Tutorial, in conjunction with 32nd Annual InternationalSymposium on Microarchitecture. Haifa, Israel, Nov 1999.[8] R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirementsunder resource-constrained rate-optimal software pipelining. In Proc. of the 27th Ann. Intl.Symp. on Microarchitecture, pages 85{94, San Jose, Calif., Nov.{Dec. 1994.17

[9] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-constrained rate-optimal software pipelining. IEEE Trans. on Parallel and Distrib. Sys-tems, 7(11):1133{1149, Nov. 1996.[10] C-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic frequency and voltagescheduling. InWorkshop on Power-Aware Computer Systems (PACS'00), Cambridge, MA,Nov 2000.[11] ILOG. CPLEX mixed integer solver. http://www.cplex.com.[12] Intel. Intel IA-64 Architecture Software Developer's Manual, Aug 2000.[13] Intel. Itanium Processor Microarchitecture Reference for Software Optimization, Aug 2000.[14] J.Seng, E.Tune, and D.Tullsen. Reducing power with dynamic critical path information.In Proceedings of the 34th Annual International Symposium on Micro-architecture, Austin,TX, Dec 2001.[15] Monica Lam. Software pipelining: An e�ective scheduling technique for VLIWmachines. InProc. of the SIGPLAN '88 Conf. on Programming Language Design and Implementation,pages 318{328, Atlanta, Geor., Jun. 1988.[16] M.T.-C.Lee, V.Tiwari, S.Malik, and M.Fujita. Power analysis and minimization techniquesfor embedded DSP software. IEEE Trans on Very Large Scale Integration(VLSI) Systems,5(1), Mar 1997.[17] Ramu Pyreddy and Gary Tyson. Evaluating design tradeo�s in dual speed pipelines. InWorkshop on Complexity-E�ective Design, Goteborg, Sweden, Jun 30 2001.[18] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview andperspective. J. of Supercomputing, 7:9{50, May 1993.[19] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulablehorizontal architecture for high performance scienti�c computing. In Proc. of the 14thAnn. Microprogramming Work., pages 183{198, Chatham, Mass., Oct. 1981.[20] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipeliningloops. In Proc. of the 27th Ann. Intl. Symp. on Microarchitecture, pages 63{74, San Jose,Calif., Nov.{Dec. 1994.[21] Raymond Reiter. Scheduling parallel computations. J. of the ACM, 15(4):590{599, Oct.1968.[22] John Ruttenberg, G. R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipeliningshowdown: Optimal vs. heuristic methods in a production compiler. In Proc. of the ACMSIGPLAN '96 Conf. on Programming Language Design and Implementation, pages 1{11,Philadelphia, May 1996. 18

[23] SGI. Open64 open source compiler. http://open64.sourceforge.net.[24] Hongbo Yang, Guang R. Gao, Andres Marquez, George Cai, and Ziang Hu. Power andenergy impact by loop transformations. InWorkshop on Compilers and Operating Systemsfor Low Power 2000 (COLP'01), Spain, 2001.[25] Han-Saem Yun and Jihong Kim. Power-aware modulo scheduling for high-performancevliw processors. In Proceedings of the International Symposium on Low Power Electronicsand Design 2001, Aug 2001.[26] W. Zhang, N.Vijaykrishnan, M.Kandemir, M.Irwin, D.Duarte, and Y. Tsai. ExploitingVLIW schedule slacks for dynamic and leakage energy reduction. In Proceedings of the34th Annual International Symposium on Micro-architecture, Austin, TX, Dec 2001.

19

