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Abstract

Percolation has recently been proposed as a key component of an advanced program exe-

cution model for future generation high-end machines featuring adaptive data/code transfor-

mation and movement for effective latency tolerance. Percolation is related to conventional

prefetch technique, but is more aggressive and smarter. A program unit (e.g. a procedure

instance) is not ready to be scheduled for execution until the data it needs is in the right

place (close to the code in the memory hierarchy) and in the right form (e.g. proper layout,

etc.).

Supporting percolation is a major effort in the architecture design and the compiler/runtime

software support. An early evaluation of the performance effect of percolation is very im-

portant in the design space exploration of future generations of supercomputers. However,

performance evaluation of percolation using a traditional approach for computer architecture

(e.g. execution-driven or trace-driven simulation) is both time consuming and impractical.

Further, in early-stage architecture design/performance evaluation which deals with incom-

plete design details, or a program execution model with only a (sketchy) conceptual design,

or an architecture without an (optimizing) compiler, make simulation-based approaches

unsuitable.

In this paper, we develop an executable analytical performance model of a high per-

formance multithreaded architecture that supports percolation. A novel feature of our

approach is that it models the interaction between the software (program) and hardware

(architecture) components. We solve the analytical model using a queuing simulation tool

enriched with synchronization. The proposed approach is effective and facilitates obtaining

performance trends quickly. Our results indicate that percolation brings in significant per-

formance gains (by a factor of 2.7 to 11) when memory latency ranges from local memory

access time to remote memory access time (in a multiprocessor system). Further, our re-

sults reveal that percolation and multithreading can complement each other and can work

together to tolerate memory latency, especially in a multiprocessor system.
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1 Introduction

This paper proposes a novel executable analytical performance model for early-stage perfor-

mance evaluation of high performance multithreaded architectures [9] that support the fine-

grain multithreaded program execution model with percolation [10]. Percolation is a smart and

aggressive way to move and reorganize data/code to a proper level/space in the memory hier-

archy before a program unit (e.g. a procedure, etc.) using these data/code can be scheduled

for execution. Percolation facilitates the hiding of memory latency. Although the concept of

percolation is somewhat related to prefetching, it is very different from prefetching. Further,

percolation is orthogonal to and complements multithreading.

While the traditional simulation-based (trace-driven or execution-driven) performance eval-

uation approach is quite useful in obtaining performance predictions fairly accurately, it typ-

ically evaluates an architecture using a set of statically chosen application program or traces,

and is not suitable to the kind of early-stage performance evaluation – the focus of this paper.

First, such a simulation-based approach limits the performance evaluation to a fixed operating

range since it deals with the details of a specific design and is not capable of exploring a large

design space due to the huge cost of such simulations. Second, an implicit assumption is that

an Instruction Set Architecture (ISA) design is complete and suitable system software design is

available to realize the simulation. But, this is impractical in early stage performance evalua-

tions of high-end machines, since we may face an architecture with incomplete design details, or

a program execution model with only a (sketchy) conceptual design, or an architecture without

an (optimizing) compiler.

The executable analytical performance evaluation model proposed in this paper, on the

other hand, can evaluate architectures over a wide operating range and is helpful in identi-

fying when certain architectural features are advantages and where they could be potential

bottlenecks. Analytical performance evaluation approach also has the advantage that they are

relatively less time consuming than the simulation approach. Although the analytical approach

is less accurate than the simulation approach, analytical performance evaluation do provide a

reasonable performance prediction under a wide operating range.

Although this paper is focused on the evaluation of a specific architecture model (e.g. per-

colation), the methodology proposed should have a much wider impact. It helps to evaluate

future generation high-end machines, with many alternative architectures, program execution

paradigms, and technologies. Further, it can help evaluate a larger design space consisting of

architectures where the design is only at a conceptual level (i.e., not concrete) for one or more

of the subsystems. The proposed approach can model and provide early assessments and feed-

backs to the architects (both hardware and software) as to where the performance potentials

or bottlenecks lie.

In this paper, we propose the use of an analytical model based on queuing networks [14, 13]

for performance predictions. In particular, we develop analytical models for four different ar-

chitectures, namely a single threaded single processor system, a multithreaded single processor

system, a single threaded multiprocessor system and a multithreaded multiprocessor architec-
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ture, supporting percolation. A novel feature of this work is that it models the architecture

(hardware) and the software (program execution) components and the interaction between

them. To accomplish this, we model program execution through a program graph that models

coarse-grain parallelism in the application. The program graph is executed on the architecture

model. In our study, we model the effect of long-latency memory operations and their impact

on the performance. We study how percolating data from lower levels of memory hierarchy,

such as remote memory, to high speed buffers or caches can improve the performance.

We solve the analytical model using a queuing network tool enriched with synchroniza-

tion [8]. The executable queuing network model executes the (abstract) program model on

the architecture to obtain performance metrics. This approach, referred to as the executable

approach, simulates the execution of the program model on the architecture model. A major

contribution of this paper is this integration of simulation approach and analytical models for

performance predictions. The proposed approach is very effective in obtaining performance

predictions for large complex systems fairly quickly. Further, it can obtain the performance

predictions for a wide operating range. Such an approach is especially useful in design space

exploration of high-end architectures where it is essential to quickly assess important architec-

ture features.

Other major contributions of the paper are its performance predictions:

• Our results indicate that percolation brings in significant performance gains (by a factor of

2.7 to 11) in data-intensive and irregular applications, when memory latency ranges from

local memory access time to remote memory access time (in a multiprocessor system).

• In large multiprocessor systems, where latency to remove memory is large, percolating

even 50% of the required data can improve the execution time by upto 25%.

• Our results reveal that percolation and multithreading complement each other and work

together to tolerate memory latency.

The rest of this paper is organized as follows. The following presents the necessary back-

ground on percolation. In Section 3, we describe the dynamic program model used in our

study. The architecture considered is also described in this section. In Section 4, we present

the analytical models for four different architectures. Section 5 is dedicated to the experimental

results obtained with the performance models. A brief discussion on related work is presented

in Section 6. In Section 7, we present concluding remarks and directions for future work.

2 Percolation

The concept of percolation was introduced by Gao et al., in [10] in the context of fine-grain mul-

tithreaded architecture. Percolation combines multithreading with dynamic and smart prefetch-

ing of context under the integrated control by programmer, compiler, runtime system and other

related architecture layers. It is an aggressive and intelligent prefetching-like technique and is

2



useful in multithreaded as well as single-threaded program execution. In a mulithreaded archi-

tecture, percolation enables the movement of the thread context, including the activation frame,

along with program instructions and control states, to higher level in the memory hierarchy.

Percolation has two major objectives: reducing memory access latency by a smart distribution

and programmable prefetching of data and providing a balanced distribution of data and pro-

gram instructions by partitioning the application program into self-contained fragments. The

movement (of context) is transparent and starts even before the execution of the thread (or the

function containing the thread) corresponding to the context. Percolation can be inward, i.e.,

data moves towards where the procedure is to be executed, or outward, i.e., procedures move

towards where data is available. In our study, we have only considered inward percolation.

As percolation moves data accessed by a thread to a higher level of memory hierarchy,

it is likely to reduce the long memory latency which would other be experienced. In a non-

threaded execution model, during this long-latency, the processor idles, waiting for the data

to arrive from lower levels in memory hierarchy. In a threaded execution, if the long-latency

operation is split across two threads (as in a split-phase read [12, 7, 9]), then the processor

switches context during the long latency and executes other useful work. The data to be

percolated is identified either by the compiler or by the programmer. A separate coprocessor,

called percolation coprocessor, enables the movement of the context to higher level in memory

hierarchy. Furthermore, percolation may involve data gathering/scattering as well as data

reorganization within the memory hierachy.

Although percolation bears similarity to prefetching, percolation is different from software

prefetching [6]. In percolation both data and the context of the threads are percolated, whereas

in data prefetching only the data is prefetched. Further, percolation starts even before the

corresponding thread, or the functional containing the thread, starts execution. Percolation

can be handled by a separate percolation coprocessor. Lastly, percolation is orthogonal to

multithreading and they complement each other. In this paper, in fact, we study to what

extent they complement each other.

3 Architecture and Program Model

In this section, first, we present the program model used to model the software component.

Next, we describe an abstract architecture that supports percolation in Section 3.2. In Section 4,

we develop the analytical model for different architectures that we study in this paper.

3.1 Program Model

We model a program as a set of procedure instances p, characterized by a name and a list of

dependencies. We refer to this as a program graph which consists of nodes, representing dy-

namic instances of procedures, and directed arcs connecting the nodes indicating dependencies

between procedures. The program graph is acyclic, i.e., a procedure instance can only depend
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Figure 1: Example of dependencies between procedures in a program

on the previous instances of the same or other procedures. We assume that the number of

dependencies, nbparam(p), is an integer in the range 0 to 15 and follows certain distribution.

In our experiments, we assume that the distribution followed by nbparam(p) is as shown on

Figure 2. The average value of nbparam(p) for this distribution is 5.789.

Figure 2: Distribution followed by

nbparam(p) and nbresults(p)

Figure 3: Distribution followed by Size(p)

for each instance of procedure

Each procedure instance is itself divided into several sequential parts. The number of such

sequential parts is refereed to as Size(p) in our model. Size(p) is an integer greater than or

equal to 1. In our experiments, we assume that the distribution followed by Size(p) is as shown

in Figure 3. The average value for Size(p) is 6.069. Moreover, we assume that all these different

parts are identical. The number of writes in lower levels of memory hierarchy is represented by

nbresults(p). We have assumed that the numbers of parameters and memory writes follow the
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same distribution as the number of dependencies (Figure 2).

We generated a random program graph using the above parameters. To generate this graph,

we assumed that each procedure is completed in one cycle and requires no data access to be

executed. The parallelism profile of a random graph is depicted in Figure 4. The average

coarse-grain parallelism in this program is 8.57. By varying the distributions for nbparam,

nbresults, Size, and the number of procedures, we can obtain program graphs modeling a wide

range of application characteristics. This program model is an input of the architecture model,

which will be described in the Section 4.

Figure 4: Coarse-grain parallelism of the program with 300 procedures

3.2 Architectures Considered in this Study

3.2.1 A Single-Threaded Single Processor Architecture

The architecture consists of four majors components as depicted on Figure 5, namely the

synchronization processor, the percolation co-processor, the processor and the memory. We

describe each of these components in detail below.

The Synchronization Processor (SP )

This component of the system is responsible for ensuring that all dependences of a procedure

instance are satisfied. It takes the program model as an input. It enables the procedure

instances, whose predecessors have finished their execution. Therefore, each time a procedure

instance completes its execution (in the execution processor), the SP marks the dependencies,

represented by outing arcs from this instance of procedure in the program graph, as enabled.

An instance of procedure is said to be enabled, when all its input arcs are enabled. Thus,

upon completion of each instance of procedure, the SP checks when any instance of procedure,

not yet executed, can be enabled. An enabled instance of procedure is sent to the Percolation

Co-Processor (PCP).
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Figure 5: Architecture considered in this study

The Percolation Co-Processor (PCP )

The role of the PCP is to send requests to the memory to percolate data to higher levels

in memory hierarchy. When all the percolation requests for a given instance of procedure are

satisfied by the lower level memory (henceforth referred as Memory), the procedure is said to

be ready for execution. A ready instance of procedure is sent to the processor for execution.

Note that, in our model, we assume either a part or all of the data that is needed by an instance

of procedure can be percolated.

The Processor (PROC)

The role of this component is to execute the ready procedures instances. The PROC

launches memory requests for those data that are not already available in the higher levels of

memory hierarchy. As mentioned earlier, not all data can be percolated. Hence the PROC

launches requests for these data. When all the required data arrives in the high speed buffer or

cache, the PROC proceeds to execute the piece of code contained in the procedure instance.

After this, it initiates nbresults(p) writes to memory. However, the processor does not wait for

the completion of the memory writes. Recall that each procedure is divided into Size(p) parts.

Hence the PROC repeats the process of launching requests, execution of code, and result writes

Size(p) times. When all the sequential parts complete, we say that the procedure completes

its execution and informs the SP .

The Memory

Memory is the lowest level in the memory hierarchy. We consider in this model a memory

with nbPorts ports. The Memory subsystem receives different types of requests: percolation

requests, requests for data on cache misses (for data that is not percolated) and memory writes.

Data requests concerning cache misses are treated with a high priority, although there is no

preemption.
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3.2.2 Multithreaded Single Processor Architecture

Multithreading has been proposed as a promising processor execution model to tolerate memory

access latencies in parallel machines and as a mechanism to overlap the computation with inter-

process communication [7, 9, 12, 17]. But most of the time, it cannot hide all the latency.

In this architecture, each sequential part of a procedure instance is treated as a pair

(Start,End) of threads. The first component of this pair, Start, initiates memory requests

for data that is not in the cache (data that cannot be percolated). The PROC then switches

context to another thread. When the memory requests are satisfied, the second component of

the thread, End, becomes ready and can be executed by the PROC. By switching context to

another thread, the PROC does not idle when the memory request is being satisfied. Combin-

ing multithreading and percolation is a good way to achieve higher performance and latency

tolerance.

3.2.3 A Single-Threaded Multiprocessor Architecture

This architecture is the same as the non-threaded single processor described in Section 3.2.1,

except the fact that we consider a multiprocessor and two levels of memory, a local memory

and a remote memory. In our initial study, we have considered 4 processors in the system.

3.2.4 A Multithreaded Multiprocessor Architecture

This architecture is the combination of the previous ones, i.e., the single-threaded multiproces-

sor architecture described in Section 3.2.3 and the multithreaded single processor architecture

described in Section 3.2.2.

4 Analytical Performance Model

In this section, we develop the analytical models for the different architectures. We develop

a queuing network models for the different architectures in this section. In a queuing model,

the main components are the queues, the servers and the customers visiting these servers for a

service. Different types of distributions, e.g., exponential, deterministic, and hyper-exponential,

are possible for the service time of a server. The exponential service time distribution is the

most commonly used one, due to its memoryless property. The service disciplines followed by

a server could be FIFO, LIFO, or priority-based. However, the discipline often followed by a

server is FIFO, i.e. the first customer who arrives in the queue is served first. The number of

customers at each server represents the state of a queuing network. An analysis of the state

space of the queuing network yields the performance measures like the response time of the

server [14, 13].

Obtaining closed form solution for complex queuing networks is difficult. This is more so

when the underlying queuing model needs to support synchronization (of different customers)
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at a queue. In our model, we need to ensure that a procedure instance p is enabled when all

its predecessors have completed their execution. Similarly, it is ready for execution when all

the percolation requests launched by a procedure instance has been satisfied. These activities

require synchronization. To model them appropriately, we use a queuing network tool which

can support synchronization [8]. Since (analytically) solving a queuing network model with

synchronization is a harder problem [20], we resort to simulation of the queuing network to

obtain the required performance metrics.

4.1 Modeling Data Percolation

We begin developing our analytical model, starting with percolation. A system contains certain

amount of data located in several levels of memory. One of them is the cache which can be

accessed in 1 or 2 processor cycles. Let pcachebp denote the percentage of data available in the

cache before percolation and be useful for the computation of a procedure instance.

Figure 6: Modeling Data Percolation

Without percolation, pcachebp represents the percentage of cache hits. Therefore, 1 −

pcachebp is the percentage of data not in the cache before percolation but required for com-

putation. This required amount of data can be split in two parts as shown in Figure 6. The

first part corresponds to the data that can be percolated and the second relates to data that

cannot be percolated. Some data cannot be percolated because their addresses may be com-

puted during the execution. We use pperco to refer to the percentage of data that can be

percolated. Thus, the percentage of remaining useful data which is not in the cache and cannot

be percolated is (1 − pcachebp) · (1 − pperco).

The list of symbols used in this paper is shown in Table 1.

4.2 Analytical Model for Single-Threaded Single Processor Architecture

In this section, we describe each part of the analytical model for a single-threaded single pro-

cessor architecture.

The Synchronization Processor (SP )

We model the Synchronization Processor (SP ) as a single server service center. At the

beginning of program execution, there is one customer in the queue. When this customer

8



Table 1: Main parameters and acronyms
SP synchronization processor

PCP percolation co-processor

MEM memory

MEML local memory

MEMR remote memory

PROC processor

Size(p) number of parts of a given procedure (number of threads in a multithread model)

nbparam(p) number of parameters for a part of a given procedure

nbresults(p) number of memory writes for a part of a given procedure

nbPorts number of ports of the memory

nbProc number of processors

pperco percentage of percolated data

pcachebp percentage of data in the cache before percolation

pload percentage of load instructions

plocal percentage of data in the local memory

premote percentage of data in the remote memory

syncT synchronization Time - Service time of SP

PercoPT percolation preprocessing time - Service time of PCP

MemLat latency of the memory

PercoLat latency of percolation

C context switching time

W(p) execution time of a given part of a procedure as soon as all the data are in the cache

REQ memory requests

REQP memory requests for percolation

WB memory writes

is serviced, it puts all the source nodes — nodes that do not have incoming arcs — of the

program in input queue of the Percolation Co-Processor (PCP). Every time a procedure instance

completes execution in the execution PROC, a customer is put in the input queue of the SP ;

when this customer is serviced by the SP , it checks whether any other procedure instances

that are enabled and puts them in the queue of the PCP . The SP uses the program graph

information to identify procedure instances that are enabled.

The Percolation Co-Processor (PCP )

When enabled procedure instances arrive from SP , they are serviced by the PCP one by

one using a FIFO service policy. We assume that there are an infinite number of PCP s in our

system. Servicing a procedure instance results in generating a number of percolation requests

which are sent to the Memory subsystem. The number of percolation requests generated equals

the number of data that are percolated. This depends on the number of input parameters to the

procedure instance (nbparam(p)), the data that is not already in the cache (1− pcachebp), and

the extent of data that can be percolated (pperco). Thus the number of percolation requests

sent to memory equals to nbparam(p) · (1 − pcachebp) · pperco. The percolation requests to

Memory are of class REQP . The procedure instances wait in the PCP server until all the

9



Figure 7: Analytical model for a single-threaded single processor architecture

percolation requests of the procedure instance are satisfied by Memory. This synchronization is

represented in Figure 7 using a dotted arrow from the output of MEM to PCP . When all the

percolation requests are satisfied by Memory, the procedure instance is sent to the processor

(PROC) for execution.

We assume that the percolation preprocessing time for each procedure instance is an expo-

nential distribution with mean PercoPT .

The Processor (PROC)

This component executes the ready procedure instances one by one. As mentioned earlier, in

our program model, a procedure is a sequence of Size(p) identical parts where each part consists

of a set of data accesses (load instructions) followed by a set of other (non-load) instructions. For

10



the set of load instructions, the corresponding data may already be in the cache (the pcachebp

part) or has been brought to the cache by percolation (equals nbparam(p) · (1 − pcachebp) ·

pperco). However for the remaining data, nbparam(p) · (1 − pcachebp) · (1 − percop), which

represents memory requests for the cache misses after percolation for a given sequential part of

the procedure instance, memory requests are issued by the PROC. These requests are of type

REQ and are sent to the Memory subsystem for service. Further, all the requests are sent at

the same time without waiting that the previous data request is completed. The processor then

waits until all these requests are satisfied by the Memory. This synchronization step is depicted

in the Figure 7 by a dotted arrow between the output of the memory and the processor.

When all the data requests are satisfied by the MEM subsystem, the processor executes the

set of non-load instructions in the sequential part. We assume that the number of instructions

in a procedure instance follows exponential distribution with a mean α · nbparam(p), for some

constant α (In our experiment, we assume α = 100). The probability of a load instruction is

pload, and the cost of executing a load instruction is 1 cycle if there is cache hit. The execution

time for other instructions is 2 cycles. Therefore, the execution time for a procedure instance

is:

W (p) = α · nbparam(p) · (1 · pload + 2 · (1 − pload))

Since a procedure instance p contains Size(p) sequential parts, we assume that executing a part

of an instance of procedure takes

W (p) =
α · nbparam(p) · (1 · pload + 2 · (1 − pload))

Size(p)

After the execution of this part of the procedure, nbresults(p) requests for the memory writes

are sent to the memory. These requests to memory are of type WB. Once again, all the write

requests are sent to the memory at the same time. The PROC does not wait for the completion

of these memory writes.

When a sequential part of a procedure instance is completed, the processor PROC executes,

the remaining sequential parts in the same manner. The procedure instance completes when all

the sequential parts have finished their execution. The PROC then sends a completion signal

to the SP which would help to identify other enabled procedure instances.

The Memory

We consider a memory subsystem with nbPorts ports. Further, the memory system services

requests using a priority order. However, there is no preemption. There are three classes of

customers:

REQ: Requests of this class are launched by the processor when it requires to access a data

item that has not been percolated to the higher levels of memory hierarchy. This class of

requests has the highest priority in the memory system and has a mean service time of

MemLat, the latency of the memory.

REQP : This class consists of percolation requests. It has a lower priority in the memory,

compared to REQ requests. The service time for a REQP request is exponentially
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distributed and for a request belonging to a procedure instance p has a mean PercoLat ·

Size(p).

WB: Requests of this class are also launched by the PROC unit and corresponds to result

writes in the memory. This class has a lower priority than REQP requests. The service

time for a request belonging to this class has an exponential distribution with mean

MemLat.

The complete analytical model for the simple single-threaded single processor architecture

is shown in Figure 7.

4.3 Model for Multithreaded Single Processor Architecture

The architecture for multithreaded single processor is similar to the single threaded single

processor architecture, the model for the former (refer to Figure 8) is also similar to that of the

later. The main difference lies in the service of the sequential parts of a procedure instance.

As mentioned earlier, each sequential part is considered as pair of (Start, End) threads. The

Start thread initiates memory request for any data that has not been percolated. Instead of

waiting in the PROC, the thread releases the processor resource and waits in a Wait Queue.

When the memory requests are satisfied by the Memory system, the corresponding End thread

is put in the ReadyQueue. The threads in the Ready Queue are executed one by one. Upon

completion of the End thread, the processor launches result write requests to the memory. The

service time for a sequential part of the thread remains the same as before and all of this time

is attributed to the End thread. In addition, we assume that there is a context switch cost C,

which is incurred before any thread starts execution. For the Start thread, we assume that the

service time is equal to the context switch cost. By relinquishing the processor resource while

waiting for the memory requests to be satisfied, the multithreaded architecture achieves better

utilization of the processor and hence lower execution time.

4.4 Model for a Single-Threaded Multiprocessor Architecture

One of the main goals of percolation is to hide the memory latency. Since large systems with

several levels of memory hierarchy and and/or multiprocessors have larger memory latency and

more sensitive to such latency, knowing the impact of percolation on these systems is important.

Hence we consider an architecture with two levels of memory, a local memory MEML and a

remote memory MEMR, as illustrated on Figure 9. The local and remote memory systems

have the same number of ports nbPorts. Further the priority among the customers is also

the same as that in a single processor system. The service time of the remote memory is 10

times that of the local memory. Thus, for a request launched by the processor (REQ or WB

classes), the service time in the local memory is MemLat and that in the remote memory is

10 · MemLat. For the percolation requests, the mean service times in the local memory and

remote memory are PercoLat and 10 ·PercoLat respectively. As before, these are mean values
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Figure 8: Analytical model for a multithreaded single processor architecture

and the service times are exponentially distributed. Further, we assume that plocal part of the

requests are to local memory and premote = 1 − plocal part to remote memory. Lastly, the

processor has exactly the same behavior as in the single-threaded single processor model, but

it has nbProc servers instead of 1.

4.5 Model for Multithreaded Multiprocessor Architecture

This model is a combination of the single-threaded multiprocessor model and the multithreaded

single processor model, and is illustrated in Figure 10.
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Figure 9: Analytical model for a single-threaded multiprocessor architecture

5 Experimental Results

In this section, first, we describe the experimental framework. Subsequently, in Section 5.2 we

present a summary of our main results. Section 5.3 deals with detailed performance results for

the various models.
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Figure 10: Analytical model for a multithreaded multiprocessor architecture

5.1 Experimental Framework

To solve our queuing network models we used a simulation tool called QNAP that simulates the

queuing network [8]. This tool supports synchronization in queuing networks as it is required

in our model.

The analytical model is specified by a number of input parameters. The value for some

of these parameters, such as MemLat, PercoPT , and nbPorts, are kept fixed throughout our

simulation. Table 2 summarizes those parameters whose values are kept constants in all our

simulation. We vary a few parameters, such pperco, pcachebp, and PercoLat to study the

impact of percolation under a wide operating range. In our simulation, we use a single program
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graph, consisting of 300 dynamic procedure instances, as the input program to the different

architectures. To ensure that our performance parameters are obtained under steady state

conditions, we ran a few experiments using a larger number of procedure instances (1500), and

the variations were found to be very small.

The program graph structure, such as the dependences between the procedure instances,

the available coarse-grain parallelism profile, and the number of sequential parts in a procedure,

remain the same across different simulations in order to make fair comparison across different

simulations run with different architecture parameters. The mean number of instructions per

sequential parts and the mean number of instruction per procedure instance are constant across

different simulations but their individual values are obtained from an exponential distribution.

Likewise, the service time for the memory requests (MemLat or PercoLat) also follows an

exponential distribution and may not take the same service time for the same request in different

simulation runs. To ensure that our simulation results are free of any stochastic fluctuations,

we run our simulation for a specific set of input parameters a number of times (typically 50)

and average the output performance parameters across these different runs.

Table 2: Values of the parameters

nbPorts 4

nbProc 4

α 100

pload 0.2

plocal 0.5

premote 0.5

syncT 100 cycles

PercoPT 50 cycles

MemLat 100 cycles or 1,000 cycles

PercoLat MemLat

3

C 8 cycles

In our simulation, we have assumed a cache hit ratio before percolation (pcachebp) as fixed

in each simulation, which corresponds to the hit ratio of a “warm” cache. In other words,

the percentage of data available in the cache before percolation is fixed for each procedure

instance in a single simulation. We supplemented our simulations with a set of experiments

where the pcachebp value for each procedure instance is a varied within ±20%, of the initial

pcachebp value, but this did not show any significant variation in our results. Hence in all

our experiments the cache hit ratio before percolation (pcachebp) is the same for all procedure

instances in a simulation1.

1However, the pcachebp value itself is a parameters and takes different values in different simulation runs.
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5.2 Summary of Results

In this part, we will highlight our key points performance results.

• Our results show that percolation brings significant improvement in performance (by a

factor of 2.7 to 11). The higher the memory latency, the greater is the gain in performance

(refer to Section 5.3.1).

• Our experimental results indicate that percolation and multithreading can complement

each other to hide latency. More importantly, percolation can improve the performance

by more than 50%. These two techniques never compete. (refer to Section 5.3.2).

• Last, we notice that percolation is much more beneficial in the presence of long remote

latencies as in a multiprocessor architecture (refer to Section 5.3.3).

5.3 Performance Results

In this section, we detail the performance results obtained from our executable analytical model.

5.3.1 Performance Improvement due to Percolation

First, we discuss the performance results for a single-threaded single processor system (refer to

the analytical model shown in Figure 7). We evaluate the performance of the corresponding

architecture for varying values of pcachebp and pperco. The execution times of our input

program graph for different values of pcachebp and pperco and for low and high values of

memory latency (MemLat = 100 and MemLat = 1000) are shown in Figures 11 and 12. As

it can be seen from the graph, percolation brings increasingly significant performance gains

when the cache hit ratios (before percolation) are low or the memory latency becomes large

and unpredictable.

A lower cache hit ratio corresponds to irregular or data intensive applications. In these

situations, the extent of improvement due to percolation is higher as the effects of (slower)

memory are dominant. More specifically, when the memory latency is 100 cycles, and when

pcachebp = 0.1, percolating all data can improve performance the execution time by a factor

2.7. When MemLat = 1000, complete percolation can reduce the execution time by an order of

magnitude. However, we observe that percolating only 50% of the data decreases the execution

time by a factor of 1.133 and 1.189, respectively, for MemLat equals 100 or 1000! Lastly, we

observe the performance trend is similar for a wide operating range of pcachebp, ranging from

0.0 to 0.8.

We observe similar performance improvement for single processor multithreaded architecture

(refer to Figure 13) or under multiprocessor single-threaded architecture. The performance

results for these architectures are shown in Figures 14 and 15.
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Figure 11: Execution Time with a low memory latency (MemLat = 100)

Figure 12: Execution Time with a high memory latency (MemLat = 1000)

5.3.2 Percolation vs. Multithreading

Percolation improves the performance even in a multithreaded system. With a coarse-grain

multithreaded architecture which allowed us to hide a large part of the latency, percolation

brings an additional improvement upto 20% (refer to Figure 13). As before, the lower the

pcachebp value, the higher is the improvement. Further, we observe that multithreading com-

plements percolation; even under no percolation (i.e., pperco = 0.0), multithreading reduces

the execution time by a factor of 2 to 3. This is not surprising as multithreading is known

to tolerate long memory latencies. But we observe that when percolation in conjunction with

multithreading reduces the execution time even further.
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Figure 13: Execution Time with multithreading and MemLat = 100

5.3.3 Multiprocessor Systems

In the multiprocessor case, percolation increases the performance too. Percolation is much more

efficient when we consider a multilevel memory, which is especially the case shown in Figure 9.

Concerning the gains plotted on Figure 14, percolation divides the execution time by a factor

5.8 when pcachebp = 0 and pperco = 1 (full percolation).

Figure 14: Execution Time with multiprocessors and MemLat = 100

Associating multithreading to a multiprocessor system allows to achieve a higher perfor-

mance gain. Percolation brings an additionnal improvement by a factor of upto 3 (refer to

Figure 15). Even for a moderate pcachebp value (say pcachebp = 0.8), the performance im-

provement due to percolation is nearly 50%. In this case, we observe that percolating only 50%
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of the data decreases the execution time by 25% to 35% when pcachebp value is less than 0.8.

To summarize, associating multithreading to a multiprocessor system allows us to achieve a

higher performance gain. We observe that the complement each other to hide latency.

Figure 15: Execution Time with multithreaded multiprocessors and MemLat = 100

6 Related Work

A number of architectural proposals on the design of multithreaded architectures have been

reported in the literature [2, 4, 7, 9, 11, 12, 17, 19]. The performance of multithreaded mul-

tiprocessor systems have been studied through an analytical approach by Agarwal [1], Alkalaj

and Bopanna [3], Boothe and Ranade [5], Nemawarkar and Gao [16], Nemawarkar, et al. [15],

and Saavedra-Barrera, et al. [18]. An essential difference between some of the earlier work

and the work proposed in this paper is that it considers percolation and studies its effects on

the performance. Also, it models the interaction of the software (program) component on the

hardware more closely. Further, while the earlier analytical models based on queuing networks

do not consider synchronization, our work models synchronization events more appropriately.

Lastly, our approach aims more in predicting the performance trend rather than the actual

performance.

7 Conclusions and Future Work

In this paper, we have developed an executable analytical performance model for high end

architectures supporting complex program execution models such as multithreading and data

percolation. We have evaluated the impact of percolation in different architectures. Our results

indicate that percolation is an effective way to hide latency. It brings in significant reduction in

program execution time (by a factor of 2.7 to 11), especially when the memory latency and/or
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the cache miss ratio is large. Further percolation complements multithreading and brings in

additional improvement (from 15% to 25%) in a multithreaded architecture.

Next, we discuss a few possible directions for future work. First, the current model is

only for a single node multiprocessor system. Percolation is more beneficial in larger systems

having hundreds of nodes, each having multiple processors. We plan to extend our model to

study such a system. Anther major direction is to validate the proposed approach on the

performance results, at least for the simple model, on a target architecture. To get more

confidence in our performance prediction, we need to run our simulation for different sets

of input program graphs. We also need to refine our models. In our current model, each

procedure instance consists of a set of sequential components. These sequential parts act as a

pair of threads in the multithreaded model. However, our program graph does not support any

thread-level parallelism within a procedure instance. Further, in single threaded architectures,

the parallelism available is only at procedure instance level (i.e., coarse grain). We need to

investigate the impacts of percolation under fine-grain multithreading and on architectures

supporting fine-grain parallelism. Also, we would like to model memory accesses in a more

realistic manner. Currently all data accesses that are not percolated are launched at the same

time in the Start thread in the case of a multithreaded processor or initially in the sequential

part in the case of a single threaded application. In our model we have assumed our caches

as “warm” caches. It would be interesting to study a more realistic cache model in which the

cache are initially empty, and builds over a period of time during the execution. Lastly, the

queuing network simulator used in our experiments has certain limitation in terms of the total

number of customers it can support. This, to certain extent, has restricted us in running large

simulations. We propose to either improve the tool or find/develop an alternative tool that

could help running large simulations.
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A QNAP

A program in QNAP Code is divided into four parts

• Description of the system

• Declaration of the variables and objects

• Control information for solving a queuing model

• Execution of the model

It always ends with an /END/ intruction.

Each of the different parts begins with a key word. Therefore, a program in QNAP has the

following structure:

/DECLARE/

declaration of the objects types and the variables used in the program

/STATION/

description of the topology of the queuing network, the different objects,

the servers...

Each service station is described in this part by a NAME, a SERV ICE,

a TY PE and a TRANSIT parameter. SERV ICE can be a simple ex-

pression like EXP(time) or a piece of code to discribe more complicated

behaviour. TY PE usually defines the number of servers or specifies if the

Station is a source station which just creates customers. TRANSIT de-

scribes where to send the customers after beeing serviced in this service

station.

/STATION/

. . .

/CONTROL/

control of the program, choice between simulation and an analytical reso-

lution, definition of the maximum runtime for one simulation...

/EXEC/

initializing, launching of the program with the instruction SIMUL and

eventually data processing and display or storage of the results

/END/ end of the program

When this program is executing, it begins by reading the /DECLARE/ part, then the

/EXEC/ part. When the instruction SIMUL is found in the code, according to what is in the

/CONTROL/ part, the behaviour of the queuing system described in the /STATION/ part

is simulated or solved analytically. As soon as the simulation is finished, the part following the

instruction SIMUL of the /EXEC/ part continues to execute until the /END/ instruction.
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