University of Delaware
(11) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Single-Dimension Software Pipelining for Multi-Dimensional
Loops

Hongbo Rongt
Zhizhong Tangtt
R. Govindarajant
Alban Douilletitt

Guang R.Gaot

CAPSL Technical Memo 049
Revised on January 7, 2007

Copyright (© 2005 CAPSL at the University of Delaware

tDept. of Electrical and Computer Engineering
University of Delaware
rong,govind,ggao@capsl.udel.edu
17TDept. of Computer Sciences
University of Delaware
douillet@capsl.udel.edu
t1Dept. of Computer Science and Technology
Tsinghua University
tzz-dcs@tsinghua.edu.cn

University of Delaware e 140 Evans Hall @ Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

Traditionally, software pipelining is applied either taetinnermost loop of a given loop nest
or from the innermost loop to outer loops. This paper prop@s8-step approach, call&ingle-
dimension Software Pipelining (SSR) software pipeline a loop nest at an arbitrary loop lelat t
has a rectangular iteration space and contains no siblivey ioops in it.

The first step identifies the most profitable loop level fotwafe pipelining in terms of initiation
rate, data reuse potential, or any other optimization risiteThe second step simplifies the multi-
dimensional data-dependence graph (DDG) of the seleabpdédwel into a 1-dimensional DDG and
constructs a 1-dimensional schedule. Based on it, the skéql derives a simple mapping function
that specifies the schedule time for the operation instandbég multi-dimensional loop.

The classical modulo scheduling is subsumed by SSP as aabpase. SSP is also closely
related to hyperplane scheduling, and, in fact, extends lig resource-constrained. We prove
that SSP schedules are correct, and at least as efficienvses shhedules generated by traditional
modulo scheduling methods.

We extend SSP to schedule imperfect loop nests, which areaoosnon at instruction-level.
Multiple initiation intervals are naturally allowed to impve execution efficiency.

Feasibility and correctness of our approach are verified pyototype implementation in the
ORC compiler for the 1A-64 architecture, tested with loogstsefrom Livermore and SPEC2000
floating-point benchmarks. Preliminary experimental itsseveal that, compared to modulo schedul-
ing, software pipelining at an appropriate loop level resinl significant performance improvement.
Software pipelining is beneficial even with loop transfotimas beforehand.

Contents

=

Introduction 1

Basic Concepts 4

Motivation and Overview 5

3.1 AMotivating Example e 5

3.2 llustration of Our Approach 6

3.3 Overviewof Our Approach e 9
3.3.1 Which Loop to Software Pipeline? 9
3.3.2 How to Software Pipeline the Selected Loop? 9
3.3.3 Constructing the Final Schedule/| 0 1

Solution 10

4.1 Definition of Simplified DDG 11

4.2 Stepl:LoopSelection 13
4.2.1 InitiationRate 13
422 DataReuse e 14

4.3 Step 2: 1-D Schedule Construction wa. 15

4.4 Step 3: Final Schedule Computation 16

Analysis 17

5.1 CoOrrectnesSs o e e e e 17

5.2 Efficiency 18

5.3 Relation to the Classical Modulo Scheduling of a SingleLoop 20

5.4 Relationto Hyperplane Scheduling 20

55 Time Complexity e 21

Extension to Imperfect Loop Nests 21

6.1 Motivating Example 22

6.2 ASSUMPLIONS e e e 23

6.3 Solution with a Single Initiation Interval 23
6.3.1 1-D Schedule Construction 5 2
6.3.2 Final Schedule Computation 27
6.3.3 Relation to the Scheduling of Perfect LoopNests 28

6.4 Solutionwith Multiple lls 28

Experiments 30

7.1 Performance of KernelLoops e 32
7.1.1 Matrix Multiply 33
7.1.2 Tiled and Unroll-and-Jammed Matrix Multiply 34
7.1.3 Modified 2-D Explicit Hydrodynamics 35

7.2 Performance of SPECLOOPS i i e e 36

7.3 Performance Analysis from CacheMisses 37

Related Work 38

Conclusions 40

Appendix: Correctness, Scheduling Algorithm, and Loop Rewriting 44

A.1 Correctness of the Final Schedule witha Singlell 44

A.2 Correctness of the Final Schedule with Multiplells 51

A.3 A Scheduling Algorithm 35

A4 LoopRewriting e e e e e 85

List of Figures

WN P

Modulo Schedulingofa SingleLoop 5
ALoopNestanditsDDG 6
A Conceptual lllustration of Our Software Pipelining Approach (Assuvie= 6 and

No =3) . o 6
Repeating Patterns inthe Final Schedule 8
Rewritten LOOPS o 8
Dependences e e e e e 11
Dependence Simplification and 1-D Schedule Construction 13
An Imperfect Loop NestExample 23
The Schedules before and after Pushing down (Asshime 6 and Ny = 3) 24
The Rewritten Loop Nest Representing the Final Schedule 25
The Imperfect Loop NestModel u... 26
The 1-D Schedule witha Singlell 26
The General Form of the 1-D Schedule with Multiple lls . . . 29

A 1-D Schedule with 2 lIs for the Loop Nest in Fig. 8(a). There araIchycIes above

Ko o e 29
Compile Flow 31
Performance of Matrix Multiply, wher& « N is the Size ofan Array 34
Tiled MM . . . e 35
Unroll-And-Jammed MM 53
Hydrodynamics e 36
Percentages of the Three Level Cache Misses in MMwith Matrix Sizes 1024*1024 37
L2 Cache MiSsSes e e 38
L3Cache Misses e 38
The Kernel Achieved by the Scheduling Algorithm b5
Code Generation for An-dimensional LoopNest 59

lllustrating the Code Skeleton. The initialization and finalization phasesoashawn,
as they are machine-dependent. e 60

1 Introduction

Loop nests are rich in coarse-grain and fine-grain parallelism andesitiaé progress has been made in
exploiting the former [4, 8, 10, 18]. With the advent of ILP (Instructioevel Parallelism) architectures
like Very-Long Instruction Word and superscalar processors, anthgt growth in hardware resources,
it has been another important challenge to exploit fine-grain parallelism inapenests as well.

Software pipelining is an effective way to extract ILP from loops. Whilengwous algorithms have
been proposed for single loops or the innermost loops of loop nestd,[25119, 25, 24], only a few
address software pipelining of loop nests [17, 20, 27, 11, 23].

In [17], a loop is modulo scheduled and is considered ast@amic operatiorof its outer loop. The
outer loop can then be modulo scheduled. The process is repeated Uatipdkvels are scheduled, or
available resources are used up, or dependences disallow furthbelpzation. The inefficiency due to
the filling and draining (prolog and epilog) of the software pipeline is adeia [20, 27].

We refer to the above approachiasermost-loop-centric modulo schedulinghis approach nat-
urally extends the single loop scheduling method to the multi-dimensional domainaséwo major
shortcomings: (1) it commits itself to the innermost loop first without considdrimgmuch parallelism
the other levels have to offer. Software pipelining another loop level meghiltrin higher parallelism.
(2) It cannot exploit the data reuse potential in the outer loops.

There are other software pipelining approaches, developed froerigne scheduling. They ex-
ploit parallelism from the multi-dimensional iteration space, based on depeeslebut cannot handle
resource constraints [11, 23].

There has also been other interesting work that combines loop transfanswaitb software pipelin-
ing [29, 5]. However, in these methods, software pipelining is still limited to therimost loop of the
transformed loop nest.

This paper presents a framework for resource-constrained sefipipelining for a class of loop
nests. Software pipelining is applied to the most “beneficial” level in a loop mewrder to better
exploit parallelism and data reuse potential, and match the hardwareaesour

The problem addressed in this paper can be formally stated as foliwen a loop nest composed
ofnloopsLy, Lo, ..., L,, from the outermost to the innermost level, with one loop at each level, identify
the most profitable loop,. (1 < x < n) that has a rectangular iteration space and software pipeline it
Software pipeliningL, means that the consecutive iterationsigfwill be overlapped at run-time. In
this paper, we only discuss how to parallelize the selected Igojits outer loops, if any, remain intact
in our approach. Since there is only one loop at each level, in this papeerins foop’ and “loop
level’ can be used interchangeably.

The above problem can be broken down into two sub-problems: how thcptbe benefits of
software pipelining a loop level, and how to software pipeline the most “beakfone predicted.

Our solution consists of three steps:

1. Loop selectionThis step searches for the most profitable loop level in the loop nesttdbibty

can be measured in terms of initiation rate, data reuse potential, or any otimeizapon criteria.
The selected loop may be a loop nest itself, i.e., it may have its own inner loops.

2. 1-D schedule constructionThe multi-dimensional DDG of the selected loop is reduced to a 1-
dimensional (1-D) DDG. Based on the 1-D DDG and the resource camtstra modulo schedule,
referred to as 4-D schedulgis constructed for the operations in the selected loop. No matter
how many inner loops the selected loop has, it is scheduled as if it werela kiog.

3. Final schedule computationBased on the resulting 1-D schedule, this step derives a simple
mapping function that specifies the schedule time of the operation instancesselélcted loop.

Since the problem of multi-dimensional scheduling is reduced to 1-dimensschabuling and
mapping, we refer to our approach as Single-dimension Software Pipgl®8#). This approach shows
several advantages:

e Global foresight Instead of focusing only on the innermost loop, every loop level is exaanin
and the most profitable one is chosen. Any criterion can be used to judgedfieability” in this
step. This flexibility opens a new prospect to combine software pipelining witlother optimal
criterion beyond the ILP degree, which is often the major objective of soéwipelining. In this
paper, we consider not only parallelism, but also cache effects, whiah ot been considered
by most traditional software pipelining methods.

e Simplicity The method retains the simplicity of the classical modulo scheduling of singls.loop
The scheduling is based on a simplified 1-dimensional DDG, no matter how maelyloops
the selected loop has. This is an essential difference from previousagbhes. The traditional
modulo scheduling of single loops is subsumed as a special case.

¢ Efficiency Our schedule divides the iterations of the chosen loop into groups xacdtes them
group by group. Each group is pipelined. The draining of a group isaatwverlapped with
the filling of the next group. For this reason, the schedule is proved ® thavshortest length,
comparing with any schedule produced by the innermost-centric modulowigednder iden-
tical conditions for a perfect loop nest. In addition, we search the entperest and choose the
most profitable loop level, and consider data reuse in the cache, whichrgdsaves the actual
execution time of the schedule.

e Resource sensitivityAlthough our method has been developed independently, we can retate ou

approach as an extension of hyperplane scheduling [8, 18] in thextaftsoftware pipelining

for uniprocessors. Our approach extends the traditional hyperplareduling to be resource-
constrained. The major differences between the two approaches)asaftvare pipelining is
used for uniprocessors, which has limited resources, and it is impetata@nsider such con-
straints. Hyperplane scheduling, however, is usually used for largg-ake hardware structures
such as systolic and SIMD arrays, and does not consider resoamsgraints. (i) Hyperplane
scheduling often exploits parallelism from more than one loop level, wheogagare pipelining
focuses on a single loop level only.

¢ Reducing overheadeing able to schedule an arbitrary loop level provides freedom foosihg
good schedules with less overhead.

To understand this, let us ask a question: why is it necessary to devedmhrique that can
pipeline a multi-dimensional loop directly? Can't we achieve the same effexidhrloop trans-
formations followed by innermost-loop-centric software pipelining?

A key insight is that when software pipelining is applied to a loop, the scheddabsociated
overhead, including initialization, prolog, epilog and finalization. Take th&4Aarchitecture as
an example. Initialization sets up the initial values of the control registers,dimgtthe loop
counter registet.C, epilog counter registeeC, and predicate rotating registgr(. r ot). It also
transfers live-in values of the loop variables to rotating registers. Fitializ&ansfers live-out
values out of rotating registers. Such overhead is incurred every timedpas executed. The
overhead is unavoidable, no matter whatever loop transformations haxaepkeeformed previ-
ously. Some loop transformations, like tiling, would magnify the overhead ofrsar loop level,
by making the loop nest deeper and the inner loops having smaller trip counts.

Intuitively, the outer the loop is, the less overhead it has. In a 3-deepilestp where each loop
level is executed 1000 times, the overhead is incurred 1,000,000 times if #wniost loop is
software pipelined, 1,000 times if the middle loop is pipelined, and only 1 time if therooss
loop is pipelined. Unless software pipelining the innermost loop results in signtfbenefit that
outweighs such overhead, innermost-loop-centric software pipeliningwoiaye advantageous.

In terms of loop transformations, they are orthogonal to our approacthid paper, we assume
that a loop nest to be software pipelined has already been optimized by fogiairmations, if
any.

SSP can be applied to both perfect and imperfect loop nests. We will tastiicperfect loop
nests first, and then extend it to imperfect ones, where we introduce muliijggéiam intervals into the
schedule to improve execution efficiency.

In this paper, we focus only on the fundamental theory of SSP scheddlimg other equally im-
portant problems are how to design efficient scheduling algorithms, amddallocate registers and
generate compact code for the constructed SSP schedule. The Isahedlyorithm used in our ex-
periments is described in the appendix. Register allocation and code teméi@/e posed interesting
challenges and are addressed elsewhere [Rong et al. 2005; RbbDgaitiet et al. 2004].

We target ILP uniprocessors with support for predication [15, 3]r &proach does not impose
any constraint on the function units; they may be homogeneous or hetemge pipelined or non-
pipelined, and can have unit or multi-cycle latencies.

We have implemented a prototype of our method in the ORC compiler for the | AeBéecture and
tested it with loop nests from Livermore and SPEC2000 floating-pointirearks. The resulting code
is run on an IA-64 Itanium machine and the actual execution time is measugtihiRary experimental
results on these loop nests reveal considerable performance difsrensoftware pipelining different
loop levels of a loop nest, and often, software pipelining an outer loop skmmificant performance
improvements over modulo scheduling that software pipelines the innermgst Fathermore, we

3

observe that SSP is beneficial in the presence of loop transformati@isas loop interchange, loop
tiling, and unroll-and-jam.

This paper is organized as follows. Section 2 introduces the basic dsrasepbriefly reviews mod-
ulo scheduling. Then we motivate our study by a simple example in Section Borséaliscusses our
method in detail. We prove its correctness and efficiency in Section 5. Weetttend SSP to imper-
fect loop nests and introduce multiple initiation intervals into the schedule in Se&tiBrperimental
results are reported in Section 7. A discussion on related work and clmglkemarks are presented in
Sections 8 and 9.

2 Basic Concepts

An n-deep perfect loop nes& composed of loopé 1, Lo, - - - , L, respectively, from the outermost to
the innermost level, with each level having exactly one loop, and all opasadi@ within the innermost
loop. Each loopL,(1 < x < n) has an index variable, and a trip countV,, > 1. The index is
normalized to change from O &, — 1 with unit step. The body of the loop nest consists of all the
operations. It is assumed to have no branches; branches, if amybban converted to linear code by
if-conversion [3].

Since aloop, except the innermost loop, has its own inner loops, it is a éstjitself. To emphasize
this fact, we also refer to a loop as ardimensional loopwherez is the depth of the loop nest. For
example,L; is ann-dimensional loop,L,, a 1-dimensional loop, etc. A 1-dimensional loop is also
called asingle loop

The loop nest has ateration spacewhich contains one point for each execution of the body of the
loop nest. Such a point is called #&aration pointin this paper, and is identified by the index vector
| = (i1,42, - ,in). The instance of any operatienin this iteration point is denoted by(l). The
iteration space igectangular if its bounds,Ny, No, - - -, andN,,, do not change during the execution
of the loop nest, although they can change before and after it. In this, plapéoop level to be software
pipelined must have a rectangular iteration space.

An L, iterationis one execution of thé,. loop body. Thus thd., loop has a total ofV, number of
iterations. One such iteration is also an iteration poitt,fis the innermost loop, i.ex, = n.

We use(o; — 02,0,d) to represent a data dependence from operatjoto operationos in the
loop nest, where; ando. are calledsourceandsink of the dependence, respectively;> 0 is the
dependence latencandd = (d,ds,- - ,d,) is thedistance vectgwhered, is the distance at the
outermost level, and,, the innermost.

Thesign of a vectoiis that of its first non-zero element, either positive or negative. If all efésne
are 0, the vector is zero vector

Software pipeliningexposes instruction-level parallelism by overlapping successive itesatioa
loop. Modulo scheduling (MSjs an important and probably the most commonly used approach of
software pipelining [14, 17, 25, 24]. A detailed introduction can be faari&].

4

for (1,=0;i; < Ny;i1++) {

Z S:TS g a | |Prolog
. I e B E K.emed stageindex— 2 1 0
) c Epilog modulo cycle 0—>T:l

(a) An Example Loop (b) Modulo Schedule (c) Kernel

Figure 1: Modulo Scheduling of a Single Loop

Modulo scheduling is usually applied to a single loop. Instances of an tigrefeom successive
iterations of the loop are scheduled with laitiation Interval (1) of T' cycles. This is referred to as
modulo property A valid modulo schedule respects modulo property,dbpendence constraintand
the (hardware) resource constraints

The schedule lengthis defined as the execution time of a single iteration. Then each iteration is
composed ofs = (%1 number ofstages with each stage takin@' cycles. The schedule consists of
three phases: tharolog to fill the pipeline, thekernelto be executed multiple times, and tlpilog to
drain the pipeline.

Let the schedule time for any operation instange) beo (o, ;). Wheni; = 0, it can be expressed
aso(o,i1) = px T + ¢, where0 < ¢ < T. We say that operation is scheduled tanodulo cycleq
within stagep.

Example: Fig. 1(a) shows an example loop. Assume 3 function units and two depmsgien
(a — b,1,(0)) and(b — ¢,1,(0)). Fig. 1(b) shows a modulo schedule for the loop Witk= 1, and

S = 3. Fig. 1(c) specifically shows the kernel, where the stages are numbseredfto 2 from right to
left, and all operations are scheduled to modulo cycle 0.

3 Motivation and Overview

In this section, we motivate our method with the help of a simple 2-deep perfgriniest. We bring
out the practical limitations of the innermost-centric approach and motivatestiessity of our work.
Subsequently, we illustrate our approach using this example. Then we siz@harintuitions we get
from the example, and briefly describe our theoretical solution to the glgor@blem.

3.1 A Motivating Example

Fig. 2 shows a perfect loop nest in C language and its data dependeapte Fhis loop nest certainly
could be parallelized in a number of other ways, too. We use it only for illustrgurposes.

To facilitate understanding and without loss of generality, in this example,ssenae that each
statement is an operation. In the DDG, each node represents an oparadi@m edge represents a
dependence labeled with the distance vector.

The inner loop has no parallelism due to the dependence ayele—a at this level. Thus mod-
ulo scheduling of the inner loop cannot find any parallelism for this exampleermost-loop-centric

5

Ly:for (11=0; i1 < Ny; i1++){

. . . <1,0>
Lo: for (12=0; 19 < No; ’LQ++){
a: Ulir + 1][2]=V[a][22]+ Ul][22]; a
b: V[i1][i2 + 1]=U[é1 + 1][2]; <0,0> ><0’1>
) } ’
Figure 2: A Loop Nest and its DDG
Group O Group 1 Group 0 Group 1
0 1 2 3 4 5 iy 0 1 2 3 4 5 iy
0| fa(0,0y 0| La(0,0y] T
1{\b(0,0)] a(@,0)1 1Nb(0,0) a(l,O)l
ol b(1,0)|a(2,0 -—Kernel of the modulo schedule of b(1,0)[a(2,0)
3|4a(0,1) b(2,0)| 4(3,0) 3[{a(0,1) b(2,0)
4| [bo,1)]a@,y) b(3.0)a(4.0) 4| |b1)]a@,1) &
5 b(1,1) |a(2,1) b(4,0) [a(5,0) 5 b(1,1) |a(2,1) 2
6 a(3,1) b(5,0)|; Lst slice 6 b(2,1 g
7 b(3,1)a(4,1) 7 s
8 b(4.1)|a(5.1) 8 2
9 b(5,1) | ;2nd slice 9
10 10 a(4,0)
11 11 b(4,0) |a(5,0)
12 3rd slice 12 a(3,1) b(5,0)
13 13
Cycle 14
15
16
Intra—slice dependence 1;
19
""""""" Inter-slice dependence
Cycle
(a) Software Pipelined Slices (b) The Final Schedule

Figure 3: A Conceptual lllustration of Our Software Pipelining Approatssime
Ny =6andNy = 3)

software pipelining approach exposes extra parallelism by overlappinfillthg and draining of the
pipeline between successive outer loop iterations. Since modulo schethiladyto find any paral-
lelism, there is no filling or draining and therefore no overlapping. Thugrinost-loop-centric soft-
ware pipelining cannot find any parallelism, either.

One may argue that loop interchange before software pipelining will solsgtbblem. Unfortu-
nately, that will destroy the data reuse in the original loop nest: for larggseach iteration point will
introduce 2 cache misses, as the array elements are now accessed widemather than row-wise.

3.2 lllustration of Our Approach

The above example shows the limitation of the traditional software pipelininginihat see the whole
loop nest to better exploit parallelism. Nor can it exploit the data reuse pdtehttze outer loop(s).

6

This raises the question: Why not select a better loop to software pipetineeoessarily the innermost
one?

This gquestion brings the challenging problem of software pipelining of a ihegb. The challenge
comes from two aspects: how to handle resource constraints? And handtehtthe multi-dimensional
dependences? Before we expand discussion on these challengegriee again look at our motivating
example shown in Fig. 2.

Example: Let us assume operationsandb have latencies of 1 and 2 cycles, respectively. Assume that
we have two functional units, and both are pipelined and can perforrofahg operations.

Suppose that the outer lodp is selected for software pipelining. We remember software pipelining
a loop is to overlap its iterations. Fig. 3(a) shows such an overlapping,evthe initiation interval
between two adjacent iterations of the loof¥is= 1 cycle, and we assum&; = 6 and N, = 3 for
simplicity.

We consider the operations belonging to iteration pofits0), for all 4;, constitute the firsslice,
and operations belonging to poinig, 1) the second slice, etc. Then the overlapping can be reinter-
preted in this way: each slice is modulo scheduled so that successive iigratids within this slice
initiate at an interval of” = 1 cycle. For the first slice, the kernel of the modulo schedule is highlighted
in a box. There ar& = 3 stages, with one stage being empty.

Although the resource constraints are respected within each modulousethetice, they are vio-
lated between slices because a slice is issued greedily without waiting farsibigrces to be released
by the previous slice. To remove the conflicts, we cut the slicesgraaps with each group having
S = 3 iterations of the outer loop. There are two groups in this schedule. Eaclp gexcept the first
one, is pushed down bV, — 1) = .S « T' cycles relative to its previous group. The delay is designed to
ensure that repeating patterns definitely appear. This leads timahecheduléhat maps each instance
of an operation to its schedule time, as shown in Fig. 3(b). Note that not epgriience and resource
constraints are respected, but the parallelism degree exploited in a mobatiuted slice§ = 3) is
still preserved, and the resources are fully used. A dependence isgpiéicted after the pushing-down
because that action either does not affect, or only increases, the timecdiftetween the source and
the sink of the dependence, as illustrated by the dependences in Fige8{gd the pushing-down and
in Fig. 3(b) after that.

Repeating patterns can be found in the final schedule. In Fig. 4, we ddd fmal schedule some
ineffective operation instances, as shown in the shaded part. Thegediective because their first
indexes are beyond the legal range gfthe outer loop index variable. The range is assumed to be [0,6)
in our illustration. For target architectures with predication support liké&4#Apredicate registers can
be used to make them ineffective during execution of the final schedatg[Bnd Douillet et al. 2004].
With the added ineffective operation instances, it is clear to see that thesdmadule is composed of
two repeating patterns, referred to@stermost Loop Pattern (OLR)ndInner Loop Execution Segment
(ILES). An OLP drains the pipeline of a group, and fills the pipeline with the nextgsimultaneously.
When the pipeline is filled with the next group, an ILES starts. It runs all therifoops of the next
group until the group is going to drain. Then another OLP starts. Note thiat=S itself is composed
of Ny — 1 = 2 number of a smaller pattern, as shown in the figure. Apart from the OL#PH &Ses,

7

-1 b(-2,2)a(-1,2

0 b(-1,2)a(0,0) oLP
1 o b(0,0)| 2(1,0) Prolog

2 \ b(1,0)|a(2,0)

3| Ineffective operation |a(0,1) b(2,0)

. nstances b(0.1)a(L7) repeat ILES
5 b(L.1) [a(2.1) N, -1

6 a(0,2) b(2,1) times

7 b(0.2) |a(1,2)

8 b(1,.2) [a(2,2)

9 b(2,2) a(3,0) OLP
10 j b(3,0)[a(4,0)

11 b(4,0) [a(,0)

12 a@1) b(5,0)

13 b(3,1) a(4,1) LES
14 b(4,1)]a(5.1)

15 aEs.2) b(5,1)

16 b(3.2)a(4.2)

17 b(2,2) | a(5,2)

1 b(5.2) Epilog
19

Cycle

Figure 4: Repeating Patterns in the Final Schedule

L for (iy = 0yiy < Nisig+ = 3){
b(is — 2, Ny —1) aliy —1, Ny — 1)

OLP b(iy —1,No — 1) a(iy,0)

b(i1, 0) aliy +1,0)

[Ly for (iy = 1345 < Nyjig + +) {

bliy+ Lis— 1) alis +2,is — 1)
a(iy,iz) b(iy + 2,9 — 1)
biis) a4+ 1,0s)

ILES

b(ll - 2, Nz — 1) a(il — 1,;‘7\[2 — 1)
Epll()g b(ll — 1,)VQ — 1)

Figure 5: Rewritten Loops

the final schedule also contains a prolog and an epilog. The prolog isfibg first OLP in the perfect
loop nest case. The last three cycles form the epilog.

Based on the above observation, it is straightforward to rewrite the fihatisille in a more compact
form, as shown in Fig. 5. An OLP (including the prolog), an ILES, and thikog, are all composed of
multiple copies of the kernel. The kernel copies in the prolog and the epitogatial, with the left
and right parts being masked from execution, respectively. The sitagelsernel copy in the ILES is
permuted, to maintain the sequential execution of each iteration of the selemped lo

8

3.3 Overview of Our Approach

Based on the illustration, in this section, we briefly describe the steps afidnges in solving our
general problem. The first challenge is how to select a loop level fowad pipelining. Once the loop
level is identified, the second challenge is how we software pipeline it, takiogatount resource and
dependence constraints. The principles are discussed below, whils detdeft to Section 4.

3.3.1 Which Loop to Software Pipeline?

Parallelism is surely one of the major concerns. On the other hand, cHiebts ere also important
and govern the actual execution time of the schedule. However, it is haahtider cache effects in
traditional software pipelining, mainly due to the fact that it focuses on thermast loop. Provided
that an arbitrary loop level in a loop nest can be software pipelined, wseazrch for the most profitable
level, measured by parallelism or cache data reuse, or both. Any otjeetiob can also be used as a
criterion.

The selected loop, which is a loop nest itself, needs to have a rectanguddipitespace. How to
handle a loop with a non-rectangular iteration space is beyond the sctipe paper.

3.3.2 How to Software Pipeline the Selected Loop?

Suppose we have chosen a loop, for simplicity, say, the outermostZlpoonceptually, we allocate
the iteration points within the loop to a seriesstites and software pipeline each slice. Although any
software pipelining method can be used, we focus on modulo scheduling eiies.

The iteration points are allocated in this way: for apye [0, V), iteration point(i;,0,---,0,0)
is allocated to the first slicé;;, 0,- - - ,0,1) to the second slice, and so on.

To modulo schedule a slice, we reduce the DDG to have only the depesdsrtbés’; loop level
and simplify their distance vectors to be 1-dimensional. Based on the resmanstraints and this 1-D
DDG, we construct a modulo schedule, referred to Adaschedule

This 1-D schedule is applied to every slice. So all slices have the same, sitapthey can be
packed together seamlessly. This leads to a schedule like that in Fig. 3@an/éee that the iteration
points are allocated to the slices in such a way that all iterations aof.fHeop run in parallel, while
each of them runs sequentially.

How to Handle ResourcesResource constraints are enforced at two levels: at the slice level when
we modulo schedule the slices, and at the inter-slice level. Modulo schediliaglice meets the
resource constraints within the slice. However, by packing the suceesgies together, two slices are
partially overlapped. The collective resources required at an oyenigpycle may exceed the resources
available. To solve this problem, we cut the slices igitoups with each group containing iterations

of the L, loop. Then we push down, i.e. delay the execution of, a group until ressare available.
This results in dinal schedulgewhich respects the resource constraints at each cycle, as illustrated in
Fig. 3(b).

How to Handle Dependenceg?major obstacle to software pipelining of a loop nest is how to handle
then-dimensional dependence distance vectors. As mentioned earlier, in motatiuéing a slice, we
consider only the simplified dependences with 1-dimensional distance s¥ebiing so is sufficient to
satisfy all dependence constraints within a slice. Dependences alicess(im the forward direction)
are also satisfied, since the slices are executed sequentially. After trseaskoeut into groups and the
groups are pushed down, the dependences are still respecteghagmown either does not affect, or
can only increase, the time distance between the source and the sink afraldepe, as illustrated in
Fig. 3(a) and Fig. 3(b).

3.3.3 Constructing the Final Schedule

In this paper, we express the final schedule abstractly in a functionhudiidependentf any specific
architecture. The function describes the final schedule time of an openasiance, based on the 1-D
schedule time of that operation.

It is important to see that this function is determined by the 1-D schedule. Wetdmroll any
loop in constructing either the 1-D schedule or the final schedule. Thep&an Fig. 3(a) and 3(b) has
illustrated the formation of the final schedule in a way that can be easily stodel: fully unrolling the
chosen loop and allocating all the iteration points in it to slices, applying thedh@dsile to all slices,
cutting them into groups, and pushing down the groups appropriatelyrlfoonal solution, however,
the same effect is simply captured by the final schedule function.

For a specific architecture, the final schedule is constructed by congpibsirprolog, OLP, ILES,
and epilog with the 1-D schedule. This realizes the function equivalentlyolg.cDepending on the
target architecture, the 1-D schedule may need to be duplicated in thissprdéer example, for an
architecture like IA-64 that supports rotating register files, the finalddeaotates registers in an OLP,
but stops rotating in an ILES. Thus the ILES has to duplicate the 1-D stehtdachieve the same effect
of register rotating. The details of this code generation process aredbélye scope of this paper and
are presented elsewhere [Rong and Douillet et al. 2004].

Later, when we extend our approach to allow all the loops in the loop nestthair own distinct
s, it is too complicated to express the final schedule in a function. In tlsis, a@e also resort to the
constructive code generation process.

In summary, our approach to software pipeline a loop nest consists ef steps: loop selection,
1-D schedule construction, and final schedule computation. We will idesttrem in detail in the next
section.

4 Solution

In this section, we first define the concept of simplified DDG. With this conosp formalize our
approach into 3 steps: (1) loop selection, (2) 1-D schedule constrdgtand (3) final schedule com-

1In our previous work [Rong and Tang et al. 2004], this step is refeoas “dependence simplification and 1-D schedule
construction”. We remove “dependence simplification” from the naraeabse dependence simplification is also needed by

10

A zero (intra-slice) dependence.
/ Distance vector=<1, 0,...,0,0>

(i17i27"' 7in—17in) / (il+l7i27"' 7in—17in)
[k. J

A positive (inter—slice) dependence.
Distance vector=<1, 0,...,0,1>

. e

(i17i27 e 7in—17in +]-) (Zl + 17i27 e 7in—17in + 1)

Cycle

Figure 6: Dependences

putation.

4.1 Definition of Simplified DDG

As illustrated in Fig. 3, conceptually, the final schedule of a multi-dimensiooal éonsists of a series
of modulo scheduled slices, which are cut into groups, and the groapgbkear pushed down to resolve
inter-slice resource conflicts. If a dependence is respected bafshing down the groups, it will also
be respected after that. Therefore we only need to consider the dgmesdnecessary to obtain the
modulo schedule before the pushing-down.

Fig.6 pictorially illustrates the dependences inradimensional loop nest in two successive slices,
where each parallelogram represents a slice, and each dot an itemitibn Aithough not shown on
the picture, each slice is software pipelined. The outermost leyéd assumed to be the chosen loop.
There are two kinds of dependences: one is across two slices, anthén@oe is within a slice.

Due to the way the iteration points are allocated, a dependence across ®®lsiE a distance
vector (dy, da, - - ,dy), Wwhered; > 0, and(ds,--- ,d,) iS a positive vector. Such a dependence is
naturally resolved because the two slices are executed sequentially.

A dependence within a slice has a distance ve@tords, - - -, dy,), whered; > 0, and(dy, - - - ,d,,)
is a zero vector. Such a dependence has to be considered duringregitpelining of the slice. Besides,
only the distancel; is useful for software pipelining. That is, the dependence distandervegn be
simplified as(d;) in pipelining.

the loop selection step. Therefore, it is more appropriate to be takenaasscacbncept shared by both steps.

11

The two kinds of dependences are nampeditiveand zero dependencesespectively. Note that
a dependence from a slice to a previous slice is illegal. It is calledgative dependencéNegative
dependences cannot be handled directly

Below we formally classify the dependences, and define the simplified depe@ graph.

Letd = (d1,ds,--- ,d,) be the distance vector of a dependence. We say that this dependence is
effective at loop level,(1 < z < n) iff (d1,da, -+ ,dy—1) = 0and(d,,dz+1,--- ,d,) > 0, where
0 is the zero vector with appropriate length. Bffective we mean that such a dependence must be
respected by the final schedule if we software pipelipe All effective dependences @i, compose
the effective DDGat L.

According to the definition, if a dependence is effectivd.at we have(d,,d,+1,--- ,d,) > 0.
Of course the first elememnt, > 0. We classify the dependence by the sign of the sub-distance-vector
(dzt1,- -+ ,dn), whenz < n. If this sub-vector is a zero, positive, or negative vector, the degrerelis
classified as aerq positive or negative dependence dt,, respectively. Wher = n, we classify it as
a zero dependence A}, for uniformity.

The above classification is completan effective dependence is in and only in one of the three
classes Especially, the dependences are classified accorditigetsign of the sub-distance-vectapt
that of the whole distance vector. For example, a dependence in a 3sdpepest with a distance vector
of (1, —1, 2) is a negative dependencelatbecause the sub-vectpr1, 2) is negative, even though the
whole distance vector is positive.

We classify only effective dependences, since, in the following sectoumgliscussion relates only
to them. Although the dependence classification is dependent on the lobpMeweill not mention the
loop level when the context is clear.

In this paper, we assume that when we consider to software pipeline a i@ le all effective
dependences at this level are either zero or positive. As discusseel, apositive dependence is across
slices in the forward direction and can be naturally honored in the finablstl. Only zero dependences
are within a slice and need to be considered. Lastly, only the dependisteiece atl,. is useful for
software pipelining. Thus we can reduce the effective DDG to have @y dependences with 1-
dimensional distance vectors. We refer to the resulting DDG asitityglified DDG The definition is as
follows: Thesimplified DDGat L, is composed of all the zero dependencek,gtthe dependence arcs
are annotated with the dependence distande. at

Example: Fig.7(a) shows the effective DDG &t for the loop nest depicted in Fig.2. There are two
zero dependences in this DD&G:— a anda — b. Associating the dependence distancekaith the
arcs, we get the simplified DDG shown in Fig.7(b).

2The loop nest must be transformed to make negative dependermmadeero or positive. It is always feasible to do
so by loop skewing. However, after that, the iteration space becomesentamgular. Although we restrict to rectangular
iteration spaces in this paper, the first two steps of SSP are still applicale-t@ctangular cases, without any change, since
scheduling considers only DDG and hardware resources. It caasidéhing about the shape of the iteration space. For the
third step of SSP, predicate registers can be used to dynamically form-gea@ngular iteration space in runtime. Another
way to handle the non-rectangular iteration space is to apply loop peelihglsatcthe space is cut into a rectangle with a
triangle before and after it, and SSP is applied only to the rectangle.

12

<1,0> <1>

»> b a

D
<0,0>< ><O,1> <O>< b ﬁ Kernel
b b

(a) Effective DDG at (b) Simplified (c) 1-D Schedule
L1 DDG atL;

Figure 7: Dependence Simplification and 1-D Schedule Construction

4.2 Step 1: Loop Selection

In this paper, our objective is to generate the most efficient softwardipgal schedule for a loop nest.
Thus it is desirable to select the loop level with a higher initiation rate (highadlpbsm), or a better
data reuse potential (better cache effect), or both. The specific dedsimt made here, since that
is implementation-dependent. This paper focus on presenting a gerasrawork, not algorithm or
implementation. In this section, we address the essential problem of evaltresegtwo criteria. For
each criterion, we consider all the loop levels that have rectangular itesgarces.

4.2.1 Initiation Rate

Initiation rate, which is the inverse of initiation interval, specifies the number of iteration p@gnats
sued per cycle. Hence we choose the loop ldéyethat has the maximum initiation rate, or minimum
initiation interval.

The minimum initiation interval at loop levél,, is max(RecMI1,, ResMII), whereRecMIl, and
ResMllare the minimum initiation intervals determined, respectively, by recurrendés isimplified
DDG atL,, and by the available hardware resourtes

RecMII, = maz o) 1)

c d(C)’

whereC is a cycle in the simplified DDGJ(C) is the sum of the dependence latencies along aycle
andd(C) is the sum of the dependence distances alorig3].

ResMII = max ResM1II, (2)

V resource type

whereResM 11, is the lower bound of MIl determined by resource typevhich is

3The reader will find in section 4.3 that our approach has extra Sequ@ntiatraints. They affect only the schedule length
of the 1-D schedule, but not the initiation interval. In the worst case, weab@ays increase the schedule length to satisfy
these constraints. Thus they do not influence the MII calculation here.

13

total operations that use
total resources of type if r is pipelined.

ResMII, = 3
total execution time of the operations that use ; ; ; ;
total resources of type if ris non'plpe“ned'

In addition to the initiation rate, we also look at the trip count of each loop lewgbatticular, the
trip count should not be less thah the number of stages in the 1-D schedule. Otherwise, this loop
should not be chosen.

The reason is that the slices are cut in groups, where each gro$jteaations of loopl,.. Then the
trip count N, is expected to be divisible h§. Otherwise, the last group will have fewgy, iterations,
resulting in a lower utilization of resources in that group. However, whgn> S, it is always possible
to apply loop peeling to avoid the situation.

Although S is unknown at loop selection time, it is generally small because the limited resoarc
a uniprocessor cannot support too many stages at the same time. Aslangualsmall estimated value
can be set fof.

4.2.2 Data Reuse

When we software pipeline a loop level, the data reuse potential can benegbgiuhe average number
of memory accesses per iteration point. The fewer the accesses, ther tieaeuse potential. Without
loss of generality, let us consider lodg.

In our approach, software pipelining resultsSriterations of; loop running in a group, which
is composed of a series of slices. Select the firstiumber of successive slices in the first group.
They include the following set of iteration pointg:(i;,0,--- ,0,i,)|Vi; andi, € [0,S5)}, which
is an.S x S square in the iteration space. This is a typical situation in our method, bedause
erations are executed in parallel, and the index of the innermost loop ehamgre frequently than
the indices of the other loops. Therefore, we could estimate the memorysasagisthe whole loop
nest by those of the iteration points in this set. This set can be abstractddcadized vector space
a = span{(1,0,---,0),(0,---,0,1)}. Now the problem is very similar to that discussed in [28].
Below we briefly describe the application of their method in this situation.

For auniformly generated seif memory references in this localized space,Rgtr and Rss be
the self-temporal and self-spatial reuse vector spaces, respecfinelyetgT andgSbe the number of
group temporal and group-spatial equivalent classes. Then forrtiemly generated set, the number
of memory accesses per iteration poirt:is

je §dim(RsrNa)

wherel is the cache line size, and

“We useRs7 in the denominator here, instead Bfs as in the original formula on page 39 of the literature[28], which
we think was a typo.

14

~J 0 if RerNa = RgsNa,
] 1 otherwise

The total number of memory accesses per iteration point is the sum of esdesgach uniformly
generated set.

The above data reuse model does not consider loop volume. Other mt2lels 16] may be used
as well.

4.3 Step 2:1-D Schedule Construction
Our method software pipelines only the selected loop. Enclosing outer ibapy, are left as they are.
Therefore, without loss of generality, we considgras the selected loop.

As mentioned already, given the effective DDGIat we can simplify the dependences to obtain a
simplified DDG, which consists of only zero dependences with 1-dimensitistaince vectors.

Basedsolely on the simplified DDG and the hardware resource constraints, we canatd®
schedule. Since the DDG is 1-dimensional, from the viewpoint of scheduling treated as if it were
a single loop. Any modulo scheduling method can be applied to obtain the 1edideh

Let T be the initiation interval of the generated schedule, &nok the number of stages of the
schedule. We refer to the schedule as-B scheduldor the loop levelL,. Let the schedule time for
any operation instancgi,) bec (o, 1), whered < o(0,41) < S « T wheni; = 0.

The 1-D schedule must satisfy the following properties:

1. Modulo property:
o(o,i1)+T =o0(0,i1 + 1) (5)

2. Dependence constraints:
0(01,i1)+5§0(02,i1+k) (6)

for every dependende; — o2, 9, (k)) in the simplified DDG.

3. Resource constraints: At any modulo cycle of the kernel, no haedregource is allocated to
more than one operation.

4. Sequential Constraints:qif > 1, then
S«T —0(0,0)>6 (7)

for every positive dependence with operatioas the source operation, afidbeing the depen-
dence latency.

15

The first three constraints are exactly the same as those of the classiedbradaeduling [2, 13]. We
have added the sequential constraints to enforce sequential ordeebetuccessive iteration points in
the samd.; iteration. This ensures that all positive dependences are honorgttiate. The sequential
constraints have effect only for loop nests with more than 1 loop.

Example: For the loop nest in Fig.2 and its effective DDG in Fig.7(a), the simplified DDGais
shown in Fig.7(b). Based on this simplified DDG, a 1-D schedule can bdraoted (Fig. 7(c)). As
mentioned earlier, we have assumed two homogeneous functional uniisn @xécution latency of 1
and 2 cycles for operatiornsandb. The schedule has an initiation interval of 1 cyde=£ 1) and has 3
stages§ = 3). Also,o(a,i1) =0+ i1 *T ando(b,i1) =1+ i1 * T

4.4 Step 3: Final Schedule Computation

As explained in Section 3.3.2, we first allocate iteration points in the loop ndgtés,shen we software
pipeline each slice by applying the 1-D schedule to it.

If the successive slices are greedily issued without consideringnasoonstraints across the slices,
we obtain the schedule like that in Fig.3(a). Note that, within each slice, tharpesoonstraints are
honored during the construction of the 1-D schedule. Now, to enfesmurce constraints across slices,
we cut the slices in groups, with each group havshgumber ofL, iterations. Each group, except the
first one, is delayed by a given number of cycles as shown in Fig.3(b).

With the above procedure in mind, a final schedule can be precisely ddfynine following map-
ping function. For any operatiomin the iteration pointl=(i, is,. .., i,), the schedule timg (o, 1) is
given by

flo,1) = o(o,i1)
+ Z (g % (H Ny) «S*T)

2<z<n r<y<n+1
+BJ*((I MNo)-1*s*T, (8)
2<zx<n+1

whereN,,,1=1.

Let us briefly explain how the above equation is derived. First, let usidenthe ideal sched-
ule before pushing down the groups. For this schedule, the scheduleftiofe) as equal to that of
o(i1,0,---,0) plus the time elapsed between the schedule timeg#®f0,...,0) ando(l). Since
o(i1,0,---,0) is in the first slice, the schedule time @fi;,0,--- ,0) is simply equal tar(o, 1), the
1-D schedule time. This corresponds to the first term of the right-hand&Eguation (8).

Between iterationso(i;, O,..., 0) ando(iy,ia,...,i,), there areix*(Ns*Ng*.*N,) +
is*(N4* N5*.* N,)+. ..+, number of iteration points. These points execute sequentially and each
of them takesS*T cycles. Thus, the time elapsed between the schedule timeg,00,...,0) and

o(i1, iz, ...,1,) €quals
Y liax(J[Ny xS=T).

2<z<n r<y<n+1

16

This corresponds to the second term of the right-hand side of Equajion (8

Next we discuss the effect of pushing down the groups. Iteration pfints located in grouQ%j :
Each group is delayed b[ygj x w cycles, wherev is the delay between two successive groups. For the
example in Fig.3(b) with the 2-deep loop nest, we seeidhat (N, — 1) * S = T. In general, for an
n-deep loop nesty = (total iteration points in ail; iteration— 1) .S« T'. Thus the group where(l)
is located is pushed down by

VSEJ (I M) -DeS«T

2<z<n+1
cycles. This is exactly the third term in Equation (8).

Example. To illustrate the mapping function for the final schedule, consider theep-t®p nest in
Fig.2. From the 1-D schedule in Fig.7(c), we know that 3, 7" = 1, ando(a,i1) = 0 + iy * T'. For
any operation instancgi1, i2), we have the final schedule

fla,(i1,i2)) = i1 + iz * 3 + VQJ * (Ng — 1) % 3.

For instance, wheiV,; = 3, we havef(a, (4,1)) = 13, as can be seen from Fig.3(b).

5 Analysis

In this section, we establish the correctness and efficiency of the S&aappand its relationship with
MS. We also demonstrate the relationship between SSP and the traditiongllappescheduling.

5.1 Correctness

First, we show a simple fact in an SSP final schedule: the instances opangtion are initiated one
by one everyl" cycles. For example, in Fig. 3(b), the instances of operatiare issued in a sequence
everyT = 1 cycle: a(0,0), a(1,0), a(2,0), a(0,1), a(1,1), a(2,1), a(0,2), a(1,2), a(2,2), a(3,0),
a(4,0), a(5,0), a(3,1), ... ltis trivial to prove that such initiation pattern is true in general for dagp
loop nest with any number of operations.

A direct consequence of the fact is that no two instances of the samatiopecan be initiated at
the same cycle. This result will be used in proving the following theorem:

Theorem 5.1. The final schedule defined in Equation (8) respects all the deperglendee effective
DDG and the resource constraints.

Proof. Given a dependende — b, 6, (di,ds, ..., d,)) in the effective DDGJ = (iy,i2,- - ,i,), and

17

l" = (i1 + dy,i9 + da, -+ ,ip + dy), we show thaif (b,1") — f(a,l) > 6. Consider

f,1") = f(a,1) = o(byiy +di) —o(a,ir)+
(4)

Z (dy * (H Ny) * S«T)+

2<x<n z<y<n+l
(B)
(252 - [gpr I w-naser ©

2<z<n+1

(©)

First, if this is a zero dependence, th@) = 0, and(C) > 0. Thus, using Inequality (6), we have
F,1) = fla,1) > o(byiy +di) —o(a,iy) > 6.

Therefore zero dependences are respected in the final schedulee Gther hand, if the dependence is
positive, then it is easy to see th{at) = o(b,d;) — o(a,0) > —0(a,0), (B) > ST, and(C) > 0. So

F(,1) = f(a,l) ST —o(a,0)

>
> 4(by sequential constraints in Inequality 7)

Therefore positive dependences are also respected in the findugehe

Lastly, any two operation instances that have the same final schedule timeamesfrom the same
modulo cycle in the kernel, but they cannot be the instances of the sanetioperSince the kernel
contains exactly one instance for each operation, and is free of oesoompetition (by the resource
constraints definition in Section 4.3), these operation instances haveauwaegontention either.

To show this, consider two distinct operation instaneék) andb(1’), scheduled at the same cycle.
Then
f(,1") = f(a,1) = 0.
By combining this with Equation (9), we gé#l) + (B) + (C') = 0. Since(A) = o(b,i1) + dy x T —
o(a,i1), and(B)+(C) is amultiple ofI" (say,pxT', wherep is an integer), we havwe(b, i1) —o(a,i1) =
(—p — d1) * T, which is also a multiple of". This means operationsandb must be from the same
modulo cycle in the kernel.

As discussed above, the instances of the same operation are issuedrinNwdwo of them can
have the same schedule time. Therefarandb must be different operations. O

5.2 Efficiency

Next, we demonstrate the efficiency of the SSP approach over othemaseloop-centric software
pipelining methods from the viewpoint of computation time of the constructedisédeln particular,
we compare our approach with modulo scheduling of the innermost loop, @8)modulo scheduling

18

of the innermost loop and overlapping the filling and draining of adjaceratitars of the outer loop, re-
ferred to as extended modulo scheduling (xMS) in this paper [17, 20,lZt]us define theomputation
timeas the (final) schedule time of the last operation instance+1.

Theorem 5.2. For ann-deep perfect loop nest, suppose that MS, xMS, and SSP, find thang&tien
interval T and stage numbef. Furthermore, suppose that SSP chooses the outermostigaphich

has a trip countV;. If Ny is divisible bysS, then the computation time of the SSP final schedule is not
longer than that of the MS or xMS schedule.

Proof. Modulo scheduling parallelizes the innermost loop, whose iterations issgeeweryl” cycles.
So the computation time is

Timeps = Ny ...« Np_1 % (N, +S5 —1)T. (10)

In the best case of XMS schedule, the cost of filling and draining the pgaimcurred only at the
beginning and end of the execution of the entire loop nest, and an iteratiohipdssued everyl’
cycles. The computation time is then

Timegys = (Np* ...« Ny +S—1)T. (1)

Let o be any operation anid=(i1, is,. . ., I,) be any index vector. In our approach, it is easy to see
that f (o, 1) is maximum wher =(N;-1, N2-1,..., N,-1) ando(0,0) = S « T'— 1. The computation
time of SSP is equal to the maximg(o, 1)+1, which is

Timessp = (S+ N1 —1)xT +
Z ((Ny — 1) % (H Ny) = S*T)+
2<z<n r<y<n+l1l
(D)
{le—lJ*(([T No)-1)«S«T. (12)
2<x<n+1
(E)

It is easy to show that

(D)=(J] No)-1)x8xT. (13)

2<z<n+1

Further, under the given condition tha is divisible by.S, we know that
Aﬁ-—],::p*AS—F(S-—l)
wherep is an integer. Thus

(B)=p*((J[Na)-1*S*T. (14)

2<z<n+1

19

Combining Equations (14) and (13), we get

D)+ (E) = (p+1)*(([No)—Dx8xT
2<zx<n+1

= M= J[No)-1)xT

2<x<n+1
Substituting it in Equation (12), we get
Timessp = (([[Na)+S-1)*T. (15)
1<z<n+1

From Equations (10), (11), and (15), we have:
Timegsp = Timezyps < Timeyss.

O]

Intuitively, this theorem holds because the final schedule produce&Byavays issues one itera-
tion point everyl’ cycles, without any hole, as can be seen from the example in Fig 3(b).

The above theorem assumes tt is divisible by S. If not, sinceN; > S (according to the

discussion in Section 4.2.1) astis typically small, we can always peel off somg iterations to make
it divisible. In this way, we can assure at least the same performancatas 1S or xMS.

5.3 Relation to the Classical Modulo Scheduling of a Single Lgn

If the loop nest is a single loop€1l), the sequential constraints are trivially satisfied. Other con-
straints are exactly the same as the those of the classical modulo schedulththeXinal schedule is
f(o,(i1)) = o(o,11). In this sense, classical MS is subsumed by SSP as a special case.

5.4 Relation to Hyperplane Scheduling

Next we establish the relation between our method and traditional hypergdheduling methods [8,
18]. We rewrite the mapping function for the final schedule in Equationg8lows.

flo,1) =1l.wt+ of fset(o,1), (16)
wherel = (i1,42,--- ,iy,), “." is the inner product operator,

m= (T, (H Ny) *S*T, - Npi1 *S*T)tnmspose’
2<y<n+1

and .
of fset(o,1) = 0c(0,0) + {“J * ((H Ny)—1)«S*T. 17)

S
2<z<n+1

(F)

20

The mapping function for the final schedule consists of two parts. Thepfursl . corresponds
to hyperplane scheduling, which determines how to allocate the iteration poislisegs. Unlike the
traditional hyperplane scheduling that solves an integer programmingeprdb find out an optimal
scheduling vector, here the scheduling veetds predefined wittt andT" as parameters. The objective
is thus not to find an optimal scheduling vector, but to find an optimal initiationviaker

This scheduling vector is unlikely to be found by the traditional hyperplaheduling, because
the vector expresses resource constraints through pararfeseds?’, while the traditional hyperplane
scheduling does not consider resource constraints.

The second partyf fset(o,), enforces dependences and resource constraints at the instruction
level. In this offset, the first component is the 1-D schedule tise, 0), which enforces those con-
straints within a slice, while the second component, (F), enforces resgorstraints across slices.
This offset is not a constant determined solely by the operatidris a function of the first loop index
i1. Thus, the form of Equation (16) is similar to, but not a special case efkttown extensions of
hyperplane scheduling [8, 23, 11] . The patrticular definition of thisebfis Equation (17) is unlikely
to be derived from the above methods.

5.5 Time Complexity

Our approach consists of loop selection, constructing a 1-D scheddlepanputing the final schedule.

Loop selection is flexible and its complexity depends on the specific criteriaud_eonsider the
two criteria we presented in Section 4.2. Ué® be the number of uniformly generated sets, and
be the number of operations. In the worst case, for each loop levelpmeute the lower bound of
initiation interval that require®)(u?) time with Floyd's All-Points Shortest Path algorithm [2], and
estimate data reuse by Gauss-Seidal which requi(é&G = n?) time. Therefore, the total time in this
partisO(u? xn + UG xn3). In generaly is never greater than 6, akt is typically small. Hence the
dominant factor is still.. Thus the time complexity of the loop selection phase can be approximated as
O(u?).

The construction of the 1-D schedule is traditional modulo scheduling apidide simplified
DDG, whose complexity is generall9(u?) or O(u*), depending on the algorithm used [2]. The se-
guential constraints do not increase complexity. Computing the final skehddas not increase time,
either, as it is simple parameter substitution.

To summarize, the overall time complexity of SSP is boundedby?) or O(u*), depending on
the specific loop selection criteria and the modulo scheduling method used.

6 Extension to Imperfect Loop Nests

At instruction-level, it is common for a loop nest to be imperfect. Usually, a loegt that is perfect
in a high level representation becomes imperfect when lowered to instrdetien This is because
operations for address calculation would be introduced between the loap.le

21

Our study on scheduling perfect loop nests has set up a solid backlyrbut cannot be applied
directly to an imperfect loop nest: Not all operations appear with the sampegney now. An operation
at an inner loop level runs more frequently than an operation at an oofefdeel. Also, for efficiency,
operations at different loop levels should be scheduled with diffetsnsilich that the instances of an
operation at an inner loop level can be initiated at a faster rate, if possible.

In this section, we extend our scheduling approach to imperfect loop. réisss, we discuss how
to schedule an imperfect loop nest with a single Il. Subsequently, wesdismw the loop nest can be
scheduled with multiple lls to achieve higher execution efficiency.

6.1 Motivating Example

Fig. 8(a) shows an example imperfect loop nest. Compared with the examphg &, i differs only

in the outer loop. Suppose we choose |dopfor software pipelining. Let there be two function units,
both being able to execute any operation, and each statement be cahsisiene operation with unit
latency, except operatianwith 2 cycles.

The effective DDG in Fig. 8(b) can be simplified to the 1-D DDG in Fig. 8(®ing the same
concepts in Section 4. Based on this DDG and the resource constrairgshedule all the operations
as if they were in a single loop.

A 1-D schedule is shown in Fig. 8(d). The 1-D schedule kemel neshow: it has two kernels,
K, and K, corresponding to the two loops, aifl enclosesks. They have the same Il. Stages 2, 3
and 4 contain the innermost loop operations. In general, we denote thadathker of stages for the
innermost loop as),,. For this exampleS,, = 3.

According to the 1-D schedule, ideally, &lf iterations can be overlapped with the initiation interval
of T = 3 cycles, and each of them is sequential, as shown in Fig. 9(a). For mnitijasf representation,
we assume the operations before the innermost leol,andc, have an index vector liké;,0), and
the operation after the innermost logp,has an index vector likg;, No — 1).

In general, even,, number ofL, iterations compose a group. After pushing down, we achieve
the final schedule as illustrated in Fig. 9(b). To understand it, one may thénprtcess as follows: at
the beginning, ar.; iteration is issued every cycles. After all the iterations in the first group have
entered their innermost loop, they have filled the pipeline, and will hold theuress and continue
running sequentially. All the other iterations stall in this period until the firetigrdrains the pipeline
and releases resources. At that time, they get resources and cdotisgae. Such a process repeats
until all iterations finish. Note that the draining of a previous group and thérig of the next group
are overlapped.

Such a way of execution leads to repeating patterns in the final scheduls.itTcan be rewritten
into a compact form shown in Fig. 10. Like the perfect loop nest casegirigposed of a prolog, the
repetition of an OLP and an ILES, and an epilog, except that the prolog lisnger a part of the first
OLP. Each of them still consists of multiple copies of the kernel.

22

a
Lyfor (i1=0; 1 < Ny; iy ++){ <o,o#
b

a. W[il]zl:
b: U[41][0]=W[1]; <0,0
c: V[i1][0]=U[1][0]; <1,0>
Ly for (i2=0;i2 < No; ia++)}{ <0,0 COD
d: Uliy + 1[i2]=V] ix][i2]+ Ul][ia]; '
ex V[ir][iz + 1]=U[4; + 1][ia]; <0,0{ ><0:1>
}
o WL =V Ne]; T<0’0>
(}é;) An Example Imperfect Loop Nest (b) The Effectlfve DDG at

Ly
a
<o>{
b

<0>
<1> stage index— 5//\N4”\°3 2/%\1 6/\\’
<0 @ modulo cycle 0 | f a
1 b
<0> <e / A |e|d
Ky S,=3
K

l<0>

f n %=6
(c) The Simplified (d) A 1-D Schedule
DDG at L1

c

Figure 8: An Imperfect Loop Nest Example

6.2 Assumptions

We assume an imperfect loop nest model in Fig. 11, where eachllgdyas two sets of operations,
OPSETA, andOPSETB,. For the innermost loo@.,,, OPSET A, = OPSETB,,. For any loop
L, its trip countV, > 1.

If an operatiorp is in eitherOPSET A, or OPSET B,, it is said to beat loop levell,, denoted
aslevel(o) = x.

In general, an operation @PSET A, has an index ofiy, 2, - - ,i,). We can expand it to be an
n-D vector (i1, 9, -+ ,i,,0,---,0) for convenience. Similarly, for an operation @PSET B,,, we
can expand its index to be anD vector (i1, g, - , iz, Npy1 — 1, , N — 1).

6.3 Solution with a Single Initiation Interval

Since any operation can be associated witmdh index vector, a dependence distance vector is also
an n-D vector; based on its value, the dependence can be classified as, asitive, or negative
dependence. With this fact, the simplified DDG is defined in the same way agbefo

Our approach remains to have the same three steps. Loop selection basedllzlism is the same
as before. Loop selection based on data reuse can be the same as eestfmate only the data reuse
of the innermost loop, which is most frequently executed, and forgetpbeations at the outer loop

23

Group 0 Group 1
K_JH /—JR
6 1 23 4 5.

i
o ([a(0.0) ; ot
4 [p0O) |1=3 :
<« An L, iteration is
a(1,0) : :
c(0,0)[b(1,0) issued every T cycles.
o a(2,0)] :
= c(1,0)[b(2,0)
U | [d(0,0)
aG0)
c(2,0)/b(3,0) :
Group 0 Group 1 e(0.0)d(1.0) All the L iterations in
— 7 . the first group enﬁer their
a((()JO) ! 2; 3 4 5 iy e(L.0)[d(2,0)| innermost loops from this cycle.
b(o:o) : They continue running
d(.1) €(2.0)] sequentially and holding resources.
a(1,0) . . S
c(0,0)[b(L.0) Other iterations stop issuing to
: . : =/ [eODATY avoid resource canflict.
a0 m :

c(1,0)b(2,0)

d(0,0) @, D[AED)
a(3,0)
c(2,0)[b(3,0) :
€(0,0)[d(1,0) —_— The iterations in the first group
CERIICOI. Continue ss.img &t the same dime
e(1,0)[d(2,0) - 0); o) jing ¢ :
a(s, a4, :
c(4,0)|b(5,0) c(3,0)[b(4,0) :
0.0 e2,0)[d3,0) . 0)5
a(o,
c(5,0) Q C(@.0)b(5,0)
e, DAL ©(3,0)[d(3,0) B d(3.0)
1st slice c(5,0)
e(1,1)[d(2,1) e(4,0)|d(5,0) e(3,0)[d(4,0)
e(2,1)|d(3,1) e(5,0) e(4,0)[d(5,0)

e(3,1)[d(4,1) d(3,1) e(5,0)

e(4,1)d(5,1) e(3,1)]d(4,1)

BERL

2nd slice

eI @ DdG.L)

e(5,1)

3rd slice

Bojid3

\J
Cycle Cycle
(a) The Schedule before Pushing down (b) The Final Schedule

Figure 9: The Schedules before and after Pushing down (Asstme 6 and Ny = 3)

levels. Hence we focus on the next two steps, namely, 1-D schedul&uiits and final schedule
computation. We assume the outermost ldgps chosen for software pipelining.

24

Prolog a0
(1 partial kernel bo,0)

Li: for (i1=0;i1 <Ny 11+=3) {

i o, a(,+10)] ~ Right part: continue issuing nely;, iterations.
C(i,0) |D(i,+10) Left part: drain previoug, iterations.

€(11-2N;-1) [d (i, -1N, -1)
i o a(i; +20
(i1.-3,No -1) C(i,+10) b((i11 +22‘0))

€(i,-1N, -1 d(i1,0)

OLP fi1-2N;-1) a(i; +30)
(3 kernels) C(i1+20)| b(i, +30)
€(i,,0) [d(i, +10)

Stop issuing nevi,
. . . iterations after this cycle
Lz: for (i2=1;i2<Ny 12+ {

~ A more compact loop body
. if the inner loop is allowed to

3 partial kernels

‘;V:Pmsl}ffdetso € +1i2-9dl1 223 ™ have its own II:
ILES | make the inne _ €11 +1i2-1 d(?l +2j2-)
(the entireLz) { oop run . dliip) [[€(1+2ir-)
sequentially i (](I1,|2) €012 +2)2-)) e('1v|2) d('l*UZ)
eachL, iteratio)

€(i1i) [d(iy+1i2)

} /lend L3
}end L{
fi1-aN, -3
€(i1 2N, -)[d(i; -1N; -)
Fis-3No -9
Epilog 2N (11N, -9

(4 partial kernels)

fli-1.N-)

Figure 10: The Rewritten Loop Nest Representing the Final Schedule

6.3.1 1-D Schedule Construction

The 1-D schedule is now composedwoikernels, each corresponding to a loop (See Fig. 12). Kétpel

is the kernel for loop.,.. Let f, andl, be the first and last stages of it, respectively. Then it has totally
S =l — f. + 1 number of stages, including those of its inner loops. In gendrak S, 1 < --- <

Sy < S7. All kernels have the same initiation interval Bfcycles.

Consistent with the nesting relationship of the l00fs, containsK, ;. Operations at an outer
loop level are scheduled outside the stages of the inner loops.

As a convention, the 1-D schedule time is defined with the outermost loopl K€irees a reference.
That is, for any operation, if it is scheduled into modulo cyclg(0 < ¢ < T') in stagep, then its 1-D
schedule time ig(0,0) = p * T 4 ¢q. We also represent the stagesasge(o) = p.

The 1-D schedule needs to respect the following constraints:

1. Modulo property, dependence constraints, and resource datstthey remain the same as those

25

Ly: for (i1=0; i1 < Ny; i1++) {
OPSETA,
Lo: for (1'2:0;2'2 < No; Z'2++) {
OPSET A,

L,: for (i,=0; iy, < Ny; in++) {
OPSETA,,
} llendL,,

OPSETB,
} llend Ly
OPSET B,
} llend L,

Figure 11: The Imperfect Loop Nest Model

stage index>_l1 Ix In fn fx 1 fi=0
| | | | | | | iT cycles
_ = Pl
Ky S, stages for loopL,,
KX/ / S, stages for loopL,
Kn/ S stages for loopL,
Figure 12: The 1-D Schedule with a Single 1l
in Section 4.3.
2. Sequential constraints:qif > 1, then for every positive dependence witlas the source opera-
tion, § being the dependence latency, ang level(o),
(lu+1)*T —0(0,0) >6 if z =norstage(o) > ly11,
(18)
for1*%T —0(0,0) >0 otherwise.
3. Kernel nesting constraints: (§ > ls > --- > 1, > fn--- > fo > f1, and (ii) for any

operationo, if it is at loop level L,,, thenstage(o) € [fn,l,]. Otherwise, suppose it is at loop

level L,(x < n), thenstage(o) € [fz, fo+1) if 0iSINOPSET A,, or stage(o) € (lp+1,1z] if 0
isinOPSETB,.

The sequential constraints conservatively require operatiortomplete before any possible use of
it is issued, and thus the positive dependence from it must be respected.

The kernel nesting constraints express the nesting relationship of thel&keand conservatively

restrict the operations i@ PSET A, (OPSET B;) to be scheduled before (after) the inner loop kernel
Ky,

26

6.3.2 Final Schedule Computation

For any operatiom in an iteration pointl=(i1, is,. . ., i), the schedule timg(o, 1) in Equation(8) can
be generalized as follows:

flo,l)y = o(o,i1)+ Z (ig * ctimey) + push(o, 1) * (ctime; — S x T) (19)
2<z<n
wherectime,, is the computation time of ah,, iteration in the ideal schedule where the outermost loop
iterations are overlapped at the initiation intervallofycles without delay, angush (o, |) * (ctime; —
Sy = T') is the total delay thai(l) is pushed down to enforce resource constraints in the final schedule.
In this delaypush(o, 1) is the total number of ILESes that appear befgile due to the pushing-down,
andctime, — S = T is the length of an ILES.

Ctime, can be recursively defined as

ctime, — { (Sy — Sz+1) * T + Nyj1 * ctimegy; if x <mn, (20)

Sy x T otherwise.

The total ILESes that appear befar@) due to the pushing down is found to be as follows:

maz (0, L%J) if (i, ,in) = (0,...,0)
andstage(o) < fn.
min(V@;lj , Vl*st“gf")""J) if (in, - ,in) = (N2 —1,..., Ny — 1)

andstage(o) > 1.

push(o,l) = (21)

L%J otherwise.

Let us briefly explain the definition. The operation instan¢b is in group B—” In general,

the total number of ILESes appearing before it due to the pushing-do%iJs However, there are
exceptions when(l) is in the prolog, an OLP, or the epilog.

If o(l) is in the prolog, it is not pushed down at all. If it is in the right part of an Qh&t fills
new iterations, the total number of ILESes equ@&%] Takea(5,0) in Fig. 9(b) as an
example. We have, = 5, stage(a) = 0, f, = 2, andS,, = 3 according to the kernel in Fig. 8(d).

Therefore, there is a total ¢FPt2-2t1| = 1 ILES appearing before(5,0). To summarize, we can
i1 +stag;(o)ffn+1

n

simply exprespush(o,|) asmaz(0, L J), which is the first case in Equation (21).

Second, ifo(l) is in the epilog, the total number of ILESes ké\’é—;lJ If it is in the left side

of an OLP that drains previous iterations, the numbek%j“’)_l”] Take f(2,2) in Fig. 9(b)

®It is easy to see from Fig. 9(b) or Fig. 10 that without the ILESes, thé $icteedule is nothing but a modulo schedule,
where each iteration ha = T cycles. That implies that the length of an ILES equatsne; — S1 * T cycles.

27

as an example. We have = 2, stage(f) = 5, 1, = 4, andS,, = 3 according to the kernel in
Fig. 8(d). Thus the total number {sz%J = 1. That s, it is delayed by one ILES, as can be seen
from Fig. 9(b). Note that the ILES that delays it is the second ILES, refitht one, which is always
before it and not due to the pushing-down, and thus not accountednfahort, the total number is
min({Né;lJ , VIJ“St“gi(O)_l’LJ), which is the second case in Equation (21).

Theorem 6.1. The final schedule defined in Equation (19) respects all the depesesienthe effective
DDG and the resource constraints.

This theorem states the correctness of the final schedule. The praesenped in the appendix.

6.3.3 Relation to the Scheduling of Perfect Loop Nests

When all theOPSET A, andOPSET B, (x < n) are empty, the loop nest in Fig. 11 is perfect. Then
h=lb==l,>fi=--=fo=f,% =5_1= - =8 = 51, and all the operations
are in the innermost loop. Consequently, the sequential constraints imalitg18) are equivalent to
Inequality (7). And the kernel nesting constraints are trivially satisfied.

For the final schedule, since any stage is withip, [,,], we getpush(o,l1) = [g—iJ Then the
schedule time function defined in Equation (19) is equivalent to that in Equég)o

In short, when the loop nest is perfect, both the 1-D schedule and thedimedule constructed by
the method in this section are completely the same as those by the method in Sectidhig sénse,
scheduling of an imperfect loop nest subsumes that of a perfect I@@aga special case, as expected.

6.4 Solution with Multiple IIs

So far, we have assumed a single initiation interval for all the loop levelscAiewe better performance,
however, it is desirable to have multiple lIs. Intuitively, the operations ahaer loop level run more

frequently than those at an outer loop level, and therefore should rursinadler 1l to shorten the
execution time, whenever possible. This leads to the interesting topic of muttiddsiling, which is

also useful in practice.

Fig. 13 shows the general form of a 1-D schedule. Now each ké&fpéhs its own initiation interval
of T, cycles. In generall} > --- > T,,_1 > T,. Although K, takes onlyT,. cycles, the other cycles
below and above it are empty, without any operation, as illustrated by thieghmdaces in the figure.
We call themnull cycles

The 1-D schedule time is still defined with the outermost loop kekhehs a reference. That is, for
any operatiory, if it is scheduled into modulo cyclg(0 < ¢ < Ty) in stagep, then its 1-D schedule
time iso(0,0) = p* Ty + q.

The 1-D schedule needs to respect the following constraints, whichnaggtansion of the con-
straints for the single-1l case:

28

stage index—1I;

. ,
Legend: 2 null cycles

Figure 13: The General Form of the 1-D Schedule with Multiple IIs

N
/'
2
e
7

. NY A
stage index — & 47 3

R
f AT I
U000
A

0
modulo cycle 6| ! 272227 1@l

1—-|

ol [eld]l

Kl/ S,=3

Kn $,=6

Figure 14: A 1-D Schedule with 2 lIs for the Loop Nest in Fig. 8(a). Bhare 2 null cycles above
K,.

N Y
[EEY

1. Modulo property:
o(o,i1) +T1 = o(0,i1 + 1) (22)

2. Dependence constraints: for every dependénce- o9, d, (k)) in the simplified DDG, letr =
min(level(o1),level(02)), y = maz(level(o1),level(o2)). Supposer(o1,0) = p1 * T1 + q1,
ando(02,0) = pa x T} + g2, where0 < ¢1, g2 < T1. Then

k«Ty+@p2—p1)*Th+q@—q >3 ifo(o2,0) > 0(01,0),
(23)

k+Ty,+ (pa—p1)*Te+q—q1 >3 otherwise

3. Resource constraints: At any modulo cycldsin, no hardware resource is allocated to more than
one operation.

4. Sequential constraints: +if > 1, then for every positive dependence witlas the source opera-
tion, § being the dependence latency,

(lpy+1)«Ty —pxTpy—qg>06 fz=norp>liy,
(24)

Jor1%Tpy —pxTpy —q>96 otherwise.

29

wherex = level(o), o is scheduled into modulo cyclgein stagep.

5. Kernel nesting constraints: (i) > o > --- > 1, > fno---> fo> fr,andly > 15 > --- > T,
(i) for any operationy, ifitis at loop levelL,,, thenstage(o) € [f,, l,]. Otherwise, suppose itis at
loop levelL,(x < n), thenstage(o) € [fz, fot1) if 0iSINOPSET A4, or stage(o) € (Ig+1, 4]
if oisinOPSETB,.

The final schedule is hard to be described by a mapping function. Iteaofsidered to be con-
structed in this way: first, us&; to construct the final schedule as usual. That is, rewrite the loop nest
into a parallel loop nest witlk’; as the kernel. Itis composedwofoops,L}, L}, - - -, L],. Each loopL/,
corresponds to the original lodp,. Second, remove the null cycles. At the loop leveL&f only kernel
K, is involved. For example, in the final schedule in Fig. LO,is composed of<;, and L}, involves
only K> (The stages of this kernel permute, though). Therefore, the nullcirctle final schedule can
be removed such that i, the kernel is “shrunk” fron; into K, as illustrated by the inner loop in
Fig. 10. In practice, the two steps can be combined: only the operations wWithinvolved kernel is
generated. The null cycles above it and below it are simply not produbieel dependences between
the operations in this kernel and those outside it have been considexssheatively by the dependence
and sequential constraints, such that without the null cycles, the depessiare still respected in the
final schedule.

EXAMPLE: Fig. 14 shows an example kernel nest with two llIs for the loop nest in &). 8Vith the
outermost loop kernek(; only, we have constructed a final schedule as shown in Fig. 10. Cléearly,
L}, 2/3 of the total cycles are null cycles and unnecessarily wasted. Aftiekig K to Ko, we reach

a more compact schedule. See the annotation to the right of the figure. Mosvate two initiation
intervals: an outer loop iteration is issued at the Il of 3 cycles, but afteriag L}, an inner loop
iteration is issued at the Il of 1 cycle. The transition is natural without amgiap handling of the
pipeline.

The correctness of the final schedule is shown in Appendix, which alst@inis an algorithm for
constructing a 1-D schedule with multiple lls, and a brief introduction to loopitieg (code genera-
tion).

As expected, scheduling with multiple Ils subsumes scheduling with a singéedIspecial case.
When all lls are equal to a single value, sayall the constraints for 1-D schedule construction become
equivalent to those in Section 6.3. The two final schedules are of cthessame, since their basic
building blocks, the 1-D schedules, are the same and have no null cyceEadve.

7 Experiments

The SSP framework, including loop selection (with parallelism as the critergmmeduling, register
allocation, and code generation, was implemented in the ORC 2.1 compiler fak-edrchitecture.

The resulting code is run on an 1A-64 Itanium workstation with a 733MHZessor, 2GB main mem-
ory, and 16KB/96KB/2MB L1/L2/L3 caches, and the actual execution time izsomed. Parallelism

30

C++/Fortran Source Loop Nes?

gfec/gfecc/foo | ooy

‘ Loop Selection ‘

puz U0l

<
©
<
I
‘E' -
Ex
3
I
py)
=

< Memory

g < -1 Dependence @@

(I';I)'l Analysis Code Generation
[=%

i

Consistency,
~| Maintenance

4

Assembling and Linking

Intermediate Kernel Nes

Object code

Itanium

Register Allocation

pu3 oeg

! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
1 :
! I
1 ! :
Middle WHIRL)y, ! . :
\ ''| 1-D Schedule Construction Itanium Assembly Code |
N |
N ! !
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
|

|

|

Figure 15: Compile Flow

serves as the first objective in loop selection, and ties are broken byaleta, which is estimated
manually by considering an abstract cache level with a line sizaofording to Section 4.2.2.

Fig.15 shows the compile flow. The intermediate representation of the ORC cantgiteed as
WHIRL, has 5 levels: Very High, High, Middle, Low, and Very Low levels, with ie&sing details and
machine dependent information. The code generator translates thedeM/HIRL to its own internal
representation (CGIR) that matches the target machine instructions. Oumiergkgion involves work
from High WHIRL to CGIR.

At High level, it is relatively easy to get the multi-dimensional memory deperel@rformation.
This information is transmitted to the Very Low level throughout the proceddiddle and Low lev-
els, where many memory-related optimizations may happen. The information basctnsistently
maintained during these optimizations.

At CGIR level, all instruction-level details have been exposed. Thetergiependences, and the
memory dependences inherited from the High level, are combined togethald@ momplete DDG.
Based on this DDG, a loop can be chosen either manually or automatically by tastimarallelism.
Then for the selected loop, its-D DDG is simplified to be 1-D. Based on the 1-D DDG and the
underlying resource constraints, a 1-D schedule is constructed with mulsiple is represented as a
multiple-Il kernel nest, or more exactly, a multiplekitermediate kernel nestt is intermediate in that
variables in it have not been assigned registers yet. The register allaeates on this kernel nest and
outputs aegister-allocated kernel nesErom it, the code generator generates the 1A-64 assembly code.
The assembly code is then assembled, linked, and run on the Itanium machine.

The scheduling algorithm is left to the appendix. Register allocation andgmteration are based
on our previous work [Rong et al. 2005; Rong and Douillet et al. 2004th minor extension to

31

accommodate our generic loop nest model in Fig. 11.

In this work, we report performance results for two loop kernels froiargific applications as well
as loop nests extracted from SPEC2000 floating point benchmarks. djhé&donels that we consider
are matrix multiplication (MM) and 2-D hydrodynamics (HD) modified from thedrimore Loops.
We also apply three loop transformations, viz., loop interchange (6 differrsions), loop tiling and
unroll-and-jam, for MM and test each independently. The cache misseaeasured for performance
analysis using the 1A64 performance monitoring tool, Pfmon.

We extracted a number of loop nests from SPEC2000 floating point benkhintaach loop nest
is wrapped as a function and called from the main routine with appropriatenargts. The function
body, the loop nest, is compiled using our modified ORC compiler while the reeedienchmark is
compiled using gcc. This enables us to focus only on the implementation of SSPQREG compiler.
The benchmarks are executed with the reference inputs of SPEC.

The loop level to be software pipelined by SSP can either be chosen lmpoyniler, or manually
specified using a command line option. Lt be the loop level. We us8SP — L to represents the
first case wheré . is chosen by our compiler, ariS P- L, the second case where it is specified.

To verify the accuracy of our loop selection methods, SSP is applied tg fasible loop level of
a loop nest. For each case, we compare the performance of the SSReddougp nest (referred to as
SSP), with that of modulo scheduling (referred to as MS), and that withaitware pipelining at all
(referred to as Serial). Specially, for the tiled (unroll-and-jammed) MNiigbeefers to the original loop
nest without tiling (unroll-and-jam) or software pipelining being applied, whif&and SSP refer to the
software pipelined schedules after the loop nest s tiled (unroll-and-jamm&ihas been implemented
in the original ORC distribution based on slack scheduling [14]. To testfteet@eness of SSP in the
presence of other optimizations, the compiler optimization level is set to O3 ffthization level) for
all of Serial, MS, SSP.

Table 1 summarizes the average speedup for the loop nests tested. (SgadEfined as the execu-
tion time of a Serial loop nest divided by that of the optimized version (with MSyith SSP applied
to the selected loop level).

7.1 Performance of Kernel Loops

For MM, SSP always achieves the best speedup, with appropriate lelbking selected. Whether
we apply loop interchange, tiling, or unroll-and-jam or no loop optimizatiorilabar method outper-
forms MS. Being able to work on a more profitable loop level, which is probablguter loop level,
allows the software-pipeliner to get around strong dependences or lithealsse opportunities of the
innermost loop and to make use of the better properties of the other loopspebsible. We discuss
the performance in greater detail in the following subsections.

32

| MS | SSP || SSP over MS

MM-ijk 0.91| 3.04 3.33
MM-ikj 0.94| 45 4.79

MM- jik 0.98| 3.5 3.57

MM- jki 0.88| 4.43 5.02

MM- kij 0.97| 254 2.62

MM- ki 0.96| 2.51 2.62

HD 1.14| 1.22 1.07

MM- jki with loop tiling 2.14| 4.29 2.01
MM- j ki with unroll-and-jam|| 6.19 | 10.17 1.64
168.wupwise loop 1 0.91| 0.88 0.97
171.swim loop 1 0.83| 0.83 1.0
171.swim loop 2 1.37| 1.04 0.76
171.swim loop 3 1.0 | 0.97 0.97
173.applu loop 1 1.15| 1.77 1.54
173.applu loop 2 0.97| 1.94 1.99
173.applu loop 3 1.16| 1.66 1.43
173.applu loop 4 1.11| 2.23 2.01
173.applu loop 5 1.11| 2.49 2.24
173.applu loop 6 1.14| 2.22 1.95
173.applu loop 7 1.26| 1.70 1.35
173.applu loop 8 0.81| 1.06 1.31
301.apsiloop 1 0.99| 1.86 1.87
301.apsi loop 2 1.03| 4.07 3.97

Table 1: Average speedups

7.1.1 Matrix Multiply

We run SSP and MS on all the permutations of the matrix-multiply loop nest. TheHlodp is
Ali][j]+ = Bli][k] = C[k][j]. The order of the loops in the nest are referred tojasikj, jik, jki, kij,
andkji. Each loop order has different parallelism and data reuse potentiapeFf@mance results are
depicted in Figure 16. We show the speedups achieved by MS and S&Fdmnt matrix sizes.

Forijk andjik, the innermost loop is constrained by a recurrence cycle which limits theeaftfic
of MS. Consequently, applying SSP to other loop levels clearly achieves pperformance. The up-
ward tendency of the performance curves by software pipelining Igaquggests that with the increase
in the matrix size, the advantage of SSP’s ability to retain data reuse beconegnportant. Fotk;
and;ki, the limited data reuse potential of one of the matrix operand of the innermasptevents MS
to run efficiently when the size of the matrix increases. However, by smtpigelining the outermost
loop, such restriction is avoided. Fbij andkji, all the loop levels show less data reuse potential or

33

Speedup
w b
Speedup

o B N W M 01 O N

Speedup

Speedup

MM_ijk MM_ikj

6 — —
SSP_L1* —— SSP_L1* —— |

5| SSP_L2 e SSP_L2 e
SSP_L3(MS) —=— SSP_L3(MS)—e—

\/\/\/\/\

0 L L L L L L L L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
N N
MM_jik MM_jki

6 — : —
SSP_L1* —— SSP_L1* ——]
5| SSP_L2 e | SSP_L2 oo
SSP_L3(MS) —=— SSP_L3(MS)—e—

....... LV

Speedup
O P N W >N 0 O N

0 L L L L L L L L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
N N
MM_Kij MM_Kji

5 — 45 ‘
SSP_L1 e SSP_L1 e
4.5 SSP_L2% ——— 4 SSP_[2% ——=— -
4l SSP_L3(MS)—=— | s SSP_L3(MS)—=— |
3.;-) g— 3t
25 § 257
' n 2|

15¢
[T — e oo R S
05 05
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

N N
Figure 16: Performance of Matrix Multiply, wher€ « N is the Size of an Array

parallelism, limiting the speedup of all methods. However, software pipelinitigeofmiddle level still
exhibits the best performance.

7.1.2 Tiled and Unroll-and-Jammed Matrix Multiply

Next we consider a classic tiled matrix multiply code [28] in which loop ordeikis and loopsi and
k are tiled®. The order of the loops is determined during tiling for best data locality. elenty this
order is considered in this experiment.

Figure 17 shows the performance for tiled matrix multiply with a constant tile sizéafnd the

5This is the equivalent row-major code. The column-major ordétjsand loopsk and; are tiled.

34

“E T T T Tiing e
SSP_L3* —— =

12 SSP_L5(MS)—=— 1
20t

15+

Speedup

10 -

. I 0 * !
0 100 200 300 400 500 600 700 800 90010001100 0 100 200 300 400 500 600 700 800 90010001100
N N

Figure 17: Tiled MM Figure 18: Unroll-And-Jammed MM

array sizes being multiples of it. After tiling, there is drastic improvement in sgedde to better data
locality. The loop nest becomes 5-deep now. With software pipelining apjaidte innermost loop,
the performance is reduced by 38% on average. This is due to the adeabsociated with the modulo
schedule. Instead, when scheduling the third loop level, this overheadaddized by the benefits
from the longer execution time of the groups, and the natural overlappithg @raining and filling of
adjacent groups.

Lastly, we consider an unroll-and-jammed version of MM (Figure 1&)nroll-and-jam[6], also
known asregister tiling, attempts to match the available parallelism in the application with the hard-
ware resources. It is usually performed upon tiled code to further expéagister level data reuse.
Like in tiling, after unroll-and-jam, software pipelining of the middle loop levedulés in significant
improvement.

The advantage of SSP scheduling shows clearly in these two experiméhtsugh the loops tested
are perfect in high-level language, they become imperfect in assembly Adter tiling and unroll-and-
jam, the depth of the whole loop nest becomes deeper (from 3 to 5), anchdrdoonps have small loop
counts. And thus it becomes important to efficiently schedule the operataires¬ in the innermost
loop. It is also important to offset the overhead of initialization, finalizatiord filling and draining
the pipeline. Due to the small trip count of the innermost loop, such ovesheaa significant impact
on the performance. By scheduling a middle loop level, software pipelinin@ffset these overheads
effectively. The relatively longer execution time of a group outweighs teeleead. On the other hand,
the operations at every loop level have been considered during hddsie construction such that each
loop level has the smallest possible initiation interval. In contrast, MS mainlg edo@ut the efficiency
of running the innermost loop operations and its software pipelined kimaieties only such operations.

7.1.3 Modified 2-D Explicit Hydrodynamics

The benchmark kernel considered is a 2-D explicit hydrodynamic coddiewfiom Livermore loops.
In this experiment, we varied the upper boukdsandjn, respectively, of the outer and the inner loops.

Figure 19 shows the performance for the hydrodynamics benchmankvhe: jn. Since there is
no recurrence in either loop level, data reuse will play a more important rdheiperformance. When

35

1.2 . : , !
SSP_L1* =——
115+ SSP_L2(MS)---sw---er 4

11r
1.05}

1 J
0.95 . /

Speedup

0.9
0.851

08 L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
kn(jn)

Figure 19: Hydrodynamics

the loop trip counts are smaller than 400, the outer loop is more beneficial. \dgwath an increase
in the matrix size, the inner loop is better.

7.2 Performance of SPEC Loops

There are many loop nests in the SPEC2000 floating point benchmark®veliounany of them could
not be software pipelined at an outer loop level due to either sibling innpsjaw function calls inside.
Other loops have non-rectangular iteration spaces. We do not cottséderloops.

In the loop nests extracted for experimentation, most of them have too estemtition time and
small loop counts (typically, less than 50 for a loop) to show meaningfubpmdnce improvement.
However, they are perfectly fine for testing the correctness andtigéfaess of our register allocation
approach and heuristics, which we have reported in [Rong et al. 2B@5¢ we report the performance
of 14 loop nests fron168. wupwi se, 171. swi m 173. appl u, and301. apsi , which have loop
depths varying from 2 to 4 and have reasonable trip counts.

The results have been summarized in Table 1 for the appropriate chogdryeb Here we study
the results in more detail.

For 168.wupwise, there is a 3-deep critical loop nest. Scheduling the midifiddeel results in
a speedup of 0.97 over MS(i.e., a slowdown from 86.127 to 88.668 sgcoBdftware pipelining the
outermost loop is possible, but register allocation method fails due to exe@ssiger register pressure.

For 171.swim, the table has shown the speedups for several loops.ashexecution time within
them is 32 seconds. Software pipelining the outer loop levels results in perfce slowdown. How-
ever, in 173.applu, it improves performance by 30%-120%.

The two loop nests in 301.apsi have significant speedups when schipthdirouter loop levels:
the first loop nest has good locality available in the outer loop, while the ddoop nest has strong
dependence cycles in the inner loop level.

The results suggest that any loop level, including the innermost one, nihg best or worst choice
for software pipelining. Again, software pipelining should not be appliedily to any loop level and
loop selection is necessary, and the ability of SSP to exploit ILP from atnaagbloop level is important.

36

100%

L B L3 Misses
80% O L2 Misses

[L1 Misses

60%

40% -

Percentage

20%

0% -
Serial MS SSP L1 SSP L2 SSP L3

Figure 20: Percentages of the Three Level Cache Misses iniMMvith Matrix Sizes 1024*1024

7.3 Performance Analysis from Cache Misses

In this section, we investigate the cache effects of the different methatés somparison, with MM
as an example. To correctly link the cache behavior to performance, ecetaeevaluate the relative
weight of the cache misses at each cache level. Fig. 20 shows the relaigfg of the cache misses at
the 3 cache levels in the Itanium processorifor matrix multiply. Almost all cache misses happen at
L2 and L3 caches for every method. This is the common trend in all the bemnkfiteated.

This is a paradox as the first sight, since a cache miss at a low level musideddy a cache miss at
a high level, and thus L1 cache misses should be higher than L2. Howhgsetpes not hold for Itanium
architecture. For this architecture: (1) There are separate L1 instmuazihe and L1 data cache. And
a floating point memory operation bypasses L1 data cache. Since oumeepts are performed for
scientific applications, and have only floating-point memory operations,achec misses are mainly
caused by instruction fetch. (2) The loop nests experimented are smaliéinsize. Although SSP
suffers from code expansion due to the lack of hardware suppodetierated code is small enough to
fit in the 16K bytes L1 instruction cache. Therefore, practically thereoahg a few instruction cache
misses at the start of the loop nest.

From the above discussion, it is clear that we must focus on L2 and L8 aatsses in order to
correctly explain the performance. For these experiments, we fix the maexas 1024 1024. The
L2 and L3 cache misses (normalized with respect to the L2 and L3 cachesroidbe serial code) are
shown in Fig 21 and 22, whejfeki +T andj ki +UJ refer to the tiled and unroll-and-jammed MM,
respectively. They partly explain the performance improvement achlewedftware pipelining a good
loop level.

For all matrix multiply benchmarks, except the tiled and unroll-and-jammed ves;sthe L2 and
L3 cache misses in SSP schedules at the outermost loop level are sidlyifiwanr than those for MS
schedules. These numbers reflect that software pipelining exploits tatgefocality by selecting an
appropriate loop level.

The increase in L2 and L3 cache misses in SSP schedules at the middle Idopslévethe tiled
and unroll-and-jammed benchmarks, at first, seems counter-intuitive &St echedules have better
speedups than the MS schedules for these benchmarks. Howevesédritlecases, MS affords cost in

37

1.40 T
1.201
1.00+
0.80
0.60
0.40

Normalized Cache Misses

0.20

1.

ik ik ik ki ki kji jki+T jki+UJ

0.00

Figure 21: L2 Cache Misses

1.20

W Vs
SSP_L1
SSP_L2{
SSP_L3
SSP_L5

1.00F mrm RIT RIT R0 RO OB

EOOO
[}

0.80-

0.60

0.40-

Normalized Cache Misses

0.20

.. |

ik ik ik jki ki ki jki+T jki+Ud

0.00
Figure 22: L3 Cache Misses

frequent pipeline filling and draining, and fails to schedule outer loopatipers more effectively. The
aggressive parallel execution of several iterations in SSP causesautre pressure, leading to larger
cache misses. The increase in cache misses affects the performaciceffSct is overcome partly by
the increased parallelism in SSP schedules: when there are enougériddepinstructions that can be
executed, the latencies due to cache misses can be masked. On the adh#&réhbianium architecture
stalls only on uses. This also helps to overcome the effects of increaseel wesses. The results also
suggest that software pipelining tiled loops should consider the tile size it @®gative cache misses,
which we leave for future study.

8 Related Work

Most software pipelining algorithms [15, 2, 14, 25, 24] focus on the imost loop, and do not consider
cache effects. The most commonly used method, modulo scheduling, isia spse of our approach.

A common extension of modulo scheduling from single loops to loop nests, inglhdrarchical
reduction[17], Outer Loop Pipelining20], andpipelining-dovetailind27], is to apply modulo schedul-
ing hierarchically in order to exploit the parallelism between the draining #mtjfphases of adjacent
outer loop iterations. In scheduling a loop, the DDG of its own is used.

In comparison, our method considers cache effects. The DDG is allvaylsD simplified DDG
for the chosen loop, whatever loop level is currently under schedudlihg.draining and filling phases

38

are naturally overlapped without any special treatment.

Loop Tiling [28] maximizes data locality, instead of parallelism. Loop unrollinglidages the loop
body of the innermost loop to increase instruction-level parallelism. Both rdetiie complementary
to SSP.

One question is:What is the difference between our method and the one that intercharges th
selected loop with the innermost loop, and then software pipelines the nemnimstdoop with MS?
First, it may not always be possible to interchange the two loops. For exaihpldependence in a
3-deep loop nest has a distance vectoflofl, —1) and our method selects the outermost loop, it is
not legal to interchange this loop with the innermost loop. Second, evenyifatteeinterchangeable,
the resulting schedules have different runtime performance due toetitffdata reuse patterns. And
for this interchanged loop nest, the choice for a good loop level might stithhde by considering
and comparing all the loop levels. Third, in some situations, interchange mayhe choice, as we
discussed in Section 3.1. Lastly, loop interchange can be beneficial tasS8&ll.

Another question isWhat is the difference between our method and the one that tiles the selected
loop, and then software pipelines the new innermost loop with M8#s case, the trip count of the new
innermost loop is usually small as a result of tiling, and it is critical to hide theh@aal of initialization,
prolog, epilog, and finalization of the software pipelined innermost looftw@&ce pipelining an outer
loop leads to less overhead, as discussed in Section 1 and confirmed kpénenents with tiled and
unroll-and-jammed MM.

Unroll-and-jam [6] has been applied to improve the performance of saétpipelined loops [5].
The outer loop is unrolled but it is still the innermost loop that is softwarelpip@. The RecM 11
still strongly depends on the recurrences in the innermost loop, thoulgiced by the unroll factor.
Unroll-and-squash first applies unroll-and-jam to a nested loop, amdrétice the code size of the
jammed innermost loop by software pipelining and hardware support (@tagisters) [22]. SSP is
different from unroll-and-squash in the following ways: (1) the unesit-squash method presented
in [22] appears to be limited to 2-deep loop nest; (2) it does not overlapiteyeand prolog between
successive outer loop iterations; and (3) it decides the unroll facstrdind then software pipelines the
innermost loop.

In general, loop transformations, such as interchange, tiling, and wrdljam, are orthogonal
to our approach and can be applied independently. In Section 7, weshawa that our approach is
beneficial with these loop transformations applied beforehand.

Hyperplane scheduling [18] is generally used in the context of largeydike hardware structures
(such as systolic arrays and SIMD arrays), and does not consgtmunce constraints. There has been an
interesting approach recently that enforces resource constraintpegptgne scheduling by projecting
then-D iteration space to afrn — 1)-D virtual processor array, and then partitioning the virtual proces-
sors among the given set of physical processors [9]. This methoet$grgrallel processor arrays, and
does not consider low-level resources (like the function units within desprgcessor) or cache effects.
A subsequent software pipelining phase may need to be applied to eagibhgbiprocessor in order to
further exploit instruction-level parallelism from the iterations allocated ts#mee processor.

Other hyperplane-based methods [8, 23, 11] formulate the schedulingmhests as linear (often

39

integer linear) programming problems. Optimal solutions to integer programmivey éxgonential
time complexity in the worst case when using the Simplex algorithm or brancir@ntd methods [4].
Furthermore, they consider neither resource constraints nor cdelbesef

Multi-dimensional retiming [21] translates a loop nest to be fully parallel wittresburce con-
straints.

Unimodular and non-unimodular transformations [4, 10] mainly care forseegrain parallelism
or the communication cost between processors.

Fine-grain wavefront transformation [1] combines loop quantization amfkgt pipelining to ex-
plore coarse and fine-grain parallelism simultaneously, based on outeutoolling and repetitive
pattern recognition.

9 Conclusions

We have introduced the fundamental theory of software pipelining a lostpan@n arbitrary level that
has a rectangular iteration space and has no sibling inner loops in it. Thizagppreduces the prob-
lem of n-dimensional software pipelining into a simpler problem of 1-dimensional soé&wwipelining.
This approach provides the freedom to search for and schedule theproéisable loop level, where
profitability can be measured in terms of parallelism, data reuse potential, otlamcriteria.

This approach subsumes the classical modulo scheduling as a speeialltatso extends the
traditional hyperplane scheduling to handle resource constraints. Véeelxéended this approach to
schedule imperfect loop nests. Multiple initiation intervals can be naturally\sshie issue operations
at different loop levels in their fastest initiation rates.

We have demonstrated the correctness and efficiency of our method e kudtk needs to study
the interaction of this approach with other loop nest transformations like tilingplleand-jam, and
loop interchange more extensively, and extend the loop nest model to dilimgsnner loops at one
level. Loop selection is another area to explore. This paper presentpdnbiples in loop selection. In
future, other data reuse models and other objectives like power consampgd to be investigated.

ACKNOWLEDGMENTS

We are grateful to Prof. Bogong Su, Dr. Hongbo Yang, and the anong reviewers of the previous
versions of this paper for their patient reviews and valuable advice.

References

[1] Alexander Aiken and Alexandru Nicolau. Fine-grain parallelizatiod &me wavefront method.
Languages and Compilers for Parallel Computing, MIT Press, Cambribith, pages 1-16, 1990.

40

[2] Vicki H Allan, Reese B Jones, Randall M Lee, and Stephen J Allaritw&oe pipelining. ACM
Computing Survey27(3):367-432, September 1995.

[3] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe WarremvErsion of control dependence
to data dependence. [@onf. Record of 10th Annual ACM Symp. on Principles of Prog. Lang.
pages 177-189, January 1983.

[4] Utpal BanerjeeLoop transformations for restructuring compilers: the foundatiokkiwer Aca-
demic, 1993.

[5] Steve Carr, Chen Ding, and Philip Sweany. Improving software pipgiwith unroll-and-jam.
In Proc. 29th Annual Hawaii Intl. Conf. on System Scienpages 183—-192, 1996.

[6] Steve Carr and Ken Kennedy. Improving the ratio of memory operatmfisating-point opera-
tions in loops.ACM Trans. on Prog. Lang. and Systerh6(6):1768—-1810, Nov. 1994.

[7] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compilémapations for improving
data locality. In Proceedings of the Sixth International Conference chit&ctural Support for
Programming Languages and Operating Systems, pages 252—-262s8a@aldornia, 1994.

[8] Alain Darte and Yves Robert. Constructive methods for schedulirigprun loop nests. IEEE
Transactions on Parallel and Distributed Syste®8):814-822, August 1994,

[9] Alain Darte, Robert Schreiber, B. Ramakrishna Rau, and Fr&#Z2883;ric Vivien. Construct-
ing and exploiting linear schedules with prescribed parallel&@M Trans. Des. Autom. Electron.
Syst, 7(1):159-172, 2002.

[10] P. Feautrier. Automatic parallelization in the polytope modlecture Notes in Computer Science
1132:79-103, 1996.

[11] Guang R. Gao, Qi Ning, and Vincent Van Dongen. Software pipelifor nested loops. ACAPS
Tech Memo 53, School of Computer Science, McGill Univ., Méatr Qebec, May 1993.

[12] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cachesguisgions: a compiler frame-
work for analyzing and tuning memory behavid\CM Transactions on Programming Languages
and System®1(4):703-746, 1999.

[13] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A frameworkdsource-constrained rate-
optimal software pipelininglEEE Trans. on Parallel and Distributed Syster§l1):1133—-1149,
November 1996.

[14] Richard A. Huff. Lifetime-sensitive modulo scheduling.Prmoc. of the ACM SIGPLAN '93 Conf.
on Prog. Lang. Design and Implementatiqgmages 258-267, Albuguerque, New Mexico, June
23-25, 1993SIGPLAN Notices28(6), June 1993.

[15] Intel. Intel IA-64 Architecture Software Developer’'s Manual, Vol. 1: |A-Ggplcation Architec-
ture. Intel Corporation, Santa Clara, CA, USA, 2001.

41

[16] Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism amagedocality. InICS "92:
Proceedings of the 6th international conference on Supercompuiages 323-334, New York,
NY, USA, 1992. ACM Press.

[17] Monica Lam. Software pipelining: An effective scheduling technifpreVLIW machines. In
Proc. Prog. Lang. Design and Imppages 318-328, June 22-24, 19885PLAN Notices23(7),
July 1988.

[18] L. Lamport. The parallel execution of DO loopsCommunications of the ACM.7(2):83-93,
February 1974.

[19] Soo-Mook Moon and Kemal Ebditu. Parallelizing nonnumerical code with selective scheduling
and software pipeliningACM Transactions on Programming Languages and Systea(6):853—
898, November 1997.

[20] Kalyan Muthukumar and Gautam Doshi. Software pipelining of nestedsioLecture Notes in
Computer Scien¢®027:165-181, 2001.

[21] Nelson Luiz Passos and Edwin Hsing-Mean Sha. Achieving fulilpism using multidimen-
sional retiming.IEEE Trans. Parallel Distrib. Syst7(11):1150-1163, 1996.

[22] D. Petkov, R. Harr, and S. Amarasinghe. Efficient pipelining aftee loops: unroll-and-squash.
In 16th Intl. Parallel and Distributed Processing Symposium (IPDPS,’@®)t Lauderdale, FL,
April 2002. IEEE.

[23] J. Ramanujam. Optimal software pipelining of nested loopsPrc. of the 8th Intl. Parallel
Processing Symppages 335—-342, Caime, Mexico, April 1994. IEEE.

[24] B.R. Rauand J. A. Fisher. Instruction-level parallel procegdifistory, overview and perspective.
Journal of Supercomputing:9-50, May 1993.

[25] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithmdémare pipelining loops. In
Proceedings of the 27th Annual International Symposium on Micrdaatiare pages 63—74, San
Jose, California, November 30—December2, 1994.

[26] Hongbo Rong, Alban Douillet, R. Govindarajan, and Guang R. e generation for single-
dimension software pipelining of multi-dimensional loops. GGO '04: Proceedings of the In-
ternational Symposium on Code Generation and Optimizapiages 175-186, Washington, DC,
USA, 2004. IEEE Computer Society.

[27] Jian Wang and Guang R. Gao. Pipelining-dovetailing: A transformatboenhance software
pipelining for nested loops. volume 1060 bécture Notes in Computer Sciengages 1-17,
Linkoping, Sweden, April 1996.

[28] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.Froc. of the ACM
SIGPLAN '91 Conf. on Prog. Lang. Design and Implementatgages 30—44, Toronto, June 26—
28, 1991.SIGPLAN Notices26(6), June 1991.

42

[29] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combiningpdransformations consider-
ing caches and scheduling. Rmoc. of the 29th Annual Intl. Symp. on Microarchitecture (MICRO
29), pages 274-286, Paris, December 2—4, 1996.

43

A Appendix: Correctness, Scheduling Algorithm, and Loop Rewriting

In this section, we prove the correctness of the final schedule for anrfimspdoop nest, first with
a single Il, then with multiple lls. Then we describe the scheduling algorithed irs our prototype
implementation for the experiments. Finally, we briefly illustrate how the loop na®wstten to
realize the final schedule.

A.1 Correctness of the Final Schedule with a Single Il

First, let us establish the following facts:

Lemma A.1. For any zero dependenc¢e — b, §, (d1,0, ..., 0)) in the effective DDG, if the dependence
constraints are respected, then

stage(b) + di > stage(a). (25)

The reason is as follows:

o(b,di) —o(a,0) d (by Inequality (6))

>
> 0 (éisnonnegative as defined in Section 2
Thus

o(b,0)+dy *T > o(a,0).

Dividing both sides byl" and taking their floors, we reach the Inequality (25).

Lemma A.2. For any zero dependenc¢e — b, 6§, (d1,0, ..., 0)) in the effective DDG, if the dependence
constraints are respected, then

stage(a) > 1, <= stage(b) > I,

According to the kernel nesting constraints in Section 6.8dge(a) > 1, <= operationa is in
someOPSETB,, and therefore its indekis in the form of(iy,i2,- -+ , iz, Npyy1 — 1,--+ , N, — 1).
Thenl’ is in the form of(iy + dy, i, , iz, Not1 — 1,--- , N, — 1). Only operations itOPSET B,
could have this form of index vector. Thereforige(b) > 1, as well.

Lemma A.3. For any operationo, and two index vectorsand!l’, if I’ — | = (dy,0,---,0), where
dy > 0, then

push(o,1) < push(o,1)

The proof is trivial based on the definition of functipmsh. From this fact, we can easily see
that f(o,1) < f(o,l"), and the equality holds only wheh is 0. This confirms our intuition that the
instances of the same operation from successive outermost loop iteratiwhgiithin the same slice
before the pushing down, are still issued in the same order after thabfilyyehange is the distances
between them, not the order).

44

Lemma A.4. For any operationo, and three index vectord;, I’, and!l”, if | = (i1,0,---,0),1” =
(i1, No—1,..., N, —1),andl’ = (i1, 2, - ,ip) is not equal td nor|”, wherei, is any value for the
first index, then
push(o,1) < L?J = push(o,1") < push(o,1"”)
n

Proof. Under the given conditions,

max (0, LW‘JMJ) if stage(o) < fn

n

push(o,1) =]
(@) B—;J otherwise.
h(o,1") = Z—l
push(o,1") \‘SnJ
. Ni1—1 i1+stage(o)—ln, .

min , if stage(o) > 1,

pUSh(O, |//) = ; (\~ Sn J \; n J) () (26)
{ﬁJ otherwise.

In the first case opush(o, 1), i1 + stage(o) — fr, +1 < i1. Thereforepush(o,|) can not be more than
&)

Similarly, in the first case opush(o,1”), Ny — 1 > 4y andiy + stage(o) — l,, > i1. Therefore,
push(o,1") cannot be less thabgﬂ : O

The above lemma confirms the intuition that within the same outermost loop iterationtheith
increase of the index vectors, an operation can only be pushed féndghreits original position.

Corollary A.5. Given any two operations and o', and their index vectors and l’, if their distance
I”—1=1(0,ds,--- ,d,) is positive, then

push(o,1) < push(d’,1"). (27)

Proof. Letl = (1,42, ,in). Thenl’ = (iy,ia + dao, -+ ,in + dp).

Because the difference between the two index vectors is positbegnot be in this form(i;, N, —
,--+, N, —1). Therefore, according to the proof of Lemma A.4, we know

push(o,1) < V;J .

n

For the same reason, is impossible to be in this form:(i1,0,---,0), and by the proof of
Lemma A.4, there is

{;}J < push(d,1").

n

45

Note thato(l) ando’(1”) are within the same outermost loop iteration, and the two operations are
arbitrary. This corollary says that the final schedule is consistent witlpiociple that an outermost
loop iteration is executed sequentially.

Lemma A.6. Given a positive dependence with the distance vectodof - - , d,,), andd,, is the first
non-zero (actually positive) element in the sub-veéitor - - - , d,,), then

Z (dg * ctimeg) > Sy * T

2<z<n

Proof. The sum is minimum whet, takes the smallest positive number (1), and any other element after
it takes the smallest legal distance. Since an inde®r loop L, is betweer0, N, — 1], the smallest
legal distance corresponding to this loop-i&/, + 1. So the minimum sum is

ctimey + Z ((=Ng + 1) xctime,) = ctimey — Nyi1 * ctimey 1 +

(4)
ctimey 1 — Nyyo * ctimey o +

(B)

y<x<n

ctime,_1 — Ny, * ctime,, +

(©)
ctimey,

From the definition of the computation time of a loop,

ctimey = (Sy — Sy+1) * T + Nyp1 * ctimeyq1.

So
(A) = (Sy = Sy41) * T.
Similarly,
(B) = (Sy+1 - Sy+2) * T,
(C) = (Sp—1—5p)*T.
It is clear that the minimum sum 5, x 7" — S,, * T' + ctime,, = Sy * T O

Now we are ready to prove the correctness of the final schedule fion@arfect loop nest with a
single Il. The correctness is established by Theorem 6.1 in Section 6.3.2.

Proof. Given a dependende — b,0, (d1,da, ...,dy)), | = (i1,i2, -+ ,in), andl’ = (i1 + dy,i2 +
da, -, in + dy), there will be

46

f(b,l’)—f(a,l): O'(b,’i1+d1)—0'(a,i1)+

(4)
Z (dy * ctimeg) +
2<x<n
(B)
(push(b,1") — push(a, 1)) * (ctime; — S1 * T). (28)

(©)

1. If the dependence is a zero dependence, then

(A) > 6 (Bythe dependence constraints in Inequality (6))
(B) = 0.

In order for the dependence to be respected in the final schedulédiler, (B) + (C) > 4§, we
need to prove

©) = o

According to our assumption in Section 6(, — 1,..., N, — 1) # (0,---,0). Then it is easy
to know thatctime; > Sy x T. Therefore, foC') > 0, we need only to prove

push(b,1") — push(a,l) > 0.

Below we prove it by enumerating all possibilities.

Case 1:(ia, - - - ,ip) is notequal tq0,...,0), nor(Ny — 1,..., N, — 1). Then

push(b,1") — push(a,l) = Vl ; le - L;lJ > 0.

Case2:(ig, - ,in) = (0,...,0). Then

maz(0, Vﬁdlﬂt‘g]e(b) f”HJ) if stage(b) < fn
pu‘Sh(b7|/) = : ! .

L%J otherwise.

max (0, {WM%MJ) if stage(a) < fp
push(a,l) = A " _

B—;J otherwise.

Push(a,1) < push(b,1”) because when
stage(a) < fn, (29)

47

Case 3:

there is

V1+d1+sto§;:(b)—fn+1J (by Lemma A.1)

i1+ stage(a) — fn+1 <
Sn - . .
LMJ (by Inequality (29).
While when
stage(a) > fn, (30)
there is
. Vl*stagga)—f”*ﬂ < ["ﬁdl*““g@(b)—fWHJ (by Inequality(30) and Lemma A.1)
Sn Lil+le
S, |-
(i, -+ yin) = (N2 —1,..., N, — 1). Let us examine the two cases of operation
When
stage(a) > Iy,
we have
stage(b) > l,,(by Lemma A.2)
and thus

push(o,1") = min({Nl - 1J | Vl + dy + stage(b) — sz)

Sy, Sn,
push(a.l) — mi”({le; 1J | Vl —|—stagz(a) — sz)).

Push(a,l) < push(b,1") as
\‘il + stage(a) — an < \‘il + dy + stage(b) — 1,

J (by Lemma A.1)

Sn Sn
When
stage(a) < I,
we have
stage(b) < l,,(by Lemma A.2)
and thus

push(b,1)

i1+ dy
Sno |’

1
push(a,l) = {SJ :

Obviously,push(a,l) < push(b,l").

48

2. If the dependence is a positive dependence; tetlevel(a).

Case 1:z = n or stage(a) > l,4+1. That is, operatiom is in L,, or in aOPSET B, of an outer
loop, according to the kernel nesting constraints.

Imagine there is an operatianin the last stage of the same loop, stageand at the last
modulo cycle of it,l" — 1. Its 1-D schedule time is then

o(c,0) = (lp+ 1)+ T — 1 (31)

Whether such an operation really exist does not matter: we only want tit teka reference.
In order to provef (b,1’) — f(a,l) > 4, we only need to prove the following facts:

o—1 (32)
1 (33)

(AVARAY]

We know

fle,l) = fla,l) = o(c,i1) —o(a, i)+

(D)
Z (0 * ctime,) +
2<x<n
(E)
(push(c,|) — push(a,l)) * (ctime; — S+ T')

(F)
It is easy to see that

(D) = (z+1)*T—-1-0(a,0)>6—1(by Equation (31) and Inequality (18)),
(E) = 0,
(F) > 0.

Thus Inequality (32) holds.
Now we prove Inequality (33) is true.

fo,1) = f(e,1) = a(b,dy) —o(c,0)+

(©)]
Z (dg * ctimey) +
2<z<n
(H)

(push(b,1") — push(c,1)) *(ctime; — Sy * T')
(1)

We will prove that(G) + (H) > 1 and(/) > 0.

49

We know

(@)
(H)

a(b,0) —o(c,0) > o(b,0) — (I, + 1) * T + 1 (by Equation (31)), (34)

>
> S, *T (by Lemma A.6), (35)

wherey is such thatd, is the first non-zero (actually positive) element in the sub-vector
(do,--- ,d,). Remember that operatienanda) is in OPSET B, and has an index vector
of | = (i1, iz, Nyy1 — 1,--- , N, — 1). It is not possible to make the elements aiter
bigger. It is only possible to make one or more of the elements betweamdi, bigger.
This implies that the first non-zero incremetf, must be applied to one of the elements
betweeni; andi,. In other wordsy < z, and thus

ly >y (36)

Operationb must be at loop level,, or any inner loop level of it. If otherwise, it is outside
of this loop, its index corresponding to this loop would be either O/pr- 1, depending on
whether it is inamfOPSETA or OPSET B, and cannot be changed, let alone a non-zero
incrementd,,. Therefore,

o(b,0) > fy «T. (37)

Now let us add up the Inequalities(34) and (35):

(G)+ (H) > fyxT—(lo +1)«T+1+ S, *T(by Inequalities (37))
= (ly—l)*T+1
> 1(by Inequality (36)). (38)

Now we need only to prove th&f) > 0. Let an index vectot” = (i1 + dy,ia, - ,in).
That is, it is the same dsexcept for the first element. We decompos$gas follows:

(I) = push(b,1") — push(c,1") + push(c,1") — push(c,1). (39)

(J) (K)

(K) > 0 according to Lemma A.3. There must bé) > 0 as well, becaus¥ — 1" =
(0,dg,- - ,dy) is a positive vector. According to corollary A.6]) must be nonnegative.

Case 2: Otherwise, similarly, imagine there is an operatmtrthe last modulo cycle before the inner
loop kernel. That is, the 1-D schedule time of it is

0(c,0) = fop1xT =1 (40)

We still prove the facts stated in Inequalities (32) and (33). The proof isahee as that
for Case 1, except the following details:

o(b,0) — fry1 * T + 1 (by Equation (40)),
Jy*T — fog1 *T +1+ Sy xT

= (y— fer1 + D) *T+1

> 1

>
(G)+(H) =

50

3. Resource constraints.

Lastly, for any two distinct operation instances|) andb(l’), scheduled at the same cycle, we
have

f(bvll)_f<a>|):0'

Borrow Equation (28), we haved) + (B) + (C) = 0. Since(A) = o(b,i1) + di * T — o(a, i1),
and(B) + (C) is a multiple ofT", we haves (b,i1) — o(a,i1) = —d1 * T — (B) — (C), which is
also a multiple off". That is, operations andb must be from the same modulo cycle in the 1-D
schedule, which has no resource conflicts since the 1-D scheduéetedpe resource constraints.

O]

A.2 Correctness of the Final Schedule with Multiple Ils

First, suppose all lls are equal to a single value, Fay hen all the scheduling constraints, and thus the
final schedule, are equivalent to those with a single Il, as discusseztiin® 6.4. We have proved the
correctness of such a final schedule in the above section.

Second, from this final schedule, let us remove all unnecessarycyaléls”, and reach a multiple-ll
final schedule. This final schedule can be regarded as being cothpbddferent kerneld<;, Ko, ..,
andK,.

1. The final schedule respects any zero dependence.
Given a dependende — b, 0, (d1,0,...,0)),| = (i1,i2, -, i), @andl’ = (iy +dy,i2, - ,ipn),
we prove thatf (b,1") — f(a,1) > 6.
For convenience, denote the sub-vedter- - - ,i,) asls,. Then we can represehs(iy, l2,),
andl’ as(iy + dy, l2,).

f, (i1 +di, o)) — f(a, (i1, 120)) = f(b, (i1 +di,l2n)) — f(b, (i1 +di — 1,12,)) +
(4)
f(b, (il +d; — 1, |2n)) — f(b, (il +dy — 2, IQn)) +

-~

(B)

f(bv (il + 1, |2n>) - f(b7 (il, |2n)> +
(@)
f(bv (il, |2n)> - f(a7 (ilv |2n))

(D)

Letz = min(level(a),level(b)), andy = max(level(a),level(D)). Sincelevel(a) < y, kernel
Kievei(a) Must enclosds, or is K itself. Similarly, Kj.,.;;) must enclosé(, or is K, itself as

51

well. Therefore, the initiation intervalgje,e;(,) and7je,.i) Must be greater than or equalfp.
Therefore, in the above formula,

(A) > T‘level(b) > Tya
(B) > j}evel(b) > Tya and
(C) > ﬂevel(b) > Ty-

So

Supposer(a,0) = p1 * 11 + q1, ando(b,0) = po * T1 + g2, Where0 < ¢1,q2 < Ty. That is,
operatioru is at the modulo cycle; in stagep;, and operatiom is at modulo cycley in stageps.
From operatior: to operatiorb in the same iteration point, among all the kernels in this course,
the smallest kernel must €, and the biggest must €. We can use their initiation intervals
T,, andT, to estimate the minimum value D).

If o(b,0) > o(a,0), then(D) is nonnegative. The value ¢D) is minimum when all the kernels

from a to b in the same iteration point have the smallest possible value, which iSherefore
(D) > (p2 —p1) * Tn + @2 — qu.

Thus

> dixTy+p2—p1)*Th+@—aq
> 6 (by Inequality(23))

If o(b,0) < o(a,0), then(D) is negative. It is minimum when all the kernels franto b in the
same iteration point have the biggest possible value, whi€h.i3hus

(D) = (p2 —p1) * T + @2 — q1-
Consequently,

di*Ty+(p2—p1)* T + 2 — 1

>
> 6 (by Inequality (23))

. The final schedule respects any positive dependence.

As we see from the single Il case, respecting the positive dependemgieas the satisfaction of
the two inequalities (32) and (33) regarding the dependent operatimmdb, and the imaginary
operationc.

Inequality (32) says that the dependence souftgmust have finished after the imaginary)
is issued. After shrinking the kernels in the single-1l final schedule, ttisiance is shortened.

52

Algorithm 1 A Scheduling Algorithm

Require: the 1-D simplified DDG for loop.;, and the hardware resource description.
Ensure: o(o,0) for every operatiom.

1 Tn+1=0

2: for x =nto1step-1do

3. if x <nthen
4 Move operations frond PSET B, to OPSET A,, if dependences allow
5. endif
6: for T, = max(RecMII,, ResMII,,T, 1) tothresholdlI, step 1do
7 ModuloSchedulel,, T’;)
8 if Modulo scheduling succeed#éukn
9: if x < nthen
10: Translate the schedule such th#ég,, starts from modulo cycle 0
11 end if
12: Increasd,, to satisfy the first case of the sequential constraints in Inequality (248ce#gt
sary
13: Goto line 17
14: end if
15: end for
16: Return Failure
17: end for

18: Return Success

However, note that both are from the sa®&SET A, (or OPSETB,), and within the same
iteration point. The same is true for all the other operation instances betwaan Fherefore,
the minimum distance between them would be

f(cal)_f<av|):(lx"’l)*Tm_l_p*Tm_q’

which is no less thai — 1 according to the sequential constraints. Inequality (32) still holds,
although the minimum distance changes.

Inequality (33) says that the dependence sink appears after the imagiharShrinking would
not change such order, as shrinking removes only null cycles, lauiges no relative positions
between any operation instances. One may refer to the example in Fig.ih€ufton.

. Resources constraints are naturally respected, since removingyolel$ does not change the

relative positions of the operation instances.

A.3 A Scheduling Algorithm

There are more than one way to construct a 1-D schedule satisfying ieduing constraints

given in Section 6.4. For example, one might formulate the constraints into a [pegramming

53

problem, where all operations from all levels can be scheduled simultsliyedtor another example,
one might extend the traditional hierarchical reduction to construct thedséd, as we did for our
prototype implementation. We describe the algorithm below.

The traditional hierarchical reduction approach [17] is applied to cocistihe multi-Il kernel nest.
Assume we choose the outermost loop for scheduling. We schedule tratiope starting from the
innermost loop to the outermost loop. To each loop, we apply the traditionallmedheduling.

The algorithm is shown in Algorithm 1, wheiecM 1, and ResM 11, are the MIl determined
by the recurrences and resources within the currentlogphresholdl I, is an estimated maximum Il
for loop L., and ModuloSchedulé&(,, T7.) calls the traditional modulo scheduling to schedule Iégp
under the current IIT,.

Before scheduling loofd.,,, we do some precessing: move every operatioRSETB, to
OPSETA,, whenever dependences allow. See line 4 in the algorithm. To some exterdyes
comes the limitation of the kernel nesting constraints that requires the operatiOP S ET B, must
be scheduled after the inner loop. This preprocessing can be optional.

In the experiments, the modulo scheduling method we called is slack schedidihgvhich has
already been implemented in the ORC compiler. The input to it is always the simdiizdDG
for the outermost loop, whatever loop we are currently scheduling. Hedsding the current loop,
consider only the 1-D dependences whose source and sink are inrteatdoop, including its inner
loops, and one of them must be at the current level (In compW®ing\/I1,, we considered only these
dependences as well).

The innermost loop is scheduled in the same way as the original slack fidged®o let us focus
on an outer loop. Let the current loop under schedulind.per < n). Its inner loopL,; has been
scheduled and the kernél, ; has been producedk . is treated as an atomic operation with the
collective resource requirement of all the operations in it, and a laten8y_af x T,., whereT,, is the
current Il for scheduling the current loogs(,; is scheduled with other operations at loop letegl
Note that the latency of this atomic operation is different from the other tpesa it is dependent on
the value off,. Therefore, if the current loop cannot be successfully schedulddrihe current value
of T., and the next value is tried, the latency of this operation is changed d@uglyrd

After L, is successfully scheduled, we check whether the atomic opetf&tion is placed at mod-
ulo cycle 0. If not, translate the schedule to make it. That is, if the schedule tithe atomic operation
isp*xT,+q, whered < ¢ < T, we add a numbéf, — g to it and the schedule time becomies-1) « T,

a multiple of7,; the schedule times of all the other operations are added the same numisd#r a$is
will finally produced such a kernel nest as shown in Fig. 23. Evergedds placed from modulo cycle
0. There is no null cycles between the tops of two kernels. Since we adshmkatency of the atomic
operationK ;1 is S,+1 * T, in scheduling loop.,, finally, it covers exactly5,,; number of stages.
This arrangement conveniently ensures that the shape of the keste$ mensistent with that of the
generic kernel nest in Fig. 13, without losing any generality.

Below we describe some details in handling the constraints in the modulo sclgedulin
1. Modulo property.

54

stage index— Iy - [P [P [Iy fn e fr-1 e frp e fo f1=0

Figure 23: The Kernel Achieved by the Scheduling Algorithm

The whole schedule, the kernel nest, appears after the outermost smbgduled7; is unknown
until then. Before that, in scheduling any lodp, we have only a partial schedule.

This is not a problem, though. In scheduling any ldop we assume that the instances of an
operation from successive outermost loop iterations are issued at thalET,. This requires
no change to the traditional modulo scheduling. So the modulo property is elhisult of
using modulo scheduling for each loop.

. Dependence constraints.

Traditionally, in single loop modulo scheduling, a dependence between temtonso; and

o9 is respected in scheduling by translating it into a minimum distaiée Dist (o1, 02), which

is defined as the smallest possible valuer@f;,0) — o(01,0). As long as the operations are
scheduled with a distance no less than thign Dist, the dependence constraint must have been
respected. For example, given a dependénce— o9, d, (k)) for asingle loop

o(01,i1) + 0 < o(092,i1 + k)

for anyi,. Thatis,
0(02,0) —0(01,0) > 6 —k*xT

whereT is the current Il in scheduling the loop. Thus

MinDist(o1,02) =0 —k*T

In scheduling the multi-dimensional loop nest, we defién Dist(o1,02) as the minimum
distance between the two operations in the current lbgpwhich is the loop that immedi-
ately encloses both operations. Suppose the two operations are schiedolstages; and

p2 at modulo cyclesy; and g2, respectively, them/inDist(o1,02) is the minimum value of
(P2 —p1) x 1o + @2 — qu.

Note that after a loop is scheduled, theén Dist array calculated for it is thrown away, and a new
MinDist array is calculated for the next loop to be scheduled. The purpasg&oeiist is only

to make it easier to choose a schedule time for an operation without violatingepeyndence
constraints during scheduling.

55

For the dependence constraints in Inequality (23), they are consetyatanslated into the fol-
lowing:
Ty
MinDist(o1,02) = 7 * (0 —k*Ty) (41)

Let us see how the above inequality is derived. First, from the first ch$iee dependence
constraints, we have

(p2—p1)*To+q2—q1 > 6 —kxTy+ (p2 —p1) *(Tp — 1)) (42)
~— ——

(4) (B) (@)

We know0 < ¢1,¢2 < T, because they are modulo cycles, and becésstarts from modulo
cycle 0 due to the specific shape of our kernel nest in Fig. 23. So

_ |
=%
which is no bigger thar.

Therefore, if we conservatively satisfy the following constraint instead

(A) > (B) + (Ti) * (T — T),

we can definitely satisfy the original constraint in Inequality (42).

The above constraint translates into

That s,
T,
(p2—p)* Tot g2 —q1 > o % (0= b+ T).

n

Therefore, we let
T
MinDist(o1,02) = T * (0 —k=Ty). (43)

n

For the second case in the dependence constraints in Inequality 23yeve ha
(p2—p1)*Te+q@—q >6—k*T,

Thus
MinDist(o1,02) =0 — kT (44)

Conservatively, we take the maximum of the two values defined in EquatiB8haid (44) as the
MinDist. That explains the definition we show in Equation (41).

56

3. Resource Constraints.

Modulo scheduling checks the availability of resources when an opeiaticheduled to a cycle.
The inner loop of the current loop has been modeled as an atomic opevdiimse resource usage
is the collective resource usage of all the operations in it. Theref@euree constraints can be
respected naturally by modulo scheduling.

4. Sequential Constraints.

For the first case of the sequential constraints in Inequality (24), weot&nmow the value of
l. It is not known until the current loof.,. is finished scheduling. Therefore, we delay the
enforcement of this case of sequential constraints untils fully scheduled. Then we increase
I, If necessary, to assure the constraints are respected. This is deaajtde. See line 12 in
Algorithm 1.

For the second case of the sequential constraints in Inequality (24)thattg, ., = T, is the
schedule time of the atomic operatiéf). ;| at the current kernek,. Thus the constraint can be
equivalently translated into the following:

MinDist(o, Kyy1) =0 (45)

5. Kernel nesting constraints.

As we said before, in scheduling the current Idopunder the current interval,., the atomic
operation representing the inner loop is considered to have a latertty, o T,; and afterl,
is scheduled, the schedule is translated such that the atomic operatiorrstamsddulo cycle 0.
This ensures the shape of the kernel nesting shown in Fig. 23.

We also needs to make sure that an operation at the current loop levelsshaaluled into the
inner loop (the stages the atomic operation takes). This translates into therigliow

MinDist(o, Ky+1) =1 (46)

for every operatiom in OPSET A, (xz < n).

And
MinDist(Kz11,0) = Spy1 % Ty 47

for every operatiom in OPSET B, (x < n).

6. Afinal note forMinDist: this is a basic concept used in traditional modulo scheduling (in line 7
of the algorithm). A more complete picture is as follows: at the beginning of madileduling,
for every pair of operations; andos, calculateMinDist(o1,02). To do so, the initial value of
it is by default—oco. Then update the value according to the dependence constraintsntigique
constraints, and kernel nesting constraints, i.e., according to the Iitespu@d 1), (45), (46) and
(47). If more than one constraint can be applied, take the maximum valuegaimem. We did
not show that above for simplicity. During the scheduling process, wheperation is scheduled
or ejected, thé/in Dist array is updated in the same principle.

In our experiments, the modulo scheduling method is essentially the same agjthal afack
scheduling, except for the calculation fin Dist.

57

A.4 Loop Rewriting

Loop rewriting (or code generation), corresponding to the last stefsBf fhal schedule computation.
Instead of specifying a function, it directly generates equivalent cothe form of a new:-dimensional
loop nest. The skeleton of this new loop nest is shown in pseudo-code.i@4zigachL’ corresponds

to the L; loop in the original loop nest. Eadbr loop structure is to be replaced by its equivalent in
the target assembly language. Labpis what we called before an ILES. It is an— 1-dimensional
loop. The loop body of the innermost lody), is anlnnermost Loop PatternAfter this loop is finished

in execution, the next innermost lodg, , is tested. If it has other iterations to run, i.e., the index
in_1 < Nnp—1 — 1, then its pipelines is filled, and it continues to run into the innermost loop of this
new iteration of it. This code skeleton is essentially an equivalent, simplifiedioveof that in the
literature [26], with the addition of a finalization phase to be complete

Code generation has several major aspects to take care of. (1) Getieraperations in the right
place. This is a mechanical process based on the code skeleton. ¢(2¢ Bef new loop nest runs,
transfers live-in values of the loop variables to rotating registers (friaticsegisters, for example);
and after that, transfers live-out values from rotating registers (to stisters, for example). The
initialization and finalization phases in the code skeleton are responsibleeior, tiespectively. (3)
Based on the register allocation results, assign correct register namesregister operands of the
operations. This is a register renaming issue. (4) Set up the contrdlemsgssich that the new loop
nest runs correctly. That is, ineffective operations are automaticabyldid in execution; if the current
group of iterations is the last group, tiig loop should ends and the control transfers to the epilog.
Incorrect setting might lead to wrong results or dead loop. The initializatiasels responsible for
that. (5) Handle the special constraints enforced by the target archndedtor example, the 1A-64
architecture does not readily support multi-dimensional loop pipelining:eis et have special branch
operations for such pipelining as it does for single loop pipelining; the abregisters are changed
with the concept of single loop pipelining in mind. The first aspect is essentiehine-independent,
while the others are. For simplicity, we do not discuss the details of thesermndreaders are referred
to the literature [26].

The code skeleton is illustrated by an example in Fig. 25. In this specific illugtratiere are several
general points to be noted: first, as we see from Fig. 25(c), the prolkbghe epilog are composed of
partial copies ofi(; (More specifically, they are composed ff — 1 andS; — f,, number of copies,
respectively). Second, the OLP is composedpiumber of full copies of{;. Third, in the entire
L}, there are totallys,, number of outermost loop iterations running as a group. Fourth, eachipop
except its inner loops, is composed of stages only figm For example, in Fig. 25, the stages in the
innermost loopL), are fromK only; the stages i} but out of the innermost loop, i.e., the code for
filling the L3 pipelines, are froni’s only. That is why we can shrink a single-II final schedule to be one
with multiple Ils. Finally, each; iteration runs sequentially.

"Compared with that in the literature, this skeleton removes a control variakle!_i,,, which makes it easier to under-
stand, but may lead to larger code size in certain cases.

58

[Initialization]
[Prolog]
Ly for(ip = 0ji1 < Nijit+ = Sp){
[Outermost loop pattern]

LY for(is = 0;ia < Najig++){
L for(is = 0;is < Najiz++) {
L for(in=13in < Npjin++)
[Innermost loop pattern]
}llendL!,

if (Z‘nfl < anl - 1) {
[Fill L,,_, Pipelineg
}

} llend LY,
If(lg < N» —1){
[Fill Lo Pipelineg

} llend L,
}llend L}
[Epilog]
[Finalization]

Figure 24: Code Generation for Ardimensional Loop Nest

59

Lq: for (11=0, i1 < Ny; i1++) {
OPSET A,
Ly for (i2=0; iz < Na; ia++) {
OPSET A,
Ls: for (i3=0; i3 < Nj; iz++) {

Ly for (i4=0;i4 < Ny; ig++) {

OPSET Ay
}llendL,
HiendLs
OPSETB,
HlendL,
} llendL,

(a) A Loop Nest

s | Ag| Ag| o Ac| Ao

Sh=2
S3=2
S2=5
S]_ =6

(b) A 1-D Schedule for lllustra-
tion Purpose. Hered, repre-
sents a stage.

Figure 25: lllustrating the Code Skeleton. The initialization and finalizationgghare not shown, as

they are machine-dependent.

[Initialization]

[*Prolog*/
Ao
A1 Ao

for(z'l =011 < N1+ = 2){
/*Outermost loop pattern*/
A5 A4 Ag A2 Al AO
A5 A4 A3 A2 A1 AO
for(iz = 0;i2 < Najig++){
for(z’3 = 0513 < N3;i3++) {
for(i4:1;z’4 < N4;i4++)

/*Innermost loop pattern*/

Ay A
Ay Ay
}llend L),

if (i3 < Ng—l){
/*Fill L3 Pipelines */

Ay A
Ay Ay
}/

} llend L}

if (i < Ng — 1){
/* Fill Ly Pipelines */

Ay Az
As Ay
Ay As
Ay Ay
Az Ay
}
} llend L},
}llend L)
/* Epilog */
As Ay A
As Ay
As

[Finalization]
(c) The Generated Code

