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Abstract

Traditionally, software pipelining is applied either to the innermost loop of a given loop nest
or from the innermost loop to outer loops. This paper proposes a 3-step approach, calledSingle-
dimension Software Pipelining (SSP), to software pipeline a loop nest at an arbitrary loop level that
has a rectangular iteration space and contains no sibling inner loops in it.

The first step identifies the most profitable loop level for software pipelining in terms of initiation
rate, data reuse potential, or any other optimization criteria. The second step simplifies the multi-
dimensional data-dependence graph (DDG) of the selected loop level into a 1-dimensional DDG and
constructs a 1-dimensional schedule. Based on it, the thirdstep derives a simple mapping function
that specifies the schedule time for the operation instancesin the multi-dimensional loop.

The classical modulo scheduling is subsumed by SSP as a special case. SSP is also closely
related to hyperplane scheduling, and, in fact, extends it to be resource-constrained. We prove
that SSP schedules are correct, and at least as efficient as those schedules generated by traditional
modulo scheduling methods.

We extend SSP to schedule imperfect loop nests, which are most common at instruction-level.
Multiple initiation intervals are naturally allowed to improve execution efficiency.

Feasibility and correctness of our approach are verified by aprototype implementation in the
ORC compiler for the IA-64 architecture, tested with loop nests from Livermore and SPEC2000
floating-point benchmarks. Preliminary experimental results reveal that, compared to modulo schedul-
ing, software pipelining at an appropriate loop level results in significant performance improvement.
Software pipelining is beneficial even with loop transformations beforehand.
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1 Introduction

Loop nests are rich in coarse-grain and fine-grain parallelism and substantial progress has been made in
exploiting the former [4, 8, 10, 18]. With the advent of ILP (Instruction-Level Parallelism) architectures
like Very-Long Instruction Word and superscalar processors, and the fast growth in hardware resources,
it has been another important challenge to exploit fine-grain parallelism in theloop nests as well.

Software pipelining is an effective way to extract ILP from loops. While numerous algorithms have
been proposed for single loops or the innermost loops of loop nests [2, 14, 15, 19, 25, 24], only a few
address software pipelining of loop nests [17, 20, 27, 11, 23].

In [17], a loop is modulo scheduled and is considered as anatomic operationof its outer loop. The
outer loop can then be modulo scheduled. The process is repeated until allloop levels are scheduled, or
available resources are used up, or dependences disallow further parallelization. The inefficiency due to
the filling and draining (prolog and epilog) of the software pipeline is addressed in [20, 27].

We refer to the above approach asinnermost-loop-centric modulo scheduling. This approach nat-
urally extends the single loop scheduling method to the multi-dimensional domain, but has two major
shortcomings: (1) it commits itself to the innermost loop first without consideringhow much parallelism
the other levels have to offer. Software pipelining another loop level might result in higher parallelism.
(2) It cannot exploit the data reuse potential in the outer loops.

There are other software pipelining approaches, developed from hyperplane scheduling. They ex-
ploit parallelism from the multi-dimensional iteration space, based on dependences, but cannot handle
resource constraints [11, 23].

There has also been other interesting work that combines loop transformations with software pipelin-
ing [29, 5]. However, in these methods, software pipelining is still limited to the innermost loop of the
transformed loop nest.

This paper presents a framework for resource-constrained software pipelining for a class of loop
nests. Software pipelining is applied to the most “beneficial” level in a loop nest, in order to better
exploit parallelism and data reuse potential, and match the hardware resources.

The problem addressed in this paper can be formally stated as follows:Given a loop nest composed
ofn loopsL1, L2, . . . , Ln, from the outermost to the innermost level, with one loop at each level, identify
the most profitable loopLx (1 ≤ x ≤ n) that has a rectangular iteration space and software pipeline it.
Software pipeliningLx means that the consecutive iterations ofLx will be overlapped at run-time. In
this paper, we only discuss how to parallelize the selected loopLx. Its outer loops, if any, remain intact
in our approach. Since there is only one loop at each level, in this paper, the terms “loop” and “loop
level” can be used interchangeably.

The above problem can be broken down into two sub-problems: how to predict the benefits of
software pipelining a loop level, and how to software pipeline the most “beneficial” one predicted.

Our solution consists of three steps:

1. Loop selection: This step searches for the most profitable loop level in the loop nest. Profitability

1



can be measured in terms of initiation rate, data reuse potential, or any other optimization criteria.
The selected loop may be a loop nest itself, i.e., it may have its own inner loops.

2. 1-D schedule construction: The multi-dimensional DDG of the selected loop is reduced to a 1-
dimensional (1-D) DDG. Based on the 1-D DDG and the resource constraints, a modulo schedule,
referred to as a1-D schedule, is constructed for the operations in the selected loop. No matter
how many inner loops the selected loop has, it is scheduled as if it were a single loop.

3. Final schedule computation: Based on the resulting 1-D schedule, this step derives a simple
mapping function that specifies the schedule time of the operation instances in the selected loop.

Since the problem of multi-dimensional scheduling is reduced to 1-dimensionalscheduling and
mapping, we refer to our approach as Single-dimension Software Pipelining(SSP). This approach shows
several advantages:

• Global foresight: Instead of focusing only on the innermost loop, every loop level is examined
and the most profitable one is chosen. Any criterion can be used to judge the“profitability” in this
step. This flexibility opens a new prospect to combine software pipelining with any other optimal
criterion beyond the ILP degree, which is often the major objective of software pipelining. In this
paper, we consider not only parallelism, but also cache effects, which have not been considered
by most traditional software pipelining methods.

• Simplicity: The method retains the simplicity of the classical modulo scheduling of single loops.
The scheduling is based on a simplified 1-dimensional DDG, no matter how many inner loops
the selected loop has. This is an essential difference from previous approaches. The traditional
modulo scheduling of single loops is subsumed as a special case.

• Efficiency: Our schedule divides the iterations of the chosen loop into groups, and executes them
group by group. Each group is pipelined. The draining of a group is naturally overlapped with
the filling of the next group. For this reason, the schedule is proved to have the shortest length,
comparing with any schedule produced by the innermost-centric modulo scheduling under iden-
tical conditions for a perfect loop nest. In addition, we search the entire loop nest and choose the
most profitable loop level, and consider data reuse in the cache, which alsoimproves the actual
execution time of the schedule.

• Resource sensitivity: Although our method has been developed independently, we can relate our
approach as an extension of hyperplane scheduling [8, 18] in the context of software pipelining
for uniprocessors. Our approach extends the traditional hyperplanescheduling to be resource-
constrained. The major differences between the two approaches are: (i) Software pipelining is
used for uniprocessors, which has limited resources, and it is imperativeto consider such con-
straints. Hyperplane scheduling, however, is usually used for large array-like hardware structures
such as systolic and SIMD arrays, and does not consider resource constraints. (ii) Hyperplane
scheduling often exploits parallelism from more than one loop level, whereassoftware pipelining
focuses on a single loop level only.
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• Reducing overhead: Being able to schedule an arbitrary loop level provides freedom for choosing
good schedules with less overhead.

To understand this, let us ask a question: why is it necessary to develop atechnique that can
pipeline a multi-dimensional loop directly? Can’t we achieve the same effect through loop trans-
formations followed by innermost-loop-centric software pipelining?

A key insight is that when software pipelining is applied to a loop, the schedule has associated
overhead, including initialization, prolog, epilog and finalization. Take the IA-64 architecture as
an example. Initialization sets up the initial values of the control registers, including the loop
counter registerLC, epilog counter registerEC, and predicate rotating register (pr.rot). It also
transfers live-in values of the loop variables to rotating registers. Finalization transfers live-out
values out of rotating registers. Such overhead is incurred every time theloop is executed. The
overhead is unavoidable, no matter whatever loop transformations have been performed previ-
ously. Some loop transformations, like tiling, would magnify the overhead of aninner loop level,
by making the loop nest deeper and the inner loops having smaller trip counts.

Intuitively, the outer the loop is, the less overhead it has. In a 3-deep loopnest, where each loop
level is executed 1000 times, the overhead is incurred 1,000,000 times if the innermost loop is
software pipelined, 1,000 times if the middle loop is pipelined, and only 1 time if the outermost
loop is pipelined. Unless software pipelining the innermost loop results in significant benefit that
outweighs such overhead, innermost-loop-centric software pipelining maynot be advantageous.

In terms of loop transformations, they are orthogonal to our approach. In this paper, we assume
that a loop nest to be software pipelined has already been optimized by loop transformations, if
any.

SSP can be applied to both perfect and imperfect loop nests. We will restrict it to perfect loop
nests first, and then extend it to imperfect ones, where we introduce multiple initiation intervals into the
schedule to improve execution efficiency.

In this paper, we focus only on the fundamental theory of SSP scheduling. The other equally im-
portant problems are how to design efficient scheduling algorithms, and how to allocate registers and
generate compact code for the constructed SSP schedule. The scheduling algorithm used in our ex-
periments is described in the appendix. Register allocation and code generation have posed interesting
challenges and are addressed elsewhere [Rong et al. 2005; Rong and Douillet et al. 2004].

We target ILP uniprocessors with support for predication [15, 3]. Our approach does not impose
any constraint on the function units; they may be homogeneous or heterogeneous, pipelined or non-
pipelined, and can have unit or multi-cycle latencies.

We have implemented a prototype of our method in the ORC compiler for the IA-64 architecture and
tested it with loop nests from Livermore and SPEC2000 floating-point benchmarks. The resulting code
is run on an IA-64 Itanium machine and the actual execution time is measured. Preliminary experimental
results on these loop nests reveal considerable performance differences in software pipelining different
loop levels of a loop nest, and often, software pipelining an outer loop shows significant performance
improvements over modulo scheduling that software pipelines the innermost loop. Furthermore, we
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observe that SSP is beneficial in the presence of loop transformations, such as loop interchange, loop
tiling, and unroll-and-jam.

This paper is organized as follows. Section 2 introduces the basic concepts and briefly reviews mod-
ulo scheduling. Then we motivate our study by a simple example in Section 3. Section 4 discusses our
method in detail. We prove its correctness and efficiency in Section 5. We thenextend SSP to imper-
fect loop nests and introduce multiple initiation intervals into the schedule in Section6. Experimental
results are reported in Section 7. A discussion on related work and concluding remarks are presented in
Sections 8 and 9.

2 Basic Concepts

An n-deep perfect loop nestis composed of loopsL1, L2, · · · , Ln, respectively, from the outermost to
the innermost level, with each level having exactly one loop, and all operations are within the innermost
loop. Each loopLx(1 ≤ x ≤ n) has an index variableix and a trip countNx > 1. The index is
normalized to change from 0 toNx − 1 with unit step. The body of the loop nest consists of all the
operations. It is assumed to have no branches; branches, if any, have been converted to linear code by
if-conversion [3].

Since a loop, except the innermost loop, has its own inner loops, it is a loop nest itself. To emphasize
this fact, we also refer to a loop as anx-dimensional loop, wherex is the depth of the loop nest. For
example,L1 is ann-dimensional loop,Ln a 1-dimensional loop, etc. A 1-dimensional loop is also
called asingle loop.

The loop nest has aniteration space, which contains one point for each execution of the body of the
loop nest. Such a point is called aniteration point in this paper, and is identified by the index vector
I = (i1, i2, · · · , in). The instance of any operationo in this iteration point is denoted byo(I). The
iteration space isrectangular if its bounds,N1, N2, · · · , andNn, do not change during the execution
of the loop nest, although they can change before and after it. In this paper, the loop level to be software
pipelined must have a rectangular iteration space.

An Lx iteration is one execution of theLx loop body. Thus theLx loop has a total ofNx number of
iterations. One such iteration is also an iteration point ifLx is the innermost loop, i.e.,x = n.

We use(o1 → o2, δ, d) to represent a data dependence from operationo1 to operationo2 in the
loop nest, whereo1 ando2 are calledsourceandsink of the dependence, respectively;δ ≥ 0 is the
dependence latency; andd = 〈d1, d2, · · · , dn〉 is thedistance vector,whered1 is the distance at the
outermost level, anddn the innermost.

Thesign of a vectoris that of its first non-zero element, either positive or negative. If all elements
are 0, the vector is azero vector.

Software pipeliningexposes instruction-level parallelism by overlapping successive iterations of a
loop. Modulo scheduling (MS)is an important and probably the most commonly used approach of
software pipelining [14, 17, 25, 24]. A detailed introduction can be foundin [2].
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for (i1=0;i1 < N1; i1++) {
a
b
c

}

(a) An Example Loop

a
b
c

a
b
c

a
b
c

=3S Prolog

Epilog

Kernel

(b) Modulo Schedule

c b a
012

modulo cycle 0 T

stage index

=1

(c) Kernel

Figure 1: Modulo Scheduling of a Single Loop

Modulo scheduling is usually applied to a single loop. Instances of an operation from successive
iterations of the loop are scheduled with anInitiation Interval (II) of T cycles. This is referred to as
modulo property. A valid modulo schedule respects modulo property, thedependence constraints, and
the(hardware) resource constraints.

The schedule lengthl is defined as the execution time of a single iteration. Then each iteration is
composed ofS = ⌈ l

T
⌉ number ofstages, with each stage takingT cycles. The schedule consists of

three phases: theprolog to fill the pipeline, thekernelto be executed multiple times, and theepilog to
drain the pipeline.

Let the schedule time for any operation instanceo(i1) beσ(o, i1). Wheni1 = 0, it can be expressed
asσ(o, i1) = p ∗ T + q, where0 ≤ q < T . We say that operationo is scheduled tomodulo cycleq

within stagep.

Example: Fig. 1(a) shows an example loop. Assume 3 function units and two dependences
(a → b, 1, 〈0〉) and(b → c, 1, 〈0〉). Fig. 1(b) shows a modulo schedule for the loop withT = 1, and
S = 3. Fig. 1(c) specifically shows the kernel, where the stages are numbered from 0 to 2 from right to
left, and all operations are scheduled to modulo cycle 0.

3 Motivation and Overview

In this section, we motivate our method with the help of a simple 2-deep perfect loop nest. We bring
out the practical limitations of the innermost-centric approach and motivate the necessity of our work.
Subsequently, we illustrate our approach using this example. Then we summarize the intuitions we get
from the example, and briefly describe our theoretical solution to the general problem.

3.1 A Motivating Example

Fig. 2 shows a perfect loop nest in C language and its data dependence graph. This loop nest certainly
could be parallelized in a number of other ways, too. We use it only for illustration purposes.

To facilitate understanding and without loss of generality, in this example, we assume that each
statement is an operation. In the DDG, each node represents an operationand an edge represents a
dependence labeled with the distance vector.

The inner loop has no parallelism due to the dependence cyclea→b→a at this level. Thus mod-
ulo scheduling of the inner loop cannot find any parallelism for this example.Innermost-loop-centric
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L1:for (i1=0; i1 < N1; i1++){
L2: for (i2=0; i2 < N2; i2++){

a: U[i1 + 1][ i2]=V[ i1][ i2]+U[i1][ i2];
b: V[ i1][ i2 + 1]=U[i1 + 1][ i2];
}

}

Figure 2: A Loop Nest and its DDG
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Figure 3: A Conceptual Illustration of Our Software Pipelining Approach (Assume
N1 = 6 andN2 = 3)

software pipelining approach exposes extra parallelism by overlapping the filling and draining of the
pipeline between successive outer loop iterations. Since modulo schedulingfailed to find any paral-
lelism, there is no filling or draining and therefore no overlapping. Thus, innermost-loop-centric soft-
ware pipelining cannot find any parallelism, either.

One may argue that loop interchange before software pipelining will solve this problem. Unfortu-
nately, that will destroy the data reuse in the original loop nest: for large arrays each iteration point will
introduce 2 cache misses, as the array elements are now accessed column-wise rather than row-wise.

3.2 Illustration of Our Approach

The above example shows the limitation of the traditional software pipelining: It cannot see the whole
loop nest to better exploit parallelism. Nor can it exploit the data reuse potential of the outer loop(s).
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This raises the question: Why not select a better loop to software pipeline, not necessarily the innermost
one?

This question brings the challenging problem of software pipelining of a loopnest. The challenge
comes from two aspects: how to handle resource constraints? And how to handle the multi-dimensional
dependences? Before we expand discussion on these challenges, letus once again look at our motivating
example shown in Fig. 2.

Example: Let us assume operationsa andb have latencies of 1 and 2 cycles, respectively. Assume that
we have two functional units, and both are pipelined and can perform anyof the operations.

Suppose that the outer loopL1 is selected for software pipelining. We remember software pipelining
a loop is to overlap its iterations. Fig. 3(a) shows such an overlapping, where the initiation interval
between two adjacent iterations of the loop isT = 1 cycle, and we assumeN1 = 6 andN2 = 3 for
simplicity.

We consider the operations belonging to iteration points(i1, 0), for all i1, constitute the firstslice,
and operations belonging to points(i1, 1) the second slice, etc. Then the overlapping can be reinter-
preted in this way: each slice is modulo scheduled so that successive iteration points within this slice
initiate at an interval ofT = 1 cycle. For the first slice, the kernel of the modulo schedule is highlighted
in a box. There areS = 3 stages, with one stage being empty.

Although the resource constraints are respected within each modulo scheduled slice, they are vio-
lated between slices because a slice is issued greedily without waiting for the resources to be released
by the previous slice. To remove the conflicts, we cut the slices intogroups, with each group having
S = 3 iterations of the outer loop. There are two groups in this schedule. Each group, except the first
one, is pushed down by(N2 − 1) ∗ S ∗ T cycles relative to its previous group. The delay is designed to
ensure that repeating patterns definitely appear. This leads to thefinal schedulethat maps each instance
of an operation to its schedule time, as shown in Fig. 3(b). Note that not only dependence and resource
constraints are respected, but the parallelism degree exploited in a modulo scheduled slice (S = 3) is
still preserved, and the resources are fully used. A dependence is stillrespected after the pushing-down
because that action either does not affect, or only increases, the time distance between the source and
the sink of the dependence, as illustrated by the dependences in Fig. 3(a)before the pushing-down and
in Fig. 3(b) after that.

Repeating patterns can be found in the final schedule. In Fig. 4, we add tothe final schedule some
ineffective operation instances, as shown in the shaded part. They areineffective because their first
indexes are beyond the legal range ofi1, the outer loop index variable. The range is assumed to be [0,6)
in our illustration. For target architectures with predication support like IA-64, predicate registers can
be used to make them ineffective during execution of the final schedule [Rong and Douillet et al. 2004].
With the added ineffective operation instances, it is clear to see that the final schedule is composed of
two repeating patterns, referred to asOutermost Loop Pattern (OLP)andInner Loop Execution Segment
(ILES). An OLP drains the pipeline of a group, and fills the pipeline with the next group simultaneously.
When the pipeline is filled with the next group, an ILES starts. It runs all the inner loops of the next
group until the group is going to drain. Then another OLP starts. Note that an ILES itself is composed
of N2 − 1 = 2 number of a smaller pattern, as shown in the figure. Apart from the OLPs and ILESes,
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Figure 5: Rewritten Loops

the final schedule also contains a prolog and an epilog. The prolog is partof the first OLP in the perfect
loop nest case. The last three cycles form the epilog.

Based on the above observation, it is straightforward to rewrite the final schedule in a more compact
form, as shown in Fig. 5. An OLP (including the prolog), an ILES, and the epilog, are all composed of
multiple copies of the kernel. The kernel copies in the prolog and the epilog are partial, with the left
and right parts being masked from execution, respectively. The stagesin a kernel copy in the ILES is
permuted, to maintain the sequential execution of each iteration of the selected loop.
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3.3 Overview of Our Approach

Based on the illustration, in this section, we briefly describe the steps and challenges in solving our
general problem. The first challenge is how to select a loop level for software pipelining. Once the loop
level is identified, the second challenge is how we software pipeline it, taking into account resource and
dependence constraints. The principles are discussed below, while details are left to Section 4.

3.3.1 Which Loop to Software Pipeline?

Parallelism is surely one of the major concerns. On the other hand, cache effects are also important
and govern the actual execution time of the schedule. However, it is hard toconsider cache effects in
traditional software pipelining, mainly due to the fact that it focuses on the innermost loop. Provided
that an arbitrary loop level in a loop nest can be software pipelined, we can search for the most profitable
level, measured by parallelism or cache data reuse, or both. Any other objective can also be used as a
criterion.

The selected loop, which is a loop nest itself, needs to have a rectangular iteration space. How to
handle a loop with a non-rectangular iteration space is beyond the scope ofthis paper.

3.3.2 How to Software Pipeline the Selected Loop?

Suppose we have chosen a loop, for simplicity, say, the outermost loopL1. Conceptually, we allocate
the iteration points within the loop to a series ofslices, and software pipeline each slice. Although any
software pipelining method can be used, we focus on modulo scheduling in thispaper.

The iteration points are allocated in this way: for anyi1 ∈ [0, N1), iteration point(i1, 0, · · · , 0, 0)

is allocated to the first slice,(i1, 0, · · · , 0, 1) to the second slice, and so on.

To modulo schedule a slice, we reduce the DDG to have only the dependences at thisL1 loop level
and simplify their distance vectors to be 1-dimensional. Based on the resource constraints and this 1-D
DDG, we construct a modulo schedule, referred to as a1-D schedule.

This 1-D schedule is applied to every slice. So all slices have the same shape, and they can be
packed together seamlessly. This leads to a schedule like that in Fig. 3(a). We can see that the iteration
points are allocated to the slices in such a way that all iterations of theL1 loop run in parallel, while
each of them runs sequentially.

How to Handle Resources?Resource constraints are enforced at two levels: at the slice level when
we modulo schedule the slices, and at the inter-slice level. Modulo schedulingof a slice meets the
resource constraints within the slice. However, by packing the successive slices together, two slices are
partially overlapped. The collective resources required at an overlapping cycle may exceed the resources
available. To solve this problem, we cut the slices intogroups, with each group containingS iterations
of theL1 loop. Then we push down, i.e. delay the execution of, a group until resources are available.
This results in afinal schedule, which respects the resource constraints at each cycle, as illustrated in
Fig. 3(b).
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How to Handle Dependences?A major obstacle to software pipelining of a loop nest is how to handle
then-dimensional dependence distance vectors. As mentioned earlier, in modulo scheduling a slice, we
consider only the simplified dependences with 1-dimensional distance vectors. Doing so is sufficient to
satisfy all dependence constraints within a slice. Dependences across slices (in the forward direction)
are also satisfied, since the slices are executed sequentially. After the slices are cut into groups and the
groups are pushed down, the dependences are still respected, as pushing down either does not affect, or
can only increase, the time distance between the source and the sink of a dependence, as illustrated in
Fig. 3(a) and Fig. 3(b).

3.3.3 Constructing the Final Schedule

In this paper, we express the final schedule abstractly in a function, which is independentof any specific
architecture. The function describes the final schedule time of an operation instance, based on the 1-D
schedule time of that operation.

It is important to see that this function is determined by the 1-D schedule. We donot unroll any
loop in constructing either the 1-D schedule or the final schedule. The example in Fig. 3(a) and 3(b) has
illustrated the formation of the final schedule in a way that can be easily understood: fully unrolling the
chosen loop and allocating all the iteration points in it to slices, applying the 1-D schedule to all slices,
cutting them into groups, and pushing down the groups appropriately. In our formal solution, however,
the same effect is simply captured by the final schedule function.

For a specific architecture, the final schedule is constructed by composing the prolog, OLP, ILES,
and epilog with the 1-D schedule. This realizes the function equivalently by code. Depending on the
target architecture, the 1-D schedule may need to be duplicated in this process. For example, for an
architecture like IA-64 that supports rotating register files, the final schedule rotates registers in an OLP,
but stops rotating in an ILES. Thus the ILES has to duplicate the 1-D schedule to achieve the same effect
of register rotating. The details of this code generation process are beyond the scope of this paper and
are presented elsewhere [Rong and Douillet et al. 2004].

Later, when we extend our approach to allow all the loops in the loop nest have their own distinct
IIs, it is too complicated to express the final schedule in a function. In this case, we also resort to the
constructive code generation process.

In summary, our approach to software pipeline a loop nest consists of three steps: loop selection,
1-D schedule construction, and final schedule computation. We will describe them in detail in the next
section.

4 Solution

In this section, we first define the concept of simplified DDG. With this concept, we formalize our
approach into 3 steps: (1) loop selection, (2) 1-D schedule construction1, and (3) final schedule com-

1In our previous work [Rong and Tang et al. 2004], this step is referred to as “dependence simplification and 1-D schedule
construction”. We remove “dependence simplification” from the name, because dependence simplification is also needed by
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Figure 6: Dependences

putation.

4.1 Definition of Simplified DDG

As illustrated in Fig. 3, conceptually, the final schedule of a multi-dimensional loop consists of a series
of modulo scheduled slices, which are cut into groups, and the groups are then pushed down to resolve
inter-slice resource conflicts. If a dependence is respected before pushing down the groups, it will also
be respected after that. Therefore we only need to consider the dependences necessary to obtain the
modulo schedule before the pushing-down.

Fig.6 pictorially illustrates the dependences in ann-dimensional loop nest in two successive slices,
where each parallelogram represents a slice, and each dot an iteration point. Although not shown on
the picture, each slice is software pipelined. The outermost levelL1 is assumed to be the chosen loop.
There are two kinds of dependences: one is across two slices, and the other one is within a slice.

Due to the way the iteration points are allocated, a dependence across two slices has a distance
vector 〈d1, d2, · · · , dn〉, whered1 ≥ 0, and〈d2, · · · , dn〉 is a positive vector. Such a dependence is
naturally resolved because the two slices are executed sequentially.

A dependence within a slice has a distance vector〈d1, d2, · · · , dn〉, whered1 ≥ 0, and〈d2, · · · , dn〉

is a zero vector. Such a dependence has to be considered during software pipelining of the slice. Besides,
only the distanced1 is useful for software pipelining. That is, the dependence distance vector can be
simplified as〈d1〉 in pipelining.

the loop selection step. Therefore, it is more appropriate to be taken as a basic concept shared by both steps.
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The two kinds of dependences are namedpositiveandzero dependences, respectively. Note that
a dependence from a slice to a previous slice is illegal. It is called anegative dependence. Negative
dependences cannot be handled directly2.

Below we formally classify the dependences, and define the simplified dependence graph.

Let d = 〈d1, d2, · · · , dn〉 be the distance vector of a dependence. We say that this dependence is
effective at loop levelLx(1 ≤ x ≤ n) iff 〈d1, d2, · · · , dx−1〉 = 0 and〈dx, dx+1, · · · , dn〉 ≥ 0, where
0 is the zero vector with appropriate length. Byeffective, we mean that such a dependence must be
respected by the final schedule if we software pipelineLx. All effective dependences atLx compose
theeffective DDGatLx.

According to the definition, if a dependence is effective atLx, we have〈dx, dx+1, · · · , dn〉 ≥ 0.
Of course the first elementdx ≥ 0. We classify the dependence by the sign of the sub-distance-vector
〈dx+1, · · · , dn〉, whenx < n. If this sub-vector is a zero, positive, or negative vector, the dependence is
classified as azero, positive, or negative dependence atLx, respectively. Whenx = n, we classify it as
a zero dependence atLx for uniformity.

The above classification is complete:an effective dependence is in and only in one of the three
classes. Especially, the dependences are classified according tothe sign of the sub-distance-vector, not
that of the whole distance vector. For example, a dependence in a 3-deeploop nest with a distance vector
of 〈1,−1, 2〉 is a negative dependence atL1 because the sub-vector〈−1, 2〉 is negative, even though the
whole distance vector is positive.

We classify only effective dependences, since, in the following sections, our discussion relates only
to them. Although the dependence classification is dependent on the loop level, we will not mention the
loop level when the context is clear.

In this paper, we assume that when we consider to software pipeline a loop level Lx, all effective
dependences at this level are either zero or positive. As discussed above, a positive dependence is across
slices in the forward direction and can be naturally honored in the final schedule. Only zero dependences
are within a slice and need to be considered. Lastly, only the dependence distance atLx is useful for
software pipelining. Thus we can reduce the effective DDG to have only zero dependences with 1-
dimensional distance vectors. We refer to the resulting DDG as thesimplified DDG. The definition is as
follows: Thesimplified DDGatLx is composed of all the zero dependences atLx; the dependence arcs
are annotated with the dependence distance atLx.

Example: Fig.7(a) shows the effective DDG atL1 for the loop nest depicted in Fig.2. There are two
zero dependences in this DDG:a → a anda → b. Associating the dependence distances atL1 with the
arcs, we get the simplified DDG shown in Fig.7(b).

2The loop nest must be transformed to make negative dependences become zero or positive. It is always feasible to do
so by loop skewing. However, after that, the iteration space becomes non-rectangular. Although we restrict to rectangular
iteration spaces in this paper, the first two steps of SSP are still applicable to non-rectangular cases, without any change, since
scheduling considers only DDG and hardware resources. It considers nothing about the shape of the iteration space. For the
third step of SSP, predicate registers can be used to dynamically form a non-rectangular iteration space in runtime. Another
way to handle the non-rectangular iteration space is to apply loop peeling such that the space is cut into a rectangle with a
triangle before and after it, and SSP is applied only to the rectangle.
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Figure 7: Dependence Simplification and 1-D Schedule Construction

4.2 Step 1: Loop Selection

In this paper, our objective is to generate the most efficient software-pipelined schedule for a loop nest.
Thus it is desirable to select the loop level with a higher initiation rate (higher parallelism), or a better
data reuse potential (better cache effect), or both. The specific decision is not made here, since that
is implementation-dependent. This paper focus on presenting a general framework, not algorithm or
implementation. In this section, we address the essential problem of evaluatingthese two criteria. For
each criterion, we consider all the loop levels that have rectangular iteration spaces.

4.2.1 Initiation Rate

Initiation rate, which is the inverse of initiation interval, specifies the number of iteration pointsis-
sued per cycle. Hence we choose the loop levelLx that has the maximum initiation rate, or minimum
initiation interval.

The minimum initiation interval at loop levelLx is max(RecMIIx, ResMII), whereRecMIIx and
ResMIIare the minimum initiation intervals determined, respectively, by recurrences inthe simplified
DDG atLx, and by the available hardware resources3.

RecMIIx = max
∀C

δ(C)

d(C)
, (1)

whereC is a cycle in the simplified DDG,δ(C) is the sum of the dependence latencies along cycleC,
andd(C) is the sum of the dependence distances alongC [13].

ResMII = max
∀ resource typer

ResMIIr (2)

whereResMIIr is the lower bound of MII determined by resource typer, which is

3The reader will find in section 4.3 that our approach has extra Sequential Constraints. They affect only the schedule length
of the 1-D schedule, but not the initiation interval. In the worst case, we can always increase the schedule length to satisfy
these constraints. Thus they do not influence the MII calculation here.
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ResMIIr =







total operations that user
total resources of typer if r is pipelined.

total execution time of the operations that user
total resources of typer if r is non-pipelined.

(3)

In addition to the initiation rate, we also look at the trip count of each loop level. In particular, the
trip count should not be less thanS, the number of stages in the 1-D schedule. Otherwise, this loop
should not be chosen.

The reason is that the slices are cut in groups, where each group hasS iterations of loopLx. Then the
trip countNx is expected to be divisible byS. Otherwise, the last group will have fewerLx iterations,
resulting in a lower utilization of resources in that group. However, whenNx > S, it is always possible
to apply loop peeling to avoid the situation.

AlthoughS is unknown at loop selection time, it is generally small because the limited resources in
a uniprocessor cannot support too many stages at the same time. As a guideline, a small estimated value
can be set forS.

4.2.2 Data Reuse

When we software pipeline a loop level, the data reuse potential can be measured by the average number
of memory accesses per iteration point. The fewer the accesses, the greater the reuse potential. Without
loss of generality, let us consider loopL1.

In our approach, software pipelining results inS iterations ofL1 loop running in a group, which
is composed of a series of slices. Select the firstS number of successive slices in the first group.
They include the following set of iteration points:{(i1, 0, · · · , 0, in)|∀i1 and in ∈ [0, S)}, which
is an S ∗ S square in the iteration space. This is a typical situation in our method, becauseL1 it-
erations are executed in parallel, and the index of the innermost loop changes more frequently than
the indices of the other loops. Therefore, we could estimate the memory accesses of the whole loop
nest by those of the iteration points in this set. This set can be abstracted as alocalized vector space
α = span{(1, 0, · · · , 0), (0, · · · , 0, 1)}. Now the problem is very similar to that discussed in [28].
Below we briefly describe the application of their method in this situation.

For auniformly generated setof memory references in this localized space, letRST andRSS be
the self-temporal and self-spatial reuse vector spaces, respectively. And letgT andgSbe the number of
group temporal and group-spatial equivalent classes. Then for this uniformly generated set, the number
of memory accesses per iteration point is4:

gS + (gT − gS)/l

leSdim(RST∩α)
, (4)

wherel is the cache line size, and

4We useRST in the denominator here, instead ofRSS as in the original formula on page 39 of the literature[28], which
we think was a typo.
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e =

{

0 if RST ∩ α = RSS ∩ α,

1 otherwise.

The total number of memory accesses per iteration point is the sum of accesses for each uniformly
generated set.

The above data reuse model does not consider loop volume. Other models [12, 7, 16] may be used
as well.

4.3 Step 2:1-D Schedule Construction

Our method software pipelines only the selected loop. Enclosing outer loops,if any, are left as they are.
Therefore, without loss of generality, we considerL1 as the selected loop.

As mentioned already, given the effective DDG atL1, we can simplify the dependences to obtain a
simplified DDG, which consists of only zero dependences with 1-dimensionaldistance vectors.

Basedsolely on the simplified DDG and the hardware resource constraints, we construct a 1-D
schedule. Since the DDG is 1-dimensional, from the viewpoint of scheduling, L1 is treated as if it were
a single loop. Any modulo scheduling method can be applied to obtain the 1-D schedule.

Let T be the initiation interval of the generated schedule, andS be the number of stages of the
schedule. We refer to the schedule as a1-D schedulefor the loop levelL1. Let the schedule time for
any operation instanceo(i1) beσ(o, i1), where0 ≤ σ(o, i1) < S ∗ T wheni1 = 0.

The 1-D schedule must satisfy the following properties:

1. Modulo property:

σ(o, i1) + T = σ(o, i1 + 1) (5)

2. Dependence constraints:

σ(o1, i1) + δ ≤ σ(o2, i1 + k) (6)

for every dependence(o1 → o2, δ, 〈k〉) in the simplified DDG.

3. Resource constraints: At any modulo cycle of the kernel, no hardware resource is allocated to
more than one operation.

4. Sequential Constraints: ifn > 1, then

S ∗ T − σ(o, 0) ≥ δ (7)

for every positive dependence with operationo as the source operation, andδ being the depen-
dence latency.
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The first three constraints are exactly the same as those of the classical modulo scheduling [2, 13]. We
have added the sequential constraints to enforce sequential order between successive iteration points in
the sameL1 iteration. This ensures that all positive dependences are honored at runtime. The sequential
constraints have effect only for loop nests with more than 1 loop.

Example: For the loop nest in Fig.2 and its effective DDG in Fig.7(a), the simplified DDG atL1 is
shown in Fig.7(b). Based on this simplified DDG, a 1-D schedule can be constructed (Fig. 7(c)). As
mentioned earlier, we have assumed two homogeneous functional units, andan execution latency of 1
and 2 cycles for operationsa andb. The schedule has an initiation interval of 1 cycle (T = 1) and has 3
stages (S = 3). Also,σ(a, i1) = 0 + i1 ∗ T andσ(b, i1) = 1 + i1 ∗ T .

4.4 Step 3: Final Schedule Computation

As explained in Section 3.3.2, we first allocate iteration points in the loop nest to slices, then we software
pipeline each slice by applying the 1-D schedule to it.

If the successive slices are greedily issued without considering resource constraints across the slices,
we obtain the schedule like that in Fig.3(a). Note that, within each slice, the resource constraints are
honored during the construction of the 1-D schedule. Now, to enforce resource constraints across slices,
we cut the slices in groups, with each group havingS number ofL1 iterations. Each group, except the
first one, is delayed by a given number of cycles as shown in Fig.3(b).

With the above procedure in mind, a final schedule can be precisely defined by the following map-
ping function. For any operationo in the iteration pointI=(i1, i2,. . . , in), the schedule timef(o, I) is
given by

f(o, I) = σ(o, i1)

+
∑

2≤x≤n

(ix ∗ (
∏

x<y≤n+1

Ny) ∗ S ∗ T )

+

⌊
i1
S

⌋

∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T, (8)

whereNn+1=1.

Let us briefly explain how the above equation is derived. First, let us consider the ideal sched-
ule before pushing down the groups. For this schedule, the schedule time of o(I) is equal to that of
o(i1, 0, · · · , 0) plus the time elapsed between the schedule times ofo(i1, 0, . . . , 0) and o(I). Since
o(i1, 0, · · · , 0) is in the first slice, the schedule time ofo(i1, 0, · · · , 0) is simply equal toσ(o, i1), the
1-D schedule time. This corresponds to the first term of the right-hand sideof Equation (8).

Between iterationso(i1, 0,. . . , 0) and o(i1, i2, . . ., in), there are i2*(N3*N4*..* Nn) +

i3*(N4*N5*..* Nn)+. . . +in number of iteration points. These points execute sequentially and each
of them takesS*T cycles. Thus, the time elapsed between the schedule times ofo(i1, 0, . . . , 0) and
o(i1, i2, . . ., in) equals

∑

2≤x≤n

(ix ∗ (
∏

x<y≤n+1

Ny) ∗ S ∗ T ).
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This corresponds to the second term of the right-hand side of Equation (8).

Next we discuss the effect of pushing down the groups. Iteration pointo(I) is located in group
⌊

i1
S

⌋
.

Each group is delayed by
⌊

i1
S

⌋
∗w cycles, wherew is the delay between two successive groups. For the

example in Fig.3(b) with the 2-deep loop nest, we see thatw = (N2 − 1) ∗ S ∗ T . In general, for an
n-deep loop nest,w = (total iteration points in anL1 iteration− 1) ∗ S ∗ T . Thus the group whereo(I)
is located is pushed down by

⌊
i1
S

⌋

∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T

cycles. This is exactly the third term in Equation (8).

Example. To illustrate the mapping function for the final schedule, consider the 2-deep loop nest in
Fig.2. From the 1-D schedule in Fig.7(c), we know thatS = 3, T = 1, andσ(a, i1) = 0 + i1 ∗ T . For
any operation instancea(i1, i2), we have the final schedule

f(a, (i1, i2)) = i1 + i2 ∗ 3 +

⌊
i1
3

⌋

∗ (N2 − 1) ∗ 3.

For instance, whenN2 = 3, we havef(a, (4, 1)) = 13, as can be seen from Fig.3(b).

5 Analysis

In this section, we establish the correctness and efficiency of the SSP approach, and its relationship with
MS. We also demonstrate the relationship between SSP and the traditional hyperplane scheduling.

5.1 Correctness

First, we show a simple fact in an SSP final schedule: the instances of any operation are initiated one
by one everyT cycles. For example, in Fig. 3(b), the instances of operationa are issued in a sequence
everyT = 1 cycle: a(0, 0), a(1, 0), a(2, 0), a(0, 1), a(1, 1), a(2, 1), a(0, 2), a(1, 2), a(2, 2), a(3, 0),
a(4, 0), a(5, 0), a(3, 1), ... It is trivial to prove that such initiation pattern is true in general for any-deep
loop nest with any number of operations.

A direct consequence of the fact is that no two instances of the same operation can be initiated at
the same cycle. This result will be used in proving the following theorem:

Theorem 5.1. The final schedule defined in Equation (8) respects all the dependences in the effective
DDG and the resource constraints.

Proof. Given a dependence(a → b, δ, 〈d1, d2, . . . , dn〉) in the effective DDG,I = (i1, i2, · · · , in), and
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I′ = (i1 + d1, i2 + d2, · · · , in + dn), we show thatf(b, I′) − f(a, I) ≥ δ. Consider

f(b, I′) − f(a, I) = σ(b, i1 + d1) − σ(a, i1)
︸ ︷︷ ︸

(A)

+

∑

2≤x≤n

(dx ∗ (
∏

x<y≤n+1

Ny) ∗ S ∗ T )

︸ ︷︷ ︸

(B)

+

(

⌊
i1 + d1

S

⌋

−

⌊
i1
S

⌋

) ∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T

︸ ︷︷ ︸

(C)

. (9)

First, if this is a zero dependence, then(B) = 0, and(C) ≥ 0. Thus, using Inequality (6), we have

f(b, I′) − f(a, I) ≥ σ(b, i1 + d1) − σ(a, i1) ≥ δ.

Therefore zero dependences are respected in the final schedule. On the other hand, if the dependence is
positive, then it is easy to see that(A) = σ(b, d1)−σ(a, 0) ≥ −σ(a, 0), (B) ≥ S ∗T , and(C) ≥ 0. So

f(b, I′) − f(a, I) ≥ S ∗ T − σ(a, 0)

≥ δ(by sequential constraints in Inequality 7)

Therefore positive dependences are also respected in the final schedule.

Lastly, any two operation instances that have the same final schedule time mustcome from the same
modulo cycle in the kernel, but they cannot be the instances of the same operation. Since the kernel
contains exactly one instance for each operation, and is free of resource competition (by the resource
constraints definition in Section 4.3), these operation instances have no resource contention either.

To show this, consider two distinct operation instances,a(I) andb(I′), scheduled at the same cycle.
Then

f(b, I′) − f(a, I) = 0.

By combining this with Equation (9), we get(A) + (B) + (C) = 0. Since(A) = σ(b, i1) + d1 ∗ T −

σ(a, i1), and(B)+(C) is a multiple ofT (say,p∗T , wherep is an integer), we haveσ(b, i1)−σ(a, i1) =

(−p − d1) ∗ T , which is also a multiple ofT . This means operationsa andb must be from the same
modulo cycle in the kernel.

As discussed above, the instances of the same operation are issued in order. No two of them can
have the same schedule time. Therefore,a andb must be different operations.

5.2 Efficiency

Next, we demonstrate the efficiency of the SSP approach over other innermost-loop-centric software
pipelining methods from the viewpoint of computation time of the constructed schedule. In particular,
we compare our approach with modulo scheduling of the innermost loop (MS), and modulo scheduling
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of the innermost loop and overlapping the filling and draining of adjacent iterations of the outer loop, re-
ferred to as extended modulo scheduling (xMS) in this paper [17, 20, 27]. Let us define thecomputation
timeas the (final) schedule time of the last operation instance+1.

Theorem 5.2. For ann-deep perfect loop nest, suppose that MS, xMS, and SSP, find the sameinitiation
interval T and stage numberS. Furthermore, suppose that SSP chooses the outermost loopL1, which
has a trip countN1. If N1 is divisible byS, then the computation time of the SSP final schedule is not
longer than that of the MS or xMS schedule.

Proof. Modulo scheduling parallelizes the innermost loop, whose iterations issue once everyT cycles.
So the computation time is

TimeMS = N1 ∗ . . . ∗ Nn−1 ∗ (Nn + S − 1) ∗ T. (10)

In the best case of xMS schedule, the cost of filling and draining the pipeline is incurred only at the
beginning and end of the execution of the entire loop nest, and an iteration point is issued everyT
cycles. The computation time is then

TimexMS = (N1 ∗ . . . ∗ Nn + S − 1) ∗ T. (11)

Let o be any operation andI=(i1, i2,. . . , in) be any index vector. In our approach, it is easy to see
thatf(o, I) is maximum whenI=(N1-1, N2-1,. . . , Nn-1) andσ(o, 0) = S ∗ T − 1. The computation
time of SSP is equal to the maximalf(o, I)+1, which is

TimeSSP = (S + N1 − 1) ∗ T +
∑

2≤x≤n

((Nx − 1) ∗ (
∏

x<y≤n+1

Ny) ∗ S ∗ T )

︸ ︷︷ ︸

(D)

+

⌊
N1 − 1

S

⌋

∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T

︸ ︷︷ ︸

(E)

. (12)

It is easy to show that

(D) = ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T. (13)

Further, under the given condition thatN1 is divisible byS, we know that

N1 − 1 = p ∗ S + (S − 1),

wherep is an integer. Thus

(E) = p ∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T. (14)
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Combining Equations (14) and (13), we get

(D) + (E) = (p + 1) ∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T

= N1 ∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ T.

Substituting it in Equation (12), we get

TimeSSP = ((
∏

1≤x≤n+1

Nx) + S − 1) ∗ T. (15)

From Equations (10), (11), and (15), we have:

TimeSSP = TimexMS ≤ TimeMS .

Intuitively, this theorem holds because the final schedule produced by SSP always issues one itera-
tion point everyT cycles, without any hole, as can be seen from the example in Fig 3(b).

The above theorem assumes thatN1 is divisible byS. If not, sinceN1 ≥ S (according to the
discussion in Section 4.2.1) andS is typically small, we can always peel off someL1 iterations to make
it divisible. In this way, we can assure at least the same performance as that of MS or xMS.

5.3 Relation to the Classical Modulo Scheduling of a Single Loop

If the loop nest is a single loop (n=1), the sequential constraints are trivially satisfied. Other con-
straints are exactly the same as the those of the classical modulo scheduling. And the final schedule is
f(o, (i1)) = σ(o, i1). In this sense, classical MS is subsumed by SSP as a special case.

5.4 Relation to Hyperplane Scheduling

Next we establish the relation between our method and traditional hyperplanescheduling methods [8,
18]. We rewrite the mapping function for the final schedule in Equation (8) as follows.

f(o, I) = I.π + offset(o, I), (16)

whereI = (i1, i2, · · · , in), “.” is the inner product operator,

π = (T, (
∏

2<y≤n+1

Ny) ∗ S ∗ T, · · · , Nn+1 ∗ S ∗ T )transpose,

and

offset(o, I) = σ(o, 0) +

⌊
i1
S

⌋

∗ ((
∏

2≤x≤n+1

Nx) − 1) ∗ S ∗ T

︸ ︷︷ ︸

(F )

. (17)
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The mapping function for the final schedule consists of two parts. The first part I.π corresponds
to hyperplane scheduling, which determines how to allocate the iteration points toslices. Unlike the
traditional hyperplane scheduling that solves an integer programming problem to find out an optimal
scheduling vector, here the scheduling vectorπ is predefined withS andT as parameters. The objective
is thus not to find an optimal scheduling vector, but to find an optimal initiation interval.

This scheduling vector is unlikely to be found by the traditional hyperplane scheduling, because
the vector expresses resource constraints through parametersS andT , while the traditional hyperplane
scheduling does not consider resource constraints.

The second part,offset(o, I), enforces dependences and resource constraints at the instruction
level. In this offset, the first component is the 1-D schedule time,σ(o, 0), which enforces those con-
straints within a slice, while the second component, (F), enforces resource constraints across slices.
This offset is not a constant determined solely by the operationo; it is a function of the first loop index
i1. Thus, the form of Equation (16) is similar to, but not a special case of, the known extensions of
hyperplane scheduling [8, 23, 11] . The particular definition of this offset in Equation (17) is unlikely
to be derived from the above methods.

5.5 Time Complexity

Our approach consists of loop selection, constructing a 1-D schedule, and computing the final schedule.

Loop selection is flexible and its complexity depends on the specific criteria. Let us consider the
two criteria we presented in Section 4.2. LetUG be the number of uniformly generated sets, andu

be the number of operations. In the worst case, for each loop level, we compute the lower bound of
initiation interval that requiresO(u3) time with Floyd’s All-Points Shortest Path algorithm [2], and
estimate data reuse by Gauss-Seidal which requiresO(UG ∗ n2) time. Therefore, the total time in this
part isO(u3 ∗n + UG ∗n3). In general,n is never greater than 6, andUG is typically small. Hence the
dominant factor is stillu. Thus the time complexity of the loop selection phase can be approximated as
O(u3).

The construction of the 1-D schedule is traditional modulo scheduling appliedto the simplified
DDG, whose complexity is generallyO(u3) or O(u4), depending on the algorithm used [2]. The se-
quential constraints do not increase complexity. Computing the final schedule does not increase time,
either, as it is simple parameter substitution.

To summarize, the overall time complexity of SSP is bounded byO(u3) or O(u4), depending on
the specific loop selection criteria and the modulo scheduling method used.

6 Extension to Imperfect Loop Nests

At instruction-level, it is common for a loop nest to be imperfect. Usually, a loopnest that is perfect
in a high level representation becomes imperfect when lowered to instructionlevel. This is because
operations for address calculation would be introduced between the loop levels.
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Our study on scheduling perfect loop nests has set up a solid background, but cannot be applied
directly to an imperfect loop nest: Not all operations appear with the same frequency now. An operation
at an inner loop level runs more frequently than an operation at an outer loop level. Also, for efficiency,
operations at different loop levels should be scheduled with different IIs, such that the instances of an
operation at an inner loop level can be initiated at a faster rate, if possible.

In this section, we extend our scheduling approach to imperfect loop nests. First, we discuss how
to schedule an imperfect loop nest with a single II. Subsequently, we discuss how the loop nest can be
scheduled with multiple IIs to achieve higher execution efficiency.

6.1 Motivating Example

Fig. 8(a) shows an example imperfect loop nest. Compared with the example in Fig. 2, it differs only
in the outer loop. Suppose we choose loopL1 for software pipelining. Let there be two function units,
both being able to execute any operation, and each statement be considered as an operation with unit
latency, except operatione with 2 cycles.

The effective DDG in Fig. 8(b) can be simplified to the 1-D DDG in Fig. 8(c), using the same
concepts in Section 4. Based on this DDG and the resource constraints, weschedule all the operations
as if they were in a single loop.

A 1-D schedule is shown in Fig. 8(d). The 1-D schedule is akernel nestnow: it has two kernels,
K1 andK2, corresponding to the two loops, andK1 enclosesK2. They have the same II. Stages 2, 3
and 4 contain the innermost loop operations. In general, we denote the totalnumber of stages for the
innermost loop asSn. For this example,Sn = 3.

According to the 1-D schedule, ideally, allL1 iterations can be overlapped with the initiation interval
of T = 3 cycles, and each of them is sequential, as shown in Fig. 9(a). For uniformity of representation,
we assume the operations before the innermost loop,a, b, andc, have an index vector like(i1, 0), and
the operation after the innermost loop,f , has an index vector like(i1, N2 − 1).

In general, everySn number ofL1 iterations compose a group. After pushing down, we achieve
the final schedule as illustrated in Fig. 9(b). To understand it, one may think the process as follows: at
the beginning, anL1 iteration is issued everyT cycles. After all the iterations in the first group have
entered their innermost loop, they have filled the pipeline, and will hold the resources and continue
running sequentially. All the other iterations stall in this period until the first group drains the pipeline
and releases resources. At that time, they get resources and continueto issue. Such a process repeats
until all iterations finish. Note that the draining of a previous group and the issuing of the next group
are overlapped.

Such a way of execution leads to repeating patterns in the final schedule. Thus it can be rewritten
into a compact form shown in Fig. 10. Like the perfect loop nest case, it iscomposed of a prolog, the
repetition of an OLP and an ILES, and an epilog, except that the prolog is no longer a part of the first
OLP. Each of them still consists of multiple copies of the kernel.
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L1:for (i1=0; i1 < N1; i1++){
a: W[i1]=1;
b: U[i1][0]=W[ i1];
c: V[ i1][0]=U[ i1][0];

L2: for (i2=0; i2 < N2; i2++){
d: U[i1 + 1][ i2]=V[ i1][ i2]+U[i1][ i2];
e: V[ i1][ i2 + 1]=U[i1 + 1][ i2];
}
f : W[i1]=V[ i1][N2];

}
(a) An Example Imperfect Loop Nest
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Figure 8: An Imperfect Loop Nest Example

6.2 Assumptions

We assume an imperfect loop nest model in Fig. 11, where each loopLx has two sets of operations,
OPSETAx andOPSETBx. For the innermost loopLn, OPSETAn = OPSETBn. For any loop
Lx, its trip countNx > 1.

If an operationo is in eitherOPSETAx or OPSETBx, it is said to beat loop levelLx, denoted
aslevel(o) = x.

In general, an operation inOPSETAx has an index of(i1, i2, · · · , ix). We can expand it to be an
n-D vector(i1, i2, · · · , ix, 0, · · · , 0) for convenience. Similarly, for an operation inOPSETBx, we
can expand its index to be ann-D vector(i1, i2, · · · , ix, Nx+1 − 1, · · · , Nn − 1).

6.3 Solution with a Single Initiation Interval

Since any operation can be associated with ann-D index vector, a dependence distance vector is also
an n-D vector; based on its value, the dependence can be classified as a zero, positive, or negative
dependence. With this fact, the simplified DDG is defined in the same way as before.

Our approach remains to have the same three steps. Loop selection based on parallelism is the same
as before. Loop selection based on data reuse can be the same as well if we estimate only the data reuse
of the innermost loop, which is most frequently executed, and forget the operations at the outer loop
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Figure 9: The Schedules before and after Pushing down (AssumeN1 = 6 andN2 = 3)

levels. Hence we focus on the next two steps, namely, 1-D schedule construction and final schedule
computation. We assume the outermost loopL1 is chosen for software pipelining.
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6.3.1 1-D Schedule Construction

The 1-D schedule is now composed ofn kernels, each corresponding to a loop (See Fig. 12). KernelKx

is the kernel for loopLx. Let fx andlx be the first and last stages of it, respectively. Then it has totally
Sx = lx − fx + 1 number of stages, including those of its inner loops. In general,Sn ≤ Sn−1 ≤ · · · ≤

S2 ≤ S1. All kernels have the same initiation interval ofT cycles.

Consistent with the nesting relationship of the loops,Kx containsKx+1. Operations at an outer
loop level are scheduled outside the stages of the inner loops.

As a convention, the 1-D schedule time is defined with the outermost loop kernel K1 as a reference.
That is, for any operationo, if it is scheduled into modulo cycleq(0 ≤ q < T ) in stagep, then its 1-D
schedule time isσ(o, 0) = p ∗ T + q. We also represent the stage asstage(o) = p.

The 1-D schedule needs to respect the following constraints:

1. Modulo property, dependence constraints, and resource constraints: they remain the same as those
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L1: for (i1=0; i1 < N1; i1++) {
OPSETA1

L2: for (i2=0; i2 < N2; i2++) {
OPSETA2

· · ·
Ln: for (in=0; in < Nn; in++) {

OPSETAn

} //endLn

· · ·
OPSETB2

} //endL2

OPSETB1

} //endL1

Figure 11: The Imperfect Loop Nest Model
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Figure 12: The 1-D Schedule with a Single II

in Section 4.3.

2. Sequential constraints: ifn > 1, then for every positive dependence witho as the source opera-
tion, δ being the dependence latency, andx = level(o),







(lx + 1) ∗ T − σ(o, 0) ≥ δ if x = n or stage(o) > lx+1,

fx+1 ∗ T − σ(o, 0) ≥ δ otherwise.
(18)

3. Kernel nesting constraints: (i)l1 ≥ l2 ≥ · · · ≥ ln ≥ fn · · · ≥ f2 ≥ f1, and (ii) for any
operationo, if it is at loop levelLn, thenstage(o) ∈ [fn, ln]. Otherwise, suppose it is at loop
level Lx(x < n), thenstage(o) ∈ [fx, fx+1) if o is in OPSETAx, or stage(o) ∈ (lx+1, lx] if o

is in OPSETBx.

The sequential constraints conservatively require operationo to complete before any possible use of
it is issued, and thus the positive dependence from it must be respected.

The kernel nesting constraints express the nesting relationship of the kernels, and conservatively
restrict the operations inOPSETAx (OPSETBx) to be scheduled before (after) the inner loop kernel
Kx+1.
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6.3.2 Final Schedule Computation

For any operationo in an iteration pointI=(i1, i2,. . . , in), the schedule timef(o, I) in Equation( 8) can
be generalized as follows:

f(o, I) = σ(o, i1) +
∑

2≤x≤n

(ix ∗ ctimex) + push(o, I) ∗ (ctime1 − S1 ∗ T ) (19)

wherectimex is the computation time of anLx iteration in the ideal schedule where the outermost loop
iterations are overlapped at the initiation interval ofT cycles without delay, andpush(o, I) ∗ (ctime1 −

S1 ∗ T ) is the total delay thato(I) is pushed down to enforce resource constraints in the final schedule.
In this delay,push(o, I) is the total number of ILESes that appear beforeo(I) due to the pushing-down,
andctime1 − S1 ∗ T is the length of an ILES5.

Ctimex can be recursively defined as

ctimex =

{

(Sx − Sx+1) ∗ T + Nx+1 ∗ ctimex+1 if x < n,

Sn ∗ T otherwise.
(20)

The total ILESes that appear beforeo(I) due to the pushing down is found to be as follows:

push(o, I) =







max(0,
⌊

i1+stage(o)−fn+1
Sn

⌋

) if (i2, · · · , in) = (0, . . . , 0)

andstage(o) < fn.

min(
⌊

N1−1
Sn

⌋

,
⌊

i1+stage(o)−ln
Sn

⌋

) if (i2, · · · , in) = (N2 − 1, . . . , Nn − 1)

andstage(o) > ln.

⌊
i1
Sn

⌋

otherwise.

(21)

Let us briefly explain the definition. The operation instanceo(I) is in group
⌊

i1
Sn

⌋

. In general,

the total number of ILESes appearing before it due to the pushing-down is
⌊

i1
Sn

⌋

. However, there are

exceptions wheno(I) is in the prolog, an OLP, or the epilog.

If o(I) is in the prolog, it is not pushed down at all. If it is in the right part of an OLPthat fills

new iterations, the total number of ILESes equals
⌊

i1+stage(o)−fn+1
Sn

⌋

. Takea(5, 0) in Fig. 9(b) as an

example. We havei1 = 5, stage(a) = 0, fn = 2, andSn = 3 according to the kernel in Fig. 8(d).
Therefore, there is a total of

⌊
5+0−2+1

3

⌋
= 1 ILES appearing beforea(5, 0). To summarize, we can

simply expresspush(o, I) asmax(0,
⌊

i1+stage(o)−fn+1
Sn

⌋

), which is the first case in Equation (21).

Second, ifo(I) is in the epilog, the total number of ILESes is
⌊

N1−1
Sn

⌋

. If it is in the left side

of an OLP that drains previous iterations, the number is
⌊

i1+stage(o)−ln
Sn

⌋

. Takef(2, 2) in Fig. 9(b)

5It is easy to see from Fig. 9(b) or Fig. 10 that without the ILESes, the final schedule is nothing but a modulo schedule,
where each iteration hasS1 ∗ T cycles. That implies that the length of an ILES equalsctime1 − S1 ∗ T cycles.
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as an example. We havei1 = 2, stage(f) = 5, ln = 4, andSn = 3 according to the kernel in
Fig. 8(d). Thus the total number is

⌊
2+5−4

3

⌋
= 1. That is, it is delayed by one ILES, as can be seen

from Fig. 9(b). Note that the ILES that delays it is the second ILES, not the first one, which is always
before it and not due to the pushing-down, and thus not accounted for. In short, the total number is

min(
⌊

N1−1
Sn

⌋

,
⌊

i1+stage(o)−ln
Sn

⌋

), which is the second case in Equation (21).

Theorem 6.1. The final schedule defined in Equation (19) respects all the dependences in the effective
DDG and the resource constraints.

This theorem states the correctness of the final schedule. The proof is presented in the appendix.

6.3.3 Relation to the Scheduling of Perfect Loop Nests

When all theOPSETAx andOPSETBx (x < n) are empty, the loop nest in Fig. 11 is perfect. Then
l1 = l2 = · · · = ln ≥ fn = · · · = f2 = f1, Sn = Sn−1 = · · · = S2 = S1, and all the operations
are in the innermost loop. Consequently, the sequential constraints in Inequality (18) are equivalent to
Inequality (7). And the kernel nesting constraints are trivially satisfied.

For the final schedule, since any stage is within[fn, ln], we getpush(o, I) =
⌊

i1
Sn

⌋

. Then the
schedule time function defined in Equation (19) is equivalent to that in Equation (8).

In short, when the loop nest is perfect, both the 1-D schedule and the final schedule constructed by
the method in this section are completely the same as those by the method in Section 4. In this sense,
scheduling of an imperfect loop nest subsumes that of a perfect loop nest as a special case, as expected.

6.4 Solution with Multiple IIs

So far, we have assumed a single initiation interval for all the loop levels. To achieve better performance,
however, it is desirable to have multiple IIs. Intuitively, the operations at aninner loop level run more
frequently than those at an outer loop level, and therefore should run in asmaller II to shorten the
execution time, whenever possible. This leads to the interesting topic of multi-II scheduling, which is
also useful in practice.

Fig. 13 shows the general form of a 1-D schedule. Now each kernelKx has its own initiation interval
of Tx cycles. In general,T1 ≥ · · · ≥ Tn−1 ≥ Tn. AlthoughKx takes onlyTx cycles, the other cycles
below and above it are empty, without any operation, as illustrated by the shaded places in the figure.
We call themnull cycles.

The 1-D schedule time is still defined with the outermost loop kernelK1 as a reference. That is, for
any operationo, if it is scheduled into modulo cycleq(0 ≤ q < T1) in stagep, then its 1-D schedule
time isσ(o, 0) = p ∗ T1 + q.

The 1-D schedule needs to respect the following constraints, which are an extension of the con-
straints for the single-II case:
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Figure 14: A 1-D Schedule with 2 IIs for the Loop Nest in Fig. 8(a). There are 2 null cycles above
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1. Modulo property:
σ(o, i1) + T1 = σ(o, i1 + 1) (22)

2. Dependence constraints: for every dependence(o1 → o2, δ, 〈k〉) in the simplified DDG, letx =

min(level(o1), level(o2)), y = max(level(o1), level(o2)). Supposeσ(o1, 0) = p1 ∗ T1 + q1,
andσ(o2, 0) = p2 ∗ T1 + q2, where0 ≤ q1, q2 < T1. Then







k ∗ Ty + (p2 − p1) ∗ Tn + q2 − q1 ≥ δ if σ(o2, 0) ≥ σ(o1, 0),

k ∗ Ty + (p2 − p1) ∗ Tx + q2 − q1 ≥ δ otherwise.
(23)

3. Resource constraints: At any modulo cycle inK1, no hardware resource is allocated to more than
one operation.

4. Sequential constraints: ifn > 1, then for every positive dependence witho as the source opera-
tion, δ being the dependence latency,







(lx + 1) ∗ Tx − p ∗ Tx − q ≥ δ if x = n or p > lx+1,

fx+1 ∗ Tx − p ∗ Tx − q ≥ δ otherwise.
(24)
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wherex = level(o), o is scheduled into modulo cycleq in stagep.

5. Kernel nesting constraints: (i)l1 ≥ l2 ≥ · · · ≥ ln ≥ fn · · · ≥ f2 ≥ f1, andT1 ≥ T2 ≥ · · · ≥ Tn

(ii) for any operationo, if it is at loop levelLn, thenstage(o) ∈ [fn, ln]. Otherwise, suppose it is at
loop levelLx(x < n), thenstage(o) ∈ [fx, fx+1) if o is in OPSETAx, or stage(o) ∈ (lx+1, lx]

if o is in OPSETBx.

The final schedule is hard to be described by a mapping function. It can be considered to be con-
structed in this way: first, useK1 to construct the final schedule as usual. That is, rewrite the loop nest
into a parallel loop nest withK1 as the kernel. It is composed ofn loops,L′

1, L′
2, · · · , L′

n. Each loopL′
x

corresponds to the original loopLx. Second, remove the null cycles. At the loop level ofL′
x, only kernel

Kx is involved. For example, in the final schedule in Fig. 10,L′
1 is composed ofK1, andL′

2 involves
only K2 (The stages of this kernel permute, though). Therefore, the null cycles in the final schedule can
be removed such that inL′

x, the kernel is “shrunk” fromK1 into Kx, as illustrated by the inner loop in
Fig. 10. In practice, the two steps can be combined: only the operations withinthe involved kernel is
generated. The null cycles above it and below it are simply not produced. The dependences between
the operations in this kernel and those outside it have been considered conservatively by the dependence
and sequential constraints, such that without the null cycles, the dependences are still respected in the
final schedule.

EXAMPLE: Fig. 14 shows an example kernel nest with two IIs for the loop nest in Fig. 8(a). With the
outermost loop kernelK1 only, we have constructed a final schedule as shown in Fig. 10. Clearly,in
L′

2, 2/3 of the total cycles are null cycles and unnecessarily wasted. After shrinkingK1 to K2, we reach
a more compact schedule. See the annotation to the right of the figure. Now there are two initiation
intervals: an outer loop iteration is issued at the II of 3 cycles, but after entering L′

2, an inner loop
iteration is issued at the II of 1 cycle. The transition is natural without any special handling of the
pipeline.

The correctness of the final schedule is shown in Appendix, which also contains an algorithm for
constructing a 1-D schedule with multiple IIs, and a brief introduction to loop rewriting (code genera-
tion).

As expected, scheduling with multiple IIs subsumes scheduling with a single II as a special case.
When all IIs are equal to a single value, sayT , all the constraints for 1-D schedule construction become
equivalent to those in Section 6.3. The two final schedules are of coursethe same, since their basic
building blocks, the 1-D schedules, are the same and have no null cycles toremove.

7 Experiments

The SSP framework, including loop selection (with parallelism as the criterion), scheduling, register
allocation, and code generation, was implemented in the ORC 2.1 compiler for the IA-64 architecture.
The resulting code is run on an IA-64 Itanium workstation with a 733MHZ processor, 2GB main mem-
ory, and 16KB/96KB/2MB L1/L2/L3 caches, and the actual execution time is measured. Parallelism
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Figure 15: Compile Flow

serves as the first objective in loop selection, and ties are broken by datareuse, which is estimated
manually by considering an abstract cache level with a line size ofl according to Section 4.2.2.

Fig.15 shows the compile flow. The intermediate representation of the ORC compiler, termed as
WHIRL, has 5 levels: Very High, High, Middle, Low, and Very Low levels, with increasing details and
machine dependent information. The code generator translates the Very Low WHIRL to its own internal
representation (CGIR) that matches the target machine instructions. Our implementation involves work
from High WHIRL to CGIR.

At High level, it is relatively easy to get the multi-dimensional memory dependence information.
This information is transmitted to the Very Low level throughout the process ofMiddle and Low lev-
els, where many memory-related optimizations may happen. The information has tobe consistently
maintained during these optimizations.

At CGIR level, all instruction-level details have been exposed. The register dependences, and the
memory dependences inherited from the High level, are combined together to build a complete DDG.
Based on this DDG, a loop can be chosen either manually or automatically by estimating parallelism.
Then for the selected loop, itsn-D DDG is simplified to be 1-D. Based on the 1-D DDG and the
underlying resource constraints, a 1-D schedule is constructed with multipleIIs. It is represented as a
multiple-II kernel nest, or more exactly, a multiple-IIintermediate kernel nest. It is intermediate in that
variables in it have not been assigned registers yet. The register allocator works on this kernel nest and
outputs aregister-allocated kernel nest. From it, the code generator generates the IA-64 assembly code.
The assembly code is then assembled, linked, and run on the Itanium machine.

The scheduling algorithm is left to the appendix. Register allocation and codegeneration are based
on our previous work [Rong et al. 2005; Rong and Douillet et al. 2004], with minor extension to
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accommodate our generic loop nest model in Fig. 11.

In this work, we report performance results for two loop kernels from scientific applications as well
as loop nests extracted from SPEC2000 floating point benchmarks. The loop kernels that we consider
are matrix multiplication (MM) and 2-D hydrodynamics (HD) modified from the Livermore Loops.
We also apply three loop transformations, viz., loop interchange (6 different versions), loop tiling and
unroll-and-jam, for MM and test each independently. The cache misses are measured for performance
analysis using the IA64 performance monitoring tool, Pfmon.

We extracted a number of loop nests from SPEC2000 floating point benchmarks. Each loop nest
is wrapped as a function and called from the main routine with appropriate arguments. The function
body, the loop nest, is compiled using our modified ORC compiler while the rest ofthe benchmark is
compiled using gcc. This enables us to focus only on the implementation of SSP in the ORC compiler.
The benchmarks are executed with the reference inputs of SPEC.

The loop level to be software pipelined by SSP can either be chosen by ourcompiler, or manually
specified using a command line option. LetLx be the loop level. We useSSP − L∗

x to represents the
first case whereLx is chosen by our compiler, andSSP -Lx the second case where it is specified.

To verify the accuracy of our loop selection methods, SSP is applied to every feasible loop level of
a loop nest. For each case, we compare the performance of the SSP-compiled loop nest (referred to as
SSP), with that of modulo scheduling (referred to as MS), and that withoutsoftware pipelining at all
(referred to as Serial). Specially, for the tiled (unroll-and-jammed) MM, Serial refers to the original loop
nest without tiling (unroll-and-jam) or software pipelining being applied, whileMS and SSP refer to the
software pipelined schedules after the loop nest is tiled (unroll-and-jammed). MS has been implemented
in the original ORC distribution based on slack scheduling [14]. To test the effectiveness of SSP in the
presence of other optimizations, the compiler optimization level is set to O3 (full optimization level) for
all of Serial, MS, SSP.

Table 1 summarizes the average speedup for the loop nests tested. Speedup is defined as the execu-
tion time of a Serial loop nest divided by that of the optimized version (with MS, or with SSP applied
to the selected loop level).

7.1 Performance of Kernel Loops

For MM, SSP always achieves the best speedup, with appropriate loop level being selected. Whether
we apply loop interchange, tiling, or unroll-and-jam or no loop optimization at all, our method outper-
forms MS. Being able to work on a more profitable loop level, which is probablyan outer loop level,
allows the software-pipeliner to get around strong dependences or little data reuse opportunities of the
innermost loop and to make use of the better properties of the other loops when possible. We discuss
the performance in greater detail in the following subsections.
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MS SSP SSP over MS

MM- ijk 0.91 3.04 3.33

MM- ikj 0.94 4.5 4.79

MM-jik 0.98 3.5 3.57

MM-jki 0.88 4.43 5.02

MM-kij 0.97 2.54 2.62

MM-kji 0.96 2.51 2.62

HD 1.14 1.22 1.07

MM-jki with loop tiling 2.14 4.29 2.01

MM-jki with unroll-and-jam 6.19 10.17 1.64

168.wupwise loop 1 0.91 0.88 0.97

171.swim loop 1 0.83 0.83 1.0

171.swim loop 2 1.37 1.04 0.76

171.swim loop 3 1.0 0.97 0.97

173.applu loop 1 1.15 1.77 1.54

173.applu loop 2 0.97 1.94 1.99

173.applu loop 3 1.16 1.66 1.43

173.applu loop 4 1.11 2.23 2.01

173.applu loop 5 1.11 2.49 2.24

173.applu loop 6 1.14 2.22 1.95

173.applu loop 7 1.26 1.70 1.35

173.applu loop 8 0.81 1.06 1.31

301.apsi loop 1 0.99 1.86 1.87

301.apsi loop 2 1.03 4.07 3.97

Table 1: Average speedups

7.1.1 Matrix Multiply

We run SSP and MS on all the permutations of the matrix-multiply loop nest. The loopbody is
A[i][j]+ = B[i][k] ∗C[k][j]. The order of the loops in the nest are referred to asijk, ikj, jik, jki, kij,
andkji. Each loop order has different parallelism and data reuse potential. Theperformance results are
depicted in Figure 16. We show the speedups achieved by MS and SSP fordifferent matrix sizes.

For ijk andjik, the innermost loop is constrained by a recurrence cycle which limits the efficiency
of MS. Consequently, applying SSP to other loop levels clearly achieves better performance. The up-
ward tendency of the performance curves by software pipelining loopL1 suggests that with the increase
in the matrix size, the advantage of SSP’s ability to retain data reuse becomes more important. Forikj

andjki, the limited data reuse potential of one of the matrix operand of the innermost loop prevents MS
to run efficiently when the size of the matrix increases. However, by software pipelining the outermost
loop, such restriction is avoided. Forkij andkji, all the loop levels show less data reuse potential or
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Figure 16: Performance of Matrix Multiply, whereN ∗ N is the Size of an Array

parallelism, limiting the speedup of all methods. However, software pipelining ofthe middle level still
exhibits the best performance.

7.1.2 Tiled and Unroll-and-Jammed Matrix Multiply

Next we consider a classic tiled matrix multiply code [28] in which loop order isjki, and loopsi and
k are tiled6. The order of the loops is determined during tiling for best data locality. Hence only this
order is considered in this experiment.

Figure 17 shows the performance for tiled matrix multiply with a constant tile size of16 and the

6This is the equivalent row-major code. The column-major order isikj, and loopsk andj are tiled.
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Figure 18: Unroll-And-Jammed MM

array sizes being multiples of it. After tiling, there is drastic improvement in speedup due to better data
locality. The loop nest becomes 5-deep now. With software pipelining appliedto the innermost loop,
the performance is reduced by 38% on average. This is due to the overhead associated with the modulo
schedule. Instead, when scheduling the third loop level, this overhead is amortized by the benefits
from the longer execution time of the groups, and the natural overlapping of the draining and filling of
adjacent groups.

Lastly, we consider an unroll-and-jammed version of MM (Figure 18).Unroll-and-jam [6], also
known asregister tiling, attempts to match the available parallelism in the application with the hard-
ware resources. It is usually performed upon tiled code to further explore register level data reuse.
Like in tiling, after unroll-and-jam, software pipelining of the middle loop level results in significant
improvement.

The advantage of SSP scheduling shows clearly in these two experiments. Although the loops tested
are perfect in high-level language, they become imperfect in assembly level. After tiling and unroll-and-
jam, the depth of the whole loop nest becomes deeper (from 3 to 5), and the inner loops have small loop
counts. And thus it becomes important to efficiently schedule the operations that are not in the innermost
loop. It is also important to offset the overhead of initialization, finalization, and filling and draining
the pipeline. Due to the small trip count of the innermost loop, such overheads have significant impact
on the performance. By scheduling a middle loop level, software pipelining can offset these overheads
effectively. The relatively longer execution time of a group outweighs the overhead. On the other hand,
the operations at every loop level have been considered during 1-D schedule construction such that each
loop level has the smallest possible initiation interval. In contrast, MS mainly cares about the efficiency
of running the innermost loop operations and its software pipelined kernelincludes only such operations.

7.1.3 Modified 2-D Explicit Hydrodynamics

The benchmark kernel considered is a 2-D explicit hydrodynamic code modified from Livermore loops.
In this experiment, we varied the upper boundskn andjn, respectively, of the outer and the inner loops.

Figure 19 shows the performance for the hydrodynamics benchmark when kn = jn. Since there is
no recurrence in either loop level, data reuse will play a more important role inthe performance. When
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Figure 19: Hydrodynamics

the loop trip counts are smaller than 400, the outer loop is more beneficial. However, with an increase
in the matrix size, the inner loop is better.

7.2 Performance of SPEC Loops

There are many loop nests in the SPEC2000 floating point benchmarks. However, many of them could
not be software pipelined at an outer loop level due to either sibling inner loops, or function calls inside.
Other loops have non-rectangular iteration spaces. We do not considerthese loops.

In the loop nests extracted for experimentation, most of them have too shortexecution time and
small loop counts (typically, less than 50 for a loop) to show meaningful performance improvement.
However, they are perfectly fine for testing the correctness and effectiveness of our register allocation
approach and heuristics, which we have reported in [Rong et al. 2005]. Here we report the performance
of 14 loop nests from168.wupwise, 171.swim, 173.applu, and301.apsi, which have loop
depths varying from 2 to 4 and have reasonable trip counts.

The results have been summarized in Table 1 for the appropriate chosen loop level. Here we study
the results in more detail.

For 168.wupwise, there is a 3-deep critical loop nest. Scheduling the middle loop level results in
a speedup of 0.97 over MS(i.e., a slowdown from 86.127 to 88.668 seconds). Software pipelining the
outermost loop is possible, but register allocation method fails due to excessive integer register pressure.

For 171.swim, the table has shown the speedups for several loops. The least execution time within
them is 32 seconds. Software pipelining the outer loop levels results in performance slowdown. How-
ever, in 173.applu, it improves performance by 30%-120%.

The two loop nests in 301.apsi have significant speedups when scheduling the outer loop levels:
the first loop nest has good locality available in the outer loop, while the second loop nest has strong
dependence cycles in the inner loop level.

The results suggest that any loop level, including the innermost one, may bethe best or worst choice
for software pipelining. Again, software pipelining should not be applied blindly to any loop level and
loop selection is necessary, and the ability of SSP to exploit ILP from an arbitrary loop level is important.
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Figure 20: Percentages of the Three Level Cache Misses in MM-ikj with Matrix Sizes 1024*1024

7.3 Performance Analysis from Cache Misses

In this section, we investigate the cache effects of the different methods under comparison, with MM
as an example. To correctly link the cache behavior to performance, we need to evaluate the relative
weight of the cache misses at each cache level. Fig. 20 shows the relativeweight of the cache misses at
the 3 cache levels in the Itanium processor forikj matrix multiply. Almost all cache misses happen at
L2 and L3 caches for every method. This is the common trend in all the benchmarks tested.

This is a paradox as the first sight, since a cache miss at a low level must be caused by a cache miss at
a high level, and thus L1 cache misses should be higher than L2. However,this does not hold for Itanium
architecture. For this architecture: (1) There are separate L1 instruction cache and L1 data cache. And
a floating point memory operation bypasses L1 data cache. Since our experiments are performed for
scientific applications, and have only floating-point memory operations, L1 cache misses are mainly
caused by instruction fetch. (2) The loop nests experimented are small in code size. Although SSP
suffers from code expansion due to the lack of hardware support, thegenerated code is small enough to
fit in the 16K bytes L1 instruction cache. Therefore, practically there areonly a few instruction cache
misses at the start of the loop nest.

From the above discussion, it is clear that we must focus on L2 and L3 cache misses in order to
correctly explain the performance. For these experiments, we fix the matrix sizes as 1024× 1024. The
L2 and L3 cache misses (normalized with respect to the L2 and L3 cache misses of the serial code) are
shown in Fig 21 and 22, wherejki+T andjki+UJ refer to the tiled and unroll-and-jammed MM,
respectively. They partly explain the performance improvement achievedby software pipelining a good
loop level.

For all matrix multiply benchmarks, except the tiled and unroll-and-jammed versions, the L2 and
L3 cache misses in SSP schedules at the outermost loop level are significantly lower than those for MS
schedules. These numbers reflect that software pipelining exploits betterdata locality by selecting an
appropriate loop level.

The increase in L2 and L3 cache misses in SSP schedules at the middle loop level L3 for the tiled
and unroll-and-jammed benchmarks, at first, seems counter-intuitive as theSSP schedules have better
speedups than the MS schedules for these benchmarks. However, in these two cases, MS affords cost in
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Figure 21: L2 Cache Misses
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Figure 22: L3 Cache Misses

frequent pipeline filling and draining, and fails to schedule outer loop operations more effectively. The
aggressive parallel execution of several iterations in SSP causes morecache pressure, leading to larger
cache misses. The increase in cache misses affects the performance. Such effect is overcome partly by
the increased parallelism in SSP schedules: when there are enough independent instructions that can be
executed, the latencies due to cache misses can be masked. On the other hand, the Itanium architecture
stalls only on uses. This also helps to overcome the effects of increased cache misses. The results also
suggest that software pipelining tiled loops should consider the tile size to avoid negative cache misses,
which we leave for future study.

8 Related Work

Most software pipelining algorithms [15, 2, 14, 25, 24] focus on the innermost loop, and do not consider
cache effects. The most commonly used method, modulo scheduling, is a special case of our approach.

A common extension of modulo scheduling from single loops to loop nests, including hierarchical
reduction[17], Outer Loop Pipelining[20], andpipelining-dovetailing[27], is to apply modulo schedul-
ing hierarchically in order to exploit the parallelism between the draining and filling phases of adjacent
outer loop iterations. In scheduling a loop, the DDG of its own is used.

In comparison, our method considers cache effects. The DDG is alwaysthe 1-D simplified DDG
for the chosen loop, whatever loop level is currently under scheduling.The draining and filling phases
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are naturally overlapped without any special treatment.

Loop Tiling [28] maximizes data locality, instead of parallelism. Loop unrolling duplicates the loop
body of the innermost loop to increase instruction-level parallelism. Both methods are complementary
to SSP.

One question is:What is the difference between our method and the one that interchanges the
selected loop with the innermost loop, and then software pipelines the new innermost loop with MS?
First, it may not always be possible to interchange the two loops. For example, if a dependence in a
3-deep loop nest has a distance vector of〈1, 1,−1〉 and our method selects the outermost loop, it is
not legal to interchange this loop with the innermost loop. Second, even if they are interchangeable,
the resulting schedules have different runtime performance due to different data reuse patterns. And
for this interchanged loop nest, the choice for a good loop level might still bemade by considering
and comparing all the loop levels. Third, in some situations, interchange may bea bad choice, as we
discussed in Section 3.1. Lastly, loop interchange can be beneficial to SSPas well.

Another question is:What is the difference between our method and the one that tiles the selected
loop, and then software pipelines the new innermost loop with MS?In this case, the trip count of the new
innermost loop is usually small as a result of tiling, and it is critical to hide the overhead of initialization,
prolog, epilog, and finalization of the software pipelined innermost loop. Software pipelining an outer
loop leads to less overhead, as discussed in Section 1 and confirmed in the experiments with tiled and
unroll-and-jammed MM.

Unroll-and-jam [6] has been applied to improve the performance of software pipelined loops [5].
The outer loop is unrolled but it is still the innermost loop that is software-pipelined. TheRecMII

still strongly depends on the recurrences in the innermost loop, though reduced by the unroll factor.
Unroll-and-squash first applies unroll-and-jam to a nested loop, and then reduce the code size of the
jammed innermost loop by software pipelining and hardware support (rotating registers) [22]. SSP is
different from unroll-and-squash in the following ways: (1) the unroll-and-squash method presented
in [22] appears to be limited to 2-deep loop nest; (2) it does not overlap the epilog and prolog between
successive outer loop iterations; and (3) it decides the unroll factor first, and then software pipelines the
innermost loop.

In general, loop transformations, such as interchange, tiling, and unroll-and-jam, are orthogonal
to our approach and can be applied independently. In Section 7, we haveshown that our approach is
beneficial with these loop transformations applied beforehand.

Hyperplane scheduling [18] is generally used in the context of large array-like hardware structures
(such as systolic arrays and SIMD arrays), and does not consider resource constraints. There has been an
interesting approach recently that enforces resource constraints to hyperplane scheduling by projecting
then-D iteration space to an(n− 1)-D virtual processor array, and then partitioning the virtual proces-
sors among the given set of physical processors [9]. This method targets parallel processor arrays, and
does not consider low-level resources (like the function units within a single processor) or cache effects.
A subsequent software pipelining phase may need to be applied to each physical processor in order to
further exploit instruction-level parallelism from the iterations allocated to thesame processor.

Other hyperplane-based methods [8, 23, 11] formulate the scheduling ofloop nests as linear (often
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integer linear) programming problems. Optimal solutions to integer programming have exponential
time complexity in the worst case when using the Simplex algorithm or branch-and-bound methods [4].
Furthermore, they consider neither resource constraints nor cache effects.

Multi-dimensional retiming [21] translates a loop nest to be fully parallel withoutresource con-
straints.

Unimodular and non-unimodular transformations [4, 10] mainly care for coarse-grain parallelism
or the communication cost between processors.

Fine-grain wavefront transformation [1] combines loop quantization and perfect pipelining to ex-
plore coarse and fine-grain parallelism simultaneously, based on outer loop unrolling and repetitive
pattern recognition.

9 Conclusions

We have introduced the fundamental theory of software pipelining a loop nest at an arbitrary level that
has a rectangular iteration space and has no sibling inner loops in it. This approach reduces the prob-
lem ofn-dimensional software pipelining into a simpler problem of 1-dimensional software pipelining.
This approach provides the freedom to search for and schedule the most profitable loop level, where
profitability can be measured in terms of parallelism, data reuse potential, or anyother criteria.

This approach subsumes the classical modulo scheduling as a special case. It also extends the
traditional hyperplane scheduling to handle resource constraints. We have extended this approach to
schedule imperfect loop nests. Multiple initiation intervals can be naturally achieved to issue operations
at different loop levels in their fastest initiation rates.

We have demonstrated the correctness and efficiency of our method. Future work needs to study
the interaction of this approach with other loop nest transformations like tiling, unroll-and-jam, and
loop interchange more extensively, and extend the loop nest model to allow sibling inner loops at one
level. Loop selection is another area to explore. This paper presented theprinciples in loop selection. In
future, other data reuse models and other objectives like power consumption need to be investigated.
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A Appendix: Correctness, Scheduling Algorithm, and Loop Rewriting

In this section, we prove the correctness of the final schedule for an imperfect loop nest, first with
a single II, then with multiple IIs. Then we describe the scheduling algorithm used in our prototype
implementation for the experiments. Finally, we briefly illustrate how the loop nest isrewritten to
realize the final schedule.

A.1 Correctness of the Final Schedule with a Single II

First, let us establish the following facts:

Lemma A.1. For any zero dependence(a → b, δ, 〈d1, 0, . . . , 0〉) in the effective DDG, if the dependence
constraints are respected, then

stage(b) + d1 ≥ stage(a). (25)

The reason is as follows:

σ(b, d1) − σ(a, 0) ≥ δ ( by Inequality (6))

≥ 0 (δ is nonnegative as defined in Section 2).

Thus

σ(b, 0) + d1 ∗ T ≥ σ(a, 0).

Dividing both sides byT and taking their floors, we reach the Inequality (25).

Lemma A.2. For any zero dependence(a → b, δ, 〈d1, 0, . . . , 0〉) in the effective DDG, if the dependence
constraints are respected, then

stage(a) > ln ⇐⇒ stage(b) > ln

According to the kernel nesting constraints in Section 6.3.1,stage(a) > ln ⇐⇒ operationa is in
someOPSETBx, and therefore its indexI is in the form of(i1, i2, · · · , ix, Nx+1 − 1, · · · , Nn − 1).
ThenI′ is in the form of(i1 + d1, i2, · · · , ix, Nx+1 − 1, · · · , Nn − 1). Only operations inOPSETBx

could have this form of index vector. Thereforestage(b) > ln as well.

Lemma A.3. For any operationo, and two index vectorsI and I′, if I′ − I = (d1, 0, · · · , 0), where
d1 ≥ 0, then

push(o, I) ≤ push(o, I′)

The proof is trivial based on the definition of functionpush. From this fact, we can easily see
thatf(o, I) ≤ f(o, I′), and the equality holds only whend1 is 0. This confirms our intuition that the
instances of the same operation from successive outermost loop iterations, and within the same slice
before the pushing down, are still issued in the same order after that (Theonly change is the distances
between them, not the order).
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Lemma A.4. For any operationo, and three index vectors:I, I′, and I′′, if I = (i1, 0, · · · , 0), I′′ =

(i1, N2 − 1, . . . , Nn − 1), andI′ = (i1, i2, · · · , in) is not equal toI nor I′′, wherei1 is any value for the
first index, then

push(o, I) ≤
⌊

i1
Sn

⌋

= push(o, I′) ≤ push(o, I′′)

Proof. Under the given conditions,

push(o, I) =







max(0,
⌊

i1+stage(o)−fn+1
Sn

⌋

) if stage(o) < fn
⌊

i1
Sn

⌋

otherwise.

push(o, I′) =

⌊
i1
Sn

⌋

push(o, I′′) =







min(
⌊

N1−1
Sn

⌋

,
⌊

i1+stage(o)−ln
Sn

⌋

) if stage(o) > ln
⌊

i1
Sn

⌋

otherwise.
(26)

In the first case ofpush(o, I), i1 + stage(o)− fn + 1 ≤ i1. Therefore,push(o, I) can not be more than
⌊

i1
Sn

⌋

.

Similarly, in the first case ofpush(o, I′′), N1 − 1 ≥ i1 andi1 + stage(o) − ln > i1. Therefore,

push(o, I′′) cannot be less than
⌊

i1
Sn

⌋

.

The above lemma confirms the intuition that within the same outermost loop iteration, withthe
increase of the index vectors, an operation can only be pushed furtherfrom its original position.

Corollary A.5. Given any two operationso and o′, and their index vectorsI and I′, if their distance
I′ − I = 〈0, d2, · · · , dn〉 is positive, then

push(o, I) ≤ push(o′, I′). (27)

Proof. Let I = (i1, i2, · · · , in). ThenI′ = (i1, i2 + d2, · · · , in + dn).

Because the difference between the two index vectors is positive,I cannot be in this form:(i1, N2−

1, · · · , Nn − 1). Therefore, according to the proof of Lemma A.4, we know

push(o, I) ≤
⌊

i1
Sn

⌋

.

For the same reason,I′ is impossible to be in this form:(i1, 0, · · · , 0), and by the proof of
Lemma A.4, there is

⌊
i1
Sn

⌋

≤ push(o′, I′).
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Note thato(I) ando′(I′) are within the same outermost loop iteration, and the two operations are
arbitrary. This corollary says that the final schedule is consistent with our principle that an outermost
loop iteration is executed sequentially.

Lemma A.6. Given a positive dependence with the distance vector of〈d1, · · · , dn〉, anddy is the first
non-zero (actually positive) element in the sub-vector〈d2, · · · , dn〉, then

∑

2≤x≤n

(dx ∗ ctimex) ≥ Sy ∗ T

Proof. The sum is minimum whendy takes the smallest positive number (1), and any other element after
it takes the smallest legal distance. Since an indexiz for loop Lz is between[0, Nz − 1], the smallest
legal distance corresponding to this loop is−Nz + 1. So the minimum sum is

ctimey +
∑

y<x≤n

((−Nx + 1) ∗ ctimex) = ctimey − Ny+1 ∗ ctimey+1
︸ ︷︷ ︸

(A)

+

ctimey+1 − Ny+2 ∗ ctimey+2
︸ ︷︷ ︸

(B)

+

· · ·

ctimen−1 − Nn ∗ ctimen
︸ ︷︷ ︸

(C)

+

ctimen

From the definition of the computation time of a loop,

ctimey = (Sy − Sy+1) ∗ T + Ny+1 ∗ ctimey+1.

So

(A) = (Sy − Sy+1) ∗ T.

Similarly,

(B) = (Sy+1 − Sy+2) ∗ T,

· · · ,

(C) = (Sn−1 − Sn) ∗ T.

It is clear that the minimum sum isSy ∗ T − Sn ∗ T + ctimen = Sy ∗ T .

Now we are ready to prove the correctness of the final schedule for animperfect loop nest with a
single II. The correctness is established by Theorem 6.1 in Section 6.3.2.

Proof. Given a dependence(a → b, δ, 〈d1, d2, . . . , dn〉), I = (i1, i2, · · · , in), andI′ = (i1 + d1, i2 +

d2, · · · , in + dn), there will be

46



f(b, I′) − f(a, I) = σ(b, i1 + d1) − σ(a, i1)
︸ ︷︷ ︸

(A)

+

∑

2≤x≤n

(dx ∗ ctimex)

︸ ︷︷ ︸

(B)

+

(push(b, I′) − push(a, I)) ∗ (ctime1 − S1 ∗ T )
︸ ︷︷ ︸

(C)

. (28)

1. If the dependence is a zero dependence, then

(A) ≥ δ (By the dependence constraints in Inequality (6)),

(B) = 0.

In order for the dependence to be respected in the final schedule, i.e.,(A) + (B) + (C) ≥ δ, we
need to prove

(C) ≥ 0.

According to our assumption in Section 6.2,(N2 − 1, . . . , Nn − 1) 6= (0, · · · , 0). Then it is easy
to know thatctime1 > S1 ∗ T . Therefore, for(C) ≥ 0, we need only to prove

push(b, I′) − push(a, I) ≥ 0.

Below we prove it by enumerating all possibilities.

Case 1:(i2, · · · , in) is not equal to(0, . . . , 0), nor(N2 − 1, . . . , Nn − 1). Then

push(b, I′) − push(a, I) =

⌊
i1 + d1

Sn

⌋

−

⌊
i1
Sn

⌋

≥ 0.

Case2:(i2, · · · , in) = (0, . . . , 0). Then

push(b, I′) =







max(0,
⌊

i1+d1+stage(b)−fn+1
Sn

⌋

) if stage(b) < fn
⌊

i1+d1

Sn

⌋

otherwise.

push(a, I) =







max(0,
⌊

i1+stage(a)−fn+1
Sn

⌋

) if stage(a) < fn
⌊

i1
Sn

⌋

otherwise.

Push(a, I) ≤ push(b, I′) because when

stage(a) < fn, (29)
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there is

⌊
i1 + stage(a) − fn + 1

Sn

⌋

≤







⌊
i1+d1+stage(b)−fn+1

Sn

⌋

(by Lemma A.1),

⌊
i1+d1

Sn

⌋

(by Inequality (29)).

While when

stage(a) ≥ fn, (30)

there is

⌊
i1
Sn

⌋

≤







⌊
i1+stage(a)−fn+1

Sn

⌋

≤
⌊

i1+d1+stage(b)−fn+1
Sn

⌋

(by Inequality( 30) and Lemma A.1)

⌊
i1+d1

Sn

⌋

.

Case 3: (i2, · · · , in) = (N2 − 1, . . . , Nn − 1). Let us examine the two cases of operationa.

When

stage(a) > ln,

we have

stage(b) > ln(by Lemma A.2),

and thus

push(b, I′) = min(

⌊
N1 − 1

Sn

⌋

,

⌊
i1 + d1 + stage(b) − ln

Sn

⌋

)

push(a, I) = min(

⌊
N1 − 1

Sn

⌋

,

⌊
i1 + stage(a) − ln

Sn

⌋

)).

Push(a, I) ≤ push(b, I′) as
⌊

i1 + stage(a) − ln
Sn

⌋

≤

⌊
i1 + d1 + stage(b) − ln

Sn

⌋

(by Lemma A.1).

When

stage(a) ≤ ln,

we have

stage(b) ≤ ln(by Lemma A.2),

and thus

push(b, I′) =

⌊
i1 + d1

Sn

⌋

,

push(a, I) =

⌊
i1
Sn

⌋

.

Obviously,push(a, I) ≤ push(b, I′).
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2. If the dependence is a positive dependence, letx = level(a).

Case 1:x = n or stage(a) > lx+1. That is, operationa is in Ln or in aOPSETBx of an outer
loop, according to the kernel nesting constraints.

Imagine there is an operationc in the last stage of the same loop, stagelx, and at the last
modulo cycle of it,T − 1. Its 1-D schedule time is then

σ(c, 0) = (lx + 1) ∗ T − 1 (31)

Whether such an operation really exist does not matter: we only want to takeit as a reference.

In order to provef(b, I′) − f(a, I) ≥ δ, we only need to prove the following facts:

f(c, I) − f(a, I) ≥ δ − 1 (32)

f(b, I′) − f(c, I) ≥ 1 (33)

We know

f(c, I) − f(a, I) = σ(c, i1) − σ(a, i1)
︸ ︷︷ ︸

(D)

+

∑

2≤x≤n

(0 ∗ ctimex)

︸ ︷︷ ︸

(E)

+

(push(c, I) − push(a, I)) ∗ (ctime1 − S1 ∗ T )
︸ ︷︷ ︸

(F )

It is easy to see that

(D) = (lx + 1) ∗ T − 1 − σ(a, 0) ≥ δ − 1 (by Equation ( 31) and Inequality ( 18)),

(E) = 0,

(F ) ≥ 0.

Thus Inequality ( 32) holds.

Now we prove Inequality ( 33) is true.

f(b, I′) − f(c, I) = σ(b, d1) − σ(c, 0)
︸ ︷︷ ︸

(G)

+

∑

2≤x≤n

(dx ∗ ctimex)

︸ ︷︷ ︸

(H)

+

(push(b, I′) − push(c, I))
︸ ︷︷ ︸

(I)

∗(ctime1 − S1 ∗ T )

We will prove that(G) + (H) ≥ 1 and(I) ≥ 0.

49



We know

(G) ≥ σ(b, 0) − σ(c, 0) ≥ σ(b, 0) − (lx + 1) ∗ T + 1 (by Equation ( 31)), (34)

(H) ≥ Sy ∗ T (by Lemma A.6), (35)

wherey is such thatdy is the first non-zero (actually positive) element in the sub-vector
〈d2, · · · , dn〉. Remember that operationc (anda) is in OPSETBx and has an index vector
of I = 〈i1, · · · , ix, Nx+1 − 1, · · · , Nn − 1〉. It is not possible to make the elements afterix
bigger. It is only possible to make one or more of the elements betweeni1 andix bigger.
This implies that the first non-zero increment,dy, must be applied to one of the elements
betweeni1 andix. In other words,y ≤ x, and thus

ly ≥ lx (36)

Operationb must be at loop levelLy or any inner loop level of it. If otherwise, it is outside
of this loop, its index corresponding to this loop would be either 0 orNy − 1, depending on
whether it is in anOPSETA or OPSETB, and cannot be changed, let alone a non-zero
incrementdy. Therefore,

σ(b, 0) ≥ fy ∗ T. (37)

Now let us add up the Inequalities( 34) and ( 35):

(G) + (H) ≥ fy ∗ T − (lx + 1) ∗ T + 1 + Sy ∗ T (by Inequalities ( 37))

= (ly − lx) ∗ T + 1

≥ 1(by Inequality ( 36)). (38)

Now we need only to prove that(I) ≥ 0. Let an index vectorI′′ = 〈i1 + d1, i2, · · · , in〉.
That is, it is the same asI except for the first element. We decompose(I) as follows:

(I) = push(b, I′) − push(c, I′′)
︸ ︷︷ ︸

(J)

+ push(c, I′′) − push(c, I)
︸ ︷︷ ︸

(K)

. (39)

(K) ≥ 0 according to Lemma A.3. There must be(J) ≥ 0 as well, becauseI′ − I′′ =

〈0, d2, · · · , dn〉 is a positive vector. According to corollary A.5,(J) must be nonnegative.

Case 2: Otherwise, similarly, imagine there is an operationc at the last modulo cycle before the inner
loop kernel. That is, the 1-D schedule time of it is

σ(c, 0) = fx+1 ∗ T − 1 (40)

We still prove the facts stated in Inequalities ( 32) and ( 33). The proof is thesame as that
for Case 1, except the following details:

(G) ≥ σ(b, 0) − fx+1 ∗ T + 1 (by Equation ( 40)),

(G) + (H) ≥ fy ∗ T − fx+1 ∗ T + 1 + Sy ∗ T

= (ly − fx+1 + 1) ∗ T + 1

> 1
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3. Resource constraints.

Lastly, for any two distinct operation instances,a(I) andb(I′), scheduled at the same cycle, we
have

f(b, I′) − f(a, I) = 0.

Borrow Equation (28), we have(A) + (B) + (C) = 0. Since(A) = σ(b, i1) + d1 ∗ T − σ(a, i1),
and(B) + (C) is a multiple ofT , we haveσ(b, i1) − σ(a, i1) = −d1 ∗ T − (B) − (C), which is
also a multiple ofT . That is, operationsa andb must be from the same modulo cycle in the 1-D
schedule, which has no resource conflicts since the 1-D schedule respects the resource constraints.

A.2 Correctness of the Final Schedule with Multiple IIs

First, suppose all IIs are equal to a single value, say,T . Then all the scheduling constraints, and thus the
final schedule, are equivalent to those with a single II, as discussed in Section 6.4. We have proved the
correctness of such a final schedule in the above section.

Second, from this final schedule, let us remove all unnecessary “nullcycles”, and reach a multiple-II
final schedule. This final schedule can be regarded as being composed of different kernelsK1, K2, ..,
andKn.

1. The final schedule respects any zero dependence.

Given a dependence(a → b, δ, 〈d1, 0, . . . , 0〉), I = (i1, i2, · · · , in), andI′ = (i1 + d1, i2, · · · , in),
we prove thatf(b, I′) − f(a, I) ≥ δ.

For convenience, denote the sub-vector(i2, · · · , in) asI2n. Then we can representI as(i1, I2n),
andI′ as(i1 + d1, I2n).

f(b, (i1 + d1, I2n)) − f(a, (i1, I2n)) = f(b, (i1 + d1, I2n)) − f(b, (i1 + d1 − 1, I2n))
︸ ︷︷ ︸

(A)

+

f(b, (i1 + d1 − 1, I2n)) − f(b, (i1 + d1 − 2, I2n))
︸ ︷︷ ︸

(B)

+

· · ·

f(b, (i1 + 1, I2n)) − f(b, (i1, I2n))
︸ ︷︷ ︸

(C)

+

f(b, (i1, I2n)) − f(a, (i1, I2n))
︸ ︷︷ ︸

(D)

Let x = min(level(a), level(b)), andy = max(level(a), level(b)). Sincelevel(a) ≤ y, kernel
Klevel(a) must encloseKy or is Ky itself. Similarly,Klevel(b) must encloseKy or is Ky itself as
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well. Therefore, the initiation intervalsTlevel(a) andTlevel(b) must be greater than or equal toTy.
Therefore, in the above formula,

(A) ≥ Tlevel(b) ≥ Ty,

(B) ≥ Tlevel(b) ≥ Ty, and

· · ·

(C) ≥ Tlevel(b) ≥ Ty.

So

(A) + (B) + · · · + (C) ≥ d1 ∗ Ty

Supposeσ(a, 0) = p1 ∗ T1 + q1, andσ(b, 0) = p2 ∗ T1 + q2, where0 ≤ q1, q2 < T1. That is,
operationa is at the modulo cycleq1 in stagep1, and operationb is at modulo cycleq2 in stagep2.
From operationa to operationb in the same iteration point, among all the kernels in this course,
the smallest kernel must beKn, and the biggest must beKx. We can use their initiation intervals
Tn andTx to estimate the minimum value of(D).

If σ(b, 0) ≥ σ(a, 0), then(D) is nonnegative. The value of(D) is minimum when all the kernels
from a to b in the same iteration point have the smallest possible value, which isTn. Therefore

(D) ≥ (p2 − p1) ∗ Tn + q2 − q1.

Thus

(A) + (B) + · · · + (C) + (D) ≥ d1 ∗ Ty + (p2 − p1) ∗ Tn + q2 − q1

≥ δ (by Inequality(23)).

If σ(b, 0) < σ(a, 0), then(D) is negative. It is minimum when all the kernels froma to b in the
same iteration point have the biggest possible value, which isTx. Thus

(D) ≥ (p2 − p1) ∗ Tx + q2 − q1.

Consequently,

(A) + (B) + · · · + (C) + (D) ≥ d1 ∗ Ty + (p2 − p1) ∗ Tx + q2 − q1

≥ δ (by Inequality (23)).

2. The final schedule respects any positive dependence.

As we see from the single II case, respecting the positive dependence requires the satisfaction of
the two inequalities ( 32) and ( 33) regarding the dependent operationsa andb, and the imaginary
operationc.

Inequality ( 32) says that the dependence sourcea(I) must have finished after the imaginaryc(I)
is issued. After shrinking the kernels in the single-II final schedule, theirdistance is shortened.
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Algorithm 1 A Scheduling Algorithm
Require: the 1-D simplified DDG for loopL1, and the hardware resource description.
Ensure: σ(o, 0) for every operationo.

1: Tn+1=0
2: for x = n to 1 step -1do
3: if x < n then
4: Move operations fromOPSETBx to OPSETAx, if dependences allow
5: end if
6: for Tx = max(RecMIIx, ResMIIx, Tx+1) to thresholdIIx step 1 do
7: ModuloSchedule(Lx, Tx)
8: if Modulo scheduling succeededthen
9: if x < n then

10: Translate the schedule such thatKx+1 starts from modulo cycle 0
11: end if
12: Increaselx to satisfy the first case of the sequential constraints in Inequality ( 24), if neces-

sary
13: Goto line 17
14: end if
15: end for
16: Return Failure
17: end for
18: Return Success

However, note that both are from the sameOPSETAx ( or OPSETBx), and within the same
iteration point. The same is true for all the other operation instances between them. Therefore,
the minimum distance between them would be

f(c, I) − f(a, I) = (lx + 1) ∗ Tx − 1 − p ∗ Tx − q,

which is no less thanδ − 1 according to the sequential constraints. Inequality ( 32) still holds,
although the minimum distance changes.

Inequality ( 33) says that the dependence sink appears after the imaginary c(I). Shrinking would
not change such order, as shrinking removes only null cycles, but changes no relative positions
between any operation instances. One may refer to the example in Fig. 10 forintuition.

3. Resources constraints are naturally respected, since removing null cycles does not change the
relative positions of the operation instances.

A.3 A Scheduling Algorithm

There are more than one way to construct a 1-D schedule satisfying the scheduling constraints
given in Section 6.4. For example, one might formulate the constraints into a linear programming
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problem, where all operations from all levels can be scheduled simultaneously. For another example,
one might extend the traditional hierarchical reduction to construct the schedule, as we did for our
prototype implementation. We describe the algorithm below.

The traditional hierarchical reduction approach [17] is applied to construct the multi-II kernel nest.
Assume we choose the outermost loop for scheduling. We schedule the operations starting from the
innermost loop to the outermost loop. To each loop, we apply the traditional modulo scheduling.

The algorithm is shown in Algorithm 1, whereRecMIIx andResMIIx are the MII determined
by the recurrences and resources within the current loopLx, thresholdIIx is an estimated maximum II
for loopLx, and ModuloSchedule(Lx, Tx) calls the traditional modulo scheduling to schedule loopLx

under the current II,Tx.

Before scheduling loopLx, we do some precessing: move every operation inOPSETBx to
OPSETAx, whenever dependences allow. See line 4 in the algorithm. To some extent, thisover-
comes the limitation of the kernel nesting constraints that requires the operations in OPSETBx must
be scheduled after the inner loop. This preprocessing can be optional.

In the experiments, the modulo scheduling method we called is slack scheduling [14], which has
already been implemented in the ORC compiler. The input to it is always the simplified1-D DDG
for the outermost loop, whatever loop we are currently scheduling. In scheduling the current loop,
consider only the 1-D dependences whose source and sink are in the current loop, including its inner
loops, and one of them must be at the current level (In computingRecMIIx, we considered only these
dependences as well).

The innermost loop is scheduled in the same way as the original slack scheduling. So let us focus
on an outer loop. Let the current loop under scheduling beLx(x < n). Its inner loopLx+1 has been
scheduled and the kernelKx+1 has been produced.Kx+1 is treated as an atomic operation with the
collective resource requirement of all the operations in it, and a latency ofSx+1 ∗ Tx, whereTx is the
current II for scheduling the current loop.Kx+1 is scheduled with other operations at loop levelLx.
Note that the latency of this atomic operation is different from the other operations: it is dependent on
the value ofTx. Therefore, if the current loop cannot be successfully scheduled under the current value
of Tx, and the next value is tried, the latency of this operation is changed accordingly.

After Lx is successfully scheduled, we check whether the atomic operationKx+1 is placed at mod-
ulo cycle 0. If not, translate the schedule to make it. That is, if the schedule time of the atomic operation
is p∗Tx+q, where0 ≤ q < Tx, we add a numberTx−q to it and the schedule time becomes(p+1)∗Tx,
a multiple ofTx; the schedule times of all the other operations are added the same number as well. This
will finally produced such a kernel nest as shown in Fig. 23. Every kernel is placed from modulo cycle
0. There is no null cycles between the tops of two kernels. Since we assumed the latency of the atomic
operationKx+1 is Sx+1 ∗ Tx in scheduling loopLx, finally, it covers exactlySx+1 number of stages.
This arrangement conveniently ensures that the shape of the kernel nest is consistent with that of the
generic kernel nest in Fig. 13, without losing any generality.

Below we describe some details in handling the constraints in the modulo scheduling.

1. Modulo property.
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Figure 23: The Kernel Achieved by the Scheduling Algorithm

The whole schedule, the kernel nest, appears after the outermost loop isscheduled.T1 is unknown
until then. Before that, in scheduling any loopLx, we have only a partial schedule.

This is not a problem, though. In scheduling any loopLx, we assume that the instances of an
operation from successive outermost loop iterations are issued at the interval of Tx. This requires
no change to the traditional modulo scheduling. So the modulo property is a natural result of
using modulo scheduling for each loop.

2. Dependence constraints.

Traditionally, in single loop modulo scheduling, a dependence between two operationso1 and
o2 is respected in scheduling by translating it into a minimum distanceMinDist(o1, o2), which
is defined as the smallest possible value ofσ(o2, 0) − σ(o1, 0). As long as the operations are
scheduled with a distance no less than thisMinDist, the dependence constraint must have been
respected. For example, given a dependence(o1 → o2, δ, 〈k〉) for asingle loop,

σ(o1, i1) + δ ≤ σ(o2, i1 + k)

for anyi1. That is,

σ(o2, 0) − σ(o1, 0) ≥ δ − k ∗ T

whereT is the current II in scheduling the loop. Thus

MinDist(o1, o2) = δ − k ∗ T

In scheduling the multi-dimensional loop nest, we defineMinDist(o1, o2) as the minimum
distance between the two operations in the current loopLx, which is the loop that immedi-
ately encloses both operations. Suppose the two operations are scheduled into stagesp1 and
p2 at modulo cyclesq1 and q2, respectively, thenMinDist(o1, o2) is the minimum value of
(p2 − p1) ∗ Tx + q2 − q1.

Note that after a loop is scheduled, theMinDist array calculated for it is thrown away, and a new
MinDist array is calculated for the next loop to be scheduled. The purpose ofMinDist is only
to make it easier to choose a schedule time for an operation without violating any dependence
constraints during scheduling.
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For the dependence constraints in Inequality (23), they are conservatively translated into the fol-
lowing:

MinDist(o1, o2) =
Tx

Tn
∗ (δ − k ∗ Ty) (41)

Let us see how the above inequality is derived. First, from the first caseof the dependence
constraints, we have

(p2 − p1) ∗ Tx + q2 − q1
︸ ︷︷ ︸

(A)

≥ δ − k ∗ Ty
︸ ︷︷ ︸

(B)

+ (p2 − p1)
︸ ︷︷ ︸

(C)

∗(Tx − Tn) (42)

We know0 ≤ q1, q2 < Tx, because they are modulo cycles, and becauseKx starts from modulo
cycle 0 due to the specific shape of our kernel nest in Fig. 23. So

(C) =

⌊
(A)

Tx

⌋

,

which is no bigger than(A)
Tx

.

Therefore, if we conservatively satisfy the following constraint instead:

(A) ≥ (B) +
(A)

Tx
∗ (Tx − Tn),

we can definitely satisfy the original constraint in Inequality ( 42).

The above constraint translates into

(A) ≥
Tx

Tn
∗ (B).

That is,

(p2 − p1) ∗ Tx + q2 − q1 ≥
Tx

Tn
∗ (δ − k ∗ Ty).

Therefore, we let

MinDist(o1, o2) =
Tx

Tn
∗ (δ − k ∗ Ty). (43)

For the second case in the dependence constraints in Inequality 23, we have

(p2 − p1) ∗ Tx + q2 − q1 ≥ δ − k ∗ Ty

Thus

MinDist(o1, o2) = δ − k ∗ Ty (44)

Conservatively, we take the maximum of the two values defined in Equations (43) and (44) as the
MinDist. That explains the definition we show in Equation (41).
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3. Resource Constraints.

Modulo scheduling checks the availability of resources when an operationis scheduled to a cycle.
The inner loop of the current loop has been modeled as an atomic operation,whose resource usage
is the collective resource usage of all the operations in it. Therefore, resource constraints can be
respected naturally by modulo scheduling.

4. Sequential Constraints.

For the first case of the sequential constraints in Inequality (24), we do not know the value of
lx. It is not known until the current loopLx is finished scheduling. Therefore, we delay the
enforcement of this case of sequential constraints untilLx is fully scheduled. Then we increase
lx, if necessary, to assure the constraints are respected. This is alwaysfeasible. See line 12 in
Algorithm 1.

For the second case of the sequential constraints in Inequality (24), notethat fx+1 ∗ Tx is the
schedule time of the atomic operationKx+1 at the current kernelKx. Thus the constraint can be
equivalently translated into the following:

MinDist(o, Kx+1) = δ (45)

5. Kernel nesting constraints.

As we said before, in scheduling the current loopLx under the current interval,Tx, the atomic
operation representing the inner loop is considered to have a latency ofSx+1 ∗ Tx; and afterLx

is scheduled, the schedule is translated such that the atomic operation starts from modulo cycle 0.
This ensures the shape of the kernel nesting shown in Fig. 23.

We also needs to make sure that an operation at the current loop level is not scheduled into the
inner loop (the stages the atomic operation takes). This translates into the following:

MinDist(o, Kx+1) = 1 (46)

for every operationo in OPSETAx(x < n).

And
MinDist(Kx+1, o) = Sx+1 ∗ Tx (47)

for every operationo in OPSETBx(x < n).

6. A final note forMinDist: this is a basic concept used in traditional modulo scheduling (in line 7
of the algorithm). A more complete picture is as follows: at the beginning of moduloscheduling,
for every pair of operationso1 ando2, calculateMinDist(o1, o2). To do so, the initial value of
it is by default−∞. Then update the value according to the dependence constraints, sequential
constraints, and kernel nesting constraints, i.e., according to the Inequalities ( 41), ( 45), ( 46) and
( 47). If more than one constraint can be applied, take the maximum value among them. We did
not show that above for simplicity. During the scheduling process, when an operation is scheduled
or ejected, theMinDist array is updated in the same principle.

In our experiments, the modulo scheduling method is essentially the same as the original slack
scheduling, except for the calculation ofMinDist.
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A.4 Loop Rewriting

Loop rewriting (or code generation), corresponding to the last step of SSP, final schedule computation.
Instead of specifying a function, it directly generates equivalent codein the form of a newn-dimensional
loop nest. The skeleton of this new loop nest is shown in pseudo-code in Fig. 24. EachL′

i corresponds
to theLi loop in the original loop nest. Eachfor loop structure is to be replaced by its equivalent in
the target assembly language. LoopL′

2 is what we called before an ILES. It is ann − 1-dimensional
loop. The loop body of the innermost loopL′

n is anInnermost Loop Pattern. After this loop is finished
in execution, the next innermost loopL′

n−1 is tested. If it has other iterations to run, i.e., the index
in−1 < Nn−1 − 1, then its pipelines is filled, and it continues to run into the innermost loop of this
new iteration of it. This code skeleton is essentially an equivalent, simplified, version of that in the
literature [26], with the addition of a finalization phase to be complete7.

Code generation has several major aspects to take care of: (1) Generate the operations in the right
place. This is a mechanical process based on the code skeleton. (2) Before the new loop nest runs,
transfers live-in values of the loop variables to rotating registers (from static registers, for example);
and after that, transfers live-out values from rotating registers (to staticregisters, for example). The
initialization and finalization phases in the code skeleton are responsible for them, respectively. (3)
Based on the register allocation results, assign correct register names to the register operands of the
operations. This is a register renaming issue. (4) Set up the control registers such that the new loop
nest runs correctly. That is, ineffective operations are automatically disabled in execution; if the current
group of iterations is the last group, theL′

1 loop should ends and the control transfers to the epilog.
Incorrect setting might lead to wrong results or dead loop. The initialization phase is responsible for
that. (5) Handle the special constraints enforced by the target architecture. For example, the IA-64
architecture does not readily support multi-dimensional loop pipelining: it does not have special branch
operations for such pipelining as it does for single loop pipelining; the control registers are changed
with the concept of single loop pipelining in mind. The first aspect is essentiallymachine-independent,
while the others are. For simplicity, we do not discuss the details of these concerns. Readers are referred
to the literature [26].

The code skeleton is illustrated by an example in Fig. 25. In this specific illustration, there are several
general points to be noted: first, as we see from Fig. 25(c), the prolog and the epilog are composed of
partial copies ofK1 (More specifically, they are composed offn − 1 andS1 − fn number of copies,
respectively). Second, the OLP is composed ofSn number of full copies ofK1. Third, in the entire
L′

2, there are totallySn number of outermost loop iterations running as a group. Fourth, each loopL′
x,

except its inner loops, is composed of stages only fromKx. For example, in Fig. 25, the stages in the
innermost loopL′

4 are fromK4 only; the stages inL′
3 but out of the innermost loop, i.e., the code for

filling the L3 pipelines, are fromK3 only. That is why we can shrink a single-II final schedule to be one
with multiple IIs. Finally, eachL1 iteration runs sequentially.

7Compared with that in the literature, this skeleton removes a control variableinitial in, which makes it easier to under-
stand, but may lead to larger code size in certain cases.
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[Initialization ]
[Prolog]

L′

1
: for(i1 = 0;i1 < N1;i1+ = Sn){

[Outermost loop pattern]
L′

2: for(i2 = 0;i2 < N2;i2++){
L′

3
: for(i3 = 0;i3 < N3;i3++) {

· · ·
L′

n
: for(in=1;in < Nn;in++)

[Innermost loop pattern]
} //endL′

n

if ( in−1 < Nn−1 − 1) {
[Fill Ln−1 Pipelines]

}
· · ·

} //endL′

3

if ( i2 < N2 − 1) {
[Fill L2 Pipelines]

}
} //endL′

2

} //endL′

1

[Epilog]
[Finalization]

Figure 24: Code Generation for Ann-dimensional Loop Nest
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L1: for (i1=0; i1 < N1; i1++) {
OPSETA1

L2: for (i2=0; i2 < N2; i2++) {
OPSETA2

L3: for (i3=0; i3 < N3; i3++) {
L4: for (i4=0; i4 < N4; i4++) {

OPSETA4

} //endL4

}// endL3

OPSETB2

}// endL2

} //endL1

(a) A Loop Nest

0A2A3 A1A4

S =52

Sn =2

S =61

S =23

A5 A

(b) A 1-D Schedule for Illustra-
tion Purpose. HereAx repre-
sents a stage.

[Initialization ]
/*Prolog*/
A0

A1 A0

L′

1
: for(i1 = 0;i1 < N1;i1+ = 2){

/*Outermost loop pattern*/
A5 A4 A3 A2 A1 A0

A5 A4 A3 A2 A1 A0

L′

2: for(i2 = 0;i2 < N2;i2++){
L′

3
: for(i3 = 0;i3 < N3;i3++) {

L′

4
: for(i4=1;i4 < N4;i4++)

/*Innermost loop pattern*/
A4 A3

A3 A4

} //endL′

4

if ( i3 < N3 − 1) {
/* Fill L3 Pipelines */
A4 A3

A3 A4

}
} //endL′

3

if ( i2 < N2 − 1) {
/* Fill L2 Pipelines */
A4 A3

A5 A4

A1 A5

A2 A1

A3 A2

}
} //endL′

2

} //endL′

1

/* Epilog */
A5 A4 A3

A5 A4

A5

[Finalization]

(c) The Generated Code

Figure 25: Illustrating the Code Skeleton. The initialization and finalization phases are not shown, as
they are machine-dependent.
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