
University of DelawareDepartment of Electrical and Computer EngineeringComputer Architecture and Parallel Systems LaboratoryAnalyzable Atomic Sections: Integrating Fine-GrainedSynchronization and Weak Consistency Models for ScalableParallelismVivek SarkaryGuang R. GaoCAPSL Technical Memo 52February 09, 2004
Copyright c
 2004 CAPSL at the University of Delaware

yIBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598,USA. Email: vsarkar@us.ibm.comUniversity of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USAhttp://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu

AbstractA key source of complexity in parallel programming arises from �ne-grained synchro-nizations which appear in the form of lock/unlock or critical sections. Not only are theseconstructs complicated to understand and debug, but they are also often an impedimentto achieving scalable parallelism because of the overhead of the underlying synchronizationoperations and their accompanying data consistency operations. In this paper, we proposethe use of analyzable atomic sections as a parallel programming construct that can simplifythe use of �ne-grained synchronization, while delivering scalable parallelism by using a weakmemory consistency model. We use OpenMP as the base programming model in this paper,and show how the OpenMP memory model can be formalized by using the pomset abstrac-tion in the Location Consistency (LC) memory model. We then show how OpenMP can beextended with analyzable atomic sections, and use two examples to motivate the potentialfor scalable parallelism with this extension.

i

Contents1 Introduction 12 Formalization of the OpenMP Memory Model using Location Consistency 33 Analyzable Atomic Sections 53.1 Analyzable Atomic Sections: De�nition and Semantics 53.2 Implementation Techniques . 64 Examples of Optimization of Analyzable Atomic Sections 75 Conclusions 8List of Figures1 Example of OpenMP critical section from function p dznrm2 in OpenMP 2001benchmark, 310.wupwise m . 12 Example of OpenMP lock primitives from function f nonbon() in OpenMP 2001benchmark, 332.ammp m . 23 Simple example of modeling
ush operations as pomsets in the LC model 54 Insertion and optimization of consistency operations in function p dznrm2 8

ii

1 IntroductionOne of the biggest challenges in the area of parallel programming models is de�ning abstrac-tions that simplify parallel programming, while also delivering scalable performance on high-endparallel processing systems. In this paper, we focus on abstractions for �ne-grained synchroniza-tion, and discuss issues in current synchronization constructs and their accompanying memoryconsistency models that result in complex programming models with limited scalability. Wepropose the use of analyzable atomic sections as a parallel programming construct that cansimplify the use of �ne-grained synchronization, while delivering scalable parallelism by usinga weak memory consistency model. As a programming model abstraction, analyzable atomicsections may be realized in multiple languages. In this paper, we restrict our attention tointegrating analyzable atomic sections into the OpenMP programming model [4].Synchronization-free programs are usually simple to reason about and also amenable toscalable parallelization. The motivation for focusing our work on �ne-grained synchronizationis that the addition of �ne-grained synchronization in the form of lock/unlock or critical sectionsgreatly complicates the semantics and performance of parallel programs. It is usually necessaryto understand implementation details of the hardware and operating system software on aparallel machine, to be able to reason about the behavior and performance impact of speci�csynchronization constructs.C$OMP PARALLEL PRIVATE(IX, LSCALE, LSSQ, TEMP) SHARED(SCALE, SSQ, X). . .C$OMP DODO IX = 1, 1 + (N - 1) *INCX, INCX. . .END DOC$OMP END DOC$OMP CRITICALIF (SCALE .LT. LSCALE) THENSSQ = ((SCALE / LSCALE) ** 2) * SSQ + LSSQSCALE = LSCALEELSESSQ = SSQ + ((LSCALE / SCALE) ** 2) * LSSQEND IFC$OMP END CRITICALC$OMP END PARALLELFigure 1: Example of OpenMP critical section from function p dznrm2 in OpenMP 2001 bench-mark, 310.wupwise mThe OpenMP programming model [4] supports �ne-grained synchronization through criticalsections and locks. The example parallel region of code in Figure 1 was taken from functionp dznrm2 in the OpenMP 2001 benchmark, 310.wupwise m. It consists of a parallel DO loop(with index IX), followed by a critical section. The iterations of the parallel loop update localprivate variables, LSCALE and LSSQ, and the critical section uses the local values to update theshared variables, SCALE and SSQ. The recommended implementation of an OpenMP critical1

section is to use a single lock to guard all critical sections with the same name, and to ensurethat a
ush operation is performed on entry to and exit from the critical section [4]. In general,the
ush operation must ensure that local copies of all shared data in a processor's registersand caches must be
ushed to main memory. This can be a severe performance overhead forsmall critical sections, such as the one in Figure 1. In addition, a single lock can be a signi�cantbottleneck when multiple processors attempt to execute distinct critical sections (with thesame name) in parallel. We later discuss optimization opportunities for addressing both theseperformance issues.#pragma omp parallel default(none) shared(lambda, atomall)private (imax, i, ii, jj, k, a1, a2, fx, fy, fz, a1fx, a1fy, a1fz, ux, uy, uz,...){ imax = a_number;#pragma omp forfor(i= 0; i< imax; i++) { . . .a1 = (*atomall)[i]; . . .for(ii=0; ii< jj;ii++){ a2 = a1->close[ii];omp_set_lock(&(a2->lock)); . . .S2: a2->fx -= ux*k; . . .omp_unset_lock(&(a2->lock));}omp_set_lock(&(a1->lock));S1: a1->fx += a1fx ; . . .omp_unset_lock(&(a1->lock));} /* for */}/* omp parallel pragma */Figure 2: Example of OpenMP lock primitives from function f nonbon() in OpenMP 2001benchmark, 332.ammp mIn contrast to critical sections, locks in the OpenMP programming model are explicitlymanaged by the programmer; the programmer has the responsibility for allocating, initializing,setting and unsetting locks. The example code fragment in Figure 2 was taken from functionf nonbon() in the OpenMP 2001 benchmark, 332.ammp m. The outer i loop iterates in parallelthrough all elements of the atomall array. For each such element, a1 = (*atomall)[i], theinner ii loop iterates through a set of nearby atoms, a2 = a1->close[ii]. Each atom has adistinct lock to enable �ne-grained synchronization. The inner loop uses a2's lock (a2->lock)to guard updates to elements of atom a2, such as in statement S2. Likewise, the outer iterationuses a1's lock to guard updates to elements of atom a1, such as in statement S1. This �ne grainsynchronization enables iterations of the outer loop to execute in parallel, while ensuring thatcon
icting accesses to individual atoms (due to updates to its neighbouring atoms in the iiloop) are properly guarded. However, the problem of performing
ush operations still remainswith explicit locks.The previous two examples serve as motivation for us to examine the underlying memory2

model assumptions of OpenMP. Though there has been much past work related to OpenMPimplementation, we are not aware of any prior work that attempts to formalize the OpenMPmemory model for scalable parallelism.The rest of the paper is organized as follows. Section 2 reviews the OpenMP speci�cationof
ush operations, and shows how the OpenMP memory model can be formalized by using thepomset abstraction in the Location Consistency (LC) memory model [2]. Section 3 describesour proposed extension of analyzable atomic sections to the OpenMP programming model anddiscusses implementation and optimization issues. Section 4 uses the two code examples fromFigure 1 and Figure 2 to illustrate the optimization opportunities that arise from the use ofanalyzable atomic sections. Finally, Section 5 contains our conclusions.2 Formalization of the OpenMPMemory Model using LocationConsistencyIn this section, we give an outline of the memory model that appears to be implicitly assumed inthe OpenMP speci�cation, and show how it can be formalized using the Location Consistencymodel [2]. We will focus our attention on the OpenMP FLUSH directive, which implicitly de�nesthe memory consistency model assumed in OpenMP. Flushes occur frequently in OpenMP pro-grams, because they are performed implicitly at the end of many common OpenMP constructssuch as barriers, parallel loops, parallel sections, critical sections, etc.A FLUSH directive at program point P requires that a certain set of shared variables, S, mustbe made consistent by the executing thread at point P i.e., all read and write memory accessesthat occur before point P must be performed/completed before the thread can advance pastP , and all memory operations that occur after point P must be performed/completed after thethread advances past P . By default, S refers to all shared variables in the OpenMP program,though the user has the option of restricting the set of variables to be made consistent. Thissemantics can have profound implications on the software and hardware implementation ofan OpenMP program. For example, the compiler must ensure that any variable in S that isallocated to a register must be spilled to memory before point P and reloaded from memory afterpoint P . Similarly, the hardware must ensure that all store bu�ers and cache lines containingvariables in set S are
ushed before point P , and all cached values for variables in set S areinvalidated after point P . Note that a single thread's execution of a
ush operation onlysupports consistency between the thread's local state and main memory. Global consistencycan only be achieved when all threads perform a
ush operation.The OpenMP speci�cation does not explicitly de�ne a memory consistency model for sharedvariables. Existing memory models can be classi�ed along a spectrum of strong models (e.g.,Sequential Consistency [3]), relaxed models (e.g., Release Consistency [1]), and weak models(e.g., Location Consistency [2]). All memory models in this spectrum guarantee the samesemantics for data race free (DRF) programs [1], but provide di�erent semantics in the presenceof data races. Stronger models provide stricter guarantees on unsynchronized accesses to shared3

variables at the cost of additional burden on the implementation, especially when scaling upto large numbers of processors. For example, both strong and relaxed models include thememory coherence assumption, which states that all updates to the same shared variable mustbe observed in the same order by all processors. Since OpenMP programs provide no semanticguarantees for unsynchronized accesses to shared variables (data races) and thereby do notenforce the memory coherence assumption, we believe that it is appropriate to use a weakmodel such as Location Consistency (LC) to formalize the semantics of OpenMP memorymodel so as to place no restrictions on scalable parallelism (a relaxed model was also proposedin [5] as an interpretation of the OpenMP memory model).In the LC model, all write and synchronization operations related to a shared variable aremodeled as a partially ordered multiset (pomset), and the semantics of a read operation is thatit can receive the value supplied by any write operation in the pomset that belongs to themost recent write (MRW) set implied by the read operation. The partial order in the pomsetnaturally follows from the ordering constraints in a program such as an OpenMP program. Inthe absence of data races, this set will always be a singleton returning a single determinate value.In the presence of data races, the implementation is free to choose any value in the MRW set1,thereby enabling the use of more scalable cache consistency algorithms as well as optimizationssuch as register allocation of shared variables. This distinguishing feature of the LC model is aconsequence of the fact that it does not rely on the memory coherence assumption. Additionaldetails on the LC memory model and the LC cache consistency algorithm can be found in [2].In the original LC model, a pomset for a memory locations contains elements derived fromwrite operations and a multitude of synchronization operations. The main extension neededto support OpenMP using the LC model is to de�ne the following two rules for inserting
ushoperations into a pomset. First, as with other memory operations, a
ush operation, F , inthread T must obey all uniprocessor dependencies i.e., all prior store and
ush operationsperformed by T must precede F in the pomset, and F must precede all later store and
ushoperations performed by T . Second, all
ush operations performed on a memory location areassumed to be totally ordered, even (especially) if they are performed by di�erent threads.For an example, see Figure 3(a). In this case, it is assumed that the
ush operation bythread T1 occurred earlier than the the
ush operation by thread T2. The total ordering of
ush operations indirectly leads to the total ordering of write accesses, as shown at the bottomof Figure 3(a), thereby ensuring that the MRW set will never be greater in size than a singleton.Figure 3(b) illustrates what would happen if the example code fragment did not contain barrierand
ush operations. In this case, the two write operations are unrelated in the partial order,leading to an MRW set of size = 2.1If the underlying size of the shared location is bigger than a single machine word (e.g., a complex data type),then the result may be ?, which denotes an unde�ned combination of multiple values in the MRW set.4

Case (a): accesses to shared variables with FLUSH operationsThread T1 Thread T2--------- ---------S1: X := val1S2: BARRIER/FLUSH S3: BARRIER/FLUSHS4: X := val2Pomset for variable X:----------------------S1:write(T1,val1) ---> S2:FLUSH(T1) ---> S3:FLUSH(T2) ---> S4:write(T2,val2)Case (b): accesses to shared variables without FLUSH operationsThread T1 Thread T2--------- ---------S1: X := val1 S4: X := val2Pomset for variable X:----------------------S1:write(T1,val1) S4:write(T2,val2)Figure 3: Simple example of modeling
ush operations as pomsets in the LC model3 Analyzable Atomic Sections3.1 Analyzable Atomic Sections: De�nition and SemanticsThe scope of the OpenMP ATOMIC directive is currently limited to a single statement of theform x = f(x; expr1; expr2;. . .), which enables a read-modify-write operation to be performedatomically on a single scalar location, x. Only the load and store of x are guaranteed atomic; theevaluation of expressions, expr1; expr2; : : : is not atomic (and the expressions are not allowed torefer to x). Further, the choice of function f is limited to a small set of standard operators andintrinsic functions. With these limitations, the ATOMIC directive cannot be used for commonly-occurring scenarios that need �ne-grained synchronization, such as the examples in Figures 1and 2.Our proposal extends the current ATOMIC and CRITICAL constructs in OpenMP as follows.An analyzable atomic section (AAS) is a region of code that is intended to be executed atom-ically i.e., such that any concurrent AAS either observes all or none of the execution of thisAAS. We require that the addresses of all shared locations that are read or written in the AASbe computable on entry to the AAS. While we give users the option of explicitly specifying thisconsistency list of shared locations, our default approach is that the shared locations be identi-�ed automatically through compiler analysis | hence the name, \analyzable atomic section".For example, if we replace the critical section in Figure 1 by an AAS, we obtain the followingcode:C$OMP ATOMICC CONSISTENCY LIST OBTAINED BY AUTOMATIC ANALYSIS = (SSQ, SCALE)5

IF (SCALE .LT. LSCALE) THENSSQ = ((SCALE / LSCALE) ** 2) * SSQ + LSSQSCALE = LSCALEELSESSQ = SSQ + ((LSCALE / SCALE) ** 2) * LSSQEND IFC$OMP END ATOMICBy automatically identifying SSQ and SCALE as the two shared variables in the AAS, theconsistency actions can be limited to these two variables. This e�ect is analogous to an OpenMPFLUSH directive with a (SSQ, SCALE) variable list, except that the programmer did not have toidentify the variables explicitly. Another di�erence between a FLUSH directive and an AAS,is that an AAS allows the list of shared locations to include array elements and pointer-dereferenced regions as illustrated in the next example.Now, if we replace the regions of code between the omp set lock() and omp unset lock()function calls in Figure 2 by AAS's, we obtain the following code:#pragma omp atomic /* consistency list = (*a2) */. . . a2->fx -= ux*k; . . .#pragma omp end atomic. . .#pragma omp atomic /* consistency list = (*a1) */. . . a1->fx += a1fx; . . .#pragma omp end atomicThe lists of shared locations for the two atomic sections, *a2 and *a1 respectively, can beeasily established by automatic analysis.The semantics of AAS's can be established by using the Location Consistency (LC) model.Speci�cally, the consistency operations associated with the entry to and exit from an AAS areidentical to those associated with acquire and release operations performed on the set of locationsassociated with the AAS. Note that this semantics enforces a weak memory consistency model.The consistency actions are limited to only the shared locations accessed within the atomicsection. For accesses outside atomic sections, there is no assumption of memory coherence asis typically assumed in strong and relaxed models.3.2 Implementation TechniquesIn this section, we outline the three key issues that need to be addressed in the implementationof Analyzable Atomic Sections.Analysis. The analysis phase examines each read and write access to shared locations inthe AAS, and checks if the address is computable on entry to the atomic section. If so, thelocation is added to the consistency list for the AAS; otherwise, an error message to indicatethat the atomic section is unanalyzable. As an option, we can give users the ability to specifythe consistency list explicitly, but we will focus on the implicit case in this paper.6

Lock assignment. The lock assignment phases assigns one or more locks to be used toguard the entrance to the AAS. The lock assignment should be semantically correct. Thereshould be no \under-locking" i.e., it should not be possible for another atomic section with anoverlapping consistency list to execute concurrently with the current AAS. Also, while some\over-locking" may be permitted for convenience, the goal of the lock assignment phase is tosatisfy the semantic requirements while exposing as much parallelism as possible. Finally, thelock assignment should guarantee that deadlock cannot occur in any execution of the OpenMPprogram.Consistency actions. As indicated earlier, it is su�cient to perform a
ush operation onall locations in the AAS's consistency list at the start and end of the AAS to ensure memoryconsistency. However, this approach can be ine�cient because the consistency list representsan upper bound on the shared locations accessed in the AAS, and a speci�c AAS may notnecessarily access all locations. Also, it is usually preferable on most shared-memory machinesto spread consistency actions across other computations, rather than performing them in largebursts.In light of these considerations, our recommended approach is to insert a refresh operationprior to each read access and a writeback operation after each write access in the AAS, analogousto the approach proposed in [2]. A sync-writeback operation is inserted at the end of the AAS toensure that all pending writeback operations are completed before exiting the AAS. After theseoperations are inserted, a partial redundancy elimination phase can be performed to eliminateredundant refresh and writeback operations.4 Examples of Optimization of Analyzable Atomic SectionsIn this section, we use the two code examples from Figure 1 and Figure 2 to illustrate theoptimization opportunities that arise from the use of analyzable atomic sections.Figures 4(a) and 4(b) shows the result of inserting and optimizing consistency actions for theexample code from Figure 1. Note that the redundant refresh operations on SCALE in the truebranch of the IF construct has been eliminated. Also, a writeback operation on shared variableSCALE is only performed when the IF condition is true. Finally, if no writeback operation wasnecessary for SSQ in the false case, even the sync-writeback operation could have been movedto only the true case of the IF construct. Further optimization may be possible based on thetarget architecture. For example, by allocating SCALE and SSQ in the same cache line, it maybe bene�cial to combine their refresh and writeback operations.In our second code example from Figure 2, our experiments indicate that the time spendin executing function f nonbon() accounts for over 93 percent of the total time of the entirebenchmark. Our measurement also indicates that an average of 118 and 68 bytes are readand written in an analyzable section (for this program), which is much smaller than the totalvolume of data that would be made consistent using the default OpenMP
ush operation.7

(a) After inserting consistency operations:ATOMICrefresh(SCALE)IF (SCALE .LT. LSCALE) THENrefresh(SCALE)refresh(SSQ)SSQ=((SCALE/LSCALE)**2)*SSQ+LSSQwriteback(SSQ)SCALE = LSCALEwriteback(SCALE)ELSErefresh(SCALE)refresh(SSQ)SSQ=SSQ+((LSCALE/SCALE)**2)*LSSQwriteback(SSQ)END IFsync-writebackEND ATOMIC

(b) After optimization:ATOMICrefresh(SCALE)IF (SCALE .LT. LSCALE) THENrefresh(SSQ)SSQ=((SCALE/LSCALE)**2)*SSQ+LSSQwriteback(SSQ)SCALE = LSCALEwriteback(SCALE)ELSErefresh(SSQ)SSQ=SSQ+((LSCALE/SCALE)**2)*LSSQwriteback(SSQ)END IFsync-writebackEND ATOMICFigure 4: Insertion and optimization of consistency operations in function p dznrm25 ConclusionsIn this paper, we introduced analyzable atomic sections as a parallel programming constructthat can simplify the use of �ne-grained synchronization, while supporting a weak memoryconsistency model. We used OpenMP as the base programming model in this paper, andshowed how the OpenMP memory model can be formalized by using the pomset abstraction inthe Location Consistency (LC) memory model. We then showed how OpenMP can be extendedwith analyzable atomic sections, and used two examples to motivate the potential for scalableparallelism with this extension.AcknowledgmentsThis work has been supported in part by the Defense Advanced Research Projects Agency(DARPA) under contract No. NBCHC020056. We would like to thank members of the IBMPERCS project for their feedback. Zhang Yuan has directly helped in the preparation of thismanuscript and performed the measurements in collaboration with Juan Cuvillo and JosephBryant - all are pursuing their graduate study in Gao's group at University of Delaware.References[1] Sarita V. Adve and Mark D. Hill. A uni�ed formalization of four shared-memory models.IEEE Transactions on Parallel and Distributed Systems, pages 613{624, June 1993.8

[2] Guang R. Gao and Vivek Sarkar. Location consistency - a new memory model and cacheconsistency protocol. IEEE Trans. on Computers, 49(8):798{813, August 2000.[3] Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-cess programs. IEEE Transactions on Computers, 28(9):690{691, September 1979.[4] OpenMP Fortran Manual. http://www.openmp.org/specs/.[5] Vijay S. Pai Sarita V. Adve and Parthasarathy Ranganathan. Recent advances in mem-ory consistency models for hardware shared memory systems. Proceedings of the IEEE,87(3):445{455, Mar 1999.

9

