University of Delaware
(1)) Department of Electrical and Computer Engineering
~~ Computer Architecture and Parallel Systems Laboratory

Analyzable Atomic Sections: Integrating Fine-Grained
Synchronization and Weak Consistency Models for Scalable
Parallelism

Vivek Sarkart
Guang R. Gao

CAPSL Technical Memo 52
February 09, 2004

Copyright (© 2004 CAPSL at the University of Delaware

tIBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598,
USA. Email: vsarkarQus.ibm.com

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

A key source of complexity in parallel programming arises from fine-grained synchro-
nizations which appear in the form of lock/unlock or critical sections. Not only are these
constructs complicated to understand and debug, but they are also often an impediment
to achieving scalable parallelism because of the overhead of the underlying synchronization
operations and their accompanying data consistency operations. In this paper, we propose
the use of analyzable atomic sections as a parallel programming construct that can simplify
the use of fine-grained synchronization, while delivering scalable parallelism by using a weak
memory consistency model. We use OpenMP as the base programming model in this paper,
and show how the OpenMP memory model can be formalized by using the pomset abstrac-
tion in the Location Consistency (LC) memory model. We then show how OpenMP can be
extended with analyzable atomic sections, and use two examples to motivate the potential
for scalable parallelism with this extension.

Contents

1 Introduction
2 Formalization of the OpenMP Memory Model using Location Consistency

3 Analyzable Atomic Sections
3.1 Analyzable Atomic Sections: Definition and Semantics
3.2 Implementation Techniques

4 Examples of Optimization of Analyzable Atomic Sections

5 Conclusions

List of Figures

1 Example of OpenMP critical section from function p_dznrm2 in OpenMP 2001

benchmark, 310.wupwise_m e
2 Example of OpenMP lock primitives from function fnonbon() in OpenMP 2001

benchmark, 332.ammp-m L L
3 Simple example of modeling flush operations as pomsets in the LC model
4 Insertion and optimization of consistency operations in function p_dznrm2

ii

1 Introduction

One of the biggest challenges in the area of parallel programming models is defining abstrac-
tions that simplify parallel programming, while also delivering scalable performance on high-end
parallel processing systems. In this paper, we focus on abstractions for fine-grained synchroniza-
tion, and discuss issues in current synchronization constructs and their accompanying memory
consistency models that result in complex programming models with limited scalability. We
propose the use of analyzable atomic sections as a parallel programming construct that can
simplify the use of fine-grained synchronization, while delivering scalable parallelism by using
a weak memory consistency model. As a programming model abstraction, analyzable atomic
sections may be realized in multiple languages. In this paper, we restrict our attention to

integrating analyzable atomic sections into the OpenMP programming model [4].

Synchronization-free programs are usually simple to reason about and also amenable to
scalable parallelization. The motivation for focusing our work on fine-grained synchronization
is that the addition of fine-grained synchronization in the form of lock /unlock or critical sections
greatly complicates the semantics and performance of parallel programs. It is usually necessary
to understand implementation details of the hardware and operating system software on a
parallel machine, to be able to reason about the behavior and performance impact of specific

synchronization constructs.

c$oMP PARALLEL PRIVATE(IX, LSCALE, LSSQ, TEMP) SHARED(SCALE, SSQ, X)

c$oMP DO
DO IX =1, 1 + (N - 1) *INCX, INCX

END DO
c$oMP END DO
C$0MP CRITICAL
IF (SCALE .LT. LSCALE) THEN
SSQ = ((SCALE / LSCALE) #*x 2) % SSQ + LSSQ
SCALE = LSCALE
ELSE
SsQ = SSQ + ((LSCALE / SCALE) #x 2) = LSSQ
END IF
C$0OMP END CRITICAL
C$0MP END PARALLEL

Figure 1: Example of OpenMP critical section from function p_dznrm2 in OpenMP 2001 bench-

mark, 310.wupwise_m
The OpenMP programming model [4] supports fine-grained synchronization through critical

sections and locks. The example parallel region of code in Figure 1 was taken from function
p-dznrm2 in the OpenMP 2001 benchmark, 310.wupwise m. It consists of a parallel DO loop
(with index IX), followed by a critical section. The iterations of the parallel loop update local
private variables, LSCALE and LSSQ, and the critical section uses the local values to update the
shared variables, SCALE and SSQ. The recommended implementation of an OpenMP critical

section is to use a single lock to guard all critical sections with the same name, and to ensure
that a flush operation is performed on entry to and exit from the critical section [4]. In general,
the flush operation must ensure that local copies of all shared data in a processor’s registers
and caches must be flushed to main memory. This can be a severe performance overhead for
small critical sections, such as the one in Figure 1. In addition, a single lock can be a significant
bottleneck when multiple processors attempt to execute distinct critical sections (with the
same name) in parallel. We later discuss optimization opportunities for addressing both these
performance issues.

#pragma omp parallel default(none) shared(lambda, atomall)
private (imax, i, ii, jj, k, al, a2, fx, fy, fz, alfx, alfy, alfz, ux, uy, uz,...)
{
imax = a_number;
#pragma omp for
for(i= 0; i< imax; i++) {
al = (*atomall) [i];
for(ii=0; ii< jj;ii++)
{
a2 = al->closel[iil;
omp_set_lock(&(a2->lock));
S2: a2->fx -= ux*k; .
omp_unset_lock(&(a2->lock));
}
omp_set_lock(&(al->lock));
S1: al->fx += alfx ; .
omp_unset_lock(&(al->lock));
} /% for x/
}/* omp parallel pragma */

Figure 2: Example of OpenMP lock primitives from function fnonbon() in OpenMP 2001
benchmark, 332.ammp_m

In contrast to critical sections, locks in the OpenMP programming model are explicitly
managed by the programmer; the programmer has the responsibility for allocating, initializing,
setting and unsetting locks. The example code fragment in Figure 2 was taken from function
f nonbon() in the OpenMP 2001 benchmark, 332.ammp_m. The outer i loop iterates in parallel
through all elements of the atomall array. For each such element, al = (*atomall) [i], the
inner ii loop iterates through a set of nearby atoms, a2 = al->close[ii]. Each atom has a
distinct lock to enable fine-grained synchronization. The inner loop uses a2’s lock (a2->lock)
to guard updates to elements of atom a2, such as in statement S2. Likewise, the outer iteration
uses al’s lock to guard updates to elements of atom al, such as in statement S1. This fine grain
synchronization enables iterations of the outer loop to execute in parallel, while ensuring that
conflicting accesses to individual atoms (due to updates to its neighbouring atoms in the ii
loop) are properly guarded. However, the problem of performing flush operations still remains
with explicit locks.

The previous two examples serve as motivation for us to examine the underlying memory

model assumptions of OpenMP. Though there has been much past work related to OpenMP
implementation, we are not aware of any prior work that attempts to formalize the OpenMP
memory model for scalable parallelism.

The rest of the paper is organized as follows. Section 2 reviews the OpenMP specification
of flush operations, and shows how the OpenMP memory model can be formalized by using the
pomset abstraction in the Location Consistency (LC) memory model [2]. Section 3 describes
our proposed extension of analyzable atomic sections to the OpenMP programming model and
discusses implementation and optimization issues. Section 4 uses the two code examples from
Figure 1 and Figure 2 to illustrate the optimization opportunities that arise from the use of
analyzable atomic sections. Finally, Section 5 contains our conclusions.

2 Formalization of the OpenMP Memory Model using Location
Consistency

In this section, we give an outline of the memory model that appears to be implicitly assumed in
the OpenMP specification, and show how it can be formalized using the Location Consistency
model [2]. We will focus our attention on the OpenMP FLUSH directive, which implicitly defines
the memory consistency model assumed in OpenMP. Flushes occur frequently in OpenMP pro-
grams, because they are performed implicitly at the end of many common OpenMP constructs
such as barriers, parallel loops, parallel sections, critical sections, etc.

A FLUSH directive at program point P requires that a certain set of shared variables, S, must
be made consistent by the executing thread at point P i.e., all read and write memory accesses
that occur before point P must be performed/completed before the thread can advance past
P, and all memory operations that occur after point P must be performed/completed after the
thread advances past P. By default, S refers to all shared variables in the OpenMP program,
though the user has the option of restricting the set of variables to be made consistent. This
semantics can have profound implications on the software and hardware implementation of
an OpenMP program. For example, the compiler must ensure that any variable in S that is
allocated to a register must be spilled to memory before point P and reloaded from memory after
point P. Similarly, the hardware must ensure that all store buffers and cache lines containing
variables in set S are flushed before point P, and all cached values for variables in set S are
invalidated after point P. Note that a single thread’s execution of a flush operation only
supports consistency between the thread’s local state and main memory. Global consistency

can only be achieved when all threads perform a flush operation.

The OpenMP specification does not explicitly define a memory consistency model for shared
variables. Existing memory models can be classified along a spectrum of strong models (e.g.,
Sequential Consistency [3]), relaxed models (e.g., Release Consistency [1]), and weak models
(e.g., Location Consistency [2]). All memory models in this spectrum guarantee the same
semantics for data race free (DRF) programs [1], but provide different semantics in the presence
of data races. Stronger models provide stricter guarantees on unsynchronized accesses to shared

variables at the cost of additional burden on the implementation, especially when scaling up
to large numbers of processors. For example, both strong and relaxed models include the
memory coherence assumption, which states that all updates to the same shared variable must
be observed in the same order by all processors. Since OpenMP programs provide no semantic
guarantees for unsynchronized accesses to shared variables (data races) and thereby do not
enforce the memory coherence assumption, we believe that it is appropriate to use a weak
model such as Location Consistency (LC) to formalize the semantics of OpenMP memory
model so as to place no restrictions on scalable parallelism (a relaxed model was also proposed
in [5] as an interpretation of the OpenMP memory model).

In the LC model, all write and synchronization operations related to a shared variable are
modeled as a partially ordered multiset (pomset), and the semantics of a read operation is that
it can receive the value supplied by any write operation in the pomset that belongs to the
most recent write (MRW) set implied by the read operation. The partial order in the pomset
naturally follows from the ordering constraints in a program such as an OpenMP program. In
the absence of data races, this set will always be a singleton returning a single determinate value.
In the presence of data races, the implementation is free to choose any value in the MRW set!,
thereby enabling the use of more scalable cache consistency algorithms as well as optimizations
such as register allocation of shared variables. This distinguishing feature of the LC model is a
consequence of the fact that it does not rely on the memory coherence assumption. Additional
details on the LC memory model and the LC cache consistency algorithm can be found in [2].

In the original LC model, a pomset for a memory locations contains elements derived from
write operations and a multitude of synchronization operations. The main extension needed
to support OpenMP using the LC model is to define the following two rules for inserting flush
operations into a pomset. First, as with other memory operations, a flush operation, F', in
thread 7" must obey all uniprocessor dependencies i.e., all prior store and flush operations
performed by 7" must precede F in the pomset, and F' must precede all later store and flush
operations performed by 7. Second, all flush operations performed on a memory location are
assumed to be totally ordered, even (especially) if they are performed by different threads.

For an example, see Figure 3(a). In this case, it is assumed that the flush operation by
thread T'1 occurred earlier than the the flush operation by thread 72. The total ordering of
flush operations indirectly leads to the total ordering of write accesses, as shown at the bottom
of Figure 3(a), thereby ensuring that the MRW set will never be greater in size than a singleton.
Figure 3(b) illustrates what would happen if the example code fragment did not contain barrier
and flush operations. In this case, the two write operations are unrelated in the partial order,
leading to an MRW set of size = 2.

'Tf the underlying size of the shared location is bigger than a single machine word (e.g., a complez data type),
then the result may be L, which denotes an undefined combination of multiple values in the MRW set.

Case (a): accesses to shared variables with FLUSH operations

Thread T1 Thread T2

S1: X := vall
S2: BARRIER/FLUSH S3: BARRIER/FLUSH
S4: X := val2

Pomset for variable X:

S1:write(T1,vall) ---> S2:FLUSH(T1) ---> S3:FLUSH(T2) ---> S4:write(T2,val2)
Case (b): accesses to shared variables without FLUSH operations

Thread T1 Thread T2

S4: X := val2

S1:write(T1,vall) S4:write(T2,val2)

Figure 3: Simple example of modeling flush operations as pomsets in the LC model
3 Analyzable Atomic Sections

3.1 Analyzable Atomic Sections: Definition and Semantics

The scope of the OpenMP ATOMIC directive is currently limited to a single statement of the
form x = f(x,exprl,expr2,...), which enables a read-modify-write operation to be performed
atomically on a single scalar location, z. Only the load and store of x are guaranteed atomic; the
evaluation of expressions, exprl, expr2, ... is not atomic (and the expressions are not allowed to
refer to z). Further, the choice of function f is limited to a small set of standard operators and
intrinsic functions. With these limitations, the ATOMIC directive cannot be used for commonly-
occurring scenarios that need fine-grained synchronization, such as the examples in Figures 1
and 2.

Our proposal extends the current ATOMIC and CRITICAL constructs in OpenMP as follows.
An analyzable atomic section (AAS) is a region of code that is intended to be executed atom-
ically i.e., such that any concurrent AAS either observes all or none of the execution of this
AAS. We require that the addresses of all shared locations that are read or written in the AAS
be computable on entry to the AAS. While we give users the option of explicitly specifying this
consistency list of shared locations, our default approach is that the shared locations be identi-
fied automatically through compiler analysis — hence the name, “analyzable atomic section”.
For example, if we replace the critical section in Figure 1 by an AAS, we obtain the following
code:

C$0MP ATOMIC
C CONSISTENCY LIST OBTAINED BY AUTOMATIC ANALYSIS = (SSQ, SCALE)

IF (SCALE .LT. LSCALE) THEN
SSQ = ((SCALE / LSCALE) #*x 2) % SSQ + LSSQ
SCALE = LSCALE
ELSE
SSQ = SSQ + ((LSCALE / SCALE) #*x 2) * LSSQ
END IF
C$0MP END ATOMIC

By automatically identifying SSQ and SCALE as the two shared variables in the AAS, the
consistency actions can be limited to these two variables. This effect is analogous to an OpenMP
FLUSH directive with a (SSQ, SCALE) variable list, except that the programmer did not have to
identify the variables explicitly. Another difference between a FLUSH directive and an AAS,
is that an AAS allows the list of shared locations to include array elements and pointer-
dereferenced regions as illustrated in the next example.

Now, if we replace the regions of code between the omp_set_lock() and omp_unset_lock()
function calls in Figure 2 by AAS’s, we obtain the following code:

#pragma omp atomic /* consistency list = (*a2) */
a2->fx -= uxxk;

#pragma omp end atomic

#pragma omp atomic /* consistency list = (*al) */

al->fx += alfx;

#pragma omp end atomic

The lists of shared locations for the two atomic sections, *a2 and *al respectively, can be
easily established by automatic analysis.

The semantics of AAS’s can be established by using the Location Consistency (LC) model.
Specifically, the consistency operations associated with the entry to and exit from an AAS are
identical to those associated with acquire and release operations performed on the set of locations
associated with the AAS. Note that this semantics enforces a weak memory consistency model.
The consistency actions are limited to only the shared locations accessed within the atomic
section. For accesses outside atomic sections, there is no assumption of memory coherence as
is typically assumed in strong and relaxed models.

3.2 Implementation Techniques

In this section, we outline the three key issues that need to be addressed in the implementation
of Analyzable Atomic Sections.

Analysis. The analysis phase examines each read and write access to shared locations in
the AAS, and checks if the address is computable on entry to the atomic section. If so, the
location is added to the consistency list for the AAS; otherwise, an error message to indicate
that the atomic section is unanalyzable. As an option, we can give users the ability to specify
the consistency list explicitly, but we will focus on the implicit case in this paper.

Lock assignment. The lock assignment phases assigns one or more locks to be used to
guard the entrance to the AAS. The lock assignment should be semantically correct. There
should be no “under-locking” i.e., it should not be possible for another atomic section with an
overlapping consistency list to execute concurrently with the current AAS. Also, while some
“over-locking” may be permitted for convenience, the goal of the lock assignment phase is to
satisfy the semantic requirements while exposing as much parallelism as possible. Finally, the
lock assignment should guarantee that deadlock cannot occur in any execution of the OpenMP

program.

Consistency actions. As indicated earlier, it is sufficient to perform a flush operation on
all locations in the AAS’s consistency list at the start and end of the AAS to ensure memory
consistency. However, this approach can be inefficient because the consistency list represents
an upper bound on the shared locations accessed in the AAS, and a specific AAS may not
necessarily access all locations. Also, it is usually preferable on most shared-memory machines
to spread consistency actions across other computations, rather than performing them in large
bursts.

In light of these considerations, our recommended approach is to insert a refresh operation
prior to each read access and a writeback operation after each write access in the AAS, analogous
to the approach proposed in [2]. A sync-writeback operation is inserted at the end of the AAS to
ensure that all pending writeback operations are completed before exiting the AAS. After these
operations are inserted, a partial redundancy elimination phase can be performed to eliminate
redundant refresh and writeback operations.

4 Examples of Optimization of Analyzable Atomic Sections

In this section, we use the two code examples from Figure 1 and Figure 2 to illustrate the

optimization opportunities that arise from the use of analyzable atomic sections.

Figures 4(a) and 4(b) shows the result of inserting and optimizing consistency actions for the
example code from Figure 1. Note that the redundant refresh operations on SCALE in the true
branch of the IF construct has been eliminated. Also, a writeback operation on shared variable
SCALE is only performed when the IF condition is true. Finally, if no writeback operation was
necessary for SSQ in the false case, even the sync-writeback operation could have been moved
to only the true case of the IF construct. Further optimization may be possible based on the
target architecture. For example, by allocating SCALE and SSQ in the same cache line, it may
be beneficial to combine their refresh and writeback operations.

In our second code example from Figure 2, our experiments indicate that the time spend
in executing function £ nonbon() accounts for over 93 percent of the total time of the entire
benchmark. Our measurement also indicates that an average of 118 and 68 bytes are read
and written in an analyzable section (for this program), which is much smaller than the total
volume of data that would be made consistent using the default OpenMP flush operation.

(a) After inserting consistency operations:

(b) After optimization:

ATOMIC
refresh(SCALE) ATOMIC
IF (SCALE .LT. LSCALE) THEN refresh (SCALE)
refresh (SCALE) IF (SCALE .LT. LSCALE) THEN
refresh(SSQ) refresh(SSQ)
SSQ=((SCALE/LSCALE) #*2) *SSQ+LSSQ SSQ=((SCALE/LSCALE) #%2) #SSQ+LSSQ
writeback(SSQ) writeback(SSQ)
SCALE = LSCALE SCALE = LSCALE
writeback (SCALE) writeback (SCALE)
ELSE ELSE
refresh (SCALE) refresh(SSQ)
refresh (SSQ) SSQ=SSQ+ ((LSCALE/SCALE) #%2) *L.SSQ
SSQ=SSQ+((LSCALE/SCALE) **2) *LSSQ writeback(SSQ)
writeback (SSQ) END IF
END IF sync-writeback
sync-writeback END ATOMIC
END ATOMIC

Figure 4: Insertion and optimization of consistency operations in function p_dznrm?2

5 Conclusions

In this paper, we introduced analyzable atomic sections as a parallel programming construct
that can simplify the use of fine-grained synchronization, while supporting a weak memory
consistency model. We used OpenMP as the base programming model in this paper, and
showed how the OpenMP memory model can be formalized by using the pomset abstraction in
the Location Consistency (LC) memory model. We then showed how OpenMP can be extended
with analyzable atomic sections, and used two examples to motivate the potential for scalable

parallelism with this extension.

Acknowledgments

This work has been supported in part by the Defense Advanced Research Projects Agency
(DARPA) under contract No. NBCHC020056. We would like to thank members of the IBM
PERCS project for their feedback. Zhang Yuan has directly helped in the preparation of this
manuscript and performed the measurements in collaboration with Juan Cuvillo and Joseph
Bryant - all are pursuing their graduate study in Gao’s group at University of Delaware.

References

[1] Sarita V. Adve and Mark D. Hill. A unified formalization of four shared-memory models.
IEEE Transactions on Parallel and Distributed Systems, pages 613-624, June 1993.

Guang R. Gao and Vivek Sarkar. Location consistency - a new memory model and cache
consistency protocol. IEEE Trans. on Computers, 49(8):798-813, August 2000.

Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Transactions on Computers, 28(9):690 691, September 1979.

OpenMP Fortran Manual. http://www.openmp.org/specs/.

Vijay S. Pai Sarita V. Adve and Parthasarathy Ranganathan. Recent advances in mem-
ory consistency models for hardware shared memory systems. Proceedings of the IEEE,

87(3):445 455, Mar 1999.

