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AbstractThis paper presents an initial design of the Cyclops64 (C64) system software infras-tructure and tools under development as a joint e�ort between IBM T.J. Watson ResearchCenter, ETI. Inc. and the University of Delaware. The C64 system is the latest version of theBlueGene/C supercomputer architecture that consists of a large number of compute nodeseach employs a multiprocessor-on-a-chip architecture with 160 hardware thread units. The�rst version of the C64 system software has been developed and is now under evaluation.The current version of the C64 software infrastructure includes a C compiler, a runtimethread library, other tools for program execution control (linker/loader, program initiationand diagnostics software, etc.) and a function accurate simulator called FAST that cansimulate a multi-node C64 system.This paper is focused on the following aspects of the C64 system software: (1) the C64Thread Virtual Machine (C64 TVM), its API (the CThread Library) and in particular, thekey components of C64 TVM: the thread model, the memory model and the synchroniza-tion model; (2) the C64 software toolchain with emphasis on the CThread run-time systemlibrary, the �rst implementation of the C64 TVM; (3) the validation of the toolchain/FASTthrough both an extensive testing that ensures its stability and a case study, which demon-strates what a C64 architect or a software/application developer can expect to learn usingthe FAST tool.
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1 IntroductionThe C64 is a petaop supercomputer project under development at IBM Research Laboratory.C64 is designed to serve as a dedicated compute engine originally designed for running high per-formance application such as molecular dynamics to study protein folding, or image processingto support real-time medical procedures. C64 supercomputer is attached | through a numberof Gigabit Ethernet links | to a host system. The host system provides a familiar computingenvironment (such as Linux) to applications software developers and end users. Besides access(thru the Ethernet links) to a common �le server used for storing input and output data setsused and produced by application programs, each C64 chip can be connected to a serial ATAdisk drive.A C64 is built out of tens of thousands of C64 processing nodes. Each processing nodeconsists of a C64 chip, external DRAM, and a small amount of external interface logic. A C64chip employs a multiprocessor-on-a-chip architecture containing 160 hardware thread units,half as many oating point units, each shared by two thread units, on-chip SRAM, on-chipinstruction cache, bidirectional inter-chip routing ports, and interface to o�-chip DDR SDRAM.On-chip resources are connected to a crossbar network, which also provides threads access to therouting ports that connect each C64 chip to its neighbors arranged in a 3D-mesh con�guration.Based on our previous experience from the embedded Cyclops32 project [24, 9], we nowpresent a system software architecture, encompassing components running on the host systemand on C64 nodes, for system management and applications development and execution. Weintroduce a low-level program execution model (called the Cyclops64 Thread Virtual Machine).In other words, system software is an \extension" of the C64 ISA to implement the threadvirtual machine. We streamline our discussion of the virtual machine by de�ning its API,called CThread. System software is illustrated by showing how some features/functions of theAPI are implemented under the overall system software architecture.This paper is focused on the following aspects of the C64 system software:� The C64 Thread Virtual Machine (C64 TVM) and its API (the CThread Library), whichwill be used as the common baseline for future research on parallel programming models.In particular we describe the three key components of C64 TVM: the thread model, wherethread management issues are presented; the memory model that includes a presentationon both C64 memory address space and memory consistency model; and the synchro-nization model that provides the functionality to implement mutual-exclusion regions,perform direct thread-to-thread and barrier-type of synchronizations.� The C64 software toolchain with emphasis on the CThread run-time system library, the�rst implementation of the C64 TVM. Speci�cally, we discuss how our Cthread imple-mentation takes advantage of Cyclops speci�c hardware features to leverage performancewithout imposing any additional burden on the application programmer.� The validation of the toolchain/FAST both through extensive testing and the matrix-1



matrix-multiply program case study. Although performance tuning and optimization arenot the objectives of this paper, we also report some initial performance observations todemonstrate what a C64 architect or a software/application developer can expect to learnusing the FAST tool.In Section 2 we will present an overview of the C64 system architecture including the C64chip architecture, the communication networks connecting the system components, and thecontrol network for system initialization and recon�guration under the control of host software.In Section 3, we describe an outline of the C64 system software architecture and the C64 ThreadVirtual Machine. In Section 4, we discuss C64 software tool chain and its implementation issues.In Section 5 we report initial experimental results. In Section 6 we briey discuss related work.Conclusions are presented in Section 7.2 Cyclops64 Cellular ArchitectureThe computing environment we are considering consists of a host and external �le systemsconnected to a C64 supercomputer by means of a Gigabit Ethernet network, see Figure 1. Thehost system (shown as consisting of a number of control nodes and a front-end node) supportsapplication programs development and execution, as well as system administration. The �lesystem, which may also contain multiple (external) �le server nodes, provides one means of�le support for the C64 supercomputer. An internal high bandwidth distributed �le systemhosted by serial ATA hard drives attached to each C64 node will be also available to avoid diskbottlenecks and network congestion.C64 nodes are arranged in a 3D-mesh network. A fraction of these nodes, labeled as I/Onodes, use the Gigabit Ethernet port (present in all C64 chips) to connect the C64 supercom-puter to the host and external �le systems. Each I/O node will service a number of C64 nodes,called compute nodes, and relay requests and data between the compute nodes and the hostand �le server systems. The I/O nodes and compute nodes communicate via packets over the3D-mesh network only. This 3D-mesh provides the high bandwidth necessary for internodecommunication in running application programs.There is a separate control network that connects the C64 system to the host system. Thiscontrol network carries commands from the host system to each C64 node. A C64 node attachesto this control network via its JTAG interface. The host system uses this control network to ini-tialize the C64 system, monitor its status while programs are in execution, and recon�gure andrestart C64 after hardware failures. Details of the initialization and con�guration proceduresare not the focus of this paper and will be discussed elsewhere.In Figure 2, we show the architecture of a C64 node. Each processing node consists ofa C64 chip, external DRAM, and a small amount of external interface logic. Each C64 chiphas 80 processors, each containing two thread units, a oating-point unit and two SRAMmemory banks of 32KB each. A 32KB instruction cache, not shown in the �gure, is shared2
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among �ve processors. In a C64 chip architecture there is no data cache. Instead a portion ofeach SRAM bank can be con�gured as scratch-pad memory. Such a memory provides a fasttemporary storage to exploit locality under software control. Processors are connected to acrossbar network that enables intra-chip communication, i.e. access to other processor's on-chipmemory as well as o�-chip DRAM, and inter-chip communication via input and output portsthat connect each C64 chip to its nearest neighbors in the 3D-mesh. The intra-chip networkalso facilitates access to special hardware devices such as the Gigabit Ethernet port and theserial ATA disk drive attached to each C64 node.Finally, Figure 3 illustrates an instance of a C64 supercomputer architecture with 24�24�24logically arranged C64 nodes in the 3D-mesh con�guration. Notice the physical distribution issomewhat di�erent. 3
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Figure 3: Cyclops64 Supercomputer3 Cyclops64 Thread Virtual MachineThe main objective behind the C64 chip design is to build a petaop computer by scalingup some millions of simple processing elements. On C64 the computation cell is the threadunit, a simple 64-bit in-order RISC processor core with a small instruction set architecture (60instruction groups) operating at a moderate clock rate. The two main distinct hardware featuresthat distinguish Cyclops from other general purpose processors are: (1) user and supervisorexecution modes supported by the C64 processor in addition to a set of exceptions triggered byprede�ned events, provide the mechanisms required for protection. However, execution is nonpreemptive. That means the OS will not interrupt the user program running on a thread unlessthe user explicitly speci�es so or an exception occurs; (2) there is no hardware virtual memorymanager, which means the memory hierarchy of the C64 chip is visible by the programmer.Within a chip, on-chip and o�-chip memory banks form a non uniform shared address space.Processors can directly address any memory location on the chip.As we described in the introduction, one important role of the C64 system software is toimplement a C64 virtual machine. This virtual machine, called C64 Thread Virtual Machine,can be viewed as a multichip multiprocessor extension to the base C64 instruction set architec-ture. In this section, we present an outline of the C64 Thread Virtual Machine along with theCThread (Cyclops Threads) run-time system library. The CThread library has been designedand developed to support a multithreaded programming model for a cellular multithreadedarchitecture such as Cyclops. Given C64 special features described earlier, it was not our in-tention to develop an OS for this platform that would put a considerable overhead on top ofa machine that is aimed for simplicity from the bottom up. Instead we decided to implementCThread directly on top of the hardware architecture as a micro-kernel/run-time system librarythat takes advantage of C64 hardware features while provides an interface that shields appli-cation programmers and system software developers from the complexities of the architecturewherever possible. 4



C64 Thread Virtual Machine includes three components: a thread model, a memory modeland a synchronization model, as well as their corresponding APIs. In Section 3.1, we introducethe thread model. This is partly derived on our experience from our earlier work on a threadmodel for the embedded Cyclops32 project [24, 9]. In Section 3.2, we introduce the memorymodel that includes the speci�cation of a shared address space model (both intra-node andinter-node) and memory consistency model for a C64 system. In Section 3.3, we present thesynchronization model. The memory model and synchronization model can be viewed as anextension of the base thread model | hence the name CThread may include all three in therest of this discussion.3.1 The Thread ModelA program section can be declared as a thread. A thread can be activated for execution bybinding to a hardware thread unit within a certain chip, a thread activation pointer de�ned asthe tuple: <program pointer, state pointer>, where program pointer is the address speci�edby the program counter associated with the corresponding hardware thread unit and the statepointer points to thread speci�c information stored in the C64 memory map (e.g. stack pointer,etc.)A thread activation pointer can also be \global" if the thread handler is extended with anode (or chip) identi�er | system-wide identi�er of the chip where the corresponding threadunit resides. The binding of a thread activation to a thread unit can be dynamic | as long asthe binding information is properly maintained by the system software.The functionality provided by the present version of the CThread library is very limited.It provides basic functions for creating, synchronizing and terminating threads; the minimumfunctionality required to write multithreaded programs. For this �rst release, an interfaceinspired on that of the popular PThread model is provided to ease the �rst hands-on experienceof application and system software developers.3.2 The Memory ModelIn this section, we describe the memory model and its API supported by the �rst version ofthe CThread library.3.2.1 Memory address space modelFirst, we describe the memory address space model of a single C64 chip. Then, we outline howwe intend to extend the memory address space model to the entire C64 system.� Memory Address Space Model Within a Single Cyclops64 NodeCThread assumes a memory address space model closely associated with the underlayingC64 architecture. 5



The C64 chip hardware supports a shared address space model: all on-chip SRAM ando�-chip DRAM banks are addressable from all thread units/processors on the same chip.That is, all threads see a single shared address space. On-chip SRAM memory spaceis limited in the current technology to 5.2MB | so it should be viewed and used astemporary storage during computation. There is no hardware data cache used in the C64design. O�-chip DRAM should be considered as the main memory.Architecturally, each thread unit has an associated 32KB SRAM bank. Each memorybank can be partitioned (con�gured) into two sections: one called \global" (or \inter-leaved") section, the other \local" (or \scratch-pad") section. The partition boundary isidentical across the thread units, and is set at the hardware initialization time and cannotbe altered under program control. All such \global sections" together form the (on-chip)\global memory" in an interleaved fashion that are uniformly addressable from all threadunits. Logically, the address �eld of the global memory ranges from 0 to a maximumvalue, which depends on how the SRAM banks are con�gured (partitioned), and howmany SRAM banks are available and functional 1. The absolute maximum address is160 � 32KB (about 5.2MB). This range of address is organized such that it is free ofholes.Of the 64-bit address computed by a C64 processor, only 32 bits are needed to addressall node resources. Although the high-order 32 bits are currently ignored, we anticipatethese extra bits will be used to emulate a global shared memory address space acrosschips. The low-order 32 bits are used to access C64 on-chip SRAM, o�-chip DRAMand memory-mapped special devices (e.g. interthread interrupt, wakeup signal and in-put/output ports). The most signi�cant bit is used to distinguish DRAM from SRAMand other devices. When the �rst bit of the address is 1, it represents an address tothe o�-chip DRAM. The �rst bit 0 represents an address to on-chip SRAM and/or otherdevices. The second most signi�cant bit is used to distinguish on-chip global (or inter-leaved) SRAM from scratch pad memory and other devices/ports. When this bit is 0, itdenotes on-chip global SRAM. Otherwise, it denotes scratch pad memory and/or otherdevices/ports.All local (scratch-pad) sections are globally (but non-uniformly) addressable by all threadunits. The addressing scheme to scratch pad memory is such that the address consistsof a processor identi�er, a thread identi�er and an o�set �eld. The access is directed tothe scratch pad section associated with the thread unit given by the processor and threadidenti�ers.The memory space reserved for o�-chip DRAM is up to 2GB. Presently, only 1GB ofDRAM is installed.� Memory Address Space Model for a Multinode C64 SystemUnder the current C64 design, there is no hardware architecture support for shared addressspace between C64 chips. Therefore, it is up to the C64 system software to support a1C64 chips are used even if not all thread units are perfect, resulting in very low cost6



shared address space across chips. However, an e�cient implementation would needhardware architecture support as well. One straightforward extension is to associate anode identi�er to the on-chip address space. Initially 14 bits seems to be enough to providea system-wide identi�er to each of the 13,824 nodes the �rst C64 system will consist of.Since C64 memory hierarchy is explicitly exposed to the users | i.e. on-chip SRAM (globaland scratch-pad) and o�-chip DRAMs associated with a chip or elsewhere in the system |CThread provides services that can be used to move data across regions of the memory space.Accordingly, CThread include functions such as memory put and memory get operations thatcan be used to perform such data movements.3.2.2 Memory Consistency ModelAs in its address space model, CThread employs a memory consistency model close to theunderline C64 architecture support.The most widely accepted memory model for the multiprocessor machine is Lamport'ssequential consistency (SC) model. It was described by Lamport in the following well-knownstatement:[A system is sequentially consistent if] the result of any execution is the sameas if the operations of all the processors were executed in some sequential order,and the operations of each individual processor appear in this sequence in the orderspeci�ed by its program order [19].The above quote becomes the commonly used de�nition of sequential consistency in mosttextbooks and research papers.Under the current C64 single-chip architecture design, the following two conditions are valid:1. Each processor issues memory requests in the order speci�ed by its program.2. Two operations designated to the same memory module M will be delivered to M's inputFIFO queue in the same order as they entered into the network.Notice the latter refers to the time a memory request enters into the network, not when itis issued by a processor, and it is true due to the equal-latency property of Cyclops' intra-chipnetwork.It has been shown that the above two conditions are su�cient to ensure that the C64architecture behaves as sequentially consistent [31]. This also suggests that Cyclops designer'sconjecture is true: the C64 architecture is sequentially consistent and there is no need to issuefence-like instructions after each memory operation to ensure SC 2.2In fact C64 has no sync instruction. 7



However, hardware cannot guarantee a \Lamport order" of the accesses to the scratch-padmemory space | hence no sequential consistency can be assumed. We will come back to discussits impact on our programming model after we present our CThread memory model.Below we outline the memory model that is assumed in our current thoughts on CThreadprogramming model, for which we use OpenMP as base programming model and the LocationConsistency (LC) memory model [14]. In [25] the authors showed how the OpenMP memorymodel can be formalized by using the pomset abstraction in the Location Consistency memorymodel, so we will not repeat it here.We will restrict ourselves here to a class of parallel programs that feature general fork-join nested parallelism as exempli�ed by programs written in a Single Program Multiple Data(SPMD) style. A considerable number of real world shared memory parallel programs havebeen written in OpenMP, hence our CThread model will use OpenMP as a high-level parallelprogramming model to be implemented on C64 architecture.Each thread T has a private memory region, which can be used by T as its local storagefor shared variables that reside in the shared memory space. The allocation and managementof such thread private storage are implemented by C64 system software: both compiler andruntime software layer of CThread virtual machine. The movement between private and sharedmemory space can be implemented using memory put/get operations. The synchronizationsneeded to keep the consistency between shared and private memory will be discussed below aswell as in the next section.We will introduce a CThread operation called cthread ush | inspired by the OpenMP ushdirective, which will be used to ensure the consistency between private and shared memory.Flushes occur frequently in OpenMP programs, because they are performed implicitly at theend of many common OpenMP constructs such as barriers, parallel loops, parallel sections,critical sections, etc.A cthread ush operation executed at program point P requires that a certain set of sharedvariables, S, must be made consistent by the executing thread at point P, i.e. all read andwrite memory accesses that occur before point P must be performed/completed before thethread can advance past P, and all memory operations that occur after point P must be per-formed/completed after the thread advances past P. By default, S refers to all shared variablesin the CThread program, though the user has the option of restricting the set of variables tobe made consistent. The semantics of the ush operation have profound implications on thesoftware and hardware implementation of a CThread program. For example, the compiler mustensure that any variable in S that is allocated to a register must be spilled to memory beforepoint P and reloaded from memory after point P. Similarly, the hardware must ensure that allsystem allocated private storage for a thread T containing variables in set S are ushed beforepoint P, and all private copies of the values for variables in set S are invalidated after point P.Note that a single thread's execution of a cthread ush operation only supports consistency be-tween the thread's private memory and main memory. Global consistency can only be achievedwhen all threads perform a cthread ush operation.8



Stronger memory models provide stricter guarantees on unsynchronized accesses to sharedvariables at the cost of additional burden on the implementation, especially when scaling upto large numbers of processors. For example, both strong and relaxed models include thememory coherence assumption, which states that all updates to the same shared variable mustbe observed in the same total order by all processors. When scratch-pad memory is considered,the overall memory model of a C64 chip is no longer sequentially consistent! However, it canbe observed that the coherence assumption still holds. Therefore, CThread will not rely ona memory model that is based on hardware sequential consistency. Instead, CThread uses aweak model where the base assumption is memory coherence. One option is to use LocationConsistency (LC) to formalize the semantics of CThread memory model so as to place norestrictions on scalable parallelism [14, 25]. Other alternative memory models are also underconsideration.The previous discussion was focused on a single node C64 system. When shared addressspace is implemented across C64 chips, we anticipate that a weak memory model (such as theone we discussed above for a single chip) will be used.3.3 The Synchronization ModelThe C64 hardware chip architecture supports direct memory access | loads and stores | tothe shared address space covering the on-chip memory (SRAM banks, scratch-pad memories)and o�-chip DRAM associated with the chip. When a global shared address space across chipsis provided by the system, CThread will include services to implement remote load and storeoperations. All above operations are considered normal memory operations that do not involvesynchronization.Several types of synchronizations are supported in CThread.A �rst type of synchronization is used to ensure mutual exclusion of memory accesses toshared memory locations/space. This can be expressed using CThread mutex lock and unlockoperations, which are directly implemented using C64 hardware atomic test-and-set operations.Users can declare mutex variables using the CThread library and operate upon them with thefunctions provided for that purpose.A second type of synchronization in CThread is introduced to express precedence relationsbetween operations from two di�erent threads. In the �rst version of CThread, we provide acoarse-grain signal-wait type of synchronization that will be placed between a pair of speci�cprogram points within the two threads.The sample program in Figure 4, based on a producer-consumer model, shows the basicuse of the signal/wait primitives. The producer thread produces data that is consumed bythe consumer thread. The latter starts calling cthread wait and blocks until a signal from thethread, whose thread handler matches that given as argument to the function, is received. Theformer produces a datum and sends a signal to the thread, whose thread handler is speci�ed bycthread signal only parameter. Once the signal is received, the consumer thread is awakened9



void producer(void){while(1) {produce_data();cthread_signal(dest_thid);}}void consumer(void){while(1) {cthread_wait(src_thid);consume_data();}} Figure 4: Producer-Consumer Sample Programvoid worker(int set_id){produce_data_set(set_id);cthread_barrier(grp_thid);if (set_id == 0)reduce_data_set();} Figure 5: Barrier Sample Programand consumes the datum.A third type is collective synchronization that will be participated by a group of threads.For example, a barrier synchronization primitive can be invoked by a group of threads. Threadsblock until all participants in the operation (participants are de�ned by a single object passedas parameter to the barrier function) have reached this routine.The code in Figure 5 is an extract of a CThread program that uses a barrier primitive. Mul-tiple threads execute the worker routine, which starts with each thread generating some dataaccording to a thread-speci�c parameter. Once all the data has been generated, an unspeci�edoperation is applied to it (in our example it is some type of reduction). Before the operationcan be applied, we must ensure all threads have produced the corresponding data. For thatpurpose, we call the cthread barrier function, so all threads block until all participants reachedthe same point.A fourth type of synchronization operations is synchronized memory access opera-tions. For example, we can associate sync operations with memory put/get operations |cthread getmem sync(src, dst, len, tid) and cthread putmem sync(src, dst, len, tid), similarlyto block data transfer operations on EARTH architecture [29]. Here, after a memory get/putoperation is completed, it will signal the designated thread (denoted by the thread handler tid).10



Compiler

(assembler, linker, etc.)
GNU Binutils

Libraries

User Application

FAST Simulator

GNU CC Open64

Newlib CThread

Regression Test
Compiler

Benchmarks
Multithreaded

Figure 6: Cyclops64 Software Toolchain4 Cyclops64 Software ToolchainFigure 6 illustrates the software toolchain currently available for application development onthe C64 platform.The C/Fortran compilers have been ported from the GCC-3.2.3 suite. Assembler, linker andother binary utilities are based on binutils-2.11.2. The C standard and math libraries (libc/libm)are derived from those in newlib-1.10.0. We wrote our own runtime system, communicationlibrary and a functional accurate simulator. Additionally, a cycle accurate simulator is alsobeing developed.The GCC based C compiler supports C99 and most of the GCC extensions. As GCChas very good portability, this compiler version was delivered in a fairly short time periodto provide developers with a basic experimental platform. The Open64 based version hasmost of the important features of a modern compiler, such as loop nest optimization, SSA-based global optimization, interprocedural analysis and optimization, and software pipelining.Another promising feature of Open64 is its ability to be extended, for instance for threadpartitioning. However, it is still under development and only supports the O0 optimizationlevel.The toolchain supports the full C64 instruction set and it can be easily extended to �t ourpurposes. It supports segmented memory allocation, as C64 uses physical memory address space(instead of virtual memory space, because there is no hardware memory map unit). We candistinguish three memory regions in a C64 system: on-chip \global" SRAM, on-chip \scratch-pad" memory, and o�-chip DRAM. For these three types of non-contiguous memory regionsthe toolchain supports memory allocation and management.The library functions (libc/libm) are thread safe | multiple threads can call any of thefunctions at the same time. Shared resources have been protected by mutex.The CThread runtime system library provides the software and application developer with11



the functionality to write multithreaded programs: thread management, support for mutualexclusion, synchronization among threads, inter-node communication, etc. In order to achievehigh performance and scalability, the implementation of such functionality tries to match asclose as possible the architecture underneath the microkernel/RTS. It is not a coincidence thatthe �rst API for the thread model resembles that of PThread. PThread is a well-known parallelprogramming model that allowed us to write parallel programs (mainly for testing purposes)in quite a short time frame. However, such an interface is just a wrapper of the CThread innercore, which is under development to support more advanced programming models on the C64platform.The communication library (CNet), handles communication and synchronization betweennodes. Remote memory operations are the foundation of all communication primitives. Addi-tionally, the library provides means for synchronization, such as signal/wait and global barrierprimitives.To carry out our research until a real hardware or emulation platform is available, we wroteFAST: an execution-driven, binary-compatible simulator of a multichip multithreaded C64 sys-tem. FAST accurately reproduces the functional behavior and count of hardware componentssuch as chips, thread units, on-chip and o�-chip memories, and the 3D-mesh network. RISC-likeinstructions such as integer, oating-point, branch and memory operations are modeled basedon execution times expressed by x=d tuples, where x is the execution time in the ALU, and drepresents a delay. The correct simulation of C64 special operations (sleep instruction, wakeupsignal, inter-thread interrupt, etc.) requires of speci�c hardware status to be emulated. Timeralarm events and error conditions such as an illegal instruction are properly detected by thesimulator, which then triggers the corresponding interrupt. Finally, given the appropriate com-mand line options, FAST generates the execution trace and/or an instruction statistics reportto help the software/application developer tuning and optimizing a program. Although FASTis not cycle accurate, we have shown it is useful for performance estimation.4.1 Implementation DetailsIn this section we discuss a few details of the CThread implementation. Our �rst thread modeldoes a direct mapping of software threads into hardware thread units. Upon initialization, asoftware thread is given control over a well determined region of the scratch-pad memory, whichis allocated to every physical thread unit at boot time. This enables fast thread creation andreuse. A waiting thread (waiting on a external event/synchronization) goes to sleep and iswoken up by another thread through a hardware interrupt/signal.In C64, execution is non-preemptive. In other words, after a software thread is assignedto a hardware thread unit by the RTS, it will run in the hardware thread until completion.Furthermore, the RTS will not swap out a sleeping thread and reassign the idle hardwareresources to another software thread (in the �rst release of the CThread library an operationsuch as cthread yield is not available). 12



Thread units have the stack and a thread-unit-unique memory area placed in the scratch-pad memory. At the beginning of the thread-unit-unique area, four memory words have beenreserved for a special purpose. The �rst is used as a lock to guarantee atomic transactionson the remaining three words. The thread unit status, enabled/disabled, and the softwarethread status, running/asleep, are stored in the second word. Words three and four hold thefunction address and optional argument speci�ed by the user when a new thread is created.Upon completion the thread overwrites the optional parameter with the exit code. These arethe default settings the RTS uses to initialize the thread speci�c information with (pointedby the status pointer of the thread activation tuple). In future implementations, this controlstructure will probably be preserved but in some cases the allocation could be moved to adi�erent memory region (DRAM for instance). Then, the RTS will be allowed to swap in andout threads from the same hardware unit if needed, at some additional cost.Besides thread management, CThread library provides a mutex object that allows mutual-exclusion via acquiring and releasing locks. As we mentioned earlier, in C64 there is no datacache. Spinning on a lock, waiting for it to be released does interfere with other threads (orat least with the threads that try to access to the same memory bank where the lock is) bygenerating tra�c on the crossbar network. Hence, a thread that fails to grab a lock is putto sleep. While asleep, a thread unit does not execute instructions until another thread unitgenerates a \wakeup signal", i.e. executes a store into the \wakeup" memory area correspondingto the sleeping thread. Needless to say that sleeping and awaking CThread functions, whichare based on the native sleep and wakeup signal instructions, both take a few cycles.Barriers are implemented using the \Signal Bus" special purpose register. All the threadunits on a chip are connected by an 8-bit bus, which is accessible thru read from and writes tothis register. Let us assume the appropriate bit of the SIGB register is initially set to 1. Uponentering to the barrier, threads reset that bit to 0 and wait for it to drop to zero (according tothe hardware design this does not interfere with other thread units or generate excessive heat).Changes in the state of the bus propagates throughout the chip in a few cycles, providing ameans for very fast global synchronization.5 Results5.1 Experimental PlatformC64 software toolchain runs on a Linux environment. We wrote three sequential programsand their corresponding parallel versions using CThread's API and ran the executables gen-erated by GCC compiler version 3.2.3 on our Functional Accurate Simulator Toolset (FAST)to demonstrate that the toolchain is fully functional. The communication library is currentlyunder evaluation. For this reason the benchmark programs used for this study run on a singleC64 chip. 13
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Figure 7: Absolute SpeedupThe benchmark programs used in this study represent each a typical application class. Theseare:� Matrix-matrix-multiply (MxM) is an embarrassingly parallel application on a sharedmemory system such as a C64 node. The result matrix is partitioned among threadswhich then carry out the computation with no dependences between any two threads.� Nqueens (NQ) counts the number of ways in which N queens can be arranged on a N�Nchess board so that no queen can attack any other queen under normal chess rules. In thisimplementation, the �rst three rows of the board are �lled with queens in valid positions.After a number of independent tasks is created by this sequential search, tasks are thendistributed among threads in a round-robin fashion.� Heat is a �nite di�erential based algorithm used to simulate the heat conduction over asolid plate. The surface of the plate is modeled as a N �N grid. The grid is initializedwith one side of the plate to be heated and then simulate the heat transfer from this sideto the whole plate. The program halts when a convergence condition has been reached.There is a barrier after each iteration. Hence, as the thread number increases so does thesynchronization overhead.5.2 ResultsWe run the experiments on the C64 simulator for the following problem sizes: matrix-matrix-multiple, 320�320; nqueens, 13; heat, 960�960. Figure 7 shows the absolute speedup achievedby each CThread program. 14



Program Load/Store Integer Float BranchMxM 10.5% 79.2% 5.1% 5.2%NQ 31.8% 36.8% 0.0% 31.4%Heat 20.7% 73.00% 2.7% 3.6%Table 1: Coarse Instruction MixAs expected, the results show a decline in the speedup as the synchroniza-tion/communication increases. Nonetheless, it also demonstrates the e�ciency of the threadmanagement system that allows MxM to achieve almost linear speedup even for 80 threads.We also like to highlight that despite having a global barrier after each iteration, the parallelversion of Heat achieves a speedup of 70 on 80 threads.The simulator can also produce abundant statistics information as well as a complete exe-cution trace. For instance, Table 1 shows the percentage of each instruction class executed bythe sequential programs.As an example of what a C64 architect or a software/application developer can expectto learn using the FAST tool, we hereby report a tuning experience using the MxM program.Throughout this exercise we use the simulator's accurate time counter, the instruction statistics�le and execution trace to measure the execution time, derive MIPS and MFLOPS numbers anddetermine the cause of delays and/or bottlenecks that may prevent the program from achievinghigher performance. Table 2 summarizes the results obtained from the experience 3.We start with a sequential implementation that follows the algorithm described in text-books, and try di�erent compiler optimization levels (rows 1{4 in Table 2). Based on theinformation generated by the simulator, we then proceed with the manual implementation ofseveral optimizations. First, we change the variable where the matrix size is stored from integer(32 bits) to long long (64 bits). Although it uses 4 extra bytes of memory, it reduces the numberof integer operations (row 5 in Table 2). Second we unroll the inner loop 4 and 8 times. Theformer resulted on an improvement (6th row in Table 2) while the later caused a performancedrop due to register pressure and spilling (result not shown). At this point it was clear themain issue was the main memory (DRAM) latency access. We manually did loop interchangeand tiling. We allocate in the stack (remember the stack is placed in the scratch-pad memory)blocks to where data is copied from memory �rst and then used for the computation. This soft-ware cache optimization brought us a signi�cant improvement. However, the execution traceimmediately revealed the implementation of memcpy is not optimized for the C64 architecture(row 7 in Table 2). We wrote our memcpy function emulating what the ldm instruction (loadmultiple was recently added to the C64 instruction set architecture) will be able to do. We trieddata transfers of 8 and 16 consecutive double words (8th row in Table 2). At this point werealized we had removed all memory delays and that the program had hit the hardware thread3Notice that FMAD instructions (oating-point multiply-add double) are reported as a single instruction inthe second column, whereas it is counted as two oating-point operations in the MFLOPS column.15



Optimization Float MIPS MFLOPS-O0 2.28% 261 6-O1 3.77% 223 17-O2 3.95% 241 19-O3 4.47% 241 22adjust var. 7.58% 204 31unroll 4 8.55% 324 55sw cache(memcpy) 20.00% 385 149sw cache(ldm) 20.54% 456 1812 threads 20.74% 913 363Table 2: Tuning Experience Report for the MxM programunit peak performance limit (500 MIPS). For the sake of completeness we parallelized our tunedMxM program and ran it on 2 thread units in an attempt to fully utilize the oating-point unitshared between threads. Again, the low overhead imposed by the CThread RTS allowed theprogram to double the performance (last row in Table 2).5.3 DiscussionThe purpose of the experiments was to show the usefulness of the toolchain. Previously, ex-tensive testing have been performed to ensure the stability of the toolchain. In this paper, wehave selected three programs to demonstrate what the software toolchain can provide a C64architect or a software/application developer. Now that we have the toolchain, more interestingresearch may be carried out. For instance, we plan to study software cache strategies to get thebest utilization of the on-chip memory. We may also study compiler optimization to partitiona sequential program into a multithreaded program.6 Related WorkAs the semiconductor and VLSI technology rapidly advances to allow us to integrate a billiontransistors on a single chip, it becomes important to exploit parallelism at all levels to utilizethe chip capacity e�ectively [5, 6]. Within the last two decades, microprocessors achieveddominant success by exploiting instruction-level parallelism (ILP) [23] and improving memoryaccess latency and bandwidth with multi-level memory hierarchy.However, applications have inherent limits on ILP [30, 22]. To go beyond ILP, Hammondet. al. [17] suggested that simultaneous multithreading (SMT) and chip multiprocessor (CMP)can be two alternative architectures and CMP is preferred. Three di�erent multiprocessorarchitectures are evaluated in [21] and Stanford Hydra CMP architecture is proposed [16].Meanwhile, to overcome the memory bandwidth limitation of microprocessors [7], Processor-16



in-Memory (PIM) is considered an e�ective way. Several PIM architectures are presented, likeGilgamesh [28, 27, 26], Terasys [15].Prior work most relevant to Cyclops64 is the IBM BlueGene/C architecture [10, 1] andrelated system software research [2, 3, 8]. Alm�asi et. al. demonstrated that a massive amountof parallelism can be exploited for applications, such as molecular dynamics, on the cellulararchitecture [2]. They also provided a detailed analysis on the cellular architecture and provedthat several scienti�c kernels can reach the theoretical peak performance on di�erent con�gu-rations of the architecture [3]. Ca�scaval et. al. evaluated two important hardware features ofthe Cyclops cellular architecture: memory hierarchy with exible cache organization and fastbarrier synchronization and demonstrated the advantage of the single-chip multiprocessor withintegrated multiple memory banks [8]. All the above work is based on a preliminary versionof the BlueGene/C chip design, the Cyclops32 (C32), which is targeted to application-speci�c(embedded) domain.The IBM BlueGene/L is another e�ort to deliver massive parallel system which exploitsa more conventional system-on-chip technology, coupled with a highly scalable cellular archi-tecture [12, 2, 1]. A BlueGene/L system consisting of 65,536 nodes is designed to deliver apeak performance of 180 to 360 teraops. The system software architecture for BlueGene/Lis arranged hierarchically according three levels: a computation core, a control infrastructureand a service infrastructure [4, 18]. There have also been several interesting evaluation studiesof BlueGene/L system with regards to hardware performance monitoring [20] and scienti�capplication frameworks [13, 11].7 ConclusionsIn this paper we presented the �rst version of the C64 system software. First, we describedthe C64 Thread Virtual Machine, as well as its key components: the thread model, the mem-ory model and the synchronization model. The C64 software toolchain was also presentedwith emphasis on the CThread run-time system library, the �rst implementation of the C64TVM. Finally, we demonstrated the correctness and usefulness of the toolchain/FAST simula-tor through three parallel benchmarks which results range from an almost linear speedup foran embarrassingly parallel applications to a speedup of 70 on 80 threads for a barrier-basedprogram. As an example, we also tuned the matrix-matrix-multiply sequential code to showhow the toolchain can provide the C64 system software and application developer with theinsight to increase the performance from 22 to 363 MFLOPS (a 16.5 improvement!) on a singleC64 processor.
17
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