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Abstract

Recently the new field of parallel imaging accusation hagptitential to revolutionize the field
of fast MR imaging. The SPACE RIP technique is one of the pelrahaging methods which
uses multiple receiver coil and utilizes the sensitivitgfile information from a number of receiver
coils in order to reduce the acquisition time. The image metroiction problem of SPACE RIP is a
computation intensive task, which need to be parallelinefdtther reduce the reconstruction time.
In this paper, we analyzed the algorithm and identified tley@m bottleneck to be parallelized.
The loop level parallelization is implemented with Pthre@penMP and MPI. Furthermore, since
the reconstruction uses Singular Value decomposition (S@Bolve the matrix pseudoinverse, we
implemented the one sided Jacobi parallel SVD on the sfaéet@ellular computer architecture
Cyclops64 to speedup the problem at the fine grain level. fixgatal result shows that cellular
computer architecture has very small overhead and thusdeifor fine grain level parallelization.
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1 Introduction

Recently the new field of parallel imaging accusation has the potential to tievohae the field of fast
MR imaging. There are many reasons to further increase the speed of Mje anquisition and image
reconstruction. Reduction in acquisition time can reduce or even avoid metifatis, make the MR
imaging more efficient and make it useful for more potential applicationsnstance,dynamic imaging
applications of cardiac contraction requires high temporal resolutionsutitimalue sacrifices in spatial
resolution, therefore, those applications can be greatly served if thaatpissition time can be reduced
with an order of magnitude[20].

The parallel imaging techniques use spatial information contained in the cemipoails of an
array to partially replace spatial encoding which would normally be perfdumseng gradients, thereby
reducing imaging acquisition time. The name “parallel” is due to the fact that multiflesignal data
points are acquired simultaneously. In a typical parallel imaging acquisitidyadraction of the phase
encoding lines are acquired compared to the conventional acquisitioneddatiped reconstruction is
then applied to the data to reconstruct the image. The maximum acquisition tim&eadactor would
be number of coils used.

A number of parallel imaging methods have been proposed. The SMASHu[tai¢ous Acqui-
sition of Spatial Harmonics) method proposed by Sodickson and Mannb]jgqd& k-space domain
implementation of the parallel imaging. It is based on the computation of the sapgitifiles of
the coils in one direction. These profiles are then weighted appropriatélgaanbined linearly in or-
der to form sinusoidal harmonics which are used to generatgé-Hpace lines that are missing due to
undersampling. This technique showed an 8 fold increase in imaging speed.

The SENSE (sensitivity encoding) method proposed by Prussemanr2ef &.pn image domain
sensitivity encoding method. It relies on the use of 2D sensitivity profilermé&bion in order to re-
duce image acquisition time. Like SMASH, the cartesian version of SENSHEesdhe acquisition of
equally spaced-space lines in order to reconstruct sensitivity weighted, aliased versfdhe image.
It is shown in [22] that the SENSE technique can reduce the scan time toabingsing a two-coil array
in brain imaging and double-oblique heart images can be obtained in onesfhimhventional scan
time with an array of five coils.

The SPACE RIP [20] method proposed by Walid E. Kyriakos is a parallelimgagnd reconstruction
technique. It generalizes the SMASH approach by allowing the arbittacgment of RF receiver coils
around the object to be imaged , it also allows any combinatidnggface lines as opposed to regularly
spaced ones.

This paper focuses on the parallel image reconstruction of the SPACRIgIRthm. In section 2,
the SPACE RIP technique will be briefly reviewed to explore the parallelisrrértt in the problem.
It will be shown that the reconstruction of each column in the image are totalgpamtient of each
other, thus making the SPACE RIP technique a perfect candidate fdlepatamputing. Furthermore,
the reconstruction of each column is a pseudoinverse of a matrix, whichvisdsioy singular value
decomposition (SVD). Accordingly, the parallelization is implemented at tworéiffidevels: the coarse
grain level parallelization will be presented in Section 3, the fine grain pazalien of SVD algorithm



will be presented in Section 4. The target platform C64 will be introduceédatiéh 5. The performance
experimental results are shown in Section 6. The conclusions are sumanar&ection 7.

2 Encoding Scheme and Reconstruction Algorithm of SPACE RIP

MRI uses gradient coils to encode each voxel with a different frecquand phase. Frequency and phase
correspond to a given location kispace. Taking the Fourier Transform will convert the acquired data
from k-space to coordinate space. The concept of parallel imaging is basesingnmultiple receiver
coils, each providing independent information about the image.

Mathematically, the MR signal received in a coil haviiig,(z,y) as its complex 2D sensitivity
profile can be written as:

sk(Gy,t) = / / r(z,y)Wi(z, y) el GG drdy, 1)

wherer(x,y) denotes the proton density functioi;(z,y) is the complex 2D sensitivity profile of
this coil, G,. represents the readout gradient amplitude applied inctdeection, Gy represents the
phase encoding gradient applied during #e acquisition,z andy represent the: andy positions,
respectively, and is the pulse width of the phase encoding gradi@ft

In the conventional serial imaging sequences, only one receiver agkeid to collect all the data
required to reconstruct a digitized version6t, y), assumindgVy (z,y) = 1. To achieve this, the phase
encoding gradients, is varied in order to cover all of thie-space with the desired resolution. One echo
is needed for each value 6f), making sequential imaging a time consuming procedure.

There are some ways to reduce the acquisition time for sequential imagingstorce, multi-echo
imaging EPI (Echo Planar Imaging) can achieve higher speed by optimizerg#ts, switching rates,
and patterns of gradients and RF (Radio Frequency) pulses. Howlez®se approaches sometimes will
decrease SNR (Signal to Noise ratio) or spatial resolution, besidedgtimyo require higher magnetic
field strengths and increased gradient performance, thus reachitagtimecal limits[22].

The SPACE RIP technique [20] uses multiple receiver coils and utilizes tisitiséy profile in-
formation from a number of receiver coils in order to minimize the number dfiiaitipns needed to
estimate and reconstruetz, y).

In the SPACE RIP technique, if we take the Fourier transform of Eq.[X]aathex direction when
a phase encoding gradie@f is applied, we can get:

Sk(Gy, ) = /7“(1’7 Y) Wiz, y)e?? G dy, ()

which is the phase modulated projection of the sensitivity weighted image onto dkis. Here the
x andy are continuous value. In order to get discrete version(ofy) ther(z,y) and Wy (z,y) are
expanded along thgdirection in terms of a set of orthonormal sampling functigngy), with further
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Sk(Gf, ) Wi (2, 1)/ (G W (z, N)ed2m(Gy N
mathematical simplification detailed in [20], we can finally get
N
; g
Sk(Gg,x) = D _ (e, n) Wi, n)el ). 3)
n=1

where N is the number of pixels in thg direction. Then(z,n) is the discretized version of(z, y).
The symbolk is used to denote the different coils with= 1, K, whereK is the total number of coils.
The symboly is used to denote different phase encodes, the valyecah be from 1 tdf’, whereF' is
the number of phase encode used in the experiments. This expressioa camverted into the matrix
form for each position: along the horizontal direction of the image, as shown in Eq.[4].

Essentially we can simplify the Eq.[4] as:
Alx) =G(z) x I(x),x =1 to M, (5)

Where the A(x), G(X), I(x) represents the left, middle and right item in thg4E Their dimensions are
KF x 1, KF x N, N x 1 respectively.K is the number of coils F' is the number of phase encodes
for each coil. Thel/ andN is the resolution of the reconstructed image. Normallythend N will

be 256 by 256 or 128 by 128.

A(x) contains theF' phase encoded values for @l coils, it is essentially one dimensional DFT
of the choserk-space data. 1(x) is afV-element vector representing one column of the image to be
reconstructedyg is the horizontal coordinate of that column. G(x) can be constructeddbasehe
sensitivity profiles and phase encodes used. If a imagéhaslumns, ther: could be from 1 taV/,
for each particular;, we have such a equation as Eq.[5]. Thddeequations can be constructed and
solved independently from each other, which means each column of the taadee reconstructed
independent of each other. IncreasingMdfand N will increase the computation load. It can also
be seen that the Gain matrix G(x) will become larger whérand F' increase, thus increasing the
computation load.



3 Loop Level Parallelization

In this section, the coarse grain parallelization of the image reconstructiorgsemed. As shown in
the previous section, the SPACE RIP reconstruction algorithm can becatuman by column indepen-
dently of each other. The actual program begins with reading k-spiegmm the data file, then 1D
DFT is computed along the direction, followed by a major loop reconstructing the columns one by
one. This loop had/ iterations, wherel/ is thex dimension of the reconstructed image. Inside each
iteration, a matrixG(z) as in Eq.[4] is constructed (we call it Gain matrix), then the pseudoinvérse o
this matrix is computed and one column of the image is finally reconstructed by mulgphgrinverse
matrix with the vectorA(X) as in Eq.[4]. Timing profiling of the program for typical data set shows
that the major loop occupies about 98.79 % of the total execution time. So thisltdwpbottleneck to

be parallelized.

Both Pthread and OpenMP version parallelization at the loop level are impledhefhe speedup
result on a 12 CPUs Sunfire workstation will be shown in section 6. Onradtraemory multiproces-
sor computer, All CPUs share the same main memory and can work on the sancemtzurrently. The
major advantage of the shared-memory machine is that no explicit messaggpaseeded, thus mak-
ing it easier for programmer to parallelize the sequential code of the appticaiiopared to message
passing based parallel languages, such as PVM or MPI.

Multithreaded programming is a programming paradigm tailored to shared-menuttiprocessor
system. Multi-threaded programming offers an alternative to multi-proceggamnming that is typi-
cally less demanding of system resources — here the collection of intertatkgyare implemented as
multiple threads within a single process. The programmer can regard thalirithreads as running
concurrently and need not implement task switching explicitly, which is instaadléd by the operat-
ing system or thread library in a manner similar to that for task switching betme®esses. Libraries
and operating system support for multithreaded programming are availalalg ¢ most platforms,
including almost all available Unix variants. However, it is worth noting thatethe a certain amount
of overhead for handling multiple threads, so the performance gainvacthly parallelization must
outweigh this overhead. In our application, the loop level parallelizatiormttiee coarse grain level,
thus justifying the overhead.

Pthread [5] is a standardized model for dividing a program into subtabkse execution can be
interleaved or run in parallel. The OpenMP Application Program InterAgd) [7] supports multi-
platform shared-memory parallel programming in C/C++ and Fortran on abti@sthitectures, it is a
portable, scalable model that gives shared-memory parallel progrararsienple and flexible interface
for developing parallel applications.

It is worth noting that static variable are shared all across all threadsftbrPthread and OpenMP
programming. In the SPACE RIP code, some CLAPACK [1] routines ard, ismvever, the CLAPACK
[1] routines has many unnecessary static local variable, which areneaidtisafe since they will cause
some unwanted sharing. If left undealt, these unintended variable ghdticause false result or may
affect performance.

In the current implementation, the memory for A(x), G(x) and I(x) as showEkq.[5] are pre-
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allocated, thus the program structure is quite simple, all the threads canowddtally independent
memory locations and return the result to also totally independent memory lacatiancommuni-
cation issue need to be considered due to the problem property. In oumentkgtion, dynamic load
balancing strategy is used for task distribution. As a matter of fact, the |daddnag is not a big issue
for our test platform because all the slave nodes has similar perforraaddask computation load are
similar according to our observation.

Furthermore, an MPI version is implemented on Linux Cluster. Nowadaysimgikustering
servers for high performance computing is gaining more and more acceptassembling large Be-
owulf clusters [26] is easier than ever and the performance is incredsangatically. So we also im-
plemented an MPI version of the loop body parallelization. The differerwa the above SMP based
solution is the MPI version need explicit message passing. Specificallyy/therations in the loop is
distributed to slave nodes dynamically, after the computation of the pseuds®rfee each column, the
slave nodes will send back the result (Pseudo inverse of the Gain matitire teaster nodes, the master
will then send a new column index to this slave nodes. Such process will gerttihall the iterations
are completed. At the beginning, the master nodes will send necessamatifin to slaves, including
the Phase Encodes data and necessary information about the imags Bualgadimension. Also for
each iteration, the slave need to send back x N double precision complex number as the result,
which will cause relatively heavy communication overhead.

4 Parallel SVD for Complex matrices

The pseudoinverse of the Gain matrix G(x) is solved by the Singular Valwerbgosition. In this

section, we will present the parallelization of the one sided Jacobi SVDitigo First the current
existing algorithm for SVD are briefly reviewed. Then a one sided Jaqudate algorithm for complex
matrix is proposed because the Gain matrix is complex matrix in this particular applicdhen our

parallel implementation will be presented with the parallel ordering of GaoTe¢idd. GaoThomas
parallel ordering will be briefly reviewed and related implementation issueMi® ®ill be discussed.
The parallelization is implemented both on the current SMP and cellular archéeghich is under
development. The speedup result will be presented in the Section 6.

4.1 Singular Value Decomposition and existing methods

One of the important problems in the mathematical science and engineeringuksivejue decompo-
sition (SVD). SVD is one of the most important factorization of a real or corplatrix and is a very
computationally intensive problem. A SVD of a real or compteXy n matrix is its factorization of
this matrix into the product of three matrices:

A=UxVvH (6)

whereU is anm by n matrix with orthogonal columns;; is ann by n matrix non-negative diagonal
matrix, andV’ is ann by n orthogonal matrix. Here we ug¢ to denote the complex conjugate transpose
of a matrix, if a matrix is real matrix, theH is just a transpose operation.
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There are many algorithms for solving the SVD problem. Firstly, the QR algoritisialgorithm
is used to solve singular value decomposition of a bidiagonal matrix. QR istasmEinpute singular
vectors in LAPACK’s [1] computational routine xBDSQR, which is used biyat routine XxGESVD
to compute the SVD of dense matrices. The XxGESVD routine will first redunatax to bidiagonal
form, then call QR routine xBDSQR to find the SVD of the bidiagonal matrix. Qaily the SPACE
RIP sequential code uses zgesvd routine to solve the SVD problem ahglecomatrix. It is worth
noting that Matlab SVD routine uses LAPACK routines DGESVD (for real irpand ZGESVD (for
complex matrix) to compute the singular value decomposition.

Secondly, Divide-and-conquer method. It divides the matrix into two lsalsemputes the SVD of
each half, and glues the solutions together by solving a special rationati@s Divide-and-conquer
is implemented by LAPACK [1] computational routine xBDSDC, which is used BYACK driver
routine xGESDD to compute the SVD of a dense matrix. It is currently the tastethod available in
LAPACK to solve the SVD problem of a bidiagonal matrix larger than abouiy285 [16]. XxGESDD is
currently the LAPACK algorithm of choice for the SVD of dense matricesweleer, to our best knowl-
edge, there is no current parallel version of ZGESVD routine or ZAE&Mitine in the ScaLAPACK
[2], a parallel version of LAPACK.

Finally, Jacobi’s method [9, 15]. It is most suitable for parallel computingis Transformation
method repeatedly multiplies on the right by elementary orthogonal matricesb{Jatations) until
it converges td/Y, the product of the Jacobi rotationsWis. Jacobi is slower than any of the above
transformation methods, but has the useful property that it can deligetirth singular values, and
their singular vectors, much more accurately than any of the above metlanidaal that it is properly
implemented [11, 10]. Especially it is shown that Jacobi method is more @gedhen QR algorithm
[12].

4.2 One sided Jacobi algorithm

In our implementation, we will focus on the one sided Jacobi SVD method siieeibst suitable for
parallel computing. In the one sided Jacobi algorithm, in order to comput¥Brofan m x n matrix

A, most of the algorithms uses the Jacobi rotations. The idea is to generatb@gyooal matrixy” such
that the transformed matridV = W has orthogonal columns. Normalizing the Euclidean length of
each nonnull column ofi to unity, we will get the relation:

W =U%, (7)

where thelJ is a matrix whose nonnull columns form an orthonormal set of vector&asd nonneg-
ative diagonal matrix. Sincé?V = I, wherel is the identity matrix, we have the SVD df given by
A=UxVH,

Hestenes [18] uses plane rotations to constilicin the rest of this subsection, first we review the
Hestenes's method for real matrices, then we extend the method for comphesna

Hestene generates a sequence of matfigeg using the rotation

A1 = ArQy (8)
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where the initiald; = A and@)y, is a plane rotation. Letl; = (d& %a@“, e (k)) andQy = q7(~5),
suppose thé€);, represents a plane rotation in thej) plane, withi < j, Let us deflne.

0 =c, a) = s,
q](f) = —s, q](f)—c )

The postmultiplication by),. affect only two columns:

N N I ] (0)
To simplify the notation, let us define:
7 =g, 7=al. (11)
Then we have:
(@, ) = (i, 7) ( ‘0 ) : (12)
—S C

For real matrices, to make the two new columns orthogonal, we have to satisfy’ = 0, further
mathematical manipulation will yield:
(¢ — s> )w+cs(x —y) =0, (13)

wherew = @70,z = @' i,y = v 7.

Rutishauser[24] proposed the formulas as in Eq.[14] to solve the Eq.JTh&ly are in use because
they can diminish the accumulation of rounding errors:

LY@ o sign(a)
2w’ la| + V1 + a2
1
CcC = ﬁ, S =TC. (14)

We setc =1 ands =0 if w = 0.

4.3 Our Extension to complex matrix

It is worth noting the above formulas only apply for real matrices. In the cdsomplex matrices,
in order to make the two new columns orthogonal, we have to nak& v’ = 0, which still leads to
Eq.[13], except that the inner produets x andy are now defined differently:

w=a"7,z=a"d,y= "0 (15)

Now thex andy are still real number, buby may be complex numbers, which makes the solution as
shown in Eq. [14] not valid anymore.



Park [21] proposed a real algorithm for Hermitian Eigenvalue decompoddiccomplex matrices,
Henrici [13] proposed a Jacobi method for computing the principal gadfi@ complex matrix, both of
them used two sided rotations. Inspired by their methods, we derived ltbeif@ one sided Jacobi
rotation method for complex matrices, we modify the rotation as follows:

o el? 0 c s e I8 0
am-wo(20) (4 (),

where we get the angglfrom w: w = |w|e’?, the formula to get ands are as follows:

L y—x B sign(a)
2wl ’ lo| + V1 + a?
1
CcC = ﬁ, S =TC. (17)

We setc = 1 ands = 0 if |w| = 0.

The idea is to first apply a complex rotation shown in Eq.[16], after this compkakion, the inner
product of the two updated columns becomes real number. It is easyify that the («/)? ' = 0 is
satisfied with our proposed rotation method.

If the matrix V' is desired, the plane rotations can be accumulated. We compute

Vi1 = Vi Qi (18)

We can update thd andV simultaneously.

4.4 Parallelism of One sided Jacobi algorithm

The plane rotation has to be applied to all column pairs exactly once in angreszja sweep) of
n(n — 1)/2 rotations. Several sweeps are required so that the matrix convergesimple sweep
consists of a cyclic-by-rows ordering:

(2,3),-+,(2,n),(3,4),--- ,(n— 1,n). (19)

Unfortunately, the cyclic-by-rows scheme is apparently not amenableratigdgprocessing. For in-
stance, pair§l, 2) and (1,3) can’'t be updated at the same time. However, it is easy to see aos@rp
independent and could be executed in parallel if we change the order §@tfjuence. For instance, let
us consider a matrix with 4 columns, with the cyclic-by-rows order, the semuef a sweep is:

(1,2),(1,3),(1,4),(2,3),(2,4), (3,4). (20)
Another possible sequence for a sweep groups independent pdiegecutes them in parallel:
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Where the pairs in curly brackets are independent. Generally speakimglane rotations:(, j) and
R(r,s) are independent if # r,i # s,j # r andj # s[23]. The feature has motivated the proposal
of many parallel Jacobi ordering in which thé¢n — 1)/2 rotations required to complete a sweep are
organized into groups of independent transformations. We call edbtlesd groups a step. The parallel
ordering can allow us to exploit the parallelism since the work associatedtstep can be distributed
among nodes in the multiprocessor system.

Many Jacobi ordering have been proposed for different parataputing platforms. Brent and Luk
have examined various algorithm for multiprocessor arrays [3]and m@&shected processors [4], Gao
and Thomas [14] have investigated this problem using a recursive dixideange communication pat-
tern for hypercube multicomputers, D.Royo has extended the one-sideli daethod to 2D/3D mesh
multicomputer[23]. Gao and Thomas’s algorithm is optimal in terms of achievitlg the maximum
concurrency in computation and minimum overhead in communication.

4.5 Parallel scheme of our implementation

In this research, our target platform for parallel SVD is shared-mermatyitecture, so the communi-
cation may not be a big issue. We select to implement the Gao and Thomas algdfiitisralgorithm
examines the pairs of elements om /2 processors when n is power of 2. In each computation step,
each processor examines one pair. During the communication stage reaesgor exchange only one
column with another processors. The total number of computation steps-isl) and the network
traffic, defined as the total number of messages set between pr(més§a(n — 1) messages[14]. The
detailed recursive divide and exchange algorithm is beyond the s¢dpis paper, here we only give
one example of parallel ordering for a matrix witltolumns as in Table.1

| stepl] (1,2) | 3,4)] (5,6)] (7.8) |
| step2] (1,4) | (3,2)] (5,8)] (7.6) |
| step3] (1,8) | (3,6)| (5,4)] (7.2) |
| step4| (1.6) | 3.8)] (5,2)] (7.4 |
| step5] (1,5) | 3,7)] (6,2)] (84) ]
| step6] (1,7) | (3,5)] (6,4)] (8.2)]
| step7](1,3)| (7.5)] (6,8)] 4.2) ]

Table 1: Parallel Ordering of Gao and Thomas’s algorithm

In our shared memory implementation, the number of slave thiyeeas be set equal to the number
of available processors. All the column pairs in one step can be treateslak pool, the works in this
work pool will be distributed to the slave threads, where< p < 7. After each step, we implemented
a barrier to make sure the stépt 1 will always use the updated column pairs from stept the end
of each sweep, we will check whether the convergence condition is edtifffinot, then we start a new
sweep again. Otherwise, the program will terminate.
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The convergence behavior of different ordering may not be samesditg17] discusses the conver-
gence properties associated with various ordering. In order to enforvergence, in our implementa-
tion, we have chosen to use a threshold approach [27]. We will omit aatiow if the inner product
(@)H ¥ of the current column paif and# is below the a certain threshaid Thed is defined as follows:

N

§=e-Y _ Al|" A, (22)

i=1

Where thee is the machine precision epsiloA[:] is theith column of the initialA matrix. At the end
of each sweep, if all the possible pairs in this sweep has convergetamgto above standard, then
the problem has converged.

The speedup result of our implementation will be presented in Section 6.

5 Target Platform

In this research, our test platform includes a Sunfire SMP machine fromirtg, a Linux cluster and
a Cellular computer architecture C64 underdevelopment, of which the Cé4 main interest. In this
section, we will review the background and the main features of the Cellapater architecture C64.

5.1 Background of cellular computer architecture Cyclops 64

The Cyclops64(C64) is a petaflop supercomputer project undergeneld at IBM research Labora-
tory. We use it to benchmark our parallel SVD algorithm. The backgrotititeoCyclops64 computer
architecture is two fold. On one hand, current overall system perfoceng more and more limited by
the performance of the memory subsystem, on the other hand, the techdel@jgpment will produce
chips with billions of transistors, enabling large quantities of logic and memorg pdred on a single
chip. The Cyclops project is an renovative idea to explore the threadlgavallelism on a single chip
multi-processor.

The main principle of the Cyclops architecture are[6]:(1) the integratiorr@égssing logic and
memory in the same piece of silicon; (2) the use of massive intra-chip parallglissterate latencies;
(3) a cellular approach to building large systems. Besides, the lower lat@ecyprocessor communi-
cation and synchronization will bring better performance.

There are other efforts to exploit the thread-level parallelism to achitterlperformance on a chip.
Some of them [19] are embedded systems for multimedia applications. Howess,multiprocessors
are application specific and not available for general-purpose use.Cyblops system is a general
purpose platform which can support a wide range of applications. Sosghpe kernel applications
include FFT and other linear algebra such as BLAS 1 and 2 of LAPACK#tkage, Protein folding
and other bioinformatic applications. In this research, we use it for soliadgSVD linear algebra
problem in the context of biomedical imaging.
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5.2 Cyclops 64 Chip architecture

Figure.1l shows the hardware architecture of a C64 chip, the main contpoinerCé64 node. Each
C64 chip has 80 processors, each consisting of two thread units, adlqafint unit and two SRAM
memory banks of 32KB each. A 32KB instruction cache, not shown in thedjds shared among five
processors. In a C64 chip architecture there is no data cache. I@spEation of each SRAM bank
can be configured as scratch-pad memory. Such a memory provideésenigsrary storage to exploit
locality under software control. Processors are connected to a arasstwork that enables intra-chip
communication, i.e. access to other processor’s on-chip memory as wélaspDRAM, and inter-
chip communication via input and output ports that connect each C64 chipisitest neighbors in the
3D-mesh. The intra-chip network also facilitates access to special hardeegices such as the Gigabit
Ethernet port and the serial ATA disk drive attached to each C64 node.

5.3 Cyclops 64 software system

On the software side, one important part of the C64 system software istheh€ead virtual machine.
It is worth noting that OS is not developed for the C64 architecture sind®8would put considerable
overhead on top of the machine which is aimed for simplicity from the bottom pedd, CThread is
implemented directly on top of the hardware architecture as a micro-kernélnersystem that fully

takes advantage of the C64 hardware features.

C64 thread virtual machine includes a thread model, a memory model andra@yization model.
The details of those models are explained in [8]. Suffice it to say that, thelftardware supports
a shared address space model: all on chip SRAM and off-chip DRAMsbaire addressable from all
thread units/processors on the same chip. That is all the threads sedeasbiaiggd address space.
Each thread unit has an associated 32KB SRAM bank. Each memory harnecpartitioned into
two sections: one section is called “global” (or “interleaved”) section, thero‘local” (or “scratch-
pad”) section. All such “global sections” together form the (on chippbal memory” in an interleaved
fashion that are uniformly addressable from all thread units. All locah{sh-pad) sections are globally
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(but non-uniformly) addressable by all thread units. In conclusiorncaveregard one cyclops chip as a
single-chip SMP system with multiple thread units of execution.

CThread run-time system library provides the software/application deselsjph the minimum
functionality to write multithreaded programs: thread management, supporioral exclusion, syn-
chronization among threads, inter-node communication (under evaluaion)n order to achieve high
performance and scalability, the implementation of such functionality tries to mattdbse as possible
the architecture underneath the microkernel/RTS.

In the thread synchronization model, the CThread mutex lock and unloclatapes are directly
implemented using C64 hardware atomic test-and-set operations, thusfiggne Furthermore, a
very efficient barrier synchronization primitive is provided. Barrigesienplemented using the “Signal
Bus” special purpose register. All the thread units on a chip are cteuhéy an 8-bit bus, changes
in the state of the bus propagates throughout the chip in a few cyclesdipga means for very fast
global synchronization. The barrier function can be invoked by aguofuhreads. Threads will block
until all participating threads in the operation has reached this routine.

The software tool chain of C64 platform currently provides a compilerelirdnd simulator for
users. A number of optimization level are supported by the compiler. A multiqthiji-threading
functional accurate simulator (FAST) is also provided. The main featueeq ) FAST can generate
the execution trace and/or an instruction statistics report to help a softpalie&ion developer tuning
and optimizing a program; (2) It can also generate timing result at cycle déeeprogram simulated:;
(3) Detailed system simulation are slow. For an application to be simulated, som#ienaxie has to
be slightly modified.

6 Experiments and Results

In this section, we will present the experimental result of both loop levelllgtization and the fine
level parallelization of SVD. The fine level experiments described in thigmpage carried out by us-
ing Sunfire machine and the cellular computer architecture C64, the sppedopmance of the two
platforms are compared.

6.1 Loop level parallelization

The loop level parallelization is carried out on the Sunfire SMP machine amuk Icluster. The SMP

machine used is the DBI-RNAL at Delaware Biotechnology Institute. DBARN a Sun Sunfire 4800
Server with 12 SPARC 750MHz CPUs, and 24 gigabyte memory. The cadal$@mbeen ported to the
Cellular computer architecture C64, however, due to the fact that the Simatdtds stage is slow to

carry out the loop level parallelization experiment, in this section, we will ondg@nt the Loop level

parallelization result on Sunfire SMP machine and Linux cluster.

In the data used in this experiment, the number of coils is 4, the image size is 128 [the number
of phase encodes is 38.
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Figure 2: Loop level parallelization result on Sunfire

Figure.2 presents the result of both Pthread and OpenMP. The spafetagboth the total execution
time and the loop only are presented. From the figure, it can be seen tha®thoead and OpenMP
achieved near linear performance up to 12 threads. This is due to thbdathe tasks (iterations) of
the loop are totally independent of each other.

According to the very well known “Amdahl’'s” law, if a program can be mgs as two portions: the
serial (nonparallelizable) portion S and the parallel portion P, then theftimgrequired to complete a
task on n parallel processors can be approximated as:

T(n)=5+ % (23)
and the speedup for n CPUs can be expressed as:
T(1) S+P
P=Tm) " 5+ r (24)

From the above equation, it can be seen that the speedup of a pam@djelprcan not continue to grow
forever. Instead, there is a theoretical limit for the speedup:

SPso = lim sp = S+P (25)

n—00 S

According to our timing experiment, the total execution time of loop body occwgtiest 98.79 % of
the total execution of the sequential program, which means the limit of thegpeedround 82.64. We
assume for bigger data set, the loop body time percentage will be even,ldgden real application,
the loop body may be used to handle real-time stream data acquired. So welwifbous on the
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Loop Level Paralelization on Cluster Comet
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Figure 3: Loop level parallelization on Linux cluster

speedup of the loop itself in the following discussion. For instance, in théefied parallelization part,
only the speedup of the loop is shown.

A MPI version is also implemented and tested on a Linux Cluster. The Linux cliStemet”
consists of 18 nodes, each containing two 1.4 GHz AMD Athlon processtotal of 36 processors
— and 512MB of DDR SDRAM memory. The interconnection network for thdesois a switched
100Mbps ethernet. From the figure, it can be seen that the MPI speadwgrhieve good speedup till
the number of slave nodes reaches around 20. After that, the speediyally top to around 16. Itis
because when the number of slave increases, the work load distributadht@lave become smaller,
which can not justify the communication overhead at the initialization stage.

6.2 Fine level parallelization: parallel SVD on SMP machine 8nfire

In this section, the speedup result of the one sided Jacobi SVD on Gy6tbfor complex matrix is
reported. Figure.4 shows the speedup for the matrix size 128 by 12&thtba size 1024 by 1024
(Pthread version). The number in the matrix are uniformly random douklg@sion number. From
the figure, it can be seen that for small problem size such as 128 bytH28peedup is limited: the
speedup tops at around 4. This is because that the task grain is nobhbigheto justify the overhead
associated with the thread creation and synchronization such as badiamdex. In order to achieve
good speedup for small problem size, small thread synchronizatioheaglis necessary, which is a
good feature of Cyclops 64 architecture.
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Figure 4: Speedup of parallel one sided Jacobi complex on Sunfire
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Figure 5: Speedup of parallel one sided Jacobi complex on C64

6.3 Fine level parallelization: parallel SVD on Cyclops64

In this section, the speedup result of the one sided Jacobi SVD on Gy6lbfor complex matrix
is reported. Figure.5 shows the speedup for the matrix size 128 by 128; 64 and 32 by 32. The
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Absolute Speedup of SVD on Cyclops64 v.s On Sunfire
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Figure 6: parallel SVD C64 v.s Sunfire

number in the matrix are uniformly random double precision number. AcogtdiGaoThomas parallel
ordering, the maximum speedup for matrijoy n is 5. In our experiment, for matrix size 128 by 128,
we have measured the actual speedup of 43 which is around 68 %.

In Fig.6, we compare the performance of the complex SVD on Sunfire angaops. From the
figure, it can be seen that Cyclops64 shows much better performagcdagthis the small matrix size
as 128. The actual biomedical data shows similar result and is not plotted theespace limitation.

It is worth noting that Jacobi SVD is slower than other SVD algorithms, foattteal data with a
matrix size 152 by 128,our implementation is about 2 times slower than ZGESVD inLHAPATK
package, which means, with at least 2 processors, the parallel SVDewdkkber than ZGESVD.
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7 Conclusions

The SPACE RIP technique uses multiple receiver coil and utilizes the séysuiefile information
from a number of receiver coils in order to minimize the acquisition time. In thigpape focused
on the parallel reconstruction of SPACE RIP. Firstly We analyzed the iligorand identified one
major loop as the program bottleneck to be parallelized. The loop level patilen is implemented
with Pthread , OpenMP and MPI and archived near linear speeduprdimesi2 CPUs SMP machine.
Secondly, we analyzed the one sided Jacobi algorithm of SVD in the ¢arfteiomedical field and
proposed a rotation method for complex matrix. One sided Jacobi algorithpafallel complex SVD
is implemented using the GaoThomas parallel ordering [14]. Thirdly, we ghdink= code to the new
Cellular computer architecture C64, which makes SPACE RIP one of théitrsiedical applications
on C64. The speedup of the parallel SVD on Cyclops is shown to havevadh43 for parallel SVD
problem with matrix size 128 by 128. The performance comparison of Cé&anfire showed that the
CThread of C64 has smaller overhead and is suitable for fine grain pagtlécation. Detailed time
profiling of both Pthread and CThread primitives will be further exploredunfuture work. Lastly,
The combination of loop level and fine level will generate even more sjpegigtan sufficient number
of processing unit, which will be further explored on the Cyclops64 platfo

Further research directions include: (1) The utilization of the scratchnpamiory and software
caching strategy to further optimize the code on the C64. The perform#acedd different compiler
optimization level may also be explored. (2) We will continue on larger dataiseh faster version
of the simulator becomes available. (3) We will explore whether differertkilacobi SVD algorithm
may allow us to obtain better data locality and also better performance on |atgeside.
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