
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Parallel Reconstruction for Parallel Imaging SPACERIP

on Cellular Computer Architecture

Yanwei Niu

Ziang Hu

Guang R. Gao

CAPSL Technical Memo 57

June 15, 2004

Copyright c© 2004 CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Recently the new field of parallel imaging accusation has thepotential to revolutionize the field
of fast MR imaging. The SPACE RIP technique is one of the parallel imaging methods which
uses multiple receiver coil and utilizes the sensitivity profile information from a number of receiver
coils in order to reduce the acquisition time. The image reconstruction problem of SPACE RIP is a
computation intensive task, which need to be parallelized to further reduce the reconstruction time.
In this paper, we analyzed the algorithm and identified the program bottleneck to be parallelized.
The loop level parallelization is implemented with Pthread, OpenMP and MPI. Furthermore, since
the reconstruction uses Singular Value decomposition (SVD) to solve the matrix pseudoinverse, we
implemented the one sided Jacobi parallel SVD on the state-of-art cellular computer architecture
Cyclops64 to speedup the problem at the fine grain level. Experimental result shows that cellular
computer architecture has very small overhead and thus suitable for fine grain level parallelization.

i

Contents

1 Introduction 1

2 Encoding Scheme and Reconstruction Algorithm of SPACE RIP 2

3 Loop Level Parallelization 4

4 Parallel SVD for Complex matrices 5
4.1 Singular Value Decomposition and existing methods 5
4.2 One sided Jacobi algorithm .. . 6
4.3 Our Extension to complex matrix . 7
4.4 Parallelism of One sided Jacobi algorithm 8
4.5 Parallel scheme of our implementation .9

5 Target Platform 10
5.1 Background of cellular computer architecture Cyclops 64 10
5.2 Cyclops 64 Chip architecture .. . 11
5.3 Cyclops 64 software system .. . 11

6 Experiments and Results 12
6.1 Loop level parallelization .. 12
6.2 Fine level parallelization: parallel SVD on SMP machine Sunfire 14
6.3 Fine level parallelization: parallel SVD on Cyclops64 15

7 Conclusions 17

8 Acknowledgments 18

List of Figures

1 Cyclops64 Chip . 11
2 Loop level parallelization result on Sunfire 13
3 Loop level parallelization on Linux cluster .. . 14
4 Speedup of parallel one sided Jacobi complex on Sunfire 15
5 Speedup of parallel one sided Jacobi complex on C64 15
6 parallel SVD C64 v.s Sunfire .. 16

List of Tables

1 Parallel Ordering of Gao and Thomas’s algorithm 9

ii

1 Introduction

Recently the new field of parallel imaging accusation has the potential to revolutionize the field of fast
MR imaging. There are many reasons to further increase the speed of MR image acquisition and image
reconstruction. Reduction in acquisition time can reduce or even avoid motion artifacts, make the MR
imaging more efficient and make it useful for more potential applications. Forinstance,dynamic imaging
applications of cardiac contraction requires high temporal resolutions without undue sacrifices in spatial
resolution, therefore, those applications can be greatly served if the dataacquisition time can be reduced
with an order of magnitude[20].

The parallel imaging techniques use spatial information contained in the component coils of an
array to partially replace spatial encoding which would normally be performed using gradients, thereby
reducing imaging acquisition time. The name “parallel” is due to the fact that multiple MR signal data
points are acquired simultaneously. In a typical parallel imaging acquisition, only a fraction of the phase
encoding lines are acquired compared to the conventional acquisition. A specialized reconstruction is
then applied to the data to reconstruct the image. The maximum acquisition time reduction factor would
be number of coils used.

A number of parallel imaging methods have been proposed. The SMASH (SiMultaneous Acqui-
sition of Spatial Harmonics) method proposed by Sodickson and Manning [25] is a k-space domain
implementation of the parallel imaging. It is based on the computation of the sensitivity profiles of
the coils in one direction. These profiles are then weighted appropriately and combined linearly in or-
der to form sinusoidal harmonics which are used to generate thek-space lines that are missing due to
undersampling. This technique showed an 8 fold increase in imaging speed.

The SENSE (sensitivity encoding) method proposed by Prussemann et al.[22] is an image domain
sensitivity encoding method. It relies on the use of 2D sensitivity profile information in order to re-
duce image acquisition time. Like SMASH, the cartesian version of SENSE requires the acquisition of
equally spacedk-space lines in order to reconstruct sensitivity weighted, aliased versions of the image.
It is shown in [22] that the SENSE technique can reduce the scan time to one-half using a two-coil array
in brain imaging and double-oblique heart images can be obtained in one-thirdof conventional scan
time with an array of five coils.

The SPACE RIP [20] method proposed by Walid E. Kyriakos is a parallel imaging and reconstruction
technique. It generalizes the SMASH approach by allowing the arbitrary placement of RF receiver coils
around the object to be imaged , it also allows any combination ofk-space lines as opposed to regularly
spaced ones.

This paper focuses on the parallel image reconstruction of the SPACE RIPalgorithm. In section 2,
the SPACE RIP technique will be briefly reviewed to explore the parallelism inherent in the problem.
It will be shown that the reconstruction of each column in the image are totally independent of each
other, thus making the SPACE RIP technique a perfect candidate for parallel computing. Furthermore,
the reconstruction of each column is a pseudoinverse of a matrix, which is solved by singular value
decomposition (SVD). Accordingly, the parallelization is implemented at two different levels: the coarse
grain level parallelization will be presented in Section 3, the fine grain parallelization of SVD algorithm

1

will be presented in Section 4. The target platform C64 will be introduced in Section 5. The performance
experimental results are shown in Section 6. The conclusions are summarized in Section 7.

2 Encoding Scheme and Reconstruction Algorithm of SPACE RIP

MRI uses gradient coils to encode each voxel with a different frequency and phase. Frequency and phase
correspond to a given location ink-space. Taking the Fourier Transform will convert the acquired data
from k-space to coordinate space. The concept of parallel imaging is based onusing multiple receiver
coils, each providing independent information about the image.

Mathematically, the MR signal received in a coil havingWk(x, y) as its complex 2D sensitivity
profile can be written as:

sk(G
g
y, t) =

∫ ∫

r(x, y)Wk(x, y)ej2π(Gxxt+G
g
yyτ)dxdy, (1)

wherer(x, y) denotes the proton density function,Wk(x, y) is the complex 2D sensitivity profile of
this coil, Gx represents the readout gradient amplitude applied in thex direction,Gg

y represents the
phase encoding gradient applied during thegth acquisition,x andy represent thex andy positions,
respectively, andτ is the pulse width of the phase encoding gradientGg

y.

In the conventional serial imaging sequences, only one receiver coil isused to collect all the data
required to reconstruct a digitized version ofr(x, y), assumingWk(x, y) = 1. To achieve this, the phase
encoding gradientGy is varied in order to cover all of thek-space with the desired resolution. One echo
is needed for each value ofGg

y, making sequential imaging a time consuming procedure.

There are some ways to reduce the acquisition time for sequential imaging. Forinstance, multi-echo
imaging EPI (Echo Planar Imaging) can achieve higher speed by optimizing strengths, switching rates,
and patterns of gradients and RF (Radio Frequency) pulses. However, these approaches sometimes will
decrease SNR (Signal to Noise ratio) or spatial resolution, besides, theytend to require higher magnetic
field strengths and increased gradient performance, thus reaching thetechnical limits[22].

The SPACE RIP technique [20] uses multiple receiver coils and utilizes the sensitivity profile in-
formation from a number of receiver coils in order to minimize the number of acquisitions needed to
estimate and reconstructr(x, y).

In the SPACE RIP technique, if we take the Fourier transform of Eq.[1] along thex direction when
a phase encoding gradientGg

y is applied, we can get:

Sk(G
g
y, x) =

∫

r(x, y)Wk(x, y)ej2π(Gg
yyτ)dy, (2)

which is the phase modulated projection of the sensitivity weighted image onto thex axis. Here the
x andy are continuous value. In order to get discrete version ofr(x, y) the r(x, y) andWk(x, y) are
expanded along they direction in terms of a set of orthonormal sampling functionsΨn(y), with further

2











































S1(G
1
y, x)

·
S1(G

F
y , x)

S2(G
1
y, x)

·
S2(G

F
y , x)

·
·

SK(G1
y, x)

·
SK(GF

y , x)











































=











































W1(x, 1)ej2π(G1
y1τ) · · · W1(x, N)ej2π(G1

yNτ)

· · · · ·
W1(x, 1)ej2π(GF

y 1τ) · · · W1(x, N)ej2π(GF
y Nτ)

W2(x, 1)ej2π(G1
y1τ) · · · W2(x, N)ej2π(G1

yNτ)

· · · · ·
W2(x, 1)ej2π(GF

y 1τ) · · · W2(x, N)ej2π(GF
y Nτ)

· · · · ·
· · · · ·

WK(x, 1)ej2π(G1
y1τ) · · · WK(x, N)ej2π(G1

yNτ)

· · · · ·
WK(x, 1)ej2π(GF

y 1τ) · · · WK(x, N)ej2π(GF
y Nτ)











































.

































η(x, 1)

η(x, 2)

η(x, 3)

·
·
·
·
·

η(x, N)

































(4)

mathematical simplification detailed in [20], we can finally get

Sk(G
g
y, x) =

N
∑

n=1

η(x, n)Wk(x, n)ej2π(Gg
ynτ). (3)

whereN is the number of pixels in they direction. Theη(x, n) is the discretized version ofr(x, y).
The symbolk is used to denote the different coils withk = 1, K, whereK is the total number of coils.
The symbolg is used to denote different phase encodes, the value ofg can be from 1 toF , whereF is
the number of phase encode used in the experiments. This expression canbe converted into the matrix
form for each positionx along the horizontal direction of the image, as shown in Eq.[4].

Essentially we can simplify the Eq.[4] as:

A(x) = G(x) × I(x), x = 1 to M ; (5)

Where the A(x), G(x), I(x) represents the left, middle and right item in the Eq.[4]. Their dimensions are
KF × 1, KF × N , N × 1 respectively.K is the number of coils ,F is the number of phase encodes
for each coil. TheM andN is the resolution of the reconstructed image. Normally theM andN will
be 256 by 256 or 128 by 128.

A(x) contains theF phase encoded values for allK coils, it is essentially one dimensional DFT
of the chosenk-space data. I(x) is anN -element vector representing one column of the image to be
reconstructed,x is the horizontal coordinate of that column. G(x) can be constructed based on the
sensitivity profiles and phase encodes used. If a image hasM columns, thenx could be from 1 toM ,
for each particularx, we have such a equation as Eq.[5]. ThoseM equations can be constructed and
solved independently from each other, which means each column of the imagecan be reconstructed
independent of each other. Increasing ofM andN will increase the computation load. It can also
be seen that the Gain matrix G(x) will become larger whenK and F increase, thus increasing the
computation load.

3

3 Loop Level Parallelization

In this section, the coarse grain parallelization of the image reconstruction is presented. As shown in
the previous section, the SPACE RIP reconstruction algorithm can be donecolumn by column indepen-
dently of each other. The actual program begins with reading k-space data from the data file, then 1D
DFT is computed along thex direction, followed by a major loop reconstructing the columns one by
one. This loop hasM iterations, whereM is thex dimension of the reconstructed image. Inside each
iteration, a matrixG(x) as in Eq.[4] is constructed (we call it Gain matrix), then the pseudoinverse of
this matrix is computed and one column of the image is finally reconstructed by multiplying the inverse
matrix with the vectorA(X) as in Eq.[4]. Timing profiling of the program for typical data set shows
that the major loop occupies about 98.79 % of the total execution time. So this loopis the bottleneck to
be parallelized.

Both Pthread and OpenMP version parallelization at the loop level are implemented. The speedup
result on a 12 CPUs Sunfire workstation will be shown in section 6. On a shared-memory multiproces-
sor computer, All CPUs share the same main memory and can work on the same data concurrently. The
major advantage of the shared-memory machine is that no explicit message passing is needed, thus mak-
ing it easier for programmer to parallelize the sequential code of the application compared to message
passing based parallel languages, such as PVM or MPI.

Multithreaded programming is a programming paradigm tailored to shared-memorymultiprocessor
system. Multi-threaded programming offers an alternative to multi-process programming that is typi-
cally less demanding of system resources – here the collection of interactingtasks are implemented as
multiple threads within a single process. The programmer can regard the individual threads as running
concurrently and need not implement task switching explicitly, which is instead handled by the operat-
ing system or thread library in a manner similar to that for task switching betweenprocesses. Libraries
and operating system support for multithreaded programming are available today on most platforms,
including almost all available Unix variants. However, it is worth noting that there is a certain amount
of overhead for handling multiple threads, so the performance gain archived by parallelization must
outweigh this overhead. In our application, the loop level parallelization areat the coarse grain level,
thus justifying the overhead.

Pthread [5] is a standardized model for dividing a program into subtaskswhose execution can be
interleaved or run in parallel. The OpenMP Application Program Interface(API) [7] supports multi-
platform shared-memory parallel programming in C/C++ and Fortran on almostall architectures, it is a
portable, scalable model that gives shared-memory parallel programmersa simple and flexible interface
for developing parallel applications.

It is worth noting that static variable are shared all across all threads forboth Pthread and OpenMP
programming. In the SPACE RIP code, some CLAPACK [1] routines are used, however, the CLAPACK
[1] routines has many unnecessary static local variable, which are not thread-safe since they will cause
some unwanted sharing. If left undealt, these unintended variable sharing will cause false result or may
affect performance.

In the current implementation, the memory for A(x), G(x) and I(x) as shownin Eq.[5] are pre-

4

allocated, thus the program structure is quite simple, all the threads can workon totally independent
memory locations and return the result to also totally independent memory locations. No communi-
cation issue need to be considered due to the problem property. In our implementation, dynamic load
balancing strategy is used for task distribution. As a matter of fact, the load balancing is not a big issue
for our test platform because all the slave nodes has similar performanceand task computation load are
similar according to our observation.

Furthermore, an MPI version is implemented on Linux Cluster. Nowadays building clustering
servers for high performance computing is gaining more and more acceptance. Assembling large Be-
owulf clusters [26] is easier than ever and the performance is increasingdramatically. So we also im-
plemented an MPI version of the loop body parallelization. The difference from the above SMP based
solution is the MPI version need explicit message passing. Specifically, theM iterations in the loop is
distributed to slave nodes dynamically, after the computation of the pseudoinverse for each column, the
slave nodes will send back the result (Pseudo inverse of the Gain matrix) tothe master nodes, the master
will then send a new column index to this slave nodes. Such process will continue till all the iterations
are completed. At the beginning, the master nodes will send necessary information to slaves, including
the Phase Encodes data and necessary information about the image such as image dimension. Also for
each iteration, the slave need to send backKF × N double precision complex number as the result,
which will cause relatively heavy communication overhead.

4 Parallel SVD for Complex matrices

The pseudoinverse of the Gain matrix G(x) is solved by the Singular Value Decomposition. In this
section, we will present the parallelization of the one sided Jacobi SVD algorithm. First the current
existing algorithm for SVD are briefly reviewed. Then a one sided Jacobiupdate algorithm for complex
matrix is proposed because the Gain matrix is complex matrix in this particular application. Then our
parallel implementation will be presented with the parallel ordering of GaoThomas [14]. GaoThomas
parallel ordering will be briefly reviewed and related implementation issue on SMP will be discussed.
The parallelization is implemented both on the current SMP and cellular architecture which is under
development. The speedup result will be presented in the Section 6.

4.1 Singular Value Decomposition and existing methods

One of the important problems in the mathematical science and engineering is singular value decompo-
sition (SVD). SVD is one of the most important factorization of a real or complex matrix and is a very
computationally intensive problem. A SVD of a real or complexm by n matrix is its factorization of
this matrix into the product of three matrices:

A = UΣV H (6)

whereU is anm by n matrix with orthogonal columns,Σ is ann by n matrix non-negative diagonal
matrix, andV is ann byn orthogonal matrix. Here we useH to denote the complex conjugate transpose
of a matrix, if a matrix is real matrix, thenH is just a transpose operation.

5

There are many algorithms for solving the SVD problem. Firstly, the QR algorithm,this algorithm
is used to solve singular value decomposition of a bidiagonal matrix. QR is usedto compute singular
vectors in LAPACK’s [1] computational routine xBDSQR, which is used by driver routine xGESVD
to compute the SVD of dense matrices. The xGESVD routine will first reduce amatrix to bidiagonal
form, then call QR routine xBDSQR to find the SVD of the bidiagonal matrix. Originally the SPACE
RIP sequential code uses zgesvd routine to solve the SVD problem of a complex matrix. It is worth
noting that Matlab SVD routine uses LAPACK routines DGESVD (for real matrix) and ZGESVD (for
complex matrix) to compute the singular value decomposition.

Secondly, Divide-and-conquer method. It divides the matrix into two halves, computes the SVD of
each half, and glues the solutions together by solving a special rational equation. Divide-and-conquer
is implemented by LAPACK [1] computational routine xBDSDC, which is used by LAPACK driver
routine xGESDD to compute the SVD of a dense matrix. It is currently the fastest method available in
LAPACK to solve the SVD problem of a bidiagonal matrix larger than about 25by 25 [16]. xGESDD is
currently the LAPACK algorithm of choice for the SVD of dense matrices. However, to our best knowl-
edge, there is no current parallel version of ZGESVD routine or ZGESDD routine in the ScaLAPACK
[2], a parallel version of LAPACK.

Finally, Jacobi’s method [9, 15]. It is most suitable for parallel computing. This transformation
method repeatedly multiplies on the right by elementary orthogonal matrices (Jacobi rotations) until
it converges toUΣ, the product of the Jacobi rotations isV . Jacobi is slower than any of the above
transformation methods, but has the useful property that it can deliver the tiny singular values, and
their singular vectors, much more accurately than any of the above methods provided that it is properly
implemented [11, 10]. Especially it is shown that Jacobi method is more accurate than QR algorithm
[12].

4.2 One sided Jacobi algorithm

In our implementation, we will focus on the one sided Jacobi SVD method since itis most suitable for
parallel computing. In the one sided Jacobi algorithm, in order to compute an SVD of anm × n matrix
A, most of the algorithms uses the Jacobi rotations. The idea is to generate an orthogonal matrixV such
that the transformed matrixAV = W has orthogonal columns. Normalizing the Euclidean length of
each nonnull column ofW to unity, we will get the relation:

W = UΣ, (7)

where theU is a matrix whose nonnull columns form an orthonormal set of vectors andΣ is a nonneg-
ative diagonal matrix. SinceV HV = I, whereI is the identity matrix, we have the SVD ofA given by
A = UΣV H .

Hestenes [18] uses plane rotations to constructV . In the rest of this subsection, first we review the
Hestenes’s method for real matrices, then we extend the method for complex matrices.

Hestene generates a sequence of matrices{Ak} using the rotation

Ak+1 = AkQk (8)

6

where the initialA1 = A andQk is a plane rotation. LetAk ≡ (~a
(k)
1 ,~a

(k)
2 , · · · ,~a

(k)
n), andQk ≡ q

(k)
rs ,

suppose theQk represents a plane rotation in the(i, j) plane, withi < j, Let us define:

q
(k)
ii = c, q

(k)
ij = s,

q
(k)
ji = −s, q

(k)
jj = c. (9)

The postmultiplication byQk affect only two columns:

(~a
(k+1)
i ,~a

(k+1)
j) = (~a

(k)
i ,~a

(k)
j)

(

c s

−s c

)

. (10)

To simplify the notation, let us define:

~u′ ≡ ~a
(k+1)
i , ~u ≡ ~a

(k)
i

~v′ ≡ ~a
(k+1)
j , ~v ≡ ~a

(k)
j . (11)

Then we have:

(~u′, ~v′) = (~u,~v)

(

c s

−s c

)

. (12)

For real matrices, to make the two new columns orthogonal, we have to satisfy(~u′)T~v′ = 0, further
mathematical manipulation will yield:

(c2 − s2)w + cs(x − y) = 0, (13)

wherew = ~uT~v, x = ~uT~u, y = ~vT~v.

Rutishauser[24] proposed the formulas as in Eq.[14] to solve the Eq.[13]. They are in use because
they can diminish the accumulation of rounding errors:

α =
y − x

2w
, τ =

sign(α)

|α| +
√

1 + α2

c =
1√

1 + τ2
, s = τc. (14)

We setc = 1 ands = 0 if w = 0.

4.3 Our Extension to complex matrix

It is worth noting the above formulas only apply for real matrices. In the case of complex matrices,
in order to make the two new columns orthogonal, we have to make(~u′)H~v′ = 0, which still leads to
Eq.[13], except that the inner productsw, x andy are now defined differently:

w = ~uH~v, x = ~uH~u, y = ~vH~v. (15)

Now thex andy are still real number, butw may be complex numbers, which makes the solution as
shown in Eq. [14] not valid anymore.

7

Park [21] proposed a real algorithm for Hermitian Eigenvalue decomposition for complex matrices,
Henrici [13] proposed a Jacobi method for computing the principal values of a complex matrix, both of
them used two sided rotations. Inspired by their methods, we derived the following one sided Jacobi
rotation method for complex matrices, we modify the rotation as follows:

(~u′, ~v′) = (~u,~v)

(

ejβ 0

0 0

) (

c s

−s c

) (

e−jβ 0

0 1

)

. (16)

where we get the angelβ from w: w = |w|ejβ, the formula to getc ands are as follows:

α =
y − x

2|w| , τ =
sign(α)

|α| +
√

1 + α2

c =
1√

1 + τ2
, s = τc. (17)

We setc = 1 ands = 0 if |w| = 0.

The idea is to first apply a complex rotation shown in Eq.[16], after this complexrotation, the inner
product of the two updated columns becomes real number. It is easy to verify that the(~u′)H~v′ = 0 is
satisfied with our proposed rotation method.

If the matrixV is desired, the plane rotations can be accumulated. We compute

Vk+1 = VkQk (18)

We can update theA andV simultaneously.

4.4 Parallelism of One sided Jacobi algorithm

The plane rotation has to be applied to all column pairs exactly once in any sequence (a sweep) of
n(n − 1)/2 rotations. Several sweeps are required so that the matrix converges. Asimple sweep
consists of a cyclic-by-rows ordering:

(1, 2), (1, 3), · · · , (1, n),

(2, 3), · · · , (2, n), (3, 4), · · · , (n − 1, n). (19)

Unfortunately, the cyclic-by-rows scheme is apparently not amenable to parallel processing. For in-
stance, pairs(1, 2) and (1,3) can’t be updated at the same time. However, it is easy to see some pairs are
independent and could be executed in parallel if we change the order in the sequence. For instance, let
us consider a matrix with 4 columns, with the cyclic-by-rows order, the sequence of a sweep is:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). (20)

Another possible sequence for a sweep groups independent pairs and executes them in parallel:

{(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}. (21)

8

Where the pairs in curly brackets are independent. Generally speaking,two plane rotationsR(i, j) and
R(r, s) are independent ifi 6= r, i 6= s, j 6= r andj 6= s[23]. The feature has motivated the proposal
of many parallel Jacobi ordering in which then(n − 1)/2 rotations required to complete a sweep are
organized into groups of independent transformations. We call each ofthese groups a step. The parallel
ordering can allow us to exploit the parallelism since the work associated to one step can be distributed
among nodes in the multiprocessor system.

Many Jacobi ordering have been proposed for different parallel computing platforms. Brent and Luk
have examined various algorithm for multiprocessor arrays [3]and mesh-connected processors [4], Gao
and Thomas [14] have investigated this problem using a recursive divideexchange communication pat-
tern for hypercube multicomputers, D.Royo has extended the one-sided Jacobi method to 2D/3D mesh
multicomputer[23]. Gao and Thomas’s algorithm is optimal in terms of achieving both the maximum
concurrency in computation and minimum overhead in communication.

4.5 Parallel scheme of our implementation

In this research, our target platform for parallel SVD is shared-memoryarchitecture, so the communi-
cation may not be a big issue. We select to implement the Gao and Thomas algorithm.This algorithm
examines the pairs ofn elements onn/2 processors when n is power of 2. In each computation step,
each processor examines one pair. During the communication stage, each processor exchange only one
column with another processors. The total number of computation steps is(n − 1) and the network
traffic, defined as the total number of messages set between processors, is 1

2n(n−1) messages[14]. The
detailed recursive divide and exchange algorithm is beyond the scope of this paper, here we only give
one example of parallel ordering for a matrix with8 columns as in Table.1

step 1 (1,2) (3, 4) (5, 6) (7,8)

step 2 (1,4) (3, 2) (5, 8) (7,6)

step 3 (1,8) (3, 6) (5, 4) (7,2)

step 4 (1,6) (3, 8) (5, 2) (7,4)

step 5 (1,5) (3, 7) (6, 2) (8,4)

step 6 (1,7) (3, 5) (6, 4) (8,2)

step 7 (1, 3) (7, 5) (6, 8) (4,2)

Table 1: Parallel Ordering of Gao and Thomas’s algorithm

In our shared memory implementation, the number of slave threadsp can be set equal to the number
of available processors. All the column pairs in one step can be treated as awork pool, the works in this
work pool will be distributed to thep slave threads, where1 ≤ p ≤ n

2 . After each step, we implemented
a barrier to make sure the stepk + 1 will always use the updated column pairs from stepk. At the end
of each sweep, we will check whether the convergence condition is satisfied. If not, then we start a new
sweep again. Otherwise, the program will terminate.

9

The convergence behavior of different ordering may not be same. Hansen [17] discusses the conver-
gence properties associated with various ordering. In order to enforce convergence, in our implementa-
tion, we have chosen to use a threshold approach [27]. We will omit any rotation if the inner product
(~u)H~v of the current column pair~u and~v is below the a certain thresholdδ. Theδ is defined as follows:

δ = ǫ ·
N

∑

i=1

A[i]HA[i], (22)

Where theǫ is the machine precision epsilon,A[i] is theith column of the initialA matrix. At the end
of each sweep, if all the possible pairs in this sweep has converged according to above standard, then
the problem has converged.

The speedup result of our implementation will be presented in Section 6.

5 Target Platform

In this research, our test platform includes a Sunfire SMP machine from Sun Inc, a Linux cluster and
a Cellular computer architecture C64 underdevelopment, of which the C64 is our main interest. In this
section, we will review the background and the main features of the Cellular computer architecture C64.

5.1 Background of cellular computer architecture Cyclops 64

The Cyclops64(C64) is a petaflop supercomputer project underdevelopment at IBM research Labora-
tory. We use it to benchmark our parallel SVD algorithm. The background of the Cyclops64 computer
architecture is two fold. On one hand, current overall system performance is more and more limited by
the performance of the memory subsystem, on the other hand, the technologydevelopment will produce
chips with billions of transistors, enabling large quantities of logic and memory to be placed on a single
chip. The Cyclops project is an renovative idea to explore the thread-level parallelism on a single chip
multi-processor.

The main principle of the Cyclops architecture are[6]:(1) the integration of processing logic and
memory in the same piece of silicon; (2) the use of massive intra-chip parallelismto tolerate latencies;
(3) a cellular approach to building large systems. Besides, the lower latencyinter-processor communi-
cation and synchronization will bring better performance.

There are other efforts to exploit the thread-level parallelism to achieve better performance on a chip.
Some of them [19] are embedded systems for multimedia applications. However,these multiprocessors
are application specific and not available for general-purpose use. The Cyclops system is a general
purpose platform which can support a wide range of applications. Some possible kernel applications
include FFT and other linear algebra such as BLAS 1 and 2 of LAPACK [1]package, Protein folding
and other bioinformatic applications. In this research, we use it for solvingthe SVD linear algebra
problem in the context of biomedical imaging.

10

M
e

m
o

ry
O

ff
−

c
h

ip
M

e
m

o
ry

O
ff

−
c
h

ip
M

e
m

o
ry

O
ff

−
c
h

ip
M

e
m

o
ry

O
ff

−
c
h

ip

TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU

GM GM GM GM GM GM GM GM

Chip

A
−

s
w

it
c
h

Processor

Board

e
th

e
rn

e
t

G
ig

a
b

it

HD

3
D

−
m

e
s
h

ATA

Crossbar Network

Figure 1: Cyclops64 Chip

5.2 Cyclops 64 Chip architecture

Figure.1 shows the hardware architecture of a C64 chip, the main component of a C64 node. Each
C64 chip has 80 processors, each consisting of two thread units, a floating-point unit and two SRAM
memory banks of 32KB each. A 32KB instruction cache, not shown in the figure, is shared among five
processors. In a C64 chip architecture there is no data cache. Insteada portion of each SRAM bank
can be configured as scratch-pad memory. Such a memory provides a fast temporary storage to exploit
locality under software control. Processors are connected to a crossbar network that enables intra-chip
communication, i.e. access to other processor’s on-chip memory as well as off-chip DRAM, and inter-
chip communication via input and output ports that connect each C64 chip to itsnearest neighbors in the
3D-mesh. The intra-chip network also facilitates access to special hardware devices such as the Gigabit
Ethernet port and the serial ATA disk drive attached to each C64 node.

5.3 Cyclops 64 software system

On the software side, one important part of the C64 system software is the C64 thread virtual machine.
It is worth noting that OS is not developed for the C64 architecture since theOS would put considerable
overhead on top of the machine which is aimed for simplicity from the bottom up. Instead, CThread is
implemented directly on top of the hardware architecture as a micro-kernel/run-time system that fully
takes advantage of the C64 hardware features.

C64 thread virtual machine includes a thread model, a memory model and a synchronization model.
The details of those models are explained in [8]. Suffice it to say that, the C64chip hardware supports
a shared address space model: all on chip SRAM and off-chip DRAM banks are addressable from all
thread units/processors on the same chip. That is all the threads see a single shared address space.
Each thread unit has an associated 32KB SRAM bank. Each memory bank can be partitioned into
two sections: one section is called “global” (or “interleaved”) section, the other “local” (or “scratch-
pad”) section. All such “global sections” together form the (on chip) “global memory” in an interleaved
fashion that are uniformly addressable from all thread units. All local (scratch-pad) sections are globally

11

(but non-uniformly) addressable by all thread units. In conclusion, wecan regard one cyclops chip as a
single-chip SMP system with multiple thread units of execution.

CThread run-time system library provides the software/application developer with the minimum
functionality to write multithreaded programs: thread management, support formutual exclusion, syn-
chronization among threads, inter-node communication (under evaluation),etc. In order to achieve high
performance and scalability, the implementation of such functionality tries to match as close as possible
the architecture underneath the microkernel/RTS.

In the thread synchronization model, the CThread mutex lock and unlock operations are directly
implemented using C64 hardware atomic test-and-set operations, thus very efficient. Furthermore, a
very efficient barrier synchronization primitive is provided. Barriers are implemented using the “Signal
Bus” special purpose register. All the thread units on a chip are connected by an 8-bit bus, changes
in the state of the bus propagates throughout the chip in a few cycles, providing a means for very fast
global synchronization. The barrier function can be invoked by a group of threads. Threads will block
until all participating threads in the operation has reached this routine.

The software tool chain of C64 platform currently provides a compiler, linker and simulator for
users. A number of optimization level are supported by the compiler. A multi-chipmulti-threading
functional accurate simulator (FAST) is also provided. The main features are: (1) FAST can generate
the execution trace and/or an instruction statistics report to help a software/application developer tuning
and optimizing a program; (2) It can also generate timing result at cycle levelof a program simulated;
(3) Detailed system simulation are slow. For an application to be simulated, sometimesthe code has to
be slightly modified.

6 Experiments and Results

In this section, we will present the experimental result of both loop level parallelization and the fine
level parallelization of SVD. The fine level experiments described in this paper are carried out by us-
ing Sunfire machine and the cellular computer architecture C64, the speedupperformance of the two
platforms are compared.

6.1 Loop level parallelization

The loop level parallelization is carried out on the Sunfire SMP machine and Linux cluster. The SMP
machine used is the DBI-RNA1 at Delaware Biotechnology Institute. DBI-RNA1 is a Sun Sunfire 4800
Server with 12 SPARC 750MHz CPUs, and 24 gigabyte memory. The code has also been ported to the
Cellular computer architecture C64, however, due to the fact that the Simulator at this stage is slow to
carry out the loop level parallelization experiment, in this section, we will only present the Loop level
parallelization result on Sunfire SMP machine and Linux cluster.

In the data used in this experiment, the number of coils is 4, the image size is 128 by128, the number
of phase encodes is 38.

12

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12

Num of threads

A
bs

ol
ut

e
S

pe
ed

up

Absolute Speedup Sunfire, openMP version v.s Pthread version

linear speed−up
openMP total
openmp loop speedup
pthread total
pthread loop speedup

Figure 2: Loop level parallelization result on Sunfire

Figure.2 presents the result of both Pthread and OpenMP. The speedupof the both the total execution
time and the loop only are presented. From the figure, it can be seen that both Pthread and OpenMP
achieved near linear performance up to 12 threads. This is due to the factthat the tasks (iterations) of
the loop are totally independent of each other.

According to the very well known “Amdahl’s” law, if a program can be express as two portions: the
serial (nonparallelizable) portion S and the parallel portion P, then the timeT (n) required to complete a
task on n parallel processors can be approximated as:

T (n) = S +
P

n
(23)

and the speedup for n CPUs can be expressed as:

sp =
T (1)

T (n)
=

S + P

S + P
n

. (24)

From the above equation, it can be seen that the speedup of a parallel program can not continue to grow
forever. Instead, there is a theoretical limit for the speedup:

sp∞ = lim
n→∞

sp =
S + P

S
(25)

According to our timing experiment, the total execution time of loop body occupiesabout 98.79 % of
the total execution of the sequential program, which means the limit of the speedup is around 82.64. We
assume for bigger data set, the loop body time percentage will be even bigger, and in real application,
the loop body may be used to handle real-time stream data acquired. So we will only focus on the

13

1 4 8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5

10

15

20

25

30

Num of Slave Nodes

S
pe

ed
up

Loop Level Paralelization on Cluster Comet

Linear speedup
speedup of MPI version

Figure 3: Loop level parallelization on Linux cluster

speedup of the loop itself in the following discussion. For instance, in the finelevel parallelization part,
only the speedup of the loop is shown.

A MPI version is also implemented and tested on a Linux Cluster. The Linux cluster ”Comet”
consists of 18 nodes, each containing two 1.4 GHz AMD Athlon processors– total of 36 processors
– and 512MB of DDR SDRAM memory. The interconnection network for the nodes is a switched
100Mbps ethernet. From the figure, it can be seen that the MPI speedupcan achieve good speedup till
the number of slave nodes reaches around 20. After that, the speedup gradually top to around 16. It is
because when the number of slave increases, the work load distributed to each slave become smaller,
which can not justify the communication overhead at the initialization stage.

6.2 Fine level parallelization: parallel SVD on SMP machine Sunfire

In this section, the speedup result of the one sided Jacobi SVD on Cyclops 64 for complex matrix is
reported. Figure.4 shows the speedup for the matrix size 128 by 128 through the size 1024 by 1024
(Pthread version). The number in the matrix are uniformly random double precision number. From
the figure, it can be seen that for small problem size such as 128 by 128,the speedup is limited: the
speedup tops at around 4. This is because that the task grain is not big enough to justify the overhead
associated with the thread creation and synchronization such as barrier and mutex. In order to achieve
good speedup for small problem size, small thread synchronization overhead is necessary, which is a
good feature of Cyclops 64 architecture.

14

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

Smoothness of Sunfire for different problem size

Num of threads

S
pe

ed
up

Linear speedup
Problem size 128
Problem size 256
Problem size 512
Problem size 1024

Figure 4: Speedup of parallel one sided Jacobi complex on Sunfire

12 4 8 16 32 64
0

5

10

15

20

25

30

35

40

45
Absolute Speedup of SVD on Cyclops64

Num of threads

S
pe

ed
up

Problem size 128, Theoretical max speedup 64, actual 43.54
Problem size 64, Theoretical max speedup 32, actual 22.15
Problem size 32, Theoretical max speedup 16, actual 10.76

Figure 5: Speedup of parallel one sided Jacobi complex on C64

6.3 Fine level parallelization: parallel SVD on Cyclops64

In this section, the speedup result of the one sided Jacobi SVD on Cyclops 64 for complex matrix
is reported. Figure.5 shows the speedup for the matrix size 128 by 128, 64by 64 and 32 by 32. The

15

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

Absolute Speedup of SVD on Cyclops64 v.s On Sunfire

Num of threads

S
pe

ed
up

Linear speedup
Problem size 128, on cyclops
Problem size 128, on sunfire

Figure 6: parallel SVD C64 v.s Sunfire

number in the matrix are uniformly random double precision number. According to GaoThomas parallel
ordering, the maximum speedup for matrixn by n is n

2 . In our experiment, for matrix size 128 by 128,
we have measured the actual speedup of 43 which is around 68 %.

In Fig.6, we compare the performance of the complex SVD on Sunfire and oncyclops. From the
figure, it can be seen that Cyclops64 shows much better performance even for this the small matrix size
as 128. The actual biomedical data shows similar result and is not plotted dueto the space limitation.

It is worth noting that Jacobi SVD is slower than other SVD algorithms, for theactual data with a
matrix size 152 by 128,our implementation is about 2 times slower than ZGESVD in the CLAPACK
package, which means, with at least 2 processors, the parallel SVD will be faster than ZGESVD.

16

7 Conclusions

The SPACE RIP technique uses multiple receiver coil and utilizes the sensitivity profile information
from a number of receiver coils in order to minimize the acquisition time. In this paper, we focused
on the parallel reconstruction of SPACE RIP. Firstly We analyzed the algorithm and identified one
major loop as the program bottleneck to be parallelized. The loop level parallelization is implemented
with Pthread , OpenMP and MPI and archived near linear speedup on Sunfire 12 CPUs SMP machine.
Secondly, we analyzed the one sided Jacobi algorithm of SVD in the context of biomedical field and
proposed a rotation method for complex matrix. One sided Jacobi algorithm for parallel complex SVD
is implemented using the GaoThomas parallel ordering [14]. Thirdly, we ported the code to the new
Cellular computer architecture C64, which makes SPACE RIP one of the firstbiomedical applications
on C64. The speedup of the parallel SVD on Cyclops is shown to have achieved 43 for parallel SVD
problem with matrix size 128 by 128. The performance comparison of C64 and Sunfire showed that the
CThread of C64 has smaller overhead and is suitable for fine grain parallel application. Detailed time
profiling of both Pthread and CThread primitives will be further explored inour future work. Lastly,
The combination of loop level and fine level will generate even more speedup given sufficient number
of processing unit, which will be further explored on the Cyclops64 platforms.

Further research directions include: (1) The utilization of the scratch padmemory and software
caching strategy to further optimize the code on the C64. The performance effect of different compiler
optimization level may also be explored. (2) We will continue on larger data setwhen faster version
of the simulator becomes available. (3) We will explore whether different block Jacobi SVD algorithm
may allow us to obtain better data locality and also better performance on larger data size.

17

8 Acknowledgments

We would like to thank Dr. Ziang Hu, Clement Leung for many advices and suggestions. We also thanks
Fei Chen, Weirong Zhu, Juan B. del Cuvillo with the Cyclops experiment platform. They patiently
answered all my questions regarding the Cyclops software tool chain. Juan B. del Cuvillo ’s work on
the Cyclops architecture helps me to write the section 5.2 and 5.3 . Many thanks toDr. Walid Kyriakos
and his student Jennifer Fan from Harvard Medical School for the sequential code of SPACE RIP and
many good discussions about the SPACE RIP algorithm. Some formulas are adopted from [20], in order
to keep consistency, similar notations are used. We also acknowledge the support from our sponsors.
Also the email suggestions about complex SVD from Dr. Zlatko Drmac at University of Zagreb is
highly appreciated.

18

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.LAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.ScaLAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[3] Richard P. Brent and Franklin T. Luk. The solution of singular-value and symmetric eigen-
value problems on multiprocessor arrays.SIAM Journal on Scientific and Statistical Computing,
6(1):69–84, January 1985.

[4] Richard P. Brent, Franklin T. Luk, and Charles F. Van Loan. Computation of the singular value de-
composition using mesh-connected processors.Journal of VLSI and Computer Systems, 1(3):242–
260, 1985.

[5] David R. Butenhof.Programming with POSIX(R) Threads. Addison-Wesley Pub. Co., 1997.

[6] Calin Cascaval, Jos G. Casta nos, Luis Ceze, Monty Denneau, Manish Gupta, Derek Lieber, José E.
Moreira, Karin Strauss, and Henry S. Warren Jr. Evaluation of a multithreaded architecture for
cellular computing. InHPCA, pages 311–322, 2002.

[7] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff McDonald.
Parallel Programming in OpenMP. Morgan Kaufmann, 2000.

[8] Juan B. del Cuvillo, Ziang Hu, Weirong Zhu, Fei Chen, and Guang R. Gao. CAPSL memo 55:
Toward a software infrastructure for the cyclops64 cellular architecture. Technical report, CAPSL
Group, Department of ECE, University of Delaware, 2004.

[9] J. Demmel.Applied Numerical Linear Algebra. SIAM, 1997.

[10] J. Demmel. Accurate SVDs of structured matrices.SIAM J. Matrix Anal. Appl., 21(3):562–580,
2000.

[11] J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselic, and Z. Drmac. Computing the singular
value decomposition with high relative accuracy.Linear Algebra Appl., 299:21–80, 1999.

[12] James Demmel and Kresimir Veselic. Jacobi’s method is more accurate thanQR. October 1989.
Lapack Working Note 15 (LAWN-15), Available from netlib, http://www.netlib.org/lapack/.

[13] George E. Forsythe and Peter Henrici. The cyclic jacobi method forcomputing the principal values
of a complex matrix.Transactions of the American Methematical Society, 94(1):1–23, 1960.

[14] G. R. Gao and S. J. Thomas. An optimal parallel jacobi-like solution method for the singular value
decomposition. InProc. Internat. Conf. Parallel Proc., pages 47–53, 1988.

19

[15] G. Golub and C. Van Loan.Matrix Computations. The Johns Hopkins University Press, Baltimore,
1996.

[16] M. Gu, J. Demmel, and I. Dhillon. Efficient computation of the singular value decom-
position with applications to least squares problems. Technical Report CS-94-257, Com-
puter Science Dept., University of Tennessee, Knoxville, 1994. LAPACK Working Note 88,
http://www.netlib.org/lapack/lawns/lawn88.ps.

[17] E. R. Hansen. On cyclic jacoib methods.Journal of Soc. Indust. Appl. Math., 11:448–459, 1963.

[18] M. R. Hestenes. Inversion of matrices of biorthogonalization and related results.J. Soc. Induct.
Appl. Math., 6:51–90, 1958.

[19] T. Koyama, K. Inoue, H. Hanaki, M. Yasue, and E. Iwata. Single-chip multiprocessor for audio
and video signal processing.IEEE J. Solid-State Circuits, 36:17681774, Nov. 2001.

[20] Kyriakos WE, Panych LP, Kacher DF, Westin C-F, Bao SM, Mulkern RV, and Jolesz FA. Sen-
sitivity profiles from an array of coils for encoding and reconstruction inparallel (SPACE RIP).
Magn Reson Med, 44:(2):301–308, 2000.

[21] Haesun Park. A real algorithm for the hermitian eigenvalue decomposition. BIT, 33:158–171,
1993.

[22] Pruessmann KP, Weiger M, Boernert P, and Boesiger P. SENSE,sensitivity encoding for fast
MRI. Magn Reson Med, 42:952–962, 1999.

[23] Dolors Royo, Miguel Valero-Garcı́a, and Antonio Gonźalez. Implementing the one-sided jacobi
method on a 2d/3d mesh multicomputer.Parallel Computing, 27(9):1253–1271, August 2001.

[24] H. Rutishauser. The jacobi method for real symmetric matrices. InJ. H. Wilkinson and C. Rein-
sch, editors, Linear Algebra, Volumn II of Handbook for Automatic Computations, chapter II/1,
volume II, pages 202–211, 1971.

[25] Sodickson DK and Manning WJ. Simultaneous acquistion of spatial harmonics(SMASH): fast
imaging with radiofrequency coil arrays.Magn Reson Med, 38:591–693, 1977.

[26] T. Sterling, D. Becker, and D. Savarese. BEOWULF: A parallel workstation for scientific com-
putation.Proceedings of the 1995 International Conference on Parallel Processing (ICPP), pages
11–14, 1995.

[27] J. H. Wilkinson.The Algebraic Eigenvalue Problem, pp. 277-278. Clarendon Press, Oxford, 1965.

20

