
University of DelawareDepartment of Electrical and Computer EngineeringComputer Architecture and Parallel Systems Laboratory
Concurrency Analysis and Its ApplicationsYuan Zhangy Guang R. GaoCAPSL Technical Memo 59May 28th, 2005

Copyright c
 2005 CAPSL at the University of Delaware

yDept. of Electrical and Computer EngineeringUniversity of Delawarezhangy,weirong,fchen,hu,ggao@capsl.udel.eduUniversity of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USAhttp://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu

AbstractConcurrency analysis is a static analysis technique to determine whether two statementsin a concurrent program can be executed in parallel. In this paper we propose a concurrencyanalysis method for programs with parallel for and parallel sections constructs, andbarrier, locks and post/wait synchronization mechanisms. Our method contains twoparts. One is divide the programs into concurrent blocks, and build up a concurrent block
ow graph (CBFG). The other is calculate the concurrency relations among blocks usingdata
ow equations. We also brie
y introduce two application of concurrency analysis -pointer analysis for parallel programs, and static data race detection.

i

Contents1 Introduction 12 Programming Model 22.1 Parallel Constructs . 22.2 Synchronization Constructs . 23 Concurrency Analysis 33.1 Parallel Program Representation . 43.2 Concurrency Analysis Algorithm . 64 Applications 114.1 Pointer Analysis for Parallel Programs . 114.2 Automatic Lock Assignment . 124.3 Data Race Detection . 125 Conclusions 13Index14List of Figures1 Asynchronous Parallel Constructs . 32 Synchronization Constructs . 33 Example of the problem on locks representation 44 The PFG for Figure 3 . 45 A sample code . 66 The concurrent block
ow graph of the code in Figure 5 77 . 10List of Tables1 Happen before sets for concurrent blocks in Figure 6 82 Concurrency Analysis Result . 93 Final concurrency analysis result for Figure 6 . 11

ii

1 IntroductionConcurrency analysis is a static analysis technique which determines whether two statementsin a parallel program can be executed in parallel. Information about this behavior has awide range of applications in debugging, optimization, data
ow analysis, and synchronizationanomaly detection, etc.The problem of precisely determining whether two statements in a parallel program isconcurrent is known as NP-complete [1]. A practical solution is to compute a conservativeestimation, so that if there exists an execution in which statement S1 and statement S2 ina parallel program are executed in parallel, then the concurrency relation (S1; S2) is in theconservative estimation. However, some additional pairs may also be included in conservativeestimation.Concurrency analysis is closely coupled with some speci�c programming model and synchro-nization mechanisms. It is a widely studied �eld, and several approaches have been presented.Callahan and Subhlok [2] proposed a data
ow method to calculate a set of blocks which mustbe executed before a block can be executed for a parallel program. Parallelism is expressed byparallel case, and the synchronizations among threads are enforced by post and wait pair. Thismethod was extended by Callahan, Kennedy and Subhlok [3] to analyze parallel loops. Duester-wald and So�a [4] proposed a similar method in Ada rendezvous model, and uniquely, extendedit to interprocedural analysis. Masticola and Ryder [5] presented an iterative non-concurrencyanalysis (a complement problem of concurrency analysis) framework. It �rst assumes a pes-simistic estimation on CHT (Can't Happen Together) relation, then re�nes it iteratively. It stillworks for Ada, but includes binary semaphores as well as rendezvous. Naumovich and Avrunin[6] proposed a di�erent way to build up the program graph, in which synchronization is ex-pressed as a node, instead of edges in previous work listed above. Based on that, they used data
ow equations to compute a MHP (May Happen in Parallel) set for each node in polynomialtime. The method proposed by Jeremiassen and Eggers [7] was a bit di�erent from all workslisted above since it deals with course-grained, explicitly parallel program with only barriersynchronization. Its basic idea is to divide the program into a set of phases, and compute thecontrol
ow between them. Each phase consists of one or more sequences of statements thatare delimited by barrier and can execute concurrently.Almost all work listed above are targeted to Ada (or Ada-like) programs with event basedsynchronization. However, their e�ectiveness is limited when applied to modern shared mem-ory programming languages, such as OpenMP [8] and Pthread [9], in which synchronizationare often enforced by high level mutex constructs such as locks and critical sections. In suchprograms, it is di�cult to de�ne the ordering among threads during the static analysis stage.Thus one concern of our work is to propose a more e�ective way to analyze mutex structures.Moreoever, these programming languages usually contain a wide range of parallel and synchro-nization constructs. How to build up a uniform infrastructure for them is our another concern.The language constructs covered in our work include:1

1. Parallelism constructs: parallel do and parallel sections;2. Synchronization constructs: post/wait, barrier and locks;Last but not the least, we try to re�ne the analysis on barrier and obtain a less conservativesolution than previous work.The remainder of the paper is organized as follows. In section 2 we brie
y introduce theprogramming model, and the semantics of each language construct. In section 3 we discussour concurrency analysis method in detail. In section 4 we present several applications ofconcurrency analysis, such as pointer analysis and automatic lock assignment. Finally weconclude and summarize in section 5.2 Programming ModelThis section describes a language L with asynchronous parallel constructs and synchronizationconstructs. We present them as a subset of OpenMP [8] extended with event based synchro-nization post/wait, although these constructs are essentially independent with any of thelanguage.2.1 Parallel ConstructsThe language L follows a nested fork-join execution model. The program begins execution asa single thread called master thread. When parallel constructs are encountered, the masterthread generates a team of threads to execute the enclosed code. When they complete, theysynchronize and terminate, leaving only the master thread to proceed.Parallelism is explicitly expressed by two language constructs: parallel for and parallelsections. Parallel for is same as parallel DO in Callahan, Kennedy and Subhlok [3]'s work.When control reaches the parallel for construct, all iterations of the loop body are startedand proceed concurrently and asynchronously. The parallel sections has the same semanticswith cobegin/coend. It speci�es a �xed set of tasks to be executed concurrently in such away that the code segment Si is executed by the ith thread in the team. Figure 1 illustratesexamples for both constructs. Note that the parallel region is a structured block, i.e., branchesare not allowed from within the parallel region to outside, or vice versa.2.2 Synchronization ConstructsThere are three synchronization mechanisms included in L: event variables, locks, and barriers.An event variable is always in one of two states: clear or posted. The initial value of an eventvariable is clear. It can be set of posted with the construct post as in Figure 2(a). A waitconstruct suspends the executing thread until the speci�ed event variable's value is set to postedby another thread. 2

parallel for parallel sectionsfor(i=0; i<n; i++) section... S1sectionS2...(a) (b)Figure 1: Asynchronous Parallel ConstructsThe locks constructs, as shown in Figure 2(b), enforces the mutual exclusion among threads.It de�nes a region of code, usually called the critical section, that can be executed exclusively byone thread at any time. The lock variable has two states: locked and unlocked. The initial valueis unlocked. Before entering the critical section, threads compete for the exclusive permission.One thread wins, and it sets the local variable state to locked. This action is always referred toas lock acquisition. After it �nishes the critical section, it releases the lock by setting its stateto unlocked, and other threads can compete to enter. In this work we don't consider the nestedlock constructs. Although it is easy to extend the semantics to cover this case, we have notobserved any application of it.The barrier construct enforces a coarse-grained, explicit ordering among threads. When athread encounters a barrier, it must be suspended until the whole team of threads reach thesame point. After that, each thread begins executing the code after the barrier concurrently.An example of barrier is shown in Figure 2(c).post(ev) lock(lv) Critical section barrierwait(ev) unlock(lv) ...(a) (b) (c)Figure 2: Synchronization Constructs
3 Concurrency AnalysisThe core of the concurrency analysis technique is to compute a partial order of statementsbased on some data
ow framework. It consists of two key problems, one is how to represent,usually graphically, the dependences in the parallel program, the other is how to calculate theconcurrency relationship based on that graph. The basic idea is to �gure out dependencesamong threads (usually speci�ed by synchronization, thread local control
ow, and memorymodel, etc.) that must be preserved for program correctness, and two independent statementsfrom two threads can be concurrent. We discuss each of them in detail in this section.3

3.1 Parallel Program RepresentationAs mentioned in section 1, some previous work have proposed methods to build up graphsfor parallel programs with parallel for and parallel sections constructs, and post/waitsynchronizations. But they didn't have solutions for representation of locks and barriers.Besides, there have been some other work done on parallel program representations, al-though their original objects are not on concurrency analysis. Sarkar and Simons [10] proposedparallel program graphs (PPGs) that subsume program dependence graphs (PDGs) [11] andconventional control
ow graphs. Lee, Midki� and Padua [12] proposed a concurrent control
ow graph (CCFG) for explicitly parallel shared memory programs with cobegin/coend andparallel do parallel constructs and post/wait synchronization. They also proposed a con-current static single assignment (CSSA) form based on CCFGs. Lee [13] extended both theCCFG and CSSA to cover barrier and locks synchronization constructs. Novillo, Unrau andSchae�er [14] proposed a parallel
ow graph (PFG) which is an extension of CCFG with adi�erent mutual exclusion synchronization representation.We found that PFGs presented by Novillo etc. [14] would miss some concurrent pairs dueto its lock representation. For instance, consider the code segment shown in Figure 3. Inits corresponding PFG in Figure ??, solid lines represents the control edges, and dotted linesrepresents the synchronization. The dependences shown in the PFG requires the statement\x + +" in thread 1 to be �nished before \y � �" in thread 2, or the statement \y + +" inthread 2 to be �nished before \x��" in thread 1. However, locks guarantees mutual exclusion,but not enforce any order between threads. Hence \x++" might be concurrent with \y��",and \y ++" might be concurrent with \x��".Thread 1 Thread 2x ++ y ++lock(lv) lock(lv)CS1 CS2unlock(lv) unlock(lv)x -- y --Figure 3: Example of the problem on locksrepresentation
x++

lock(lv)

unlock(lv)

CS1 CS2

x − − y − −

y ++

lock(lv)

unlock(lv)Figure 4: The PFG for Figure 3In this work we propose a concurrent block
ow graph (CBFG) which takes the advantagesof the synchronization control
ow graph [2] and CCFG [13], and represents locks in a di�erentway. This CBFG is especially suitable for applications such as pointer analysis and automaticlock assignment to be mentioned in section 4.The CBFG of a parallel program on L is a collection of concurrent blocks connected accordingto their control
ow orders and synchronization orders. A concurrent block is a maximum setof statements that is uninterrupted by thread interactions. It is de�ned as follows.4

De�nition: Concurrent BlockA concurrent block has the following properties:1. A sequence of consecutive statements in which
ow of control enters at thebeginning and leaves at the end.2. Only the �rst statement can be a wait.3. Only the last statement can be a post.4. If a concurrent block contains a barrier, parallel begin/parallel end, orsection begin/section end statement, then that statement is the only one inthe concurrent block.5. The entire critical section and the enclosing lock and unlock statement arereduced to one concurrent block.The concurrent block
ow graph G = (N;E;Ntype;Etype; entry; exit) is de�ned as follows.De�nition: Concurrent Block Flow GraphA concurrent block
ow graph (CBFG) is a directed graph G =(N;E;Ntype;Etype; entry; exit), such that:1. N is the set of nodes in G. Each node is a concurrent block.2. E � N �N �Etype is a set of edges in G. E = Ec [Es, where� Ec = f(m;n;Etype(m;n))jm;n 2 N ^Etype(m;n) 2 fT; F; Ugg is a set ofcontrol
ow edges.� Es = f(m;n;Etype(m;n))jm;n 2 N ^ Etype(m;n) 2 fSE; SBgg is a setof synchronization
ow edges.3. Ntype is a node type mapping. Its domain and range are as follows: Ntype :N ! TN ; TN = fSbegin; Send; F begin; Fend;Bar;Evt; Lock; Compg.4. Etype is an edge type mapping. Its domain and range are as follows: Etype :E ! TE; TE = fT; F; U; SE; SBg.The Sbegin and Send nodes correpsond to the begin and the end of the parallel sectionsstatement. One outgoing edge corresponds to one section. Threads are created at the Sbeginnode, and completed and joint at the Send node.The Fbegin and Fend nodes correspond to the begin and the end of the parallel forstatement. A team of threads are created at Fbegin, and joins at Fend. For the purpose ofthe static concurrency analysis, we assume there are two virtual threads generated, and we5

duplicate the CBFG of the associated loop body for each of them. The back edge of the loopis ignored.The Bar node corresponds to the barrier statement. The same Bar nodes in di�erentvirtual threads are connected by a bidirected edge with type SB.A node with the type Evt corresponds the concurrent block containing the post statementor the wait statement. There is a synchronization edge with type SE from post(ev) towait(ev), where ev is an event variable.The Lock node corresponds to the entire critical section with the enclosing lock and unlockstatements. All other nodes have the type Comp, connected by control
ow edges with unlabeledtype U , true type T , or false type F .As an example, Figure 6 shows the CBFG of the sample code in Figure 5. Note that allunlabeled edges have type of U .x = 0 parallel fory = 0 for(i=0; i<N; i++){z = 0 if(a > 0 && b > 0){a = ReadFile() x = Random()b = ReadFile() lock(lv)parallel sections z = z + xsection unlock(lv){ barriera = 1 lock(lv)post(ev) z = z - y} unlock(lv)section }{ elsewait(ev) print(a, b)b = a + 1 }} Figure 5: A sample code3.2 Concurrency Analysis AlgorithmAs mentioned before, the core of the concurrency analysis technique is to compute a partialexecution order among statements. Statement ordering in a concurrent program is enforced byvarious mechanisms. One is control
ow within a thread, the other is inter-thread interactionsenforced by synchronization.In our analysis framework, we have split the concurrent program into concurrent blocks,which contains a maximum set of statements executed by a thread at one time without anyinter-thread interaction (but threads can still communicate with each other implicitly throughreading or writing shared data). This concurrent block has a desirable property that if twoblocks B1 and B2 are concurrent, then 8S1 2 B1 are concurrent with 8S2 2 B2, where S1 and6

a>0 &&
b>0

x = Random()

lock(lv)
z = z + x
unlock(lv)

barrier

y = Random()

lock(lv)
z = z − y
unlock(lv)

print(a,b)

Fbegin

Fend

a>0 &&
b>0

x = Random()

lock(lv)
z = z + x
unlock(lv)

barrier

y = Random()

lock(lv)
z = z − y
unlock(lv)

print(a,b)

SB

x = 0
y = 0
z = 0
a = ReadFile()
b = ReadFile()

a = 1
post(ev)

Sbegin

wait(ev)
b = a + 1

Send

6

7

8

9

10

11

12

13

14

15

F T FT

21

20

19

18

17

16

exit

Thread dilimiter

2

3 4

5

SE

1

entry

Figure 6: The concurrent block
ow graph of the code in Figure 5S2 are statements in B1 and B2, respectively. Thus the concurrency analysis among statementscan be reduced to the discussion of concurrency among blocks.Given a concurrent block
ow graph G = (N;E;Ntype;Etype; entry; exit), we say concur-rent block B1 must happen before (MHB) concurrent block B2 if and only if B1 must be �nishedbefore B2 can be executed in any execution in which both blocks are executed. We de�ne thepredicate MHB(u; v) as:MHB(m;n) = (true : if u must happen before vfalse : otherwiseDe�ne a path from block u to block v in G = (N;E;Ntype;Etype; entry; exit) as a �nitesequence of vertices n0; n1; � � � ; nk 2 N , such that (ni�1; ni) 2 E; 1 � i � k, and n0 = u^nk = v.MHP(u, v) can be inferred from the following theorem.Theorem I: MHB(u; v) if there is a path in G from u to v.Proof: Given a path n0; n1; � � � ; nk 2 N , where (ni�1; ni) 2 E; 1 � i � k, and n0 = u^ nk =v, in order to prove MHB(u; v), we must prove that MHB(ni�1; ni), 1 � i � k. We have threecases:1. Etype(ni�1; ni) 2 fT; F; Ug, (ni�1; ni) is a thread local control
ow edge, MHB(ni�1; ni)holds.2. Etype(ni�1; ni) = SE, then from CBFG's de�nition we know ni�1 is post, and ni iswait. ni's executing thread has to be suspended until the event variable is posted byni�1. Therefore MHB(ni�1; ni). 7

3. Etype(ni�1; ni) = SB, then Ntype(ni�1) = Ntype(n� i) = Bar. This is a special case.According to barrier's semantics in section 2, only when both threads have reached thesame barrier, can they proceed together. So ni�1 and ni can be considered as concurrent,or executed one by one. MHB(ni�1; ni) holds.Therefore MHB(u; v).End of proof.The importance of this Theorem I is that it transforms the ordering problem into thereachability calculation: block u must happen before v if u can reach v.For each concurrent block b, de�ne the happen before set HB(b) as:HB(b) = fnjMHP (n; b)gHB(b) can be calculated by the following data
ow equations:HB(i) = (� if i = entryS(j;i)2E (HB(j) [fjg) � fig otherwiseAs an example, Table 1 lists the happen before set of concurrent blocks in Figure 6.Block i HB(i) Block i HB(i)1 � 12 f1-11, 14-17g2 f1g 13 f1-7g3 f1-2g 14 f1-6g4 f1-3g 15 f1-6, 14g5 f1-4g 16 f1-6, 14-15g6 f1-5g 17 f1-10, 14-16g7 f1-6g 18 f1-10, 14-17g8 f1-7g 19 f1-10, 14-18g9 f1-8g 20 f1-6, 14g10 f1-9, 14-17g 21 f1-20g11 f1-10, 14-17gTable 1: Happen before sets for concurrent blocks in Figure 6In Duesterwald and So�a's work [4], two units u and v are de�ned as concurrent if u cannothappen before v, and u cannot happen after v, and vice versa, i.e. they are not connected. De-note the set of concurrent blocks with block b as Cur(b), the above condition can be summarizedinto the following equation:Cur(u) = fvj:(MHB(u; v) _MHB(v; u))g (1)Applied to Figure 6, we obtain the concurrency results shown in Table 2.8

Block u Cur(u) Block u Cur(u)1 � 12 f13, 18-20g2 � 13 f8-12, 14-20g3 � 14 f7-9, 13g4 � 15 f7-9, 13, 20g5 � 16 f7-9, 13, 20g6 � 17 f13, 20g7 f14-16, 20g 18 f11-13, 20g8 f13-16, 20g 19 f11-13, 20g9 f13-16, 20g 20 f7-13, 15-19g10 f13, 20g 21 �11 f13, 18-20gTable 2: Concurrency Analysis ResultHowever, we should pay attention to two special cases. One is ordering among criticalsections. The other is ordering with respect to barriers. As mentioned in section 2, locksenforces mutually exclusive accesses to a critical sections. This mutex is guaranteed by settingand unsetting the lock variable when the executing thread acquires and releases it, respectively.Di�erent critical section instances also have to be executed in a sequential order if they areguarded by the same lock variable. In Figure 6, block 9 and block 16 are two instances ofthe same critical section, they are executed in a sequential order even though two threadsmight reach the same lock acquisition site concurrently. Similarly, block 9 and block 19 (orblock 12 and block 16) are not concurrent since they are guarded by the same lock variable lv,although in this speci�c example they have been explicitly ordered by the barrier. Summarizethis condition into Equation 1, we haveCur0(u) = fvj(:(MHB(u; v) _MHB(v; u)))^((Ntype(u) = lock ^Ntype(v) = lock)! LV (u) 6= LV (v))g (2)where LV (b) returns block b's lock variable if b is a lock block.The other elaboration arises from the program correctness consideration at the presenceof barriers. Consider block 8 and block 20 in Figure 6. Equation 1 determines that they areconcurrent since they are not connected. However, due to the global barrier in block 10 and 17,both threads must either take the true path together, or take the false path together. Otherwise,one of them will wait at the barrier for ever, and the program will never halt. Hence in any\correct" program, blocks in one path are not concurrent with those in the other path.Let's consider a parallel for construct 1. Since the subgraphs for both virtual threads inCBFG are identical, we only care about one copy of the loop body. Figure 7 shows such anexample. Due to the barrier, B4 and B5, B4 and B6 are not concurrent pairs. Similarly, B2 and1We don't consider the parallel sections case since barrier constructs cannot be used in parallel sectionsfor the same reason. 9

B5, B2 and B6 are not concurrent. But B2 and B4 are concurrent, because even if two threadstake di�erent paths, the one passing B3 still can choose to take the path of B4 from B3.
B1

barrier

B2 B3

B4 B5

B6

B7Figure 7:Denote the subgraph of a parallel for construct loop body as SG, and ignore any syn-chronization edge from other threads, then SG contains only thread local control
ow edges.Block b's dominator Dom(b), post-dominator PDom(b), immediate dominator IDom(b), andimmediate post-dominator IPDom(b) are de�ned on SG in the same way as in [15]. De�ne thecommon immediate dominator of block u and v as follows:De�nition: In SG, the common immediate dominator CIDom(u; v) of block u and vsatis�es:1. CIDom(u; v) 2 Dom(u) ^ CIDom(u; v) 2 Dom(v)2. There does not exist w, w 2 Dom(u) ^ w 2 Dom(v), and w dominates CIDom(u; v).Similarly, we can de�ne the the common immediate post-dominator CIPDom(u; v) of blocku and v. The following theorem determines whether two blocks u and v, satisfying u 2 Cur0(v)and v 2 Cur0(u) by equation 2, are concurrent due to the program correctness property at thepresence of barriers.Theorem II: Two blocks u and v are concurrent if:1. u 2 Cur0(v) ^ v 2 Cur0(u), and2. There exists a barrier-free path from CIDom(u; v) to CIPDom(u; v) which passes u, andthere exists a barrier-free path from CIDom(u; v) to CIPDom(u; v) which passes v.The proof of this theorem is left to future work.The concurrent set of block b speci�ed by Theorem II is denoted as Cur00(b). Table 3shows the �nal concurrency analysis results for Figure 6.10

Block i Cur00(i) Block i Cur00(i)1 � 12 f18g2 � 13 f14, 20g3 � 14 f7-9, 13g4 � 15 f7-9g5 � 16 f7-8g6 � 17 �7 f14-16g 18 f11-12g8 f14-16g 19 f11g9 f14-15g 20 f7, 13g10 � 21 �11 f18-19gTable 3: Final concurrency analysis result for Figure 64 Applications4.1 Pointer Analysis for Parallel ProgramsPointer analysis is one of the most important program analysis techniques, which tracks infor-mation about the memory locations to which pointers may point. There have been a lot ofmutual pointer analysis techniques for sequential programs. However, it is di�cult to applythem to parallel programs, due to the potential interference among parallel threads. Rug-ina and Rinard [16] proposed a interprocedural,
ow-sensitive, and context-sensitive pointeranalysis algorithm for structured parallel programs, which generates a points-to graph at eachprogram point, and takes the interference information into account when computing the e�ectof each statement on the points-to graph for the next program point. Although e�ective forstructured parallel constructs (including fork-join constructs, parallel loops, and conditionalspawned threads), it ignores synchronization constructs such as locks, semaphores and criticalsections, hence is conservative for programs using these constructs.We claim that concurrency analysis results can help to deal with synchronization constructs,or other cases that cannot be solved in Rugina and Rinard's algorithm. The intuition is simple:interference can only occur among concurrent statements. In concurrent block
ow graph(CBFG), the interference edges from other threads which in
uence the points-to calculationsfor statements in block b is the union of points-to edges created by blocks concurrent with b. Tokeep the integrity of this paper, we repeat the de�nition of multithreaded points-to informationin [16] as follows:\De�nition: Let L be the set of location sets in the program and P = 2L�L the set of allpoints-to graphs. The multithreaded points-to information MTI(p) at a program point p of theparallel program is a triple < C; I;E >2 P 3 consisting of:- the current points-to graph C, 11

- the set I of interference edges created by all the other concurrent threads (for the currentstatement),- the set E of edges created by the current thread."The basic data
ow equations for statement st is:[st] < C; I;E >=< C 0; I 0; E0 >, whereC 0 = ((C � kill) [gen [I if strongC [gen [I if not strongI 0 = IE0 = E [genAnd the data
ow equations for concurrent block b is:[b] < I;E >=< I 0; E0 >, whereI 0 = Si2Cur00(b) I(b)E0 = SiEi for sti 2 b[sti] < Ci; I; Ei >=< C 0i; I; E0i > for sti 2 b4.2 Automatic Lock Assignment4.3 Data Race DetectionData races occur in a parallel program when two threads access a shared data concurrentlywithout any ordering constraints, and at least one of them is a write. Data races are usuallybugs in parallel programs, but hard to detect and debug. The reason is that they may exhibitdi�erent behaviors when executed on the same inputs. The data race detection techniquescan be classi�ed into two categories, one is static data race detection, which detects all possiblerace conditions at the compilation time; the other is dynamic data race detection, which detectsraces at the execution time.Once the concurrency relationship among blocks are available, we can statically detect thedata races by analyzing the de�nitions and uses of shared data among concurrent block.Claim: Let Def(b) be the set of shared data de�ned in concurrent block b, and Use(b) bethe set of shared data used in b. A data race occurs between concurrent blocks u and v if andonly if:1. u and v are concurrent, and2. Def(u) \Def(v) 6= �, or Def(u) \ Use(v) 6= �, or Use(u) \Def(v) 6= �.12

For example, in the program shown in Figure 6, block 8 and block 16 are concurrent,Def(8) = fxg, and Use(16) = fx; zg, Def(8) \ Def(16) = fxg 6= �, thus a potential datarace. Similarly, block 11 and block 18, which are duplicates of the same set of statements inthe parallel program, are concurrent, and Def(11) = Def(18) = fyg, hence they may generateanother data race.5 ConclusionsIn this paper we present a concurrency analysis method for parallel programs with parallelfor and parallel sections constructs, and barrier, locks and post/wait synchronizationmechanisms. Our method contains two parts. One is divide the program into a set of concurrentblocks and build up a concurrent block
ow graph (CBFG). The concurrent block has a goodproperty that the executing thread cannot be interrupted by synchronization. The CBFGcatches dependences in the program which must be preserved for correctness. The other partis to calculate the concurrency relations among blocks using data
ow equations. Comparedwith previous work, our method has several advantages:1. It analyzes the mutex structures (speci�ed by locks) more accurately.2. It gives less conservative solution to analysis related with the barrier construct.3. It provides a uniform infrastructure for a wide range of parallel language constructs.We also illustrate the application of this technique in parallel program pointer analysis andstatic data race detection.References[1] R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent pro-grams. Acta Informatica, 19:57{84, 1983.[2] David Callahan and Jaspal Sublok. Static analysis of low-level synchronization. In Pro-ceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributeddebugging, pages 100{111. ACM Press, 1988.[3] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization ina parallel programming tool. In Proceedings of the Second ACM SIGPLAN Symposium onPrinciples & Practice of Parallel Programming, pages 21{30, Seattle, Washington, March1990.[4] Evelyn Duesterwald and Mary Lou So�a. Concurrency analysis in the presence of proce-dures using a data-
ow framework. In TAV4: Proceedings of the symposium on Testing,analysis, and veri�cation, pages 36{48, New York, NY, USA, 1991. ACM Press.13

[5] Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In Proceedings ofthe Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming,pages 129{138, San Diego, California, May 1993.[6] Gleb Naumovich and George S. Avrunin. A conservative data
ow algorithm for detectingall pairs of statements that may happen in parallel. In SIGSOFT '98/FSE-6: Proceedings ofthe 6th ACM SIGSOFT international symposium on Foundations of software engineering,pages 24{34, New York, NY, USA, 1998. ACM Press.[7] Tor E. Jeremiassen and Susan J. Eggers. Static analysis of barrier synchronization inexplicitly parallel systems. In Proceedings of the IFIP WG 10.3 Working Conference onParallel Architectures and Compilation Techniques, PACT '94, pages 171{180, Montr�eal,Qu�ebec, August 1994. North-Holland Publishing Company.[8] OpenMP C/C++ Manual. http://www.openmp.org/specs/.[9] Threads Extension for Portable Operating Systems, 1994.[10] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classi�cation. InProceedings of the 6th International Workshop on Languages and Compilers for ParallelComputing, number 768 in Lecture Notes in Computer Science, pages 633{655, Portland,Oregon, August 1993. Springer-Verlag. Published in 1994.[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graphand its use in optimization. ACM Transactions on Programming Languages and Systems,9(3):319{349, July 1987.[12] Jaejin Lee, David A. Padua, and Samuel P. Midki�. Basic compiler algorithms for parallelprograms. In PPoPP '99: Proceedings of the seventh ACM SIGPLAN symposium onPrinciples and practice of parallel programming, pages 1{12, New York, NY, USA, 1999.ACM Press.[13] Jaejin Lee. Compilation techniques for explicitly parallel programs. PhD thesis, 1999.Adviser-David A. Padua.[14] Diego Novillo, Ronald C. Unrau, and Jonathan Schae�er. Concurrent ssa form in the pres-ence of mutual exclusion. In ICPP '98: Proceedings of the 1998 International Conferenceon Parallel Processing, page 356, Washington, DC, USA, 1998. IEEE Computer Society.[15] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.Addison-Wesley, 1986.[16] Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel programs.ACM Trans. Program. Lang. Syst., 25(1):70{116, 2003.
14

