e University of Delaware
Department of Electrical and Computer Engineering
~~ Computer Architecture and Parallel Systems Laboratory

Concurrency Analysis and Its Applications
Yuan Zhangt Guang R. Gao

CAPSL Technical Memo 59
May 28th, 2005

Copyright (© 2005 CAPSL at the University of Delaware

tDept. of Electrical and Computer Engineering
University of Delaware
zhangy,weirong,fchen,hu,ggao@Qcapsl.udel.edu

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

Concurrency analysis is a static analysis technique to determine whether two statements
in a concurrent program can be executed in parallel. In this paper we propose a concurrency
analysis method for programs with parallel for and parallel sections constructs, and
barrier, locks and post/wait synchronization mechanisms. Our method contains two
parts. One is divide the programs into concurrent blocks, and build up a concurrent block
flow graph (CBFG). The other is calculate the concurrency relations among blocks using
data flow equations. We also briefly introduce two application of concurrency analysis -
pointer analysis for parallel programs, and static data race detection.

Contents

Introduction

Programming Model
2.1 Parallel Constructs
2.2 Synchronization Constructs Lo

Concurrency Analysis
3.1 Parallel Program Representation
3.2 Concurrency Analysis Algorithm o o o0

Applications

4.1 Pointer Analysis for Parallel Programs
4.2 Automatic Lock Assignment oL oL
4.3 Data Race Detection

Conclusions

Index14

List of Figures

Asynchronous Parallel Constructs o o oL
Synchronization Constructso
Example of the problem on locks representation
The PFG for Figure 3
Asample code
The concurrent block flow graph of the code in Figure 5

NSO W N~

List of Tables

1 Happen before sets for concurrent blocks in Figure 6
2 Concurrency Analysis Result oo
3 Final concurrency analysis result for Figure 6

ii

11
11
12
12

13

1 Introduction

Concurrency analysis is a static analysis technique which determines whether two statements
in a parallel program can be executed in parallel. Information about this behavior has a
wide range of applications in debugging, optimization, data flow analysis, and synchronization
anomaly detection, etc.

The problem of precisely determining whether two statements in a parallel program is
concurrent is known as NP-complete [1]. A practical solution is to compute a conservative
estimation, so that if there exists an execution in which statement S; and statement Sy in
a parallel program are executed in parallel, then the concurrency relation (S7,S2) is in the
conservative estimation. However, some additional pairs may also be included in conservative
estimation.

Concurrency analysis is closely coupled with some specific programming model and synchro-
nization mechanisms. It is a widely studied field, and several approaches have been presented.
Callahan and Subhlok [2] proposed a data flow method to calculate a set of blocks which must
be executed before a block can be executed for a parallel program. Parallelism is expressed by
parallel case, and the synchronizations among threads are enforced by post and wait pair. This
method was extended by Callahan, Kennedy and Subhlok [3] to analyze parallel loops. Duester-
wald and Soffa [4] proposed a similar method in Ada rendezvous model, and uniquely, extended
it to interprocedural analysis. Masticola and Ryder [5] presented an iterative non-concurrency
analysis (a complement problem of concurrency analysis) framework. It first assumes a pes-
simistic estimation on CHT (Can’t Happen Together) relation, then refines it iteratively. It still
works for Ada, but includes binary semaphores as well as rendezvous. Naumovich and Avrunin
[6] proposed a different way to build up the program graph, in which synchronization is ex-
pressed as a node, instead of edges in previous work listed above. Based on that, they used data
flow equations to compute a MHP (May Happen in Parallel) set for each node in polynomial
time. The method proposed by Jeremiassen and Eggers [7] was a bit different from all works
listed above since it deals with course-grained, explicitly parallel program with only barrier
synchronization. Its basic idea is to divide the program into a set of phases, and compute the
control flow between them. Each phase consists of one or more sequences of statements that
are delimited by barrier and can execute concurrently.

Almost all work listed above are targeted to Ada (or Ada-like) programs with event based
synchronization. However, their effectiveness is limited when applied to modern shared mem-
ory programming languages, such as OpenMP [8] and Pthread [9], in which synchronization
are often enforced by high level mutex constructs such as locks and critical sections. In such
programs, it is difficult to define the ordering among threads during the static analysis stage.
Thus one concern of our work is to propose a more effective way to analyze mutex structures.
Moreoever, these programming languages usually contain a wide range of parallel and synchro-
nization constructs. How to build up a uniform infrastructure for them is our another concern.
The language constructs covered in our work include:

1. Parallelism constructs: parallel do and parallel sections;

2. Synchronization constructs: post/wait, barrier and locks;

Last but not the least, we try to refine the analysis on barrier and obtain a less conservative

solution than previous work.

The remainder of the paper is organized as follows. In section 2 we briefly introduce the
programming model, and the semantics of each language construct. In section 3 we discuss
our concurrency analysis method in detail. In section 4 we present several applications of
concurrency analysis, such as pointer analysis and automatic lock assignment. Finally we

conclude and summarize in section 5.

2 Programming Model

This section describes a language £ with asynchronous parallel constructs and synchronization
constructs. We present them as a subset of OpenMP [8] extended with event based synchro-
nization post/wait, although these constructs are essentially independent with any of the
language.

2.1 Parallel Constructs

The language £ follows a nested fork-join execution model. The program begins execution as
a single thread called master thread. When parallel constructs are encountered, the master
thread generates a team of threads to execute the enclosed code. When they complete, they

synchronize and terminate, leaving only the master thread to proceed.

Parallelism is explicitly expressed by two language constructs: parallel for and parallel
sections. Parallel for is same as parallel DO in Callahan, Kennedy and Subhlok [3]’s work.
When control reaches the parallel for construct, all iterations of the loop body are started
and proceed concurrently and asynchronously. The parallel sections has the same semantics
with cobegin/coend. It specifies a fixed set of tasks to be executed concurrently in such a
way that the code segment S; is executed by the ith thread in the team. Figure 1 illustrates
examples for both constructs. Note that the parallel region is a structured block, i.e., branches
are not allowed from within the parallel region to outside, or vice versa.

2.2 Synchronization Constructs

There are three synchronization mechanisms included in £: event variables, locks, and barriers.
An event variable is always in one of two states: clear or posted. The initial value of an event
variable is clear. It can be set of posted with the construct post as in Figure 2(a). A wait
construct suspends the executing thread until the specified event variable’s value is set to posted
by another thread.

parallel for parallel sectioms
for(i=0; i<n; i++) section
S1
section
52

(a) (b)

Figure 1: Asynchronous Parallel Constructs

The locks constructs, as shown in Figure 2(b), enforces the mutual exclusion among threads.
It defines a region of code, usually called the critical section, that can be executed exclusively by
one thread at any time. The lock variable has two states: locked and unlocked. The initial value
is unlocked. Before entering the critical section, threads compete for the exclusive permission.
One thread wins, and it sets the local variable state to locked. This action is always referred to
as lock acquisition. After it finishes the critical section, it releases the lock by setting its state
to unlocked, and other threads can compete to enter. In this work we don’t consider the nested
lock constructs. Although it is easy to extend the semantics to cover this case, we have not
observed any application of it.

The barrier construct enforces a coarse-grained, explicit ordering among threads. When a
thread encounters a barrier, it must be suspended until the whole team of threads reach the
same point. After that, each thread begins executing the code after the barrier concurrently.
An example of barrier is shown in Figure 2(c).

post (ev) lock(1lv)
A Critical section barrier
wait (ev) unlock(1v)

() (v) (c)

Figure 2: Synchronization Constructs

3 Concurrency Analysis

The core of the concurrency analysis technique is to compute a partial order of statements
based on some data flow framework. It consists of two key problems, one is how to represent,
usually graphically, the dependences in the parallel program, the other is how to calculate the
concurrency relationship based on that graph. The basic idea is to figure out dependences
among threads (usually specified by synchronization, thread local control flow, and memory
model, etc.) that must be preserved for program correctness, and two independent statements
from two threads can be concurrent. We discuss each of them in detail in this section.

3.1 Parallel Program Representation

As mentioned in section 1, some previous work have proposed methods to build up graphs
for parallel programs with parallel for and parallel sections constructs, and post/wait
synchronizations. But they didn’t have solutions for representation of locks and barriers.

Besides, there have been some other work done on parallel program representations, al-
though their original objects are not on concurrency analysis. Sarkar and Simons [10] proposed
parallel program graphs (PPGs) that subsume program dependence graphs (PDGs) [11] and
conventional control flow graphs. Lee, Midkiff and Padua [12] proposed a concurrent control
flow graph (CCFQ) for explicitly parallel shared memory programs with cobegin/coend and
parallel do parallel constructs and post/wait synchronization. They also proposed a con-
current static single assignment (CSSA) form based on CCFGs. Lee [13] extended both the
CCFG and CSSA to cover barrier and locks synchronization constructs. Novillo, Unrau and
Schaeffer [14] proposed a parallel flow graph (PFG) which is an extension of CCFG with a
different mutual exclusion synchronization representation.

We found that PFGs presented by Novillo etc. [14] would miss some concurrent pairs due
to its lock representation. For instance, consider the code segment shown in Figure 3. In
its corresponding PFG in Figure 77, solid lines represents the control edges, and dotted lines
represents the synchronization. The dependences shown in the PFG requires the statement
“r + +” in thread 1 to be finished before “y — —” in thread 2, or the statement “y 4+ +” in
thread 2 to be finished before “z ——" in thread 1. However, locks guarantees mutual exclusion,
but not enforce any order between threads. Hence “x + +” might be concurrent with “y — —”,

and “y 4+ +” might be concurrent with “x — —7.

Thread 1 Thread 2 -

X ++ y ++
lock(lv) lock(lv)
lock(1v) lock(1v) - . K -
Cs1 CS2
unlock(1v) unlock(1v)

x - y —- / \ unlock(lv)

Fi ' E le of th 1 lock
igure 3: Example of the problem on locks Figure 4: The PFG for Figure 3

representation

In this work we propose a concurrent block flow graph (CBFG) which takes the advantages
of the synchronization control flow graph [2] and CCFG [13], and represents locks in a different
way. This CBFG is especially suitable for applications such as pointer analysis and automatic
lock assignment to be mentioned in section 4.

The CBFG of a parallel program on L is a collection of concurrent blocks connected according
to their control flow orders and synchronization orders. A concurrent block is a maximum set
of statements that is uninterrupted by thread interactions. It is defined as follows.

Definition: Concurrent Block

A concurrent block has the following properties:

1. A sequence of consecutive statements in which flow of control enters at the
beginning and leaves at the end.

2. Only the first statement can be a wait.
3. Only the last statement can be a post.

4. If a concurrent block contains a barrier, parallel begin/parallel end, or
section begin/section end statement, then that statement is the only one in
the concurrent block.

5. The entire critical section and the enclosing lock and unlock statement are

reduced to one concurrent block.

The concurrent block flow graph G = (N, E, Ntype, Etype, entry, exit) is defined as follows.

Definition: Concurrent Block Flow Graph
A concurrent block flow graph (CBFG) is a directed graph G =
(N, E, Ntype, Etype, entry, exit), such that:

1. N is the set of nodes in G. Each node is a concurrent block.
2. EC N x N x Etype is a set of edges in G. E = E.U E;, where

o E.={(m,n, Etype(m,n))m,n € N A\ Etype(m,n) € {T,F,U}} is a set of
control flow edges.

o By = {(m,n, Etype(m,n))|m,n € N A Etype(m,n) € {SE,SB}} is a set
of synchronization flow edges.

3. Niype is a node type mapping. Its domain and range are as follows: Ntype :
N — TN, Ty = {Sbegin, Send, Fbegin, Fend, Bar, Evt, Lock, Comp}.

4. FEtype is an edge type mapping. Its domain and range are as follows: FEtype :
E - Tg,Tp ={T,F,U,SE,SB}.

The Sbegin and Send nodes correpsond to the begin and the end of the parallel sections
statement. One outgoing edge corresponds to one section. Threads are created at the Sbegin
node, and completed and joint at the Send node.

The Fbegin and Fend nodes correspond to the begin and the end of the parallel for
statement. A team of threads are created at Fbegin, and joins at Fend. For the purpose of
the static concurrency analysis, we assume there are two virtual threads generated, and we

duplicate the CBFG of the associated loop body for each of them. The back edge of the loop
is ignored.

The Bar node corresponds to the barrier statement. The same Bar nodes in different
virtual threads are connected by a bidirected edge with type SB.

A node with the type Evt corresponds the concurrent block containing the post statement
or the wait statement. There is a synchronization edge with type SE from post(ev) to

wait(ev), where ev is an event variable.

The Lock node corresponds to the entire critical section with the enclosing lock and unlock
statements. All other nodes have the type Comp, connected by control flow edges with unlabeled
type U, true type T, or false type F'.

As an example, Figure 6 shows the CBFG of the sample code in Figure 5. Note that all
unlabeled edges have type of U.

x =0 parallel for
y=0 for(i=0; i<N; i++){
z =0 if(a > 0 & b > 0){
a = ReadFile() x = Random()
b = ReadFile() lock(1lv)
parallel sections z =2z +x
section unlock(1v)
{ barrier

a=1 lock(1lv)

post (ev) z=2z-y
} unlock(1v)
section }
{ else

wait (ev) print(a, b)

b=a+1 }
}

Figure 5: A sample code

3.2 Concurrency Analysis Algorithm

As mentioned before, the core of the concurrency analysis technique is to compute a partial
execution order among statements. Statement ordering in a concurrent program is enforced by
various mechanisms. One is control flow within a thread, the other is inter-thread interactions

enforced by synchronization.

In our analysis framework, we have split the concurrent program into concurrent blocks,
which contains a maximum set of statements executed by a thread at one time without any
inter-thread interaction (but threads can still communicate with each other implicitly through
reading or writing shared data). This concurrent block has a desirable property that if two
blocks B; and By are concurrent, then V.S; € By are concurrent with VS, € By, where S; and

entry

1
x=0
y=0
z=0
a = ReadFile()
b = ReadFile() ‘ X= Random()‘ ‘ print(a,b)‘ ‘ X = Random()‘ ‘ print(a,b)‘
2 ¢ 9 16
; lock(lv) lock(lv)
Sbegin
unlock(lv) unlock(lv)
3? 4? SB 17
a=1 SE | wait(ev) 101 parrier barrier
ost(ev, b=a+1
P ¢() é 11 18
S J 12} ock(lv) 19 | jock(lv)
unlock(lv) unlock(lv)

L .

21
O Thread dilimiter E,I

Figure 6: The concurrent block flow graph of the code in Figure 5

Sy are statements in By and Bsg, respectively. Thus the concurrency analysis among statements
can be reduced to the discussion of concurrency among blocks.

Given a concurrent block flow graph G = (N, E, Ntype, Etype, entry, exit), we say concur-
rent block By must happen before (MHB) concurrent block By if and only if By must be finished
before By can be executed in any execution in which both blocks are executed. We define the
predicate M H B(u,v) as:

MHB(m, n) = { true : if u must happen before v

false : otherwise

Define a path from block u to block v in G = (N, E, Ntype, Etype, entry, exit) as a finite
sequence of vertices ng,ny,---,ng € N, such that (n;_1,n;) € E,1 <i<k,and ng = uAny = v.
MHP (u, v) can be inferred from the following theorem.

Theorem I: M HB(u,v) if there is a path in G from u to v.

Proof: Given a path ng,ni,---,ng € N, where (n; _1,n;) € E,1 <i<k,and ng =uAng =
v, in order to prove M H B(u,v), we must prove that M HB(n; 1,n;), 1 <i < k. We have three
cases:

1. Etype(n;—1,n;) € {T,F,U}, (n;—1,n;) is a thread local control flow edge, M HB(n;_1,n;)
holds.

2. Etype(n;_1,n;) = SE, then from CBFG’s definition we know n; 1 is post, and n; is
wait. n;’s executing thread has to be suspended until the event variable is posted by
ni—1. Therefore M HB(n;_1,n;).

3. Etype(n;_1,n;) = SB, then Ntype(n;_ 1) = Ntype(n — i) = Bar. This is a special case.
According to barrier’s semantics in section 2, only when both threads have reached the
same barrier, can they proceed together. So n; 1 and n; can be considered as concurrent,
or executed one by one. M HB(n;_1,n;) holds.

Therefore M HB(u,v).
End of proof.

The importance of this Theorem I is that it transforms the ordering problem into the
reachability calculation: block u must happen before v if u can reach v.

For each concurrent block b, define the happen before set HB(b) as:

HB(b) = {n|MHP(n,b)}

HB(b) can be calculated by the following data flow equations:

¢ if 1 = entry

HB(i) = { Ugiyer (HB(5) U{j}) — {i} otherwise

As an example, Table 1 lists the happen before set of concurrent blocks in Figure 6.

Block i | HB(i) Block i | HB(i)
1 | ¢ 12 | {1-11, 14-17}
2 | {1} 13 | {1-7}
3| {12} 14 | {16}
4| {13} 15 | {1-6, 14}
5| {14} 16 | {1-6, 14-15}
6 | {15} 17 | {1-10, 14-16}
7| {16} 18 | {1-10, 14-17}
8 | {17} 19 | {1-10, 14-18}
9 | {18 20 | {1-6, 14}
10 | {1-9, 1417} 21 | {1-20}
11 | {1-10, 14-17}

Table 1: Happen before sets for concurrent blocks in Figure 6

In Duesterwald and Soffa’s work [4], two units u and v are defined as concurrent if u cannot
happen before v, and v cannot happen after v, and vice versa, i.e. they are not connected. De-
note the set of concurrent blocks with block b as Cur(b), the above condition can be summarized
into the following equation:

Cur(u) = {v|~(MHB(u,v) V MHB(v,u))} (1)

Applied to Figure 6, we obtain the concurrency results shown in Table 2.

Block u | Cur(u) Block u | Cur(u)
1 | ¢ 12 | {13, 18-20}
2 | ¢ 13 | {8-12, 14-20}
3 | ¢ 14 | {79, 13}
4 ¢ 15 | {7-9, 13, 20}
5 ¢ 16 | {7-9, 13, 20}
6 ¢ 17 | {13, 20}
7 | {1416, 20} | 18 | {11-13, 20}
8 {13-16, 20} | 19 | {11-13, 20}
9 | {13-16,20} | 20 | {7-13, 15-19}
10 | {13, 20} 21 | ¢
11 | {13, 1820}

Table 2: Concurrency Analysis Result

However, we should pay attention to two special cases. One is ordering among critical
sections. The other is ordering with respect to barriers. As mentioned in section 2, locks
enforces mutually exclusive accesses to a critical sections. This mutex is guaranteed by setting
and unsetting the lock variable when the executing thread acquires and releases it, respectively.
Different critical section instances also have to be executed in a sequential order if they are
guarded by the same lock variable. In Figure 6, block 9 and block 16 are two instances of
the same critical section, they are executed in a sequential order even though two threads
might reach the same lock acquisition site concurrently. Similarly, block 9 and block 19 (or
block 12 and block 16) are not concurrent since they are guarded by the same lock variable [v,
although in this specific example they have been explicitly ordered by the barrier. Summarize
this condition into Equation 1, we have

B {v|(=(MHB(u,v) V MHB(v,u)))

Cur'(u) = A((Ntype(u) = lock N Ntype(v) = lock) — LV (u) # LV (v))} (2)

where LV (b) returns block b’s lock variable if b is a lock block.

The other elaboration arises from the program correctness consideration at the presence
of barriers. Consider block 8 and block 20 in Figure 6. Equation 1 determines that they are
concurrent since they are not connected. However, due to the global barrier in block 10 and 17,
both threads must either take the true path together, or take the false path together. Otherwise,
one of them will wait at the barrier for ever, and the program will never halt. Hence in any
“correct” program, blocks in one path are not concurrent with those in the other path.

Let’s consider a parallel for construct !. Since the subgraphs for both virtual threads in
CBFG are identical, we only care about one copy of the loop body. Figure 7 shows such an
example. Due to the barrier, By and By, B4 and Bg are not concurrent pairs. Similarly, Bs and

!We don’t consider the parallel sections case since barrier constructs cannot be used in parallel sections
for the same reason.

Bs, By and Bg are not concurrent. But By and B4 are concurrent, because even if two threads
take different paths, the one passing Bj still can choose to take the path of B4 from Bj.

barrier

B7
Figure 7:

Denote the subgraph of a parallel for construct loop body as SG, and ignore any syn-
chronization edge from other threads, then SG contains only thread local control flow edges.
Block b’'s dominator Dom(b), post-dominator PDom(b), immediate dominator IDom(b), and
immediate post-dominator I PDom(b) are defined on SG in the same way as in [15]. Define the
common immediate dominator of block u and v as follows:

Definition: In SG, the common immediate dominator CIDom(u,v) of block u and v
satisfies:

1. CIDom(u,v) € Dom(u) AN CIDom(u,v) € Dom(v)

2. There does not exist w, w € Dom(u) ANw € Dom(v), and w dominates CI1Dom(u,v).

Similarly, we can define the the common immediate post-dominator C'I P Dom/(u,v) of block
u and v. The following theorem determines whether two blocks u and v, satisfying u € Cur’(v)
and v € Cur’(u) by equation 2, are concurrent due to the program correctness property at the
presence of barriers.

Theorem II: Two blocks u and v are concurrent if:
1. u € Cur'(v) ANv € Cur'(u), and

2. There exists a barrier-free path from C'I Dom(u,v) to CIPDom(u,v) which passes u, and
there exists a barrier-free path from CIDom(u,v) to CIPDom(u,v) which passes v.

The proof of this theorem is left to future work.

The concurrent set of block b specified by Theorem II is denoted as Cur”(b). Table 3
shows the final concurrency analysis results for Figure 6.

10

Block i | Cur” (i) | Block i | Cur” (i)
1 | ¢ 12 | {18}
2 | ¢ 13 | {14, 20}
3 | 14 | {7-9, 13}
4 ¢ 15 | {7-9)
5 |6 16 | {7-8)
6 | ¢ 17 | ¢
7| {1416} | 18 | {1112}
8 | {1416} | 19 | {11}
9 | {1415} | 20 | {7,13)
10 | ¢ 21 | ¢
11| {1819}

Table 3: Final concurrency analysis result for Figure 6
4 Applications

4.1 Pointer Analysis for Parallel Programs

Pointer analysis is one of the most important program analysis techniques, which tracks infor-
mation about the memory locations to which pointers may point. There have been a lot of
mutual pointer analysis techniques for sequential programs. However, it is difficult to apply
them to parallel programs, due to the potential interference among parallel threads. Rug-
ina and Rinard [16] proposed a interprocedural, flow-sensitive, and context-sensitive pointer
analysis algorithm for structured parallel programs, which generates a points-to graph at each
program point, and takes the interference information into account when computing the effect
of each statement on the points-to graph for the next program point. Although effective for
structured parallel constructs (including fork-join constructs, parallel loops, and conditional
spawned threads), it ignores synchronization constructs such as locks, semaphores and critical
sections, hence is conservative for programs using these constructs.

We claim that concurrency analysis results can help to deal with synchronization constructs,
or other cases that cannot be solved in Rugina and Rinard’s algorithm. The intuition is simple:
interference can only occur among concurrent statements. In concurrent block flow graph
(CBFG), the interference edges from other threads which influence the points-to calculations
for statements in block b is the union of points-to edges created by blocks concurrent with b. To
keep the integrity of this paper, we repeat the definition of multithreaded points-to information
in [16] as follows:

“Definition: Let L be the set of location sets in the program and P = 2X*L the set of all
points-to graphs. The multithreaded points-to information MTI(p) at a program point p of the
parallel program is a triple < C, I, E >€ P3 consisting of:

- the current points-to graph C,

11

- the set I of interference edges created by all the other concurrent threads (for the current
statement),

- the set F of edges created by the current thread.”

The basic data flow equations for statement st is:

[st] < C.I,E >=< C",I' E" >, where

o { (C —kill)Ugen UI if strong
CuUgenUlI if not strong

I'=1

E' = FEUgen

And the data flow equations for concurrent block b is:

b < I,E >=<1T',E" >, where

I'= UiEC’ur”(b) I(b)

E' =\, E; for st; €b

[st;] < Ci, I, E; >=< Cj,I,E; > for st; € b

4.2 Automatic Lock Assignment
4.3 Data Race Detection

Data races occur in a parallel program when two threads access a shared data concurrently
without any ordering constraints, and at least one of them is a write. Data races are usually
bugs in parallel programs, but hard to detect and debug. The reason is that they may exhibit
different behaviors when executed on the same inputs. The data race detection techniques
can be classified into two categories, one is static data race detection, which detects all possible
race conditions at the compilation time; the other is dynamic data race detection, which detects

races at the execution time.

Once the concurrency relationship among blocks are available, we can statically detect the
data races by analyzing the definitions and uses of shared data among concurrent block.

Claim: Let Def(b) be the set of shared data defined in concurrent block b, and Use(b) be
the set of shared data used in b. A data race occurs between concurrent blocks u and v if and

only if:

1. w and v are concurrent, and

2. Def(u) N Def(v) # ¢, or Def(u) NUse(v) # ¢, or Use(u) N Def(v) # ¢.

12

For example, in the program shown in Figure 6, block 8 and block 16 are concurrent,
Def(8) = {z}, and Use(16) = {x,z}, Def(8) N Def(16) = {z} # ¢, thus a potential data
race. Similarly, block 11 and block 18, which are duplicates of the same set of statements in
the parallel program, are concurrent, and Def(11) = Def(18) = {y}, hence they may generate
another data race.

5 Conclusions

In this paper we present a concurrency analysis method for parallel programs with parallel
for and parallel sections constructs, and barrier, locks and post/wait synchronization
mechanisms. Our method contains two parts. One is divide the program into a set of concurrent
blocks and build up a concurrent block flow graph (CBFG). The concurrent block has a good
property that the executing thread cannot be interrupted by synchronization. The CBFG
catches dependences in the program which must be preserved for correctness. The other part
is to calculate the concurrency relations among blocks using data flow equations. Compared
with previous work, our method has several advantages:

1. Tt analyzes the mutex structures (specified by locks) more accurately.
2. Tt gives less conservative solution to analysis related with the barrier construct.

3. It provides a uniform infrastructure for a wide range of parallel language constructs.

We also illustrate the application of this technique in parallel program pointer analysis and
static data race detection.

References

[1] R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent pro-
grams. Acta Informatica, 19:57-84, 1983.

[2] David Callahan and Jaspal Sublok. Static analysis of low-level synchronization. In Pro-
ceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributed
debugging, pages 100-111. ACM Press, 1988.

[3] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization in
a parallel programming tool. In Proceedings of the Second ACM SIGPLAN Symposium on
Principles € Practice of Parallel Programming, pages 21 30, Seattle, Washington, March
1990.

[4] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of proce-
dures using a data-flow framework. In TAV/: Proceedings of the symposium on Testing,
analysis, and verification, pages 36-48, New York, NY, USA, 1991. ACM Press.

13

[5]

[15]

[16]

Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming,
pages 129-138, San Diego, California, May 1993.

Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In SIGSOFT ’98/FSE-6: Proceedings of
the 6th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 24 34, New York, NY, USA, 1998. ACM Press.

Tor E. Jeremiassen and Susan J. Eggers. Static analysis of barrier synchronization in
explicitly parallel systems. In Proceedings of the IFIP WG 10.8 Working Conference on
Parallel Architectures and Compilation Techniques, PACT ’94, pages 171 180, Montréal,
Québec, August 1994. North-Holland Publishing Company.

OpenMP C/C++ Manual. http://www.openmp.org/specs/.
Threads Extension for Portable Operating Systems, 1994.

Vivek Sarkar and Barbara Simons. Parallel program graphs and their classification. In
Proceedings of the 6th International Workshop on Languages and Compilers for Parallel
Computing, number 768 in Lecture Notes in Computer Science, pages 633-655, Portland,
Oregon, August 1993. Springer-Verlag. Published in 1994.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for parallel
programs. In PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 1 12, New York, NY, USA, 1999.
ACM Press.

Jaejin Lee. Compilation techniques for explicitly parallel programs. PhD thesis, 1999.
Adviser-David A. Padua.

Diego Novillo, Ronald C. Unrau, and Jonathan Schaeffer. Concurrent ssa form in the pres-
ence of mutual exclusion. In ICPP ’98: Proceedings of the 1998 International Conference
on Parallel Processing, page 356, Washington, DC, USA, 1998. IEEE Computer Society.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel programs.
ACM Trans. Program. Lang. Syst., 25(1):70-116, 2003.

14

