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Abstract

The designs of high-performance processor architectueamaving toward the integration of a
large number of multiple processing cores on a single chiye. IBM Cyclops64 (C64) is a petaflop
supercomputer built on multi-core System-On-Chip (SOEht®logy, based on a cellular architec-
ture. A maximum configuration of a C64 system consists of 28864 processing nodes (around
one million processors) arranged around a 3D mesh netwqrK][8Each node is composed of a
C64 chip, external DRAMs and a small number of external meslutach C64 chip employs a mul-
tistage pipelined crossbar switch as its on-chip intereation network to provide high bandwidth
and low latency communication between the thread procgssires, the on-chip SRAM memory
banks, and other components.

In this paper, we present a study of the architecture andpeence of the C64 on-chip in-
terconnection network through simulation. Our experirakrgsults provide observations on the
network behavior: (1) The C64 crossbar can achieve as lowcgsl& latency, reach the full hard-
ware bandwidth, and exhibé non-blocking behavior; (2) It is astable network; (3) The network
logic design appears to provide a reasonable opportunighiaring the channel bandwidth between
traffics in either direction; (4) The segmented LRU matrigittation scheme does not have any no-
table performance gain comparing with some simple sche(®&# pplication-driven benchmarks
provide comparable results to synthetic workloads.
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1 Introduction

The designs of high-performance processor architectugemaving toward the integration of a large
number of multiple processing cores on a single chip [12]e parformance scalability of such chips
requires a solid interconnection network architecture ismtlehavioral evaluation should begin in the
design and verification stage. In this paper, we presentdy stiithe architecture and performance of
the IBM Cyclops64 (C64) chip’s interconnection network.
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Figure 1: Cyclops64 Node Architecture.

The C64 is a petaflop supercomputer built on multi-core SysBn-Chip (SOC) technology, based
on a cellular architecture and expected to achieve over dflpptpeak performance. A maximum
configuration of a C64 supercomputer consists of 13,824 Cédegsing nodes (1 million processors)
connected by a 3D-mesh network [8]. Each node is composedCéfachip, external DRAMs and a
small number of external modules. A C64 chip consists of ug0toustom-designed 64-bit processors,
16 shared instruction caches (I-caches), 160 on-chip edelte8RAM memory banks and 80 floating
point units (FP). It is interesting to note that there is ntadaache on the chip. Instead, each SRAM
bank on the chip can be configured into two levels: globarieéeed memory banks (GM) which are
uniformly addressable, and scratch pad memories (SP) thdbeal to individual processors [4]. The
C64 chip configuration used in this study integrates 75 @®me on a single chip. Each processor
contains two thread units, one floating point unit and two BZBRAM memory banks. Groups of five
processors share one I-Cache. Figure 1 shows the strudtime chip.

We conducted an empirical analysis of a fully pipelined Céassbar network. The performance
analysis is done under certain constraints (fixed channéihwand node size as well as topology).
Different parameters, such as workload types, traffic padténjection rates and arbitration algorithms,
are implemented during the performance simulation. Oueerpental results provide the following
observations on the network behavior: (1) The C64 crossraachieve as low as 7 cycle latency, reach
the full hardware bandwidth, and exhiliton-blocking behavior?; (2) It is astable network?; (3) The
network logic design appears to provide a reasonable apgtytfor sharing the channel bandwidth
between traffic in either direction; (4) The segmented LRUrixarbitration scheme does not have any

1Any two free ports can be connected, regardless of the gstiirthe switch
2The throughput does not degrade beyond the saturation [8dint



notable performance gain comparing with some simple scherf® Application-driven benchmarks
provide comparable results to synthetic workloads.

The rest of this paper is organized as follows. Section ddhices the background of the study.
Section 3 describes the details of the architecture of thed@@ssbar. Section 4 shows the experimental
framework. Section 5 presents our major observations aridrpgance analysis. Section 6 reviews the
related work done on the study of architecture and perfooman SOC multicore architectures. Finally,
section 7 summarizes the conclusion.

2 Background

A C64 chip consists of many simple, general purpose RIS@ sidcessor cores, shared I-caches, and
multiple banks of embedded memory connected via a higlepaence on-chip crossbar switch. A
supercomputer consisting of hundreds C64 processor caevacbver 1 petaflops peak performance
[71.

The performance scalability of such chips requires a solidrconnection network architecture,
whose behavior evaluation should begin in the design arnification stage. A significant portion of
the design cycle for chip performance analysis is taken updbiication and testing. For a pipelined
crossbar network, verification should be conducted for @asons: finding unforeseen phenomena that
may happen in the interconnection (such as deadlocks aiwdaogrs), and verifying the performance
of the on-chip interface architecture [4].

In this paper, we are interested in the following questiatarding the C64 crossbar switch archi-
tecture:

e Will the C64 crossbar switch deliver the full pipelined bandth if the communication traffic
does not encounter network contention (i.e. non-blockihg)

e Can the C64 crossbar switch maintain its throughput whenéfwork reaches its saturation (i.e.
stable) ?

e Can the C64 virtual channel mechanism be effectively etguoby the sharing between the for-
ward and backward traffics ?

e Can simple hardware arbitration mechanisms be used tovactgasonable performance gains ?

The rest of this paper will provide answer to these questions

3 Architecture of the C64 Crossbar

3.1 An Overview of the C64 Crossbar

A crossbar switch has a physical element for every possimeection between users, in which every
input has a crosspoint with every output [5, 2]. The C64 drasss 96 x 96 buffered crossbar switch in
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Figure 2: A block diagram of C64 crossbar

7 pipelined stages with input/output queues. It is used ¢oige communication between the on-chip
processors, SDRAM memory banks and I-Caches as well ahipfflBRAM memories, 1/0 devices,
A-switches, and host interfaces [13, 9]. It possesses @ir&itional routing ports.

Figure 2 shows that each port of the crossbar consists of@minterface, a source control unit, a
target control unit, a 96-to-1 multiplexer, a data FIFO, aathe registers. All of the 96 data FIFOs and
their following 96-to-1 multiplexers are combined into a4C&ossbar core. Each of the data FIFOs
employs two groups of data buffers (not shown in the Figus&)ring data for two virtual channels
individually. Each buffer group is composed of 7 buffers9afbits each.

The packets delivered through the 7 pipelined stages ofrtisskar to the destinations have a 95-bit
fixed length. In principle, the least latency of the crosskar cycles, assuming one cycle for each
stage. The full hardware bandwidth of the crossbar is 96 x 9529 bits/cyclé. The packets are routed
through the C64 crossbar by the source control unit of thecegport and the target control unit of the
destination port. Flow control of the crossbar is implenedntising a token protocol. Furthermore, the
C64 crossbar provides two virtual channels for forwardedfitr (from the source processors to other
destinations), and returned traffic (from others to the @ssors), respectively. It also supports block
transfers.

The C64 crossbar is designed to provide a stable, non-lnigékterconnection network, supporting
efficient communication between components on the C64 thige rest of this section, we will discuss
the schemes used to support this approach, such as thegreatiame & flow control, virtual channels
as well as the arbitration scheme of the crossbar.
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Figure 3: A Logic Channel of The C64

3.2 Routing Scheme & Flow Control

Figure 3 presents a logic channel between connected pod part j, which is further divided into a
control path and a data path. The former is constructed bgdhece control unit (SrcCi) of port i
(the source) and the target control unit (Tar{Jtbf port j (the destination). The latter is built by the data
FIFO of port i (FifoD7.i) and the 96-to-1 multiplexer of port j (Mux9f. The routing processes inside
the C64 crossbar are controlled by source control units aget control units.

A source control unit consists of a data FIFO, a small amotinégisters, and some control infor-
mation generators (not shown in the Figure). The functidrth@source control unit are: (1) generate
control information to determine the operation mode (resit) for the data FIFO; (2) manage data
buffers for input payloads; (3) send a request to the tamygral unit of the destination port ; (4) deliver
the chosen payload to the following multiplexer; and (5ward the control header to the target control
unit of the destination port.

A target control unit consists of an arbiter, several reggssaind control information generators (not
shown in the Figure). The functions of a target control unit: 1) generate a control information
to build a data path between the source port and the destingtirt; (2) select a winner from all
requested source ports; (3) send back a token to the sourt&vipo won the competition; and (4)
forward indication flags to the destination port.

The source control unit at a source port decides how to sterénjected packets and select output

3Fixed 95-bit packets are transferred via each sourcerdgith pair
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packets from the buffers of its data FIFO. The target coninil at a destination port is used to choose a
winner from all requested source ports competed for the shsination. It builds a path between the
source port and the target port. The source control unitlamtkrget control unit work together to route
packets from sources to destinations through the 7 stagdin@p crossbar. The stages of the crossbar
are divided due to their functions. At each stage, the cerggerforms a specific function to provide a
parallel communication via the crossbhar. The hardwaregdeagiiarantees that the stages are able to be
fully pipelined, although the pipeline may be partly stdlidue to resource contention or shortage.

Flow control of the C64 crossbar is realized by a token pmtoghich is implemented by a 2-bit
token and a token counter inside the interface of each pottgmown in the Figure). In this design,
the input token counter is initialized to 7. Once a packehjsdted into a port, its input token counter
decrements. Whenever a packet is delivered to its destmatin acknowledge token is fed back to the
source port and its input token counter is incremented. Wheroken counter of a port reaches 0, no
further packets are allowed to be injected into this port.

Obviously, the C64 crossbar is a strictly non-blocking ratn{5] for both unicast and multicast
traffic because any available output of the crossbar can beected to any input by simply setting
the output’s multiplexer appropriately. Meanwhile, thessbar is supposed to be a stable network.
Many schemes, such as the buffer group scheme at each d#&athHd-injection and ejection queues
at each port (See Figure 5) as well as the token flow contr@mehare used to support this approach.
They make it possible for the crossbar to continue deligepackets beyond the saturation point. After
saturation, the network is going to maintain the highesbughput reached, because the packets are
held in place (with delay) instead of being dropped.

3.3 Segmented Matrix Arbiter

The C64 crossbar is 96-way crossbar with 96 bi-directiortinguports. Each port needs a 86 1
arbiter for the flow control. Due to the large number of sudhiteation circuits at the on-chip system,
the fairness, speed, cost and memory space required totseostates for the arbiter will play a very
important role in the architecture design of the entireeaystTo address this issue, a segmented matrix
arbiter is designed for the crossbar.
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Figure 4: Segmented Matrix Arbiter
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The arbiter is composed of 31 matrices segmented into tbxedst level 1 with twenty-four 4 x 1
matrix arbiters, level 2 with six 4 x 1 matrix arbiters, ledalvith one 6 x 1 matrix arbiter (See Figure 4).
All of the arbiters are organized hierarchically: outputtesel one are the inputs of level two, outputs of
level two are the inputs of level three and the output of I¢hrede produces the request winner. During
each cycle, only one winner can be selected at each port sththenaximum number of winners is 96
per cycle.

The significant achievement of this design compared withra matrix scheme is the great savings
in memory space, which is critical in an on-chip memory schei@enerally, for each matrix arbiter
with n inputs, n x (n - 1) / 2 bits are required to store the arbitrastate. For 96 arbiters, the required
space would be 96 x 96 x 95/ 2 = 437760 bits (430K bits). ObWotisis algorithm is unfeasible inside
the crossbar in a real silicon. Whereas, in a 96 segmentetixragbiter, the required space would be
96 x (30x (4x3/2)+6x5/2)=18720 bits (18K bits). It showsttha2K bits can be saved for each
chip and a great deal of space can be saved for an entire Cigfirsys

However, there still exist some questions about the segddriRU matrix algorithm:

e Does the segment affect its performance and fairness?

e Does it perform competitively compared with other commditeation schemes?

This paper will provides some answers to these questiores $8ction 5).

3.4 Virtual Channels

In a C64 chip, each of the 96 ports of the crossbar switch aaeedhbetween a processor and its
respective memory bank (See Figure 5).

MP: 2-to-1 Multiplexer

N 6 0 N 6,0
\*» P \» MP =- -
Injection Ejection Injection Ejection
Queue Queue Queue Queue

Portl ol eeeee- Port | 95

Cyclops64 crossbar

Z

Figure 5: Virtual Channel Scheme

For full and fair utilization of crossbar bandwidth, a bretitional mechanism, called virtual chan-
neling, is provided to allocate bandwidth both for forwardidackward traffic inside the crossbar. This
scheme is used to avoid one direction’s traffic being blodked long block transfer in another direc-
tion at the same port. If the blocking happens, an unprdaietdelay would occur. In this design, two
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different packet classes] ass 0 andcl ass 1 are used to represent the data type respectively. Here
class O refers to the forward data. Class 1 refers to thereiata. Both virtual channels share the same
wires but each class has its own internal storage insideiffedine stages. The two virtual channel of
the same path can transfer bi-directional data in paralaept competing for the same physical link
via an arbiter.

Our experiments evaluate different behaviors of the ndtwth various network parameters. Ex-
perimental results and observations will be presentedaticse5.

4 Experimental Framework

In this section, we introduce an experimental simulatiaifpkm of the C64 (SPC) used in our perfor-

mance study.
Multithreaded User Application
Benchmarks

c64 - : N
Tool Compiler
Chain [GNU cc} [ Open64}
- J
e N
GNU Binutils
(assembler, linker, etc.)
N J
~
Libraries
[ Newlib } { TNT j
N )

A A

[ LAST Simulator } [ Csim_crossbarsimulator}

Figure 6: A Simulation Platform of the C64

As shown in Fig 6, it consists of user applications (mulgted benchmarks), a C64 toolchain, and
simulators. The C64 toolchain integrates GNU CC, an assndlinker, and libraries which support
C64 instruction set architecture. It provides a basic ptatffor early system software development and
testing of the C64. The gate level simulators are designbdilt software models for all components of
the C64 crossbar as well as other components on the C64 dhgy. also model the timing constraints
accurately for the system. We use it to detect bugs and viéfyperformance of the C64 system in the
design phase.

4.1 Simulation Platform of the C64 (SPC)
Figure 6 shows that the combined experimental platform msprmsed of the following elements:
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e Csim.crossbar simulator is a simulation tool written in C. It halédwing functions: (1) perform a
cycle accurate simulation for a single C64 crossbar toyéne architecture; 2) provide synthetic
workloads and traffic patterns to simulate the communioagiovironment of the system; and (3)
support early performance verification and testing for tbd €rossbar.

e LAST (Latency Accurate Simulation Testbed) simulator isoalvritten in C . It has following
functions: (1) perform a cycle accurate simulation for ay&rC64 chip to verify the architecture;
(2) provide application-driven workloads and traffic paigeto simulate the communication en-
vironment of the system; and (3) support early performareéivation and testing for the C64
chip.

e C64 software tool-chain is a test platform. It has followfogctions: (1) generate executable files
for given multiple-thread benchmarks [6]; and (2) providplaform for early system software
development and testing.

4.2 Simulators
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Figure 7: The C64 Crossbar Simulator

Csim.crossbar and LAST are the simulators used in our experimEigare 7 shows several com-
mon parts inside both simulators for the performance tgstinput Terminals, Crossbar Logic, local
and global counters as well as Output Terminals. Input Teafaiprovide different traffic and syn-
chronization information by generating packets, netwatameters and control information. Once the
simulator is running, incoming packets with particulartdiigition are generated in each Input Termi-
nal and injected into the crossbar at a specific injectioa aaice a cycle. The target address inside
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each packet is chosen according to the determined traffierpatCrossbar Logic is a gate level simu-
lator, which simulates the logic of crossbar modules. Itlengents the communication between each
source-destination pair via the crossbar. Output Termiasd used to collect and calculate data, detect
communication errors, and store test results. Finally iimelators analyze and report the performance
results from the information in various counters.

4.3 Assumptions of Simulation

In order to measure the latency and throughput of C64 crossbian crossbar and LAST simulators
are used and the following assumptions are made:

e The processes generating packets at the sources are iddeapand memoryless. Each generated
packet is inserted into a infinte incoming buffer relatedh® $ource port.

e It has a zero-load latency network [5] with infinite incomiagd outgoing buffers out of the
crossbar interfaces. Therefore, the contention delayagsbared resource outside the crossbar is
ignored, and packet dropping will never happen.

e Each incoming packet has the same probability to win thdratinn. Each stage of the pipelined
crossbhar completes in one cycle.

e The network is treated as buffered: if a packet is blockeatesstage, it is considered to be
buffered rather than to be lost. It does affect the futurtestaf the system.

e Each port has infinite computing power, which means that dmeputation of routine functions
takes zero time.

e The network is synchronous: packets move from stage i t@stad at each cycle.

¢ In the same port, the buffers of two classes can be countegpémdiently.

e Injection and consumption of packets take zero time.

In addition to the above assumptions , we added one moreradridor non-blocking verification.

It is assumed that the network only transfers messages frooegsors to memory banks, also called
forward traffic.

5 Results

In this section, we are going to present the test result floenctossbar simulation. The chapter is or-
ganized as follows. Section 5.1 summarizes primary resmnllsour observations. Section 5.2 analyzes
latency of the C64 Crossbar. Section 5.3 analyzes througdfpihe C64 Crossbar . Section 5.4 ver-
ifies the virtual channel scheme by micro-benchmarks. @e&i5 explores the results from different
arbitration schemes and section



5.1 A Summary of Primary Results

In this research, we use both synthetic workloads and agijait workloads to examine the intercon-
nection network of the C64. The performance metrics, latame throughput, are plotted as a function
of network parameters, such as traffic patterns, virtuahiobbscheme on path, arbitration schemes, and
injection rate. Our experimental results show that:

Observation 1 (See Section 5.2)Ve have observed that a dedicated channel can be createztmetw
a output port to any input port of the C64 crossbar with no eotivn and latency as low as 7 cycles.
The C64 crossbar can achieve the full hardware bandwidgh exhibitinga non-blocking behavior [5].

Observation 2 (See Section 5.3)/Ve have observed that the C64 crossbar can maintain itsghrou
put without any degradation even when the traffic load is bdyihesaturation point i.e. exhibiting
stable network behavior [5].

Observation 3 (See Section 5.4We have demonstrated that although the forward and backward
traffic shares the same channel, the network logic desigaamppo provide a reasonable opportunity
for sharing the channel bandwidth between traffic in eithieration. This is important because the load
operations will generate return values (resulting in teaffin the reverse direction) and we should not
give a high priority only to the forward traffic.

Observation 4 (See Section 5.5We have verified that the complex segmented LRU matrix arbi-
tration scheme, does not have any notable performance gaiparing with some simple arbitration
argorithms, such as the uniform random scheme and the &iroeighbors scheme, under our experi-
mental condition.

Observation 5 (See Section 5.2 5.4yWe have shown that application-driven benchmarks provide
results comparable to synthetic workloads and constittgatgnetrics for verifying the design of the
system architecture and analyzing performance behavithreoéntire system.

5.2 Analysis of the C64 Crossbar Latency

Experimental results show that for the permutation spdi#tibuted traffic, the C64 crossbar has zero
contention and both of its minimum and maximum latenciesabways 7 cycles (See Figure 8), regard-
less of the injection rate. The results confirm that the C@%sirar is a strictlyion-blocking circuit-
switched network because the permutation of the inputs amputs can be forwarded without any
conflict [5] and it requests no rearrangement for setting egichted paths between unused inputs and
unused outputs.

The experimental results also present that without coriflithe destination port, the crossbar can
be fully pipelined and its overall latency is caused only bg ¥ pipeline stages of the C64 crossbar
under our test conditions.

For uniform random traffic, because of contention, the lateof the C64 crossbar increases toward
infinite at the saturation point with abo0i6 of the injection rate.

10
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Figure 8: Latency for Different Traffic

In general, the most accurate way to measure the perforn@rec@etwork is to use application-
driven workloads, which generate sequences of messagésdpthe network directly from the in-
tended application [5].

In our experiment, LAST simulator makes it possible to gatenpplication-driven workloads and
to verify the observations we got from synthetic workloadsset of multi-threaded benchmarks were
used to test the latency, such as hello-world, heat-camditaplace, matrix-multiple, etc. Their average
latency is listed in table 5.2.

Table 1: Average Latency of Benchmarks

Application Name| Average Latency
(Cycles)
hello-world 7.136
matrix-multiple 21.590
heat-conduction 46.391
laplace 59.192

5.3 Analysis of the C64 Crossbar Throughput

According to the definition [5], the throughput behavior afietwork beyond saturation point charac-
terizes its stability. In our experiments, throughput isasweed upon each source-destination pair and a
modeling source queue is used to accurately simulate tbetion rate without the effect of saturation.
The same workloads and traffic patterns are used in the stuBigare 9 indicates.

Figure 9 shows when contention exists, the throughput o€8ecrossbar increases as the injection
rate increases until the saturation point is reached, wisictbouf.6. Beyond saturation point, the
throughput of the C64 crossbar does not degrade as theiimjeate increases further, which confirmed
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Figure 9: Throughput for Different Traffic

that the C64 crossbar is a stable network. Under permutstidiic, the throughput increases linearly
as the injection rate because of no contention.

In order to verify the synthetic workloads’ results with &pation-driven workloads, a set of micro
benchmark is designed. In this benchmark, a number of steeads are created by the master thread.
All threads write data to the same array located in the mernank of port 0. The program is compiled
by the C64 tool chain and executed in LAST simulator, whichegates application-driven workloads
for the crossbar. Test results show a throughput compataite synthetic workloads.

Table 2: Results of A Micro-Benchmark
Thread | Execution Time| Received| Throughput
Number (cycles) Packets

2 21979 3986 0.182
10 35970 9803 0.273
20 44945 15909 0.355
40 63324 28345 0.448
60 82036 40782 0.498
80 98762 53143 0.539
100 118721 65632 0.553
120 136291 78075 0.573
150 162688 95944 0.590

5.4 Forward and Backward Traffic

In Section 3.5, we described how each port of the crossbauittasal channels ofl ass 0 andcl ass
1 to handle both forward traffic and backward traffic. They dse able to execute in parallel.

To verify the advantage of the virtual channels, a multeditr micro benchmark was designed and
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the LAST simulator was used to simulate all the chip logic gaderate application-driven workloads
for the crossbar switch. In the benchmark, two threads frisfardnt processors are assigned to execute
two loops. In the first test, both loops keep writing data ® ¢$hme global array located at memory 0
of port 0. It means both loops are transferring forward trafii this situation. In the second test, we
use one loop to write and the other to read at the same time teatine array. In this case, both forward
and backward traffic is created at the same port time. Thdtsesinow that both cases have similar
performance behaviors.

5.5 Arbitration Schemes

Other than the pure LRU matrix (PLRY]5] and segmented LRU matrix arbitration schemes (SLRU),
we also simulated three others to learn how they affect thesbar performance. They are the uniform
random scheme (RANDB)the circular neighbors scheme (CIRQhe fixed priority scheme (WORS)
Figure 10 and 11 show the compared results. The fixed priscitgme is the worst case.

Maximum Delay for Uniformly Distributed Random Traffic
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Figure 10: Latency of Arbiter Schemes.

From the figures, we can see that except for the fixed prioritytration scheme, all other four
schemes present very similar performance behaviors undfarm random traffic, which uniformly
and randomly generates packets and chooses destinations.

There are two reasons that could explain why all of four ofdHgtration algorithms have similar
performance. One possibility is that they all are fair aghtibn schemes. Another possible explanation
is the low contention probability for a random traffic in thetwork. Let us defineP; as the probability
of getting no packetP; as the probability of getting only one packet at the same,timmas the input
port number and r is the injection rate. Then we have:

“Implement a least recently severed priority at a matrix sehe
SChoose winner uniform randomly from all requests
SVirtually align the ports in a circle and Choose the winnemnfrthe next request port clockwise or counterclockwise to

the port of previous winner
’Set port 0 to the highest priority and port 95 to the lowest.offiers are in between, respectively
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P = (1--) 1
p = (-1 @
Po= (1=t e
n
Pcontention = 1_Pl_PO (3)
= 1-r (-t -y
n n

We know n =96 and r = 0 - 1 so that the contention probabilitybisu 12% at r = 0.6 and it is
about 27% at r = 1.0. It shows there is at most about one cooteevery four packets at each port and
there is no remarkable difference among the four arbitnagithemes.

Our experimental results bring up questions: if the comgegmented LRU matrix scheme is
really a good choice for the crossbar switch? Could a morelsimnd less expensive scheme be used
to replace it? A decision should be made by the architectesgders.

6 Related work

High performance computer design are moving toward integraf multi-core processors on a single
chip. A number of companies, including AMD, Broadcom, Foeds, PMC-Sierra, Sun, and Via, uti-
lized technology of multicore SoC architectures [3]. Vadaf interconnection for the multiprocessor
on-chip architectures have been proposed and implemeniel as the intra-chip switch [1], bus-based
architecture [14], and crossbar-based architecture [26fne architecture and performance studies of
interconnection networks for multi-core SoC architecéunave been studied [11, 14, 10]. For exam-
ple, Rekesh, et al., presented their study about the areserpperformance and designs issues for the
on-chip interconnections based on a hypothetical chipiprattessor [11].
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In the context of the Bluegene/C architecture - most relet@arthe C64 architecture under this
discussion, there are a number of performance studiesteepdt5, 7, 4]. However, these studies are
not specific to the performance aspects of the C64 crosshihswetwork as interested in this paper.

In the emerging field of multi-core SoC architecture, théhatg are not aware of any other similar
studies of on-chip interconnection networks for a largalesenultiprocessor-on-a-chip architecture such
as C64.
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7 Conclusion

This paper presents the results on the performance evauatithe interconnection network of the
IBM Cyclops64 multicore architecture. These results shiuat the architecture of crossbar can deliver
full pipelined bandwith and exhibit non-blocking and stabkhavior under certain traffic patterns. The
virtual channel mechanism can efficiently balance the tsffi either direction by sharing between the
forward and backward traffics. The study shows, except thesl fprority arbitration scheme, all four
others tested demonstrated very similar performancehbugggmented LRU matrix scheme achieves a
great saving in memory space. The results from applicatitven workloads contribute a great metric
for verifying the design of the system architecture andyariad) the performance.

In addition to verification, network of SOC for high perfornt& computing should be analyzed by
characterizing the architecture model, network interestions, and overall system performance. We
have described that the C64 crossbar switch architecturesimulated by the processing of the sorting,
comparing the simulation results, and precisely presgritie observations based on both synthetic
workload and application-driven workload distribution.
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