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Abstract

The designs of high-performance processor architectures are moving toward the integration of a
large number of multiple processing cores on a single chip. The IBM Cyclops64 (C64) is a petaflop
supercomputer built on multi-core System-On-Chip (SOC) technology, based on a cellular architec-
ture. A maximum configuration of a C64 system consists of 13,824 C64 processing nodes (around
one million processors) arranged around a 3D mesh network [8, 7]. Each node is composed of a
C64 chip, external DRAMs and a small number of external modules. Each C64 chip employs a mul-
tistage pipelined crossbar switch as its on-chip interconnection network to provide high bandwidth
and low latency communication between the thread processing cores, the on-chip SRAM memory
banks, and other components.

In this paper, we present a study of the architecture and performance of the C64 on-chip in-
terconnection network through simulation. Our experimental results provide observations on the
network behavior: (1) The C64 crossbar can achieve as low as 7cycle latency, reach the full hard-
ware bandwidth, and exhibita non-blocking behavior; (2) It is a stable network; (3) The network
logic design appears to provide a reasonable opportunity for sharing the channel bandwidth between
traffics in either direction; (4) The segmented LRU matrix arbitration scheme does not have any no-
table performance gain comparing with some simple schemes.(5) Application-driven benchmarks
provide comparable results to synthetic workloads.
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1 Introduction

The designs of high-performance processor architectures are moving toward the integration of a large
number of multiple processing cores on a single chip [12]. The performance scalability of such chips
requires a solid interconnection network architecture andits behavioral evaluation should begin in the
design and verification stage. In this paper, we present a study of the architecture and performance of
the IBM Cyclops64 (C64) chip’s interconnection network.
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Figure 1: Cyclops64 Node Architecture.

The C64 is a petaflop supercomputer built on multi-core System-On-Chip (SOC) technology, based
on a cellular architecture and expected to achieve over 1 petaflop peak performance. A maximum
configuration of a C64 supercomputer consists of 13,824 C64 processing nodes (1 million processors)
connected by a 3D-mesh network [8]. Each node is composed of aC64 chip, external DRAMs and a
small number of external modules. A C64 chip consists of up to80 custom-designed 64-bit processors,
16 shared instruction caches (I-caches), 160 on-chip embedded SRAM memory banks and 80 floating
point units (FP). It is interesting to note that there is no data cache on the chip. Instead, each SRAM
bank on the chip can be configured into two levels: global interleaved memory banks (GM) which are
uniformly addressable, and scratch pad memories (SP) that are local to individual processors [4]. The
C64 chip configuration used in this study integrates 75 processors on a single chip. Each processor
contains two thread units, one floating point unit and two 32KB SRAM memory banks. Groups of five
processors share one I-Cache. Figure 1 shows the structure of the chip.

We conducted an empirical analysis of a fully pipelined C64 crossbar network. The performance
analysis is done under certain constraints (fixed channel width and node size as well as topology).
Different parameters, such as workload types, traffic patterns, injection rates and arbitration algorithms,
are implemented during the performance simulation. Our experimental results provide the following
observations on the network behavior: (1) The C64 crossbar can achieve as low as 7 cycle latency, reach
the full hardware bandwidth, and exhibita non-blocking behavior1; (2) It is astable network2; (3) The
network logic design appears to provide a reasonable opportunity for sharing the channel bandwidth
between traffic in either direction; (4) The segmented LRU matrix arbitration scheme does not have any

1Any two free ports can be connected, regardless of the settings in the switch
2The throughput does not degrade beyond the saturation point[5]
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notable performance gain comparing with some simple schemes. (5) Application-driven benchmarks
provide comparable results to synthetic workloads.

The rest of this paper is organized as follows. Section 2 introduces the background of the study.
Section 3 describes the details of the architecture of the C64 crossbar. Section 4 shows the experimental
framework. Section 5 presents our major observations and performance analysis. Section 6 reviews the
related work done on the study of architecture and performance of SOC multicore architectures. Finally,
section 7 summarizes the conclusion.

2 Background

A C64 chip consists of many simple, general purpose RISC style processor cores, shared I-caches, and
multiple banks of embedded memory connected via a high-performance on-chip crossbar switch. A
supercomputer consisting of hundreds C64 processor can achieve over 1 petaflops peak performance
[7].

The performance scalability of such chips requires a solid interconnection network architecture,
whose behavior evaluation should begin in the design and verification stage. A significant portion of
the design cycle for chip performance analysis is taken up byverification and testing. For a pipelined
crossbar network, verification should be conducted for two reasons: finding unforeseen phenomena that
may happen in the interconnection (such as deadlocks and logic errors), and verifying the performance
of the on-chip interface architecture [4].

In this paper, we are interested in the following questions regarding the C64 crossbar switch archi-
tecture:

• Will the C64 crossbar switch deliver the full pipelined bandwidth if the communication traffic
does not encounter network contention (i.e. non-blocking)?

• Can the C64 crossbar switch maintain its throughput when thenetwork reaches its saturation (i.e.
stable) ?

• Can the C64 virtual channel mechanism be effectively exploited by the sharing between the for-
ward and backward traffics ?

• Can simple hardware arbitration mechanisms be used to achieve reasonable performance gains ?

The rest of this paper will provide answer to these questions.

3 Architecture of the C64 Crossbar

3.1 An Overview of the C64 Crossbar

A crossbar switch has a physical element for every possible connection between users, in which every
input has a crosspoint with every output [5, 2]. The C64 crossbar is 96 x 96 buffered crossbar switch in

2
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Figure 2: A block diagram of C64 crossbar

7 pipelined stages with input/output queues. It is used to provide communication between the on-chip
processors, SDRAM memory banks and I-Caches as well as off-chip DRAM memories, I/O devices,
A-switches, and host interfaces [13, 9]. It possesses 96 bi-directional routing ports.

Figure 2 shows that each port of the crossbar consists of an user interface, a source control unit, a
target control unit, a 96-to-1 multiplexer, a data FIFO, andsome registers. All of the 96 data FIFOs and
their following 96-to-1 multiplexers are combined into a C64 crossbar core. Each of the data FIFOs
employs two groups of data buffers (not shown in the Figure),storing data for two virtual channels
individually. Each buffer group is composed of 7 buffers, of92 bits each.

The packets delivered through the 7 pipelined stages of the crossbar to the destinations have a 95-bit
fixed length. In principle, the least latency of the crossbaris 7 cycles, assuming one cycle for each
stage. The full hardware bandwidth of the crossbar is 96 x 95 =9120 bits/cycle3. The packets are routed
through the C64 crossbar by the source control unit of the source port and the target control unit of the
destination port. Flow control of the crossbar is implemented using a token protocol. Furthermore, the
C64 crossbar provides two virtual channels for forwarded traffic (from the source processors to other
destinations), and returned traffic (from others to the processors), respectively. It also supports block
transfers.

The C64 crossbar is designed to provide a stable, non-blocking interconnection network, supporting
efficient communication between components on the C64 chip.In the rest of this section, we will discuss
the schemes used to support this approach, such as the routing scheme & flow control, virtual channels
as well as the arbitration scheme of the crossbar.

3



Core
SrcCtl_i

TarCtl_j

FifoD7_i

5

7

4

3

2

6

1

92bit 10bit Reg0

Reg2 Reg3 Reg4

Reg7 Reg8

Reg10

Reg12Reg11

Reg6

Reg9

Reg1

Reg5

92bit 3bit
TarCombine_j

2bit 102bit 2bit

TUnitA_jTUnitB_j

Port j

95bit

Control Path
SrcSplit_i

Data Path

Arbiter

Mux96_j

Buffers

Fifo_j

2bit 2bit

Port i
TUnitA_i TUnitB_i

95bit102bit

Fifo_C7

Figure 3: A Logic Channel of The C64

3.2 Routing Scheme & Flow Control

Figure 3 presents a logic channel between connected port i and port j, which is further divided into a
control path and a data path. The former is constructed by thesource control unit (SrcCtli) of port i
(the source) and the target control unit (TarCtlj) of port j (the destination). The latter is built by the data
FIFO of port i (FifoD7 i) and the 96-to-1 multiplexer of port j (Mux96j). The routing processes inside
the C64 crossbar are controlled by source control units and target control units.

A source control unit consists of a data FIFO, a small amount of registers, and some control infor-
mation generators (not shown in the Figure). The functions of the source control unit are: (1) generate
control information to determine the operation mode (read/write) for the data FIFO; (2) manage data
buffers for input payloads; (3) send a request to the target control unit of the destination port ; (4) deliver
the chosen payload to the following multiplexer; and (5) forward the control header to the target control
unit of the destination port.

A target control unit consists of an arbiter, several registers and control information generators (not
shown in the Figure). The functions of a target control unit are: (1) generate a control information
to build a data path between the source port and the destination port; (2) select a winner from all
requested source ports; (3) send back a token to the source port who won the competition; and (4)
forward indication flags to the destination port.

The source control unit at a source port decides how to store the injected packets and select output

3Fixed 95-bit packets are transferred via each source-destination pair
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packets from the buffers of its data FIFO. The target controlunit at a destination port is used to choose a
winner from all requested source ports competed for the samedestination. It builds a path between the
source port and the target port. The source control unit and the target control unit work together to route
packets from sources to destinations through the 7 stage pipelined crossbar. The stages of the crossbar
are divided due to their functions. At each stage, the crossbar performs a specific function to provide a
parallel communication via the crossbar. The hardware design guarantees that the stages are able to be
fully pipelined, although the pipeline may be partly stalled due to resource contention or shortage.

Flow control of the C64 crossbar is realized by a token protocol, which is implemented by a 2-bit
token and a token counter inside the interface of each port (not shown in the Figure). In this design,
the input token counter is initialized to 7. Once a packet is injected into a port, its input token counter
decrements. Whenever a packet is delivered to its destination, an acknowledge token is fed back to the
source port and its input token counter is incremented. Whenthe token counter of a port reaches 0, no
further packets are allowed to be injected into this port.

Obviously, the C64 crossbar is a strictly non-blocking network [5] for both unicast and multicast
traffic because any available output of the crossbar can be connected to any input by simply setting
the output’s multiplexer appropriately. Meanwhile, the crossbar is supposed to be a stable network.
Many schemes, such as the buffer group scheme at each data FIFO, the injection and ejection queues
at each port (See Figure 5) as well as the token flow control scheme, are used to support this approach.
They make it possible for the crossbar to continue delivering packets beyond the saturation point. After
saturation, the network is going to maintain the highest throughput reached, because the packets are
held in place (with delay) instead of being dropped.

3.3 Segmented Matrix Arbiter

The C64 crossbar is 96-way crossbar with 96 bi-direction routing ports. Each port needs a 96to 1
arbiter for the flow control. Due to the large number of such arbitration circuits at the on-chip system,
the fairness, speed, cost and memory space required to storethe states for the arbiter will play a very
important role in the architecture design of the entire system. To address this issue, a segmented matrix
arbiter is designed for the crossbar.
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Figure 4: Segmented Matrix Arbiter
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The arbiter is composed of 31 matrices segmented into three levels: level 1 with twenty-four 4 x 1
matrix arbiters, level 2 with six 4 x 1 matrix arbiters, level3 with one 6 x 1 matrix arbiter (See Figure 4).
All of the arbiters are organized hierarchically: outputs of level one are the inputs of level two, outputs of
level two are the inputs of level three and the output of levelthree produces the request winner. During
each cycle, only one winner can be selected at each port so that the maximum number of winners is 96
per cycle.

The significant achievement of this design compared with a pure matrix scheme is the great savings
in memory space, which is critical in an on-chip memory scheme. Generally, for each matrix arbiter
with n inputs, n x (n - 1) / 2 bits are required to store the arbitration state. For 96 arbiters, the required
space would be 96 x 96 x 95 / 2 = 437760 bits (430K bits). Obviously, this algorithm is unfeasible inside
the crossbar in a real silicon. Whereas, in a 96 segmented matrix arbiter, the required space would be
96 x (30 x (4 x 3 / 2) + 6 x 5 / 2) = 18720 bits (18K bits). It shows that 412K bits can be saved for each
chip and a great deal of space can be saved for an entire C64 system.

However, there still exist some questions about the segmented LRU matrix algorithm:

• Does the segment affect its performance and fairness?

• Does it perform competitively compared with other common arbitration schemes?

This paper will provides some answers to these questions. (See Section 5).

3.4 Virtual Channels

In a C64 chip, each of the 96 ports of the crossbar switch are shared between a processor and its
respective memory bank (See Figure 5).
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Figure 5: Virtual Channel Scheme

For full and fair utilization of crossbar bandwidth, a bi-directional mechanism, called virtual chan-
neling, is provided to allocate bandwidth both for forward and backward traffic inside the crossbar. This
scheme is used to avoid one direction’s traffic being blockedby a long block transfer in another direc-
tion at the same port. If the blocking happens, an unpredictable delay would occur. In this design, two
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different packet classes,class 0 andclass 1 are used to represent the data type respectively. Here
class 0 refers to the forward data. Class 1 refers to the return data. Both virtual channels share the same
wires but each class has its own internal storage inside the pipeline stages. The two virtual channel of
the same path can transfer bi-directional data in parallel,except competing for the same physical link
via an arbiter.

Our experiments evaluate different behaviors of the network with various network parameters. Ex-
perimental results and observations will be presented in section 5.

4 Experimental Framework

In this section, we introduce an experimental simulation platform of the C64 (SPC) used in our perfor-
mance study.

C64
Tool
Chain

(assembler, linker, etc.)
GNU Binutils

LAST Simulator Csim_crossbar Simulator

Multithreaded

Benchmarks

GNU CC

Compiler

Newlib

Libraries

TNT

Open64

User Application

Figure 6: A Simulation Platform of the C64

As shown in Fig 6, it consists of user applications (multithreaded benchmarks), a C64 toolchain, and
simulators. The C64 toolchain integrates GNU CC, an assembler, a linker, and libraries which support
C64 instruction set architecture. It provides a basic platform for early system software development and
testing of the C64. The gate level simulators are designed tobuild software models for all components of
the C64 crossbar as well as other components on the C64 chip. They also model the timing constraints
accurately for the system. We use it to detect bugs and verifythe performance of the C64 system in the
design phase.

4.1 Simulation Platform of the C64 (SPC)

Figure 6 shows that the combined experimental platform is composed of the following elements:
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• Csim crossbar simulator is a simulation tool written in C. It has following functions: (1) perform a
cycle accurate simulation for a single C64 crossbar to verify the architecture; 2) provide synthetic
workloads and traffic patterns to simulate the communication environment of the system; and (3)
support early performance verification and testing for the C64 crossbar.

• LAST (Latency Accurate Simulation Testbed) simulator is also written in C . It has following
functions: (1) perform a cycle accurate simulation for a single C64 chip to verify the architecture;
(2) provide application-driven workloads and traffic patterns to simulate the communication en-
vironment of the system; and (3) support early performance verification and testing for the C64
chip.

• C64 software tool-chain is a test platform. It has followingfunctions: (1) generate executable files
for given multiple-thread benchmarks [6]; and (2) provide aplatform for early system software
development and testing.

4.2 Simulators
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Figure 7: The C64 Crossbar Simulator

Csim crossbar and LAST are the simulators used in our experiments. Figure 7 shows several com-
mon parts inside both simulators for the performance testing: Input Terminals, Crossbar Logic, local
and global counters as well as Output Terminals. Input Terminals provide different traffic and syn-
chronization information by generating packets, network parameters and control information. Once the
simulator is running, incoming packets with particular distribution are generated in each Input Termi-
nal and injected into the crossbar at a specific injection rate once a cycle. The target address inside
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each packet is chosen according to the determined traffic pattern. Crossbar Logic is a gate level simu-
lator, which simulates the logic of crossbar modules. It implements the communication between each
source-destination pair via the crossbar. Output Terminals are used to collect and calculate data, detect
communication errors, and store test results. Finally the simulators analyze and report the performance
results from the information in various counters.

4.3 Assumptions of Simulation

In order to measure the latency and throughput of C64 crossbar, csim crossbar and LAST simulators
are used and the following assumptions are made:

• The processes generating packets at the sources are independent and memoryless. Each generated
packet is inserted into a infinte incoming buffer related to the source port.

• It has a zero-load latency network [5] with infinite incomingand outgoing buffers out of the
crossbar interfaces. Therefore, the contention delay overa shared resource outside the crossbar is
ignored, and packet dropping will never happen.

• Each incoming packet has the same probability to win the arbitration. Each stage of the pipelined
crossbar completes in one cycle.

• The network is treated as buffered: if a packet is blocked at some stage, it is considered to be
buffered rather than to be lost. It does affect the future states of the system.

• Each port has infinite computing power, which means that the computation of routine functions
takes zero time.

• The network is synchronous: packets move from stage i to stage i + 1 at each cycle.

• In the same port, the buffers of two classes can be counted independently.

• Injection and consumption of packets take zero time.

In addition to the above assumptions , we added one more constraint for non-blocking verification.
It is assumed that the network only transfers messages from processors to memory banks, also called
forward traffic.

5 Results

In this section, we are going to present the test result from the crossbar simulation. The chapter is or-
ganized as follows. Section 5.1 summarizes primary resultsand our observations. Section 5.2 analyzes
latency of the C64 Crossbar. Section 5.3 analyzes throughput of the C64 Crossbar . Section 5.4 ver-
ifies the virtual channel scheme by micro-benchmarks. Section 5.5 explores the results from different
arbitration schemes and section
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5.1 A Summary of Primary Results

In this research, we use both synthetic workloads and application workloads to examine the intercon-
nection network of the C64. The performance metrics, latency and throughput, are plotted as a function
of network parameters, such as traffic patterns, virtual channel scheme on path, arbitration schemes, and
injection rate. Our experimental results show that:

Observation 1 (See Section 5.2):We have observed that a dedicated channel can be created between
a output port to any input port of the C64 crossbar with no contention and latency as low as 7 cycles.
The C64 crossbar can achieve the full hardware bandwidth - i.e. exhibitinga non-blocking behavior [5].

Observation 2 (See Section 5.3):We have observed that the C64 crossbar can maintain its through-
put without any degradation even when the traffic load is beyond thesaturation point i.e. exhibiting
stable network behavior [5].

Observation 3 (See Section 5.4):We have demonstrated that although the forward and backward
traffic shares the same channel, the network logic design appears to provide a reasonable opportunity
for sharing the channel bandwidth between traffic in either direction. This is important because the load
operations will generate return values (resulting in traffics in the reverse direction) and we should not
give a high priority only to the forward traffic.

Observation 4 (See Section 5.5): We have verified that the complex segmented LRU matrix arbi-
tration scheme, does not have any notable performance gain comparing with some simple arbitration
argorithms, such as the uniform random scheme and the circular neighbors scheme, under our experi-
mental condition.

Observation 5 (See Section 5.2 5.4): We have shown that application-driven benchmarks provide
results comparable to synthetic workloads and constitute great metrics for verifying the design of the
system architecture and analyzing performance behavior ofthe entire system.

5.2 Analysis of the C64 Crossbar Latency

Experimental results show that for the permutation spatialdistributed traffic, the C64 crossbar has zero
contention and both of its minimum and maximum latencies arealways 7 cycles (See Figure 8), regard-
less of the injection rate. The results confirm that the C64 crossbar is a strictlynon-blocking circuit-
switched network because the permutation of the inputs and outputs can be forwarded without any
conflict [5] and it requests no rearrangement for setting up dedicated paths between unused inputs and
unused outputs.

The experimental results also present that without conflictin the destination port, the crossbar can
be fully pipelined and its overall latency is caused only by the 7 pipeline stages of the C64 crossbar
under our test conditions.

For uniform random traffic, because of contention, the latency of the C64 crossbar increases toward
infinite at the saturation point with about0.6 of the injection rate.
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Figure 8: Latency for Different Traffic

In general, the most accurate way to measure the performanceof a network is to use application-
driven workloads, which generate sequences of messages applied to the network directly from the in-
tended application [5].

In our experiment, LAST simulator makes it possible to generate application-driven workloads and
to verify the observations we got from synthetic workloads.A set of multi-threaded benchmarks were
used to test the latency, such as hello-world, heat-condition, laplace, matrix-multiple, etc. Their average
latency is listed in table 5.2.

Table 1: Average Latency of Benchmarks
Application Name Average Latency

(Cycles)

hello-world 7.136

matrix-multiple 21.590

heat-conduction 46.391

laplace 59.192

5.3 Analysis of the C64 Crossbar Throughput

According to the definition [5], the throughput behavior of anetwork beyond saturation point charac-
terizes its stability. In our experiments, throughput is measured upon each source-destination pair and a
modeling source queue is used to accurately simulate the injection rate without the effect of saturation.
The same workloads and traffic patterns are used in the study as Figure 9 indicates.

Figure 9 shows when contention exists, the throughput of theC64 crossbar increases as the injection
rate increases until the saturation point is reached, whichis about0.6. Beyond saturation point, the
throughput of the C64 crossbar does not degrade as the injection rate increases further, which confirmed
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Figure 9: Throughput for Different Traffic

that the C64 crossbar is a stable network. Under permutationtraffic, the throughput increases linearly
as the injection rate because of no contention.

In order to verify the synthetic workloads’ results with application-driven workloads, a set of micro
benchmark is designed. In this benchmark, a number of slave threads are created by the master thread.
All threads write data to the same array located in the memorybank of port 0. The program is compiled
by the C64 tool chain and executed in LAST simulator, which generates application-driven workloads
for the crossbar. Test results show a throughput comparableto the synthetic workloads.

Table 2: Results of A Micro-Benchmark
Thread Execution Time Received Throughput
Number (cycles) Packets

2 21979 3986 0.182

10 35970 9803 0.273

20 44945 15909 0.355

40 63324 28345 0.448

60 82036 40782 0.498

80 98762 53143 0.539

100 118721 65632 0.553

120 136291 78075 0.573

150 162688 95944 0.590

5.4 Forward and Backward Traffic

In Section 3.5, we described how each port of the crossbar hasvirtual channels ofclass 0 andclass
1 to handle both forward traffic and backward traffic. They are also able to execute in parallel.

To verify the advantage of the virtual channels, a multi-thread micro benchmark was designed and
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the LAST simulator was used to simulate all the chip logic andgenerate application-driven workloads
for the crossbar switch. In the benchmark, two threads from different processors are assigned to execute
two loops. In the first test, both loops keep writing data to the same global array located at memory 0
of port 0. It means both loops are transferring forward traffic in this situation. In the second test, we
use one loop to write and the other to read at the same time to the same array. In this case, both forward
and backward traffic is created at the same port time. The results show that both cases have similar
performance behaviors.

5.5 Arbitration Schemes

Other than the pure LRU matrix (PLRU)4 [5] and segmented LRU matrix arbitration schemes (SLRU),
we also simulated three others to learn how they affect the crossbar performance. They are the uniform
random scheme (RAND)5, the circular neighbors scheme (CIRC)6, the fixed priority scheme (WORS)7.
Figure 10 and 11 show the compared results. The fixed priorityscheme is the worst case.
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Figure 10: Latency of Arbiter Schemes.

From the figures, we can see that except for the fixed priority arbitration scheme, all other four
schemes present very similar performance behaviors under uniform random traffic, which uniformly
and randomly generates packets and chooses destinations.

There are two reasons that could explain why all of four of thearbitration algorithms have similar
performance. One possibility is that they all are fair arbitration schemes. Another possible explanation
is the low contention probability for a random traffic in the network. Let us define,P0 as the probability
of getting no packet,P1 as the probability of getting only one packet at the same time, n as the input
port number and r is the injection rate. Then we have:

4Implement a least recently severed priority at a matrix scheme
5Choose winner uniform randomly from all requests
6Virtually align the ports in a circle and Choose the winner from the next request port clockwise or counterclockwise to

the port of previous winner
7Set port 0 to the highest priority and port 95 to the lowest. All others are in between, respectively
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Figure 11: Throughput of Arbiter Schemes.

P0 = (1 −
r

n
)n (1)

P1 = r (1 −
r

n
)n−1 (2)

Pcontention = 1 − P1 − P0 (3)

= 1 − r (1 −
r

n
)n−1 − (1 −

r

n
)n

We know n = 96 and r = 0 - 1 so that the contention probability is about 12% at r = 0.6 and it is
about 27% at r = 1.0. It shows there is at most about one contention every four packets at each port and
there is no remarkable difference among the four arbitration schemes.

Our experimental results bring up questions: if the complexsegmented LRU matrix scheme is
really a good choice for the crossbar switch? Could a more simple and less expensive scheme be used
to replace it? A decision should be made by the architecture designers.

6 Related work

High performance computer design are moving toward integration of multi-core processors on a single
chip. A number of companies, including AMD, Broadcom, Freescale, PMC-Sierra, Sun, and Via, uti-
lized technology of multicore SoC architectures [3]. Various of interconnection for the multiprocessor
on-chip architectures have been proposed and implemented,such as the intra-chip switch [1], bus-based
architecture [14], and crossbar-based architecture [10].Some architecture and performance studies of
interconnection networks for multi-core SoC architectures have been studied [11, 14, 10]. For exam-
ple, Rekesh, et al., presented their study about the area, power, performance and designs issues for the
on-chip interconnections based on a hypothetical chip multiprocessor [11].
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In the context of the Bluegene/C architecture - most relevant to the C64 architecture under this
discussion, there are a number of performance studies reported [15, 7, 4]. However, these studies are
not specific to the performance aspects of the C64 crossbar switch network as interested in this paper.

In the emerging field of multi-core SoC architecture, the authors are not aware of any other similar
studies of on-chip interconnection networks for a large-scale multiprocessor-on-a-chip architecture such
as C64.
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7 Conclusion

This paper presents the results on the performance evaluation of the interconnection network of the
IBM Cyclops64 multicore architecture. These results show that the architecture of crossbar can deliver
full pipelined bandwith and exhibit non-blocking and stable behavior under certain traffic patterns. The
virtual channel mechanism can efficiently balance the traffics in either direction by sharing between the
forward and backward traffics. The study shows, except the fixed prority arbitration scheme, all four
others tested demonstrated very similar performance, but the segmented LRU matrix scheme achieves a
great saving in memory space. The results from application-driven workloads contribute a great metric
for verifying the design of the system architecture and analyzing the performance.

In addition to verification, network of SOC for high performance computing should be analyzed by
characterizing the architecture model, network interconnections, and overall system performance. We
have described that the C64 crossbar switch architecture were simulated by the processing of the sorting,
comparing the simulation results, and precisely presenting the observations based on both synthetic
workload and application-driven workload distribution.
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