University of Delaware
(1)) Department of Electrical and Computer Engineering
~~ Computer Architecture and Parallel Systems Laboratory

P3I
The Delaware Programmability, Productivity and Proficiency
Inquiry
Joseph B. Manzano Yuan Zhang Guang R. Gao

Department of Electrical €4 Computer Engineering, University of Delaware
Newark, Delaware 19716, U.S.A
{jmanzano,zhangy,ggao}@Qcapsl.udel.edu

CAPSL Technical Memo 61
15 April 2005

Copyright (© 2005 CAPSL at the University of Delaware

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

New advancements on high-productivity computing systems have shown the weaknesses
of existing parallel programming models and languages. To address such weaknesses, a
number of researchers have proposed new parallel programming models and powerful pro-
gramming language features that can meet the challenges of the emerging HPC Systems.
However, the success or the failure of a new programming model and accompanied language
features need to be evaluated in the context of their productivity impacts. In this paper,
we report a productivity study that was conducted at the University of Delaware in the
context of the IBM PERCS project. Such project is being funded via the DARPA/HPCS
enterprise. In particular, our study is centered on the productivity impact of a new and key
programming construct called Atomic Sections that is jointly proposed by our group and
our colleagues at IBM.

1 Introduction

New advancements on High Productivity Computing (HPC) Systems have shown the weak-
nesses of existing parallel programming models and languages. To address such issues, a num-
ber of researchers have proposed new programming models and powerful programming language
features that can meet the challenges of the emerging HPC Systems. However, the success or
failure of such programming models and accompanied language features needs to be evaluated
in the context of their productivity impacts. A small overview of the new approach to language
design is depicted in Figure ??. A key source of complexity (and a productivity deterrent)

Feasibility Study 1
Economic and Cost analysis of] @
new language or features.
Academic / Research needs

Language § Design
S

." - Language
o Feasibility Study 2 € s Implementations
Productivity Studies Prototypes

Impact on Programmers
Time for development

Tool Chains and
regression tests

‘-‘//’| Version 1
90000
Language - @
Implementations — > L~
Optimizations and AN Feasibility Study 3
Hardware Support Productivity Studies
Performance gains or losses

Figure 1: A New Approach to Language Design

in parallel programming arises from fine grained synchronization which appears in the form
of lock / unlock operations or critical sections. An effect of these constructs in productivity
is to put excessive resource management on the programmer. Thanks to this, the probability
that a programmer’s errors appear increases. Another side effect is the hidden overhead of the
underlying synchronization actions and their accompanying data consistency operations. This

overhead reduces the amount of scalable parallelism that could have been achieved. Atomic
Sections have been proposed as a parallel programming construct that can simplify the use
of fine grained synchronization, while delivering scalable parallelism by using a weak memory
consistency model. This construct has been implemented under OpenMP _XN, an extension of
OpenMP in the context of PERCS; that was implemented by the authors of this paper. Based
on this prototype implementation, a productivity study (The Delaware Programmability, Pro-
ductivity and Proficiency Inquiry or P3I) was designed and implemented. The main focus of
P31 is to test the productivity of Atomic Sections overall and the productivity of them in each
phase of an application development (designing, parallelization and debugging). P31, in its first
implementation, was conceived not for measuring performance, but to measure programmabil-
ity and debug-ability given a set of short programming exercises. Another feature that makes
this study unique is its weighting factor, which is a function that will change the amount of
participation (time) of each participant, according to its expertise in the HPC domain. An
overview of P3I weights and weighting scheme is given in the subsequent sections. The purpose
of this paper is to provide an outline of P3I, its framework and methodology. Section 2 pro-
vides a brief overview of the new constructs: Atomic Sections. Sections 3 and 4 present a high
level overview of P3I and a deeper view of its internals, data collection methods, and parts,
respectively. Section 5 explains the weighting procedures and its overall purpose. Sections 6
and 7 present results and conclusions based on the first implementation of P3I. Finally, section
8 presents related and future work.

2 Atomic Sections: Overview

An Atomic Section is a construct that was jointly proposed by the authors of this paper and their
colleagues at IBM. This construct has two implementations. One of them is under IBM’s X10
language [?]. It is used for local synchronization on IBM’s PERCS. Atomic Sections’ second
implementation is under the OpenMP_XN programming model. OpenMP! is the standard
programming model for Shared Memory Processors (SMP) machines. Due to its status and the
plethora of resources available for it, OpenMP became an excellent platform to test new parallel
programming constructs. The Delaware group, which is comprised by the authors of this paper,
took the OpenMP and extended it with Atomic Sections. Hence, the new programming model
became OpenMP with extensions or OpenMP_XN for short. From now on, every time that
the term Atomic Sections is used, the implementation under OpenMP_XN should be assumed,
unless stated otherwise. An Atomic Section is defined as a section of code that is intended
to be executed atomically, and be mutually exclusive from other conflicting atomic operations.
The word “conflicting” in the previous statement is one of the main reasons that Atomic
Sections is different from other synchronization constructs in OpenMP. Atomic Sections that
are conflicting should be guarded against each other but they shouldn’t interfere with the ones

'OpenMP is a parallel programming extension for C/C++ and FORTRAN. Tt uses the fork and join model
as its parallel programming model [?]

#pragma omp aiOnIcC SeC |CIaUse Clause ...| newline N .
structured block #pragma omp parallel for private(b)
The clause is one of the following: for(i=0;i<10;++i)
. el(vy, v, ... v,) ==> Consistency List and vy is a {
shared element = 0, .
on(ly, I, ... 1) => Atomic section’s Locks and Iy b =rand()%255; .
are locks that will be associated with this Atomic #pragma omp atomic_sec
Section
.St block is an bl (can be N
compound), with a single entry at the top and a sin- a=b Cl
gle exit at the bottom)
It is Highly recommended that both clauses are not used by the }
Progremer
.
Figure 2: Atomic Section’s Syntax Figure 3: Atomic Section’s Example

that do not conflict with them. Standard OpenMP? offers two extreme cases when it comes
to interference and synchronization. Its critical section construct provides a global lock that
ensures that only a critical section is running and the others are waiting, regardless of the
effects of their execution. On the other hand, OpenMP’s lock functions put the responsibility
on the programmer to detect if the code interferes (data race) with other protected blocks of
code, and lock it according to his/her judgment. Atomic Sections provide the middle ground
in which the programmer is free of lock management and the compiler will take care to run the
sections in a non-interfering manner. The syntax and a code example of Atomic Sections are
presented in figures 7?7 and ?7. Each Atomic Section’s instance is associated with a structured
block of code. This block is defined as a piece of code that has only one entry point and one
exit point. This a brief introduction to this construct, for a more in depth explanation please
refer to [?]. During the conception of this construct, another aspect became apparent: how will
programmers react to this construct? Therefore, the Delaware group developed P3I to have
an idea about the construct impact on programmers and to create a methodology / framework
template for future studies.

3 P3I: Overview

The main objective of P3I is to measure the productivity impact that a new construct has. From
this main objective, many small questions arise. How much impact will the new construct have
on the programmer? How will the construct affect each phase of application development?
Other questions about the study itself are raised. Is there any way to ensure a correct distri-
bution of our sample, or to pre-filter the results such that the data that we considered more
relevant (i.e. novice and average programmers) have more weights than others? This produc-
tivity study tries to answer these questions and provides a solid platform for future work and
iterations. P3I had a total of fifteen participants. These participants came from a pool of grad-
uate and undergraduate students in the department of Electrical and Computer Engineering
at the University of Delaware. The participants attended two meetings in which the study was
presented to them. The study itself is accessible through a group of web pages call the Web
Hub. In the Web Hub, the participants can review, download and fill the different parts of the

20penMP also offers the atomic directive but this construct is extremely restricted. It is limited for read
modify write cycles and for a simple group of operations

study. The Web Hub is divided into phases, which each participant should take in order. The
first phase is dubbed Phase 0 and it consists of a Web Survey, Web log and a programming
exercise. All the other phases of the study contain only a Web log and programming exercise.
The purpose of Phase 0 is to get the participants familiar with the study form and infrastruc-
ture. After Phase 0, there are three more phases which represent the core of the study. For
a complete description of all phases and the data collection infrastructure, refer to the next
section. A code excerpt from Phase 0 is presented in figure ?7. This code excerpt presents
the code involving a bank transaction using lock / unlock OpenMP construct and Atomic Sec-
tion construct. The participants use a modified version of a free source OpenMP compiler,
called Omni [?], which has been modified to support OpenMP_XN. This study’s main metric

omp init lock (& (tmp- void deposit(long int
>lock)); depo, int ID)
RN {
void deposit(long int struct customers *tmp;
depo, int ID) #pragma omp atomic_sec
{ {

struct customers *tmp; tmp = found(ID);

tmp = found(ID); tmp->balance += depo;

omp set lock (& (tmp- }
>1ock)_); - }

{

tmp =

tmp->balance += depo;
}
omp_unset_lock(& (tmp-
>lock)) ;
}

omp destroy lock (& (tmp-
>lock)) ;

Figure 4: Code Excerpt from Phase 0

is the time to correct solution, which is calculated thanks to the data collection infrastructure
explained in section 4. As stated before, this study is not designed to measure performance
(even though that will be one of its objectives in future iterations). The Web Survey is used to
calculate the weights that will be used in this study. Its structure, purpose and results will be
presented in sections 5 and 6. The programming exercises in each of the phases are designed
to put programmers in different contexts that appear in the HPC domains. These situations
can be described as developing a complete parallel application, debugging a parallel code that
deadlocks and parallelizing a serial application. Finally, all the results will be filtered with the
weights such that the final data will be affected by the level of expertise of the participants.

4 P3I Infrastructure and Procedures

The main study is composed of four parts or phases. The main webpage can be found at [?].
In there, the participants can learn about the study itself, its main metric, and each phase’s
time limit. Moreover, extra materials can be accesses through this website. These extras
include tutorials about OpenMP, POSIX threads, a brief explanation about Atomic Sections,

the OpenMP_XN compiler, and instructions on how to install it. Figure ?7? provides a picture
depicting the structure of the Web Hub. The first phase is dubbed Phase 0: The Unfortunate

AMMP
Tutorial Banker
Phase 1a
I Phase’s Files I OpenMP Tutorial
I S —
I The G‘_? o The Random Access
EXxercise Program
|| 1

Com-
piler

(|
| [s s | |

Compiler’s Links [A"H 9P — -

- L L _ 1 Phase 1b
Directions H Speclﬁcat10n| I The Radix Sort I POSIX Thread Tutorial

Algorithm

' |
Phase 1¢ !ihase’s_Files_ -

Figure 5: P3I Infrastructure

Banker and its main objective is to show the procedures for running all the subsequent phases.
The phase itself is subdivided into a Web Survey, a Web Log and the programming exercise:
The Banker. The Web Survey is the first step of the study and it is comprised of 24 questions
that test the participant’s knowledge in parallel programming extensions, parallel execution
models and hardware support for parallel models. More about the survey score system and
its importance will be discussed in the next section. The Web Log is designed to capture
subjective data about the starting and stopping time of each phase. It also has a special section
for participants’ comments and answers to some questions raised by each phase. The questions
are about aspects of the programming exercises and their answers are simple but require a
certain understanding about the exercise. Most of these questions are optional. Every phase
requires the participant to record data in the Web Log at the beginning and at the ending of
each phase. The programming exercise consists of three files. The first file is a make file that
will be used to build the source files. The next file is a bash script which will collect time
stamps, user info, compiler information and program output. The participants are required
to use this script to run their application. Finally, a skeleton C source file is provided for
the participants to use. In Phase 0, this programming exercise is a simple simulation of bank
transactions between four branches scattered across the country. Each branch is simulated
as a thread that receives transactions and synchronizes them with locks or Atomic Sections.
There is a different group of files for each required construct. Therefore, the participant will
run this phase twice; one for locks and one for Atomic Sections. In this phase, the source files
are complete running applications that were ready to run “out of the box”. All the phases
have the same structure as this phase. Therefore, this phase can be seen as an “acclimation”
phase in which the participants learn how to run the phases and its parts. Phase 1 is the
core of the study and consists of 3 sub-phases and several exercises. The first sub phase is
called Phase la: the GSO exercise. This exercise will present a hypothetical case in which a

Gram Schmidt Ortho-normalization is required to create an ortho-normal basis. The exercise
should be completed from scratch and the final code should be parallelized with OpenMP_XN
C function calls and pragmas. The participants are only given helper functions for them to use
in their code. One of the requirements for a successful run is that a provided check function
returns true when testing the basis. Another requirement for completion is that two versions
are created (one for locks and one for Atomic Sections) and that each version successfully runs.
Some extra information is provided in the webpage of the phase [?]. This specific exercise
was developed to test the programmer’s abilities in designing, parallelizing and debugging an
application. Phase 1b is dubbed The Random Access Program. It is based on the Random
Access exercise which is used to test memory bandwidth systems. The program contains a
huge table that is randomly accessed and updated. At the end of the execution the reversed
process is applied to the same table and the table is checked for consistency. If the number of
errors surpasses one percent, the test has failed. The synchronization in this case applies to
each random access of the elements in the table. Intuitively, the number of errors that might
appear in the final table reduces considerably when the table is made large enough. This makes
the use of synchronization constructs useless for the program, and it is actually one of the
questions that is asked in the webpage of this phase [?]. In this phase, the subjects are given
a serial version of the program and are asked to parallelize it with OpenMP_XN. As before,
two versions are required to complete this phase (locks and Atomic Sections). An extra version
can be completed and it consists of the program without any synchronization constructs. This
exercise simulates the scenario in which programmers need to change serial codes to parallel
implementations. Phase 1c is called The Radix Sort Algorithm and is an implementation of
this famous algorithm. The algorithm itself is explained in this sub phase’s webpage [?]. The
participants are given a buggy parallel implementation of this algorithm. There are three bugs
in the algorithm that relate to general programming, parallelization and deadlocks. All three
bugs are highly dependent and when one is found and solved, the others become apparent. As
before, a lock and an Atomic Section version are required. The extra questions in this section
involve the identification of the bugs, why it becomes a problem and possible solutions. The
main objective of this section is to measure the debug-ability of a parallel code that involves
synchronization constructs. A summary of the Methodology and Framework is given by Figure
?7?7. All data collected from the phases is saved to a file that is in the possession of the organizers
of the study. The data that is collected is ensured to be private and it is only made available
to one of the organizers of the study. The identity of the participants and their results are kept
secret so no possible repercussion of their participation can arise. This process is a ”"double
blinded” process since the participants cannot access their results and the rest of the Delaware
group doesn’t know who participated or for how long they stayed in the study.

5 The Web Survey: Purpose

The web survey is the first part of the P31 and it is mandatory for all participants. It consists of
24 questions that range from a simple “With which programming language are you familiar?”

Used to calculate the Phase 0
expertise of the partici-
pants.

First Section to be Web Survey

Used to make
the participants
taken. U familiar with
The Unfortunate

Sy

i

the data gather-
Used to test Banker ing framework.
participants m -FE \ Second Section
the developing The GSO to be taken.
a parallel appli- Exercise

cation with the
new construct.
Third Section
to be taken.

Used to test par-|
ticipants in the
parallelization
of a serial appli-
cation with the

new construct.

Fourth Section
to be taken.

The Random
Access Program

Used to test
participants on
debugging a
parallel appli-
cation with the
new construct.
Last Section to
be taken.

The Radix Sort
Algorithm

4\/

Phase 1

Figure 6: P3I Infrastructure and Methodology

to more complicated questions such as “How much you know about the fork and join parallel
programming model?” In the web survey, participants will check boxes or radial buttons to
decide their level of expertise in a range of 1 (least expert / Never heard about it) to 5 (expert
/ Use frequently). Each question has a maximum score of 5 - except for the first one that
has a value of 6 - and some questions are left out of the final computation since they deal
with hardware support. An expert score in the web survey is 106. When a participant finishes
the web survey, his/her score is calculated. Afterward, a ratio is taken with respect with the
expert score. This will be called the expertise level percentage. All these calculations are
called “Weight Calculations” and they will be kept intact in future iterations. Finally, the
expertise level is subtracted from one to produce the participant’s weight. This weight will
be used to filter the data by multiplying it with each participant’s time. This process will
amplify the contribution of less expert programmers to the study. These final steps are named
“The Weighting Function” and it will be modified in future iterations of the study. That being
said, P3I - in its first iteration - target low level and average programmers. It also has the
ability to “weed” out all high expertise participants. This will prevent skewing of data from
the high expertise end, but it will amplify on the low end. This scheme can be considered a
“Low Expertise Weighting Function”. Two other schemes have been considered, and they will
be applied in the next iterations of P3I. For the explanation of these future schemes, please

refer to section 8.

6 P31 Results

The results of the study consist of the average time of all participants in each sub-phase and
sub-section. Each time data is weighted with the participant’s weight before the average is cal-
culated. Each participant has to run the experiments in a Sun SMP machine with 4 processors
and a modified version of the Omni Compiler. The results for the weights are presented in fig-
ures 7?7 and ??. It shows that the distribution of expertise among the participants approaches

Weigths: Participants that took the Histogram: Survey Takers
survey

== g.
5
1 N [0-03) 03-07) [.7-10]
iEE . N B BHEBE Ranges

Participant's ID

Number of Participants

Weigths

Figure 7: Weight of each Participant Figure 8: Histogram of the Weights

Average time of participants

1200

1000

[Atomic Sections
M Locks
[No Synch

Time (seconds)
]

Phase 1a Phase 1b Phase 1c
Phase

Figure 9: Weighted Average Time Data for Each Phase

a normal distribution. This result can be used in future iterations to break the population into
samples. This will also allow researchers to test several hypotheses about productivity. More
about these future schemes will be presented in section 8. Figure ?7? provides the final results
that have been modified by the weight’s data. A complete discussion about the results and the
weights of the participants are given in the next section.

7 Analysis and Conclusions

As shown by tables la and 1b, the weights in this study formed a slightly skewed normal
distribution. This will ensure that most of the results will be weighted against a close range
of values. Moreover, the actual weights that were presented in the study are in the range of
0.42 to 0.55. This means that the data for this study was not affected much by the weights.
Also, this means that the population is not suitable for sampling since all the groups has the
same level of expertise. As Table 2 shows, there is a considerable reduction of time to solution
in all the phases. However, the small sample space hinders this study from making a stronger
case. Overall, there is a dramatic reduction of the time to correct solution, and each phase also
shows this reduction. In Phases 1a and lc, this reduction is in factors of five. In this data, the
sequencing information should be considered. This information is obtained by recording the
order in which the sub sections were taken within each sub phase. This is important because

10

there is always a learning period in which the participants get familiar with the code. Even
in these cases, the reduction of time to solution is also present. Moreover, this study can be
augmented and redesigned thanks to data gained from this study and many others. Therefore,
the first iteration of P3I serves as a solid foundation for more iterations of this study or others.

8 Future and Related Work

Based on several new studies and interactions with other productivity groups, the Delaware
group already formed a base for the next iteration of P3Il. The first improvement will be to
greatly reduce the human factor in data collection and extend the data collection infrastructure
for both objective and subjective data. Currently, the data is subject to human interaction.
To reduce this effect, a modified shell and an instrumented compiler will be used in the next
iteration. The shell will collect all data concerning the user activity on it. Moreover, the shell
will also collect editor history. The compiler will silently collect warnings and errors on the ap-
plication being compiled. The web log should be enhanced with more parts as an estimate on
compilation, debugging and designing. More relevance should be given to comments. The hu-
man factors and behavior should be considered more. A larger population should be considered
and sampling of the population should take place. Samples should eliminate the sequencing
problem by creating control and experimental groups. A broader area should be considered,
as computer scientists must be included in the sample. The web survey should be extended to
include questions about compiler specifics and multithreaded knowledge. Versions of POSIX
threads, MPI exercises and OpenMP programs should be created as a familiarization exercise
for novice programming (i.e. extending Phase 0). Finally, a new incentive system should be
instituted (i.e. exercises can be homework or projects in college-level multithreaded classes).
These suggestions come from work done on the University of Maryland at the helm of Vic Basili
[?] [?]. Special thanks to Vivek Sarkar, Kemal Eboglicu, Vic Basili and all the Delaware group’s
collaborators from IBM Watson Research Center for all their help on bringing this study to
completion.

9 Acknowledgment

This work has been supported in part by the Defense Advanced Research Projects Agency
(DARPA) under contract No. NBCH30390004.

References

[1] Omni openmp compiler project. http://phase.hpcc.jp/0Omni/home.html. Parallel and
High Performance Applicational Software Exchange (PHASE).

11

2]

3]

[10]

Openmp: Simple, portable, scalable smp programming. http://www.openmp.org/drupal.
OpenMP Architecture Review Board.

S. Asgari, V. Basili, J. Carver, L. Hochstein, J. K. Hollingsworth, F. Shull, and
M. Zelkowitz. Challenges in measuring hpcs learner productivity in an age of ubiquitous

computing. In Proceeding of Workshop on Software Engineering and High Performance
Computing Applications (held at ICSE), 2004.

J. Carver, S. Asgari, V. Basili, L.Hochstein, J. K. Hollingsworth, F. Shull, and
M. Zelkowitz. Studying code development for high performance computing: The hpcs

program. In Proceeding of Workshop on Software Engineering and High Performance
Computing Applications (held at ICSE), 2004.

K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: an experimental language for high pro-
ductivity programming of scalable systems. In Proceeding of the Second Workshop on
Productivity and Performance in High End Computers, pages 45 — 51, February 2005.

J. B. Manzano, Y. Zhang, and G. Gao. Productivity study.
http://www.capsl.udel.edu/courses/eleg652/2004/productive, January 2005.
Computer Architecture and Parallel System Laboratory (CAPSL).

J.B. Manzano, Y. Zhang, and G. Gao. Phase la: The dot product exercise.
http://www.capsl.udel.edu/courses/eleg652/2004/productive/dotp.htm, January
2005. Computer Architecture and Parallel System Laboratory.

J.B. Manzano, Y. Zhang, and G. Gao. Phase 1b: The global
updates per second benchmarks. the random access program.
http://www.capsl.udel.edu/courses/eleg652/2004/productive/gups.htm, Jan-

uary 2005. Computer Architecture and Parallel System Laboratory.

J.B. Manzano, Y. Zhang, and G. Gao. Phase 1c: The radix sort algo-
rithm. http://www.capsl.udel.edu/courses/eleg652/2004/productive/rsort.htm,
January 2005. Computer Architecture and Parallel System Laboratory.

Y. Zhang, J.B. Manzano, and G. Gao. Atomic section: Concept and implementation. In
Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS),
2005.

12

