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Abstract

This paper reports our experience and lessons learned in the design, implementation and
experimentation of an instruction-set level simulator for the IBM Cyclops-64 (or C64 for
short) architecture. This simulation tool, named Functionally Accurate Simulation Toolset
(FAST), is designed for the purpose of architecture design verification as well as early
system and application software development and testing. FAST has been in use by the C64
architecture team, system software developers and application scientists. We report some
preliminary results and illustrate, through case studies, how the FAST toolchain performs

in terms of its design objectives as well as where it should be improved in the future.
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1 Introduction

It is increasingly clear that the huge number of transistors that can be put on a chip (now is
reaching 1 billion and continues to grow) can no longer be effectively utilized by traditional
microprocessor technology that only integrates a single processor on a chip. A new generation
of technology is emerging by integrating a large number of tightly-coupled simple processor
cores on a chip empowered by parallel system software technology that will coordinate these
processors toward a scalable solution.

This paper reports our experience and lessons learned in the design, implementation and
experimentation of an instruction-set level simulator for the IBM Cyclops-64 architecture that
integrates on a single chip up to 150 processing cores, an equal number of SRAM memory banks
and 75 floating point units. This simulation tool, named Functionally Accurate Simulator
Toolset (FAST), is designed for the following goals (1) architecture design verification; (2)
early system software development and testing; (3) early application software development and
testing. For our purposes, a cycle accurate (rather than function accurate) simulator would be
too slow for a system consisting of one or more fully-populated C64 chips. Currently, FAST
efficiently handles C64 systems consisting of either a single processing core, a C64 chip fully
populated or a system built out of several nodes connected with a 3D mesh.

We present several important aspects of the FAST simulator and highlight the tradeoffs
faced during its design and implementation. Some design decisions are made based on the
unique features of the C64 architecture. For instance, C64 employs no data caches. Instead,
on-chip memories are organized in two levels — global interleaved memory banks that are
uniformly addressable, and scratch memories that are local to individual processing cores.

FAST has been in use by the C64 architecture team, system software developers and appli-
cation scientists. We report some preliminary results and illustrate, through case studies, how
FAST performs in terms of its design objectives as well as where it should be improved in the
future.

2 Cyclops64 chip architecture

The Cyclops-64 (C64) is the latest version of the Cyclops cellular architecture designed to serve
as a dedicated petaflop compute engine for running high performance applications [10]. A C64
supercomputer is attached  through a number of Gigabit Ethernet links  to a host system.
The host system provides a familiar computing environment to application software developers
and end users.

A C64 is built out of tens of thousands of C64 processing nodes arranged in a 3D-mesh
network. Each processing node consists of a C64 chip, external DRAM, and a small amount
of external interface logic. A C64 chip employs a multiprocessor-on-a-chip design with a large
number of hardware thread units, half as many floating point units, embedded memory, an
interface to the off-chip DDR SDRAM memory and bidirectional inter-chip routing ports, see
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Figure 1. A C64 chip has 75 processors, each with two thread units, a floating-point unit and
two SRAM memory banks of 32KB each. A 32KB instruction cache, not shown in the figure,
is shared among five processors. The C64 chip has no data cache. Instead a portion of each
SRAM bank can be configured as scratchpad memory (SP). The remaining sections of SRAM
together form the global memory (GM) that is uniformly addressable from all thread units.
On-chip resources are connected to a 96-port crossbar network, which sustains all the intra-
chip traffic communication and provides access to the routing ports that connect each C64 chip
to its nearest neighbors in the 3D-mesh network. The intra-chip network also facilitates access
to special devices such as the Gigabit Ethernet port and the serial ATA disk drive attached to
each C64 node.

The C64 architecture represents a major departure from mainstream microprocessor design
in several aspects. The C64 chip integrates processing logic, embedded memory and commu-
nication hardware in the same piece of silicon. However, it provides no resource virtualization
mechanisms. For instance, execution is non preemptive and there is no hardware virtual mem-
ory manager. The former means a single application can run at a given time on a set of C64
nodes. Additionally, the OS will not interrupt the user program running on the thread units
unless the user explicitly specifies preemption or an exception occurs. The latter means the
three-level memory hierarchy of the C64 chip is visible by the programmer. From the pro-
cessing core standpoint, a thread unit is a simple 64-bit, single issue, in-order RISC processor
with a small instruction set architecture (60 instruction groups) operating at a moderate clock
rate (500MHz). Nonetheless, it incorporates efficient support for thread level execution. For
instance, a thread can stop executing instructions for a number of cycles or indefinitely; and
when asleep it can be woken up by another thread through a hardware interrupt. Additionally,
the integration of processing logic and memory is further leveraged with a rich set of hardware
supported in-memory atomic instructions. Unlike similar instructions on common off-the-shelf
microprocessors, atomic instructions in the C64 only block the memory bank where they operate
upon while the remaining banks proceed servicing other requests. This functionality provides
a higher memory bandwidth.



Table 1: Simulation parameters

Component # of units | Params. /unit

Threads 150 single in-order issue,
500MHz

FPUs 75 floating point/MAC,
divide/square root

I-cache 15 32KB

SRAM (on-chip) 150 32KB

DRAM (off-chip) 4 256MB

Crossbar 1 96 ports, 4GB/s port

A-switch 1 6 ports, 4GB/s port

3 FAST design and implementation

FAST is an execution-driven, binary-compatible simulator of a multichip multithreaded C64
system. It accurately reproduces the functional behavior and count of hardware components
such thread units, on-chip and off-chip memory banks, and the 3D-mesh network, see Table 1.
The actual number of simulated chips is limited by practical reasons, since the memory corre-
sponding to all the chips need to be allocated in the host machine.

FAST has been developed following a modular approach, such that additional features
could be easily incorporated into the existing design. To help the architecture team with
the verification of the C64 chip design, the simulator executes instructions (3.1), models the
architecture exceptions (3.2), reproduces the C64 memory map (3.3) and produces histograms of
the instruction mix as well as detailed traces of all instructions executed (3.4). For the purpose
of early system and application software design and evaluation, in addition FAST accounts for
memory and interconnect contention (3.5, 3.6), supports intra-chip communication through the
A-switch device (3.7) and incorporates debugging facilities (3.8). Finally, an overview of the
simulator internals is provided (3.9).

3.1 Instruction execution

FAST simulates the four-stage pipeline employed in the C64 architecture, see Figure 2.

At the first stage of the pipeline, an instruction (see Table 2) is fetched from the program
instruction buffer (PIB) and decoded. FAST may account for the access to the PIB and
subsequent delay if the instruction has to be read from the instruction cache or memory, if a
miss should occur. Whenever the branch prediction is incorrect, execution in a thread unit stalls
for three cycles while the pipeline is flushed. However, FAST does not reflect the operation of
the branch predictor and regards all conditional branches as correctly predicted.
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Figure 2: Four-stage instruction pipeline

Table 2: Instruction set summary

Core Integer and Branch Floating Point
Load, Store Add, Subtract
Load, Store Multiple Multiply, Divide
Add, Subtract [Immediate] Multiply and Add
Multiply, Divide Conversions
Compare [Immediate] Square Root

Trap on Condition [Immediate]
Logic [Immediate]

Shift [Immediate]

Shift left 16 then OR immediate
Insert, Extract

Move if Condition

Branch on Condition

Branch and Link

Exotic Control

Bit Gather (permute bits) All Stop

Count Leading Zeros I-Cache Invalidate
Count Population Move From/To SPR
Load then Op Return from Interrupt
Multiply and Accumulate Sleep

Supervisor Call

In the second pipeline stage, the instruction input operands are read from the register file.
For all the C64 instructions, except the floating multiply and add (FMA), one or two register
operands are read in one cycle. FMA instructions have three input operands, hence an extra
cycle may be required to read the third operand since the register file has two read ports.



Table 3: Instruction timing

Instruction type x| d
Branches 210
Count population 1 1
Integer multiplication 11 5
Integer divide, remainder 1133
Floating add, mult. and conv. 11 5
Floating mult. and add 1110
Floating divide double 1130
Floating square root double 1] 56
Floating mult. and accumulate 11 5
Memory operation (local SRAM) 1] 2
Memory operation (global SRAM) 11{20
Memory operation (off-chip DRAM) | 1 | 36
All other operations 11 0

In the third stage the instruction is executed. RISC-like instructions such as integer, floating-
point, branch and memory operations are modeled based on execution times expressed by
x/d pairs, where z is the execution time in the ALU, and d represents the delay before the
result of the instruction becomes available. Instruction timing reported in Table 3 is based on
information provided by the C64 chip designer team. For instance, integer division is said to
take one cycle in the ALU but a subsequent instruction will not be able to use the result until
33 cycles later. During this delay, execution of independent instructions can proceed normally.
However, if the result of an instruction is to be used by another instruction before it is available,
the pipeline will stall. It is the compiler and programmer responsibility to cover these delays
as much as possible, with the appropriate instruction scheduling.

The result is finally committed in the fourth stage if no exception is generated. Otherwise, a
context switch causes execution to continue from the address specified by the interrupt vector.
When the results are to be put away, conflicts may occur, since the register file has two write
ports. However, these events are not expected to happen frequently and FAST does not account
for them.

In terms of instruction execution, FAST allows thread units to fetch, decode and execute in-
structions independently, following the sequence of events dictated by each thread’s instruction
stream. However, care need to be taken for some special instructions. The sleep instruction,
the wakeup signal, the inter-thread interrupt, etc., all imply a synchronization between threads.
For instance, a thread unit, while asleep, does not execute any instruction. During this time
the simulator will not update its clock counter. When a wakeup signal is received, the clock
counter is set to that of the remote thread that executed a store in the wakeup memory area
(plus some delay). To handle these synchronizations, threads shall commit instructions once



the simulated chip clock reaches the time point at which the instruction is executed by the
thread. In other words, although instructions are executed asynchronously they are committed
in a synchronized fashion.

3.2 Exception handling

Exceptions are thread-specific events. Some are caused by instructions and trigger what we
call synchronous interrupts that cannot be disabled. For instance, an attempt to execute an in-
struction with an invalid opcode generates an illegal interrupt. Others, known as asynchronous,
are caused by events such as a timer alarm and can be disabled. While disabled, only the first
exception of each type generated by a sequence of events is held pending; subsequent ones are
lost. Throughout the instruction’s execution, multiple exceptions of both classes may occur.
FAST checks for exceptions at the end of the execution stage. Before the results are put away,
if one or more enabled exception exists, FAST generates an interrupt according to the priority
order specified by the architecture.

3.3 Segmented memory space

The C64 chip hardware supports a shared address space model: all on-chip SRAM and off-
chip DRAM banks are addressable from all thread units/processors within a chip. That is, all
threads see a single shared address space.

Architecturally, each thread unit has an associated 32KB SRAM bank. Each memory bank
can be partitioned (configured) into two sections: one called “global” (or “interleaved”) section,
the other “local” (or “scratchpad”) section. All such global sections together form the (on-chip)
global memory in an interleaved fashion that is free of holes and uniformly addressable from
all thread units. Although scratchpad memory, global memory and off-chip DRAM memory
are addressable from any thread within the chip, the access is not uniform. Besides having
different latencies, these three memories have a separate address space, resulting in a three
level hierarchy. Furthermore, there is no virtual memory manager in the C64 architecture,

hence this memory hierarchy is directly exposed to the programmer.

The FAST simulator accurately reproduces the C64 memory map by implementing the
above mentioned non-uniform shared address space. It also includes the address upper limit
special purpose registers (AULx) that define the highest existing location in scratchpad memory,
global memory and DRAM memory, respectively. Nonetheless, all memory-specific parameters
such as the number of banks, size of each bank, latency, and bandwidth are easily configurable.
Additionally, it considers three protection boundary special purpose registers (PBx). These
registers define regions in scratchpad, interleaved and DRAM memory that can only be written
in supervisor state, which effectively provide a basic mechanism to protect the kernel against
malign user code.



3.4 Execution trace and instruction statistics

Given the appropriate command line option, the toolset generates the execution trace of a
program. There are two mechanisms to select the instructions that are to be stored in the trace.
The user can either specify the time interval (in clock cycles) for which the program execution
is to be traced, or enclose the instructions to be output to the trace within TraceOn/TraceOff
macros. These macros access unarchitected special purpose registers, i.e. SPRs that control
the simulator’s functionality but are not present in the C64 chip design. The output consisting
of a text file per active thread on the C64 system, contains detailed information such as clock
cycle, instruction executed, source and target register values, address of the memory location
touched by the instruction, if applicable, and specific information regarding events that could
have delayed the execution of the instruction (contention in the crossbar network, operand not

available yet, etc).

FAST may also collect instruction statistics over an execution interval and produce his-
tograms of the instruction mix. Similarly to the procedure available for tracing, the user can
specify an interval in clock cycles or use StatsOn/StatsOff macros to start/stop collecting statis-
tics, respectively. A combined report for each node as well as individual reports for all active

threads are generated.

3.5 Program instruction buffer and instruction cache

FAST models the latency for fetching instructions from the program instruction buffer (PIB)
and the instruction cache (I-cache). Each thread unit has a PIB, which is like a small cache,
having two lines of 16 instructions each. A PIB line is aligned on a quadword (4 instructions)
boundary. On a C64 chip, there are 16 32KB SRAM I-caches, each shared by five processors
(i.e. 10 thread units). Each I-cache is 8-way set associative, with 16 instructions per cache line.
Cache lines are aligned on 64-byte boundaries.

During the instruction fetch stage, if the instruction is found in the PIB, it is regarded as
a hit and incurs in no delay. If a miss occurs, 16 instructions aligned on a 16-byte boundary
are transferred from the I-cache. Because instructions are aligned differently in the PIB and
I-cache, one PIB miss may affect two cache lines. Hence, one PIB miss may result in two
I-cache misses. On a miss, the I-cache sends a request to memory. The delay for this operation
is provided by the memory and interconnection contention module, section 3.6. When data
arrives from memory, it takes 8 additonal cycles to store each line into the corresponding cache

set, 16 cycles in total.

FAST also accounts for the contention on the I-cache that happens whenever concurrent
accesses are performed by any of the 5 processors that share each cache. At each cycle, only
one request can be served by the I-cache. Moreover, while the I-cache is handling a miss, it can
still serve cache hits. However, it can not attend any other cache misses.
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Figure 3: Interconnection to the on-chip crossbar

3.6 Memory and interconnect contention

One of the latest additions to the FAST simulator is a module that accounts for the contention
in the crossbar network and in the memory system.

Figure 3 illustrates the data path between processors and memory banks on a C64 chip.
Every memory instruction executed on a processor results in a network packet delivered by the
crossbar network to the appropriate memory bank (global SRAM or off-chip DRAM). For load
operations, the memory replies with another packet containing the data retrieved from memory.

FAST models the following sources of contention: (1) Packets issued by threads on the
same processor are queued on a 7-slot FIFO (processor buffer) until they are retrieved by the
crossbar. If a thread issues a memory operation when the FIFO is full, the pipeline will stall
until space is available; (2) The crossbar retrieves packets from the input ports and delivers
packets to the output ports, one per cycle. If at the same cycle, two packets are to be delivered
to the same output port, the crossbar blocks one of them arbitrarily; (3) Between the crossbar
and each memory bank there is another 7-slot FIFO (memory buffer) where packets are held
until processed by the memory. Whenever this buffer becomes full, the crossbar stops delivering
packets to this destination. At the same time, it stops retrieving packet from any input that
tries to send packets to the blocked output port; (4) Memory latencies are also taken into
account. SRAM memory banks can perform a load or store operation every cycle, i.e., 4GB/s
per bank. Whereas DRAM memory can sustain a much lower bandwidth. DRAM memory
consists of four banks and each bank is subdivided into four subbanks. Subbanks can service
requests simultaneously, one every 32 cycles. While a memory subbank is in service, an incoming
request is held pending in the memory buffer. Therefore, the DRAM bandwidth is 2GB/s for
single loads and stores. For multiple transfers, using load multiple (LDM) and store multiple
(STM) instructions, the DRAM bandwidth is 16GB/s instead.



3.7 A-switch device

In FAST, there are two optional modes for simulating the A-switch: message accurate and
packet accurate simulation. The former is faster but less accurate, since it copies the whole
message directly to the destination node. The latter models all of the hardware mechanisms
involved in transferring packets double word by double word through the 3D-mesh network.
However, this model is still under testing. Mainly, because it does not account for the interaction
between the A-switch and the crossbar network. In other words, reading from and writing to
memory while sending or receiving messages do not generate the corresponding packets in the
crossbar. Therefore, performance estimations obtained with FAST for multichip simulations
should be regarded as less accurate.

3.8 Debugger

FAST integrates a user-friendly assembly-level debugger. In debugging mode, there are com-
mands to set a breakpoint, continue with the execution after a breakpoint, single-step the
execution, inspect and modify the values of registers or memory, etc. Although useful, this
method is tedious. To eliminate the hazard of mapping statements in the source code to assem-
bly instructions and vice versa, a source level debugger is a necessary tool. The GNU debugger,
GDB, has been partly ported to the C64 architecture.

3.9 Simulator internals

The simulated C64 system starts running when one of the three main simulator functions is
called. To maximize performance, each function specifically handles a C64 system consisting
of a single processing core, a C64 chip fully populated, or a system built out of several nodes.
Therefore, the decision is simply based on the system configuration.

In multinode simulations, the main function starts with a loop that iterates over all the
active threads on all the nodes. Each thread unit attempts to execute an instruction. For a
new instruction, calls to routines that take care of instruction fetch, instruction decode, reading
the input operands from the register file, and instruction execution, are invoked. If the thread
unit is asleep, stalled waiting for an operand or due to a resource hazard, or waiting to commit
the previous instruction, it does nothing but return.

Back in the main function, the chip clock is moved forward, just enough to allow one thread
unit, at least, to commit the current instruction. Once the clock is updated, the crossbar and
memory banks proceed to flush packets and memory operations that are to be performed by
this time.

Then a second loop iterates over all the threads, regardless of their status. First, thread
units check whether an exception occurred, and if it did, the corresponding interrupt is serviced
with the appropriate context switch. If no interrupt was triggered, they try to commit the last
instruction. At this stage, threads compare the chip clock with their own internal clock. When



the execution on the chip reaches the time step at which a thread can commit an instruction,
the results are put away. Otherwise, the thread waits.

Finally, after the status of the A-switch is updated, execution returns to the beginning of
the main loop. The process is repeated until thread units on every node execute the ALLSTOP

instruction in supervisor state.

To simplify the communication among components of the simulator, the representation of
the simulated C64 system is kept in a single multilevel data structure. At the chip level, it
contains information regarding thread units, floating point units, on-chip SRAM and off-chip
DRAM memories, I-caches, crossbar model, and A-switch. At the thread level, it accounts for
general, special purpose and accumulator registers, in addition to timing information as to when
the value stored in a general purpose register will be available, the last decoded instruction,
program counter, exception flags, thread status, and a third-level data structure with statistics
counters.

3.10 Source file descriptions

The following list describes the functionality of the code files of the FAST simulator.

e args.[c,h]: Defines and parses command line options.
e aswitch.[c,h]: Simulation of the A-switch device.

e cb.[c,h]: Defines the data structure and methods for managing the circular buffer, the
memory area maintained by the A-switch to store incoming messages.

e cc.[c,h]: Utility routine that compares two operands according to any of the 40 different

condition codes.

e common.[c,h]: A miscellaneous set of simple functions called from various places in the

simulator.
e debug.[c,h]: Set of routines to read symbol information from the program executable.
e disasm.[c,h]: Definition of macros and functions to disassemble an instruction.
e elf.[c,h]: Load a 64-bit ELF binary file into the simulator’s memory.

e exception.[c,h]: Routines to account for exceptions and to perform the context switch
once an interrupt is to be processed.

o fast.[c,h]: A set of function to have the command line parsed, the Cyclops-64 machine
initialized, the target program loaded before control is given to the main simulator function

in machine.

e icache.[c,h]: Functions to implement the I-cache and calculate the delay caused when the
pipeline stalls on a PIB or/and I-cache miss.
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e kernel.[c,h]: Holds routines to load and set up the C64 microkernel. The TNT runtime
system library is split into a microkernel and a user library. The former executes in the
supervisor level while the latter is linked with the user’s program and executes in the user
level.

e machine.[c,h]: Besides holding the main simulator function, this file contains code to
manage all architectural resources and defines data structures to hold the status of thread
units, chips, etc.

e machine.def.h: Contains a list of macros that define each instruction, including the actions
to carry out during the read operands, execution and commit stages of the instruction
pipeline. Similarly to the SimpleScalar DEF file, this file defines the C64 instruction set.

e memmap.[c,h]: Support for the three-level memory hierarchy. It provides functions to
check the address and generate an interrupt if appropriate, determine the memory bank
and delay for a memory access.

e memory.[c,h]: Contains functions to initialize, read from and write to the target memory.
Scratchpad memory, interleaved memory and DRAM memory are implemented as a flat

space that is accessed based on the translated address provided by memmap.

e memqueue.[c,h]: Contains functions to model contention in FIFO and the crossbar net-
work, and to account for the bandwidth of SRAM and DRAM memory banks.

e spr.[c,h]: Utilities to handle instructions that move from/to special purpose registers.
SPRs that are not in the actual architecture are used as the interface between the simulator
and the host machine to support system calls in the Cyclops-64 system.

e stats.[c,h]: Holds routines used to produce statistic reports.
e trace.[c,h]: Contains the functions that output the program execution trace to a file.

e types.h: Defines the data types used to declare architecture-specific data structures such

as registers, the program counter, etc.

4 FAST usage

To run a program foo.bin in the simulator, simply enter on the command line:
cyclops64-linux-elf-sim [simulator_options] foo.bin [program_args]

The command line can include simulator_options, which apply to the simulator only.
Options placed after the program name are passed as arguments to the program.

11



4.1 Command line options

The simulator will accept the following command line options:

—aswitch or -a Perform cycle accurate simulation of the A-switch.

—bw Account for the bandwidth limitation of the SRAM and DRAM memory banks. Auto-
matically sets crossbar option.

—crossbar Model contention in the crossbar switch.

—icache Model the instruction cache and program instruction buffer. Automatically sets

crossbar and —bw.
—kernel Run the program in supervisor state.
—kernel-name=filename Specifies the name of the kernel file. Automatically sets —kernel.

—memory=s,i,d or -m Specifies a memory configuration, with given sizes for the scratchpad
per thread (KB), interleaved SRAM(KB), and DRAM(MB), respectively.

—node=x,y,z or -n Nodes in the system. For example, -n=2,3,4 represents a 24-node system
arranged in a 2x3x4 3D mesh.

—output or -o Send stdout and stderr to a file (one file per node).
—processor=7 or -p Number of processors per chip.
—polling-threads=# Number of polling threads.

—quiet or -q Do not produce any output (default).

—stats=# or -s Gather statistics starting at cycle #. -s alone means no statistics are gathered
unless this feature is turned on by the program.

—spmd Start execution of user program in SPMD mode (default).
—no-spmd or —spsd Start program execution running only one user thread.
—summary Output an execution summary.

—trace=# or -t Trace execution starting at cycle #. -t alone means no trace is generated

unless this feature is turned on by the program.
—user Run program in user mode (default).

—user-threads=# Reserve a number of user threads. These threads will not participate in
the SPMD execution.

12



—verbose or -v Produce verbose output. Multiple -v (-vv for instance) increases verbosity.
This option controls the amount of information dumped to stdout and written into the
trace files.

—help Display a help list.

—usage Display a short usage message.

4.2 Kernel execution

By default, the simulator loads and executes a microkernel (included as part of the software
distribution), which is responsible for the execution of the user program starting from main. If
needed, a different kernel file can be specified using the option ——~kernel-name.

In some instances, a program needs to be run in supervisor state, i.e., without loading and
executing the kernel first. This can be done by providing the option —-kernel. In our regression
testsuite, for instance, the interrupt handlers are tested using this procedure.

While using the microkernel, the user needs to be aware that at least one thread is reserved
for kernel operations. Since the Cyclops-64 architecture does not support preemption, the
runtime system can only control execution on thread units remotely, by means of the inter-
thread interrupt. Therefore, having a thread unit in supervisor state ensures that a chip can
be brought to a predetermined status in the event that a program stops responding.

4.3 SPMD execution

After initialization, the microkernel automatically spawns all available threads, which then start
the execution of the user program from main. This is called execution in SPMD mode, and
it is the default in the simulator. The user still has some control over the total number of
threads spawned by the kernel. For instance, the simulator can be told to leave a number of
thread units idle so that the user program can assign them a function afterwards. This is done
with option --user-threads. Additionally, when inter-chip communication is expected to be
intensive, the user can instruct the communication library to have a certain number of threads
polling the A-switch. This is done with option —-polling-threads. The reason for having two
separate options is that the latter leaves threads in supervisor state, which is a requirement to
operate the A-switch, whereas the former results in threads switching to problem or user state.

Finally, execution in SPMD mode can be disabled with the option -—no-spmd. In this
scenario, the microkernel spawns a single thread, so the user program needs to handle the
remaining threads itself. In this mode, the option --polling-threads still applies.
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5 Experience

The goal of FAST is three-fold: FAST is designed for the purpose of architect design verification
(section 5.1). As part of the C64 toolchain, FAST provides the basic platform for early system
software development and testing (section 5.2). FAST has been in use by other users for
application development and testing. Although not cycle accurate, the timing information
provided by the simulator has proven to be useful for performance estimation and application
tuning as well (section 5.3).

5.1 Design verification

For the purpose of architecture design verification, the execution trace generated by FAST
is compared to the output of the VHDL simulator that reproduces the C64 at a gate level.
Initial verification of the C64 design was carried out following this procedure with a set of short
programs intended to test the C64 instruction set architecture [11].

The Cyclops-E is another cellular architecture design, target to the embedded market. The
first hardware implementation of a single-chip Embedded Cyclops system was accomplished
with DIMES, an FPGA-based multiprocessor emulation system [21]. Concurrently with the
development of DIMES an earlier version of the FAST simulator, known as CeDIMES, was also
implemented [9]. Since this simulation tool is also binary-compatible, once the hardware emu-
lation system was brought up, design verification started immediately. A test suite consisting of
more than 200 programs specifically designed to test the Cyclops-E ISA were run on the actual
hardware platform and the results were compared to those produced by the simulator. The
initial testing revealed a few bugs in the chip design, which were fixed by the chip architect.
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5.2 System software development
5.2.1 Toolchain

FAST is part of the software toolchain available for application development on the C64 plat-
form, see Figure 4. Programs written in C or Fortran are compiled using a porting of the
GCC-3.2.3 suite. The assembler and linker, which are based on binutils-2.11.2, along with the
necessary libraries, produce a 64-bit ELF executable that can then be loaded into FAST and
executed. The C standard and math libraries are based in newlib-1.10.0. In addition, we wrote
the TNT runtime system and the CNET communication libraries to manage hardware resources
such as the thread units and the A-switch, respectively.

5.2.2 Thread library

We reported our work in the design of a thread model for C64 that maps directly to the
architecture assisted by a native thread runtime library, called TNT (or TiNy Threads) [8]. In
the development, debugging and evaluation of the TNT library, FAST’s capability to accurately
simulate a large number of hardware threads with practical time has proven to be useful.

5.2.3 Spin lock

For a thread library, it is important that all components are efficiently implemented. In mul-
tithreaded environments, especially for architectures like C64 with 150 threads on a chip, spin
lock, as an indirect synchronization mechanism is known to be a key factor for scalability. For
this reason, we conducted a study on spin lock algorithms on the C64 architecture. We imple-
mented eight programs based on well known spin lock algorithms: three based on test-and-set,
one on tickets, two on array queue, and two on list queue [15]. All programs consist of a short
critical section (a single variable update) enclosed within calls to procedures that acquire and
release a lock following the corresponding algorithm. The entire process (lock, critical section,
unlock) is repeated a thousand times as part of a loop body. We run the programs on FAST
with memory contention enabled and measure the execution time as well as the overhead due
to contention in the crossbar. As expected, the results show list-based queuing locks are the
most efficient algorithms, see Figure 5(a). On C64, contrarily to most shared memory multipro-
cessors, array-based queuing lock methods do not perform well, because there is no data cache.
In other words, accesses to the array queue are as expensive as any memory operation seen
in test-and-set based implementations. Indeed, test-and-set based algorithms with linear and
exponential backoff perform better. Not surprisingly, list queue locks generate the least amount
of memory traffic on the crossbar, since threads spin locally on their own scratchpad memory,
see Figure 5(b). That means they would interfere least with the normal execution of a program
if it had additional memory accesses. As a result of this experience, the implementation of
mutexes in the TNT library is based on list queue locks.
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Figure 5: Spin lock programs

5.2.4 Communication library

With the A-switch module, FAST can be used to simulate C64 multichip system configurations.
With this feature, we developed a communication library implemented as several layers, each
accessible through its own interface. At the lowest level, the packet transfer layer accesses
the A-switch directly, hiding all hardware details from layers above. A second layer, built on
top of the packet transfer layer, provides user-level remote memory read and write, inter-chip
synchronization primitives and remote procedure call mechanisms. Finally, we are in the process
of porting the SHMEM library [17] to the C64 architecture based on the two previous layers.

5.3 Application development and evaluation

To demonstrate FAST is functionally accurate, stable and hence, useful for software develop-
ment and performance estimation, we write several benchmarks programs to confirm that the
trends predicted by the simulator match to what the C64 architecture is capable of.

5.3.1 GUPS

Table Toy, which is also called Random Access benchmark, is an important benchmark included
in the HPC Challenge Benchmark Suite [1]. It uses a metric known as GUPS (Giga Updates Per
Second) to evaluate the random access capabilities of the memory system. In the context of this
experience, we use Table Toy to verify that FAST reflects the C64 memory system accurately.

The kernel operations of Table Toy can be summarized as follows:

1 tmpl = stablel[j]; (load)
2 tmp2 = tableli]; (1oad)
3 val = tmp2 xor tmpl; (xor)
4 table[i] = val; (store)
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The 4, 7 are the pseudo random locations chosen for table and stable. Ideally, thread units
should access different locations of the table to avoid conflicts. The table can be placed either in
the on-chip SRAM or the off-chip DRAM, and is accessed by all thread units. The substitution
table (stable) is allocated in the thread’s scratchpad memory. The key point is that the last
three operations (load, xor, and store) must be atomic in a multithreaded execution.

Figure 6 shows the GUPS obtained on a C64 node with up to 150 thread running in par-
allel. By taking advantage of C64’s zor_m in-memory atomic instruction (xor to memory),
we guarantee the atomicity needed while all data dependences are removed from the kernel
loop. Therefore, the number of memory updates is actually the number of zor_m instructions
issued. If the updates are performed in SRAM, the curve scales well as the number of threads
increases, due to the large on-chip memory bandwidth. On the other hand, the off-chip DRAM
memory bandwidth is limited. Consequently, the DRAM curve flattens when the number of
threads exceeds 16. In both cases, the maximum achievable memory bandwidth is not reached.
It appears that the pseudo random numbers generated in Table Toy result in several threads
accessing a memory bank at the same time. Hence, the bandwidth limitation is not due to the

crossbar network but to conflicts accessing the memory banks.

To prove our hypothesis, we write three separate microbenchmarks with a deterministic
access pattern to the memory banks. In our first microbenchmark, New Toy 1, each thread
issues 3 store operations every 8 cycles. In addition, each thread targets one SRAM bank
only. Therefore, a processor issues 6 store operations every 8 cycles to the on-chip SRAM
memory. This represents 75% of the peak throughput of the crossbar which is indeed achieved
because there are no conflicts as the memory bank addressed by each thread unit is different,
see Figure 7(a). The other microbenchmarks test the off-chip DRAM memory subsystem in
different ways. In New Toy 2, each thread targets one of the 16 DRAM subbanks based on
the thread identifier. Therefore, threads 0 and 16 access subbank 0, threads 1 and 17 access
subbank 1, and so forth. A DRAM subbank can only service one request every 32 cycles, this is
15 MUPS, but all 16 subbanks can service requests in parallel. Figure 7(b) confirms the expected
result. As long as no more than 16 threads are active, the DRAM throughput increases linearly,
at a rate of 15 MUPS per thread, up to 250 MUPS. In New Toy 3, every thread executes 16
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Figure 7: New Toys on a C64 node

consecutive stores every 22 cycles and each store targets one of the DRAM subbanks. That
means a thread can issue operations to memory faster than the memory can handle. Figure 7(b)
shows that for a small number of active threads, contention can be tolerated, and the crossbar
and DRAM memory system deliver the peak throughput, 250 MUPS. Finally, as contention
increases, performance drops.

5.3.2 Matrix-matrix-multiply

As an example of what an application developer can expect to learn using the FAST toolset,
we hereby report a tuning experience using the matrix-matrix-multiply program for a problem
size of 1024 x 1024. Throughout this exercise we use the simulator’s accurate time counter,
the histograms file with the instruction mix and the execution trace to determine the cause of
delays and/or bottlenecks that may prevent the program from achieving higher performance.

Our baseline is a straightforward sequential code with the matrices stored in DRAM. The
program that is compiled with -O3, achieves 16.7 MFLOPS. From the trace file, we found that
the main reasons for the low performance are the poor data re-usage and the long latency
to access DRAM. In order to improve the performance, we unroll the two outermost loops 4
times each and manually prefetch data and re-schedule the instructions with the hints from
the trace files generated by FAST. In the resulting code, data is fed to the floating point unit
in a pipelined manner such that all load latencies are hidden. This implementation achieves
216.1 MFLOPS, a speedup of 13 compared to the baseline version. We also parallelized our
tuned MxM program to make use of multiple thread units. As shown in Figure 8, the curve
of the parallel version scales almost linearly up to 32 threads and then flats out because of the
bandwidth limitation. Afterwards, it even drops when memory contention becomes too high.
We believe higher performance can be achieved by employing other techniques. However this
is not the purpose of this experiment.
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5.3.3 Multi-chip benchmarks

To verify the correctness (not the accuracy) of FAST’s multichip simulation and the commu-
nication libraries, we developed an assorted set of multichip multithreaded benchmarks. It
includes implementations of matrix-matrix-multiply, 1D Laplace solver, heat conduction and
Sobel edge detection.

6 Related work

To analyze and understand the impact of various architectural parameters and components as
well as study the application performance and get detailed statistics, both academia and indus-
try developed a number of simulators. Simulation frameworks for microarchitecture research
and design exploration, such as SimpleScalar [7, 3], Microlib [18], Liberty [23], RSIM [12] and
Turantdot [16], concentrate on accurately modeling the architecture design and normally they
are cycle accurate. FAST is a functional simulator since cycle accurate simulation would be
too slow for a system consisting of one or more C64 chips. There are also full system simu-
lators capable of running commercial workloads on an unmodified operating system, such as
SIMOS [20], Simics [13] and PearPC [4]. A C64 compute engine is attached to a host system.
The host system provides a familiar computing environment to application developers. FAST
only simulates the compute engine running a custom microkernel, whereas conventional OS

services are provided by the native OS running on the host system.

Recently a new generation of simulators capable of simulating SMT and CMP architectures
have been developed: SMTSIM [22], SESC [19], GEMS [14], M5 [5] and Mambo [6]. It would
appear the latter simulation frameworks as well as extensions of SimpleScalar, Simics, SimOS
and Turantdot are normally used to simulate 2/4/8 way SMT/CMP processors under multipro-
gramming, thread level speculation, and commercial workloads'. FAST is designed to simulate

and model a CMP system consisting of several C64 nodes, each with up to 150 processing

'Based on papers published in HPCA from 2000 to 2005.
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cores. However, the C64 architecture is designed for the purpose of running massively paral-
lel applications, which deal with the complexity of scientific and engineering multithreading
workloads.

Probably, the closest related work to FAST is the Cyclops-32 simulator. These simulators are
as similar as the architectures they simulate. However, there are significant differences as well.
For instance, FAST detects dependences and conflicts as instructions are executed. Therefore,
it directly produces performance estimates. On the other hand, the C32 simulator does not
have timing information. Performance estimates are generated by two other performance tools
(a cache simulator and a trace analyzer) that post-process the execution trace produced by the

simulator [2].

7 Summary

This paper presents FAST, a functionally accurate simulation toolset for the IBM Cyclops-
64 architecture that is fast, flexible and efficient. To the best of our knowledge, it is the
only simulation tool capable of simulating multichip multithreaded cellular architectures with
reasonable accuracy and practical speed. We report some preliminary results and illustrate,
through case studies, how the FAST tool chain accomplishes its purpose of architecture design
verification as well as early system and application software development and testing.

As future work, we plan to increase the amount of profile information FAST produces, in-
cluding text and data symbols, and to incorporate integer counters to facilitate the performance
analysis of multithreaded programs.
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