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AbstractThis paper reports our experience and lessons learned in the design, implementation andexperimentation of an instruction-set level simulator for the IBM Cyclops-64 (or C64 forshort) architecture. This simulation tool, named Functionally Accurate Simulation Toolset(FAST), is designed for the purpose of architecture design veri�cation as well as earlysystem and application software development and testing. FAST has been in use by the C64architecture team, system software developers and application scientists. We report somepreliminary results and illustrate, through case studies, how the FAST toolchain performsin terms of its design objectives as well as where it should be improved in the future.
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1 IntroductionIt is increasingly clear that the huge number of transistors that can be put on a chip (now isreaching 1 billion and continues to grow) can no longer be e�ectively utilized by traditionalmicroprocessor technology that only integrates a single processor on a chip. A new generationof technology is emerging by integrating a large number of tightly-coupled simple processorcores on a chip empowered by parallel system software technology that will coordinate theseprocessors toward a scalable solution.This paper reports our experience and lessons learned in the design, implementation andexperimentation of an instruction-set level simulator for the IBM Cyclops-64 architecture thatintegrates on a single chip up to 150 processing cores, an equal number of SRAM memory banksand 75 
oating point units. This simulation tool, named Functionally Accurate SimulatorToolset (FAST), is designed for the following goals (1) architecture design veri�cation; (2)early system software development and testing; (3) early application software development andtesting. For our purposes, a cycle accurate (rather than function accurate) simulator would betoo slow for a system consisting of one or more fully-populated C64 chips. Currently, FASTe�ciently handles C64 systems consisting of either a single processing core, a C64 chip fullypopulated or a system built out of several nodes connected with a 3D mesh.We present several important aspects of the FAST simulator and highlight the tradeo�sfaced during its design and implementation. Some design decisions are made based on theunique features of the C64 architecture. For instance, C64 employs no data caches. Instead,on-chip memories are organized in two levels | global interleaved memory banks that areuniformly addressable, and scratch memories that are local to individual processing cores.FAST has been in use by the C64 architecture team, system software developers and appli-cation scientists. We report some preliminary results and illustrate, through case studies, howFAST performs in terms of its design objectives as well as where it should be improved in thefuture.2 Cyclops64 chip architectureThe Cyclops-64 (C64) is the latest version of the Cyclops cellular architecture designed to serveas a dedicated peta
op compute engine for running high performance applications [10]. A C64supercomputer is attached | through a number of Gigabit Ethernet links | to a host system.The host system provides a familiar computing environment to application software developersand end users.A C64 is built out of tens of thousands of C64 processing nodes arranged in a 3D-meshnetwork. Each processing node consists of a C64 chip, external DRAM, and a small amountof external interface logic. A C64 chip employs a multiprocessor-on-a-chip design with a largenumber of hardware thread units, half as many 
oating point units, embedded memory, aninterface to the o�-chip DDR SDRAM memory and bidirectional inter-chip routing ports, see1
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Figure 1: Cyclops-64 nodeFigure 1. A C64 chip has 75 processors, each with two thread units, a 
oating-point unit andtwo SRAM memory banks of 32KB each. A 32KB instruction cache, not shown in the �gure,is shared among �ve processors. The C64 chip has no data cache. Instead a portion of eachSRAM bank can be con�gured as scratchpad memory (SP). The remaining sections of SRAMtogether form the global memory (GM) that is uniformly addressable from all thread units.On-chip resources are connected to a 96-port crossbar network, which sustains all the intra-chip tra�c communication and provides access to the routing ports that connect each C64 chipto its nearest neighbors in the 3D-mesh network. The intra-chip network also facilitates accessto special devices such as the Gigabit Ethernet port and the serial ATA disk drive attached toeach C64 node.The C64 architecture represents a major departure from mainstream microprocessor designin several aspects. The C64 chip integrates processing logic, embedded memory and commu-nication hardware in the same piece of silicon. However, it provides no resource virtualizationmechanisms. For instance, execution is non preemptive and there is no hardware virtual mem-ory manager. The former means a single application can run at a given time on a set of C64nodes. Additionally, the OS will not interrupt the user program running on the thread unitsunless the user explicitly speci�es preemption or an exception occurs. The latter means thethree-level memory hierarchy of the C64 chip is visible by the programmer. From the pro-cessing core standpoint, a thread unit is a simple 64-bit, single issue, in-order RISC processorwith a small instruction set architecture (60 instruction groups) operating at a moderate clockrate (500MHz). Nonetheless, it incorporates e�cient support for thread level execution. Forinstance, a thread can stop executing instructions for a number of cycles or inde�nitely; andwhen asleep it can be woken up by another thread through a hardware interrupt. Additionally,the integration of processing logic and memory is further leveraged with a rich set of hardwaresupported in-memory atomic instructions. Unlike similar instructions on common o�-the-shelfmicroprocessors, atomic instructions in the C64 only block the memory bank where they operateupon while the remaining banks proceed servicing other requests. This functionality providesa higher memory bandwidth. 2



Table 1: Simulation parametersComponent # of units Params./unitThreads 150 single in-order issue,500MHzFPUs 75 
oating point/MAC,divide/square rootI-cache 15 32KBSRAM (on-chip) 150 32KBDRAM (o�-chip) 4 256MBCrossbar 1 96 ports, 4GB/s portA-switch 1 6 ports, 4GB/s port3 FAST design and implementationFAST is an execution-driven, binary-compatible simulator of a multichip multithreaded C64system. It accurately reproduces the functional behavior and count of hardware componentssuch thread units, on-chip and o�-chip memory banks, and the 3D-mesh network, see Table 1.The actual number of simulated chips is limited by practical reasons, since the memory corre-sponding to all the chips need to be allocated in the host machine.FAST has been developed following a modular approach, such that additional featurescould be easily incorporated into the existing design. To help the architecture team withthe veri�cation of the C64 chip design, the simulator executes instructions (3.1), models thearchitecture exceptions (3.2), reproduces the C64 memory map (3.3) and produces histograms ofthe instruction mix as well as detailed traces of all instructions executed (3.4). For the purposeof early system and application software design and evaluation, in addition FAST accounts formemory and interconnect contention (3.5, 3.6), supports intra-chip communication through theA-switch device (3.7) and incorporates debugging facilities (3.8). Finally, an overview of thesimulator internals is provided (3.9).3.1 Instruction executionFAST simulates the four-stage pipeline employed in the C64 architecture, see Figure 2.At the �rst stage of the pipeline, an instruction (see Table 2) is fetched from the programinstruction bu�er (PIB) and decoded. FAST may account for the access to the PIB andsubsequent delay if the instruction has to be read from the instruction cache or memory, if amiss should occur. Whenever the branch prediction is incorrect, execution in a thread unit stallsfor three cycles while the pipeline is 
ushed. However, FAST does not re
ect the operation ofthe branch predictor and regards all conditional branches as correctly predicted.3
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Figure 2: Four-stage instruction pipelineTable 2: Instruction set summaryCore Integer and Branch Floating PointLoad, Store Add, SubtractLoad, Store Multiple Multiply, DivideAdd, Subtract [Immediate] Multiply and AddMultiply, Divide ConversionsCompare [Immediate] Square RootTrap on Condition [Immediate]Logic [Immediate]Shift [Immediate]Shift left 16 then OR immediateInsert, ExtractMove if ConditionBranch on ConditionBranch and LinkExotic ControlBit Gather (permute bits) All StopCount Leading Zeros I-Cache InvalidateCount Population Move From/To SPRLoad then Op Return from InterruptMultiply and Accumulate SleepSupervisor CallIn the second pipeline stage, the instruction input operands are read from the register �le.For all the C64 instructions, except the 
oating multiply and add (FMA), one or two registeroperands are read in one cycle. FMA instructions have three input operands, hence an extracycle may be required to read the third operand since the register �le has two read ports.4



Table 3: Instruction timingInstruction type x dBranches 2 0Count population 1 1Integer multiplication 1 5Integer divide, remainder 1 33Floating add, mult. and conv. 1 5Floating mult. and add 1 10Floating divide double 1 30Floating square root double 1 56Floating mult. and accumulate 1 5Memory operation (local SRAM) 1 2Memory operation (global SRAM) 1 20Memory operation (o�-chip DRAM) 1 36All other operations 1 0In the third stage the instruction is executed. RISC-like instructions such as integer, 
oating-point, branch and memory operations are modeled based on execution times expressed byx=d pairs, where x is the execution time in the ALU, and d represents the delay before theresult of the instruction becomes available. Instruction timing reported in Table 3 is based oninformation provided by the C64 chip designer team. For instance, integer division is said totake one cycle in the ALU but a subsequent instruction will not be able to use the result until33 cycles later. During this delay, execution of independent instructions can proceed normally.However, if the result of an instruction is to be used by another instruction before it is available,the pipeline will stall. It is the compiler and programmer responsibility to cover these delaysas much as possible, with the appropriate instruction scheduling.The result is �nally committed in the fourth stage if no exception is generated. Otherwise, acontext switch causes execution to continue from the address speci�ed by the interrupt vector.When the results are to be put away, con
icts may occur, since the register �le has two writeports. However, these events are not expected to happen frequently and FAST does not accountfor them.In terms of instruction execution, FAST allows thread units to fetch, decode and execute in-structions independently, following the sequence of events dictated by each thread's instructionstream. However, care need to be taken for some special instructions. The sleep instruction,the wakeup signal, the inter-thread interrupt, etc., all imply a synchronization between threads.For instance, a thread unit, while asleep, does not execute any instruction. During this timethe simulator will not update its clock counter. When a wakeup signal is received, the clockcounter is set to that of the remote thread that executed a store in the wakeup memory area(plus some delay). To handle these synchronizations, threads shall commit instructions once5



the simulated chip clock reaches the time point at which the instruction is executed by thethread. In other words, although instructions are executed asynchronously they are committedin a synchronized fashion.3.2 Exception handlingExceptions are thread-speci�c events. Some are caused by instructions and trigger what wecall synchronous interrupts that cannot be disabled. For instance, an attempt to execute an in-struction with an invalid opcode generates an illegal interrupt. Others, known as asynchronous,are caused by events such as a timer alarm and can be disabled. While disabled, only the �rstexception of each type generated by a sequence of events is held pending; subsequent ones arelost. Throughout the instruction's execution, multiple exceptions of both classes may occur.FAST checks for exceptions at the end of the execution stage. Before the results are put away,if one or more enabled exception exists, FAST generates an interrupt according to the priorityorder speci�ed by the architecture.3.3 Segmented memory spaceThe C64 chip hardware supports a shared address space model: all on-chip SRAM and o�-chip DRAM banks are addressable from all thread units/processors within a chip. That is, allthreads see a single shared address space.Architecturally, each thread unit has an associated 32KB SRAM bank. Each memory bankcan be partitioned (con�gured) into two sections: one called \global" (or \interleaved") section,the other \local" (or \scratchpad") section. All such global sections together form the (on-chip)global memory in an interleaved fashion that is free of holes and uniformly addressable fromall thread units. Although scratchpad memory, global memory and o�-chip DRAM memoryare addressable from any thread within the chip, the access is not uniform. Besides havingdi�erent latencies, these three memories have a separate address space, resulting in a threelevel hierarchy. Furthermore, there is no virtual memory manager in the C64 architecture,hence this memory hierarchy is directly exposed to the programmer.The FAST simulator accurately reproduces the C64 memory map by implementing theabove mentioned non-uniform shared address space. It also includes the address upper limitspecial purpose registers (AULx) that de�ne the highest existing location in scratchpad memory,global memory and DRAM memory, respectively. Nonetheless, all memory-speci�c parameterssuch as the number of banks, size of each bank, latency, and bandwidth are easily con�gurable.Additionally, it considers three protection boundary special purpose registers (PBx). Theseregisters de�ne regions in scratchpad, interleaved and DRAM memory that can only be writtenin supervisor state, which e�ectively provide a basic mechanism to protect the kernel againstmalign user code. 6



3.4 Execution trace and instruction statisticsGiven the appropriate command line option, the toolset generates the execution trace of aprogram. There are two mechanisms to select the instructions that are to be stored in the trace.The user can either specify the time interval (in clock cycles) for which the program executionis to be traced, or enclose the instructions to be output to the trace within TraceOn/TraceO�macros. These macros access unarchitected special purpose registers, i.e. SPRs that controlthe simulator's functionality but are not present in the C64 chip design. The output consistingof a text �le per active thread on the C64 system, contains detailed information such as clockcycle, instruction executed, source and target register values, address of the memory locationtouched by the instruction, if applicable, and speci�c information regarding events that couldhave delayed the execution of the instruction (contention in the crossbar network, operand notavailable yet, etc).FAST may also collect instruction statistics over an execution interval and produce his-tograms of the instruction mix. Similarly to the procedure available for tracing, the user canspecify an interval in clock cycles or use StatsOn/StatsO� macros to start/stop collecting statis-tics, respectively. A combined report for each node as well as individual reports for all activethreads are generated.3.5 Program instruction bu�er and instruction cacheFAST models the latency for fetching instructions from the program instruction bu�er (PIB)and the instruction cache (I-cache). Each thread unit has a PIB, which is like a small cache,having two lines of 16 instructions each. A PIB line is aligned on a quadword (4 instructions)boundary. On a C64 chip, there are 16 32KB SRAM I-caches, each shared by �ve processors(i.e. 10 thread units). Each I-cache is 8-way set associative, with 16 instructions per cache line.Cache lines are aligned on 64-byte boundaries.During the instruction fetch stage, if the instruction is found in the PIB, it is regarded asa hit and incurs in no delay. If a miss occurs, 16 instructions aligned on a 16-byte boundaryare transferred from the I-cache. Because instructions are aligned di�erently in the PIB andI-cache, one PIB miss may a�ect two cache lines. Hence, one PIB miss may result in twoI-cache misses. On a miss, the I-cache sends a request to memory. The delay for this operationis provided by the memory and interconnection contention module, section 3.6. When dataarrives from memory, it takes 8 additonal cycles to store each line into the corresponding cacheset, 16 cycles in total.FAST also accounts for the contention on the I-cache that happens whenever concurrentaccesses are performed by any of the 5 processors that share each cache. At each cycle, onlyone request can be served by the I-cache. Moreover, while the I-cache is handling a miss, it canstill serve cache hits. However, it can not attend any other cache misses.7
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3.7 A-switch deviceIn FAST, there are two optional modes for simulating the A-switch: message accurate andpacket accurate simulation. The former is faster but less accurate, since it copies the wholemessage directly to the destination node. The latter models all of the hardware mechanismsinvolved in transferring packets double word by double word through the 3D-mesh network.However, this model is still under testing. Mainly, because it does not account for the interactionbetween the A-switch and the crossbar network. In other words, reading from and writing tomemory while sending or receiving messages do not generate the corresponding packets in thecrossbar. Therefore, performance estimations obtained with FAST for multichip simulationsshould be regarded as less accurate.3.8 DebuggerFAST integrates a user-friendly assembly-level debugger. In debugging mode, there are com-mands to set a breakpoint, continue with the execution after a breakpoint, single-step theexecution, inspect and modify the values of registers or memory, etc. Although useful, thismethod is tedious. To eliminate the hazard of mapping statements in the source code to assem-bly instructions and vice versa, a source level debugger is a necessary tool. The GNU debugger,GDB, has been partly ported to the C64 architecture.3.9 Simulator internalsThe simulated C64 system starts running when one of the three main simulator functions iscalled. To maximize performance, each function speci�cally handles a C64 system consistingof a single processing core, a C64 chip fully populated, or a system built out of several nodes.Therefore, the decision is simply based on the system con�guration.In multinode simulations, the main function starts with a loop that iterates over all theactive threads on all the nodes. Each thread unit attempts to execute an instruction. For anew instruction, calls to routines that take care of instruction fetch, instruction decode, readingthe input operands from the register �le, and instruction execution, are invoked. If the threadunit is asleep, stalled waiting for an operand or due to a resource hazard, or waiting to committhe previous instruction, it does nothing but return.Back in the main function, the chip clock is moved forward, just enough to allow one threadunit, at least, to commit the current instruction. Once the clock is updated, the crossbar andmemory banks proceed to 
ush packets and memory operations that are to be performed bythis time.Then a second loop iterates over all the threads, regardless of their status. First, threadunits check whether an exception occurred, and if it did, the corresponding interrupt is servicedwith the appropriate context switch. If no interrupt was triggered, they try to commit the lastinstruction. At this stage, threads compare the chip clock with their own internal clock. When9



the execution on the chip reaches the time step at which a thread can commit an instruction,the results are put away. Otherwise, the thread waits.Finally, after the status of the A-switch is updated, execution returns to the beginning ofthe main loop. The process is repeated until thread units on every node execute the ALLSTOPinstruction in supervisor state.To simplify the communication among components of the simulator, the representation ofthe simulated C64 system is kept in a single multilevel data structure. At the chip level, itcontains information regarding thread units, 
oating point units, on-chip SRAM and o�-chipDRAM memories, I-caches, crossbar model, and A-switch. At the thread level, it accounts forgeneral, special purpose and accumulator registers, in addition to timing information as to whenthe value stored in a general purpose register will be available, the last decoded instruction,program counter, exception 
ags, thread status, and a third-level data structure with statisticscounters.3.10 Source �le descriptionsThe following list describes the functionality of the code �les of the FAST simulator.� args.[c,h]: De�nes and parses command line options.� aswitch.[c,h]: Simulation of the A-switch device.� cb.[c,h]: De�nes the data structure and methods for managing the circular bu�er, thememory area maintained by the A-switch to store incoming messages.� cc.[c,h]: Utility routine that compares two operands according to any of the 40 di�erentcondition codes.� common.[c,h]: A miscellaneous set of simple functions called from various places in thesimulator.� debug.[c,h]: Set of routines to read symbol information from the program executable.� disasm.[c,h]: De�nition of macros and functions to disassemble an instruction.� elf.[c,h]: Load a 64-bit ELF binary �le into the simulator's memory.� exception.[c,h]: Routines to account for exceptions and to perform the context switchonce an interrupt is to be processed.� fast.[c,h]: A set of function to have the command line parsed, the Cyclops-64 machineinitialized, the target program loaded before control is given to the main simulator functionin machine.� icache.[c,h]: Functions to implement the I-cache and calculate the delay caused when thepipeline stalls on a PIB or/and I-cache miss.10



� kernel.[c,h]: Holds routines to load and set up the C64 microkernel. The TNT runtimesystem library is split into a microkernel and a user library. The former executes in thesupervisor level while the latter is linked with the user's program and executes in the userlevel.� machine.[c,h]: Besides holding the main simulator function, this �le contains code tomanage all architectural resources and de�nes data structures to hold the status of threadunits, chips, etc.� machine.def.h: Contains a list of macros that de�ne each instruction, including the actionsto carry out during the read operands, execution and commit stages of the instructionpipeline. Similarly to the SimpleScalar DEF �le, this �le de�nes the C64 instruction set.� memmap.[c,h]: Support for the three-level memory hierarchy. It provides functions tocheck the address and generate an interrupt if appropriate, determine the memory bankand delay for a memory access.� memory.[c,h]: Contains functions to initialize, read from and write to the target memory.Scratchpad memory, interleaved memory and DRAM memory are implemented as a 
atspace that is accessed based on the translated address provided by memmap.� memqueue.[c,h]: Contains functions to model contention in FIFO and the crossbar net-work, and to account for the bandwidth of SRAM and DRAM memory banks.� spr.[c,h]: Utilities to handle instructions that move from/to special purpose registers.SPRs that are not in the actual architecture are used as the interface between the simulatorand the host machine to support system calls in the Cyclops-64 system.� stats.[c,h]: Holds routines used to produce statistic reports.� trace.[c,h]: Contains the functions that output the program execution trace to a �le.� types.h: De�nes the data types used to declare architecture-speci�c data structures suchas registers, the program counter, etc.4 FAST usageTo run a program foo.bin in the simulator, simply enter on the command line:cyclops64-linux-elf-sim [simulator_options] foo.bin [program_args]The command line can include simulator_options, which apply to the simulator only.Options placed after the program name are passed as arguments to the program.11



4.1 Command line optionsThe simulator will accept the following command line options:{aswitch or -a Perform cycle accurate simulation of the A-switch.{bw Account for the bandwidth limitation of the SRAM and DRAM memory banks. Auto-matically sets {crossbar option.{crossbar Model contention in the crossbar switch.{icache Model the instruction cache and program instruction bu�er. Automatically sets {crossbar and {bw.{kernel Run the program in supervisor state.{kernel-name=�lename Speci�es the name of the kernel �le. Automatically sets {kernel.{memory=s,i,d or -m Speci�es a memory con�guration, with given sizes for the scratchpadper thread (KB), interleaved SRAM(KB), and DRAM(MB), respectively.{node=x,y,z or -n Nodes in the system. For example, -n=2,3,4 represents a 24-node systemarranged in a 2�3�4 3D mesh.{output or -o Send stdout and stderr to a �le (one �le per node).{processor=# or -p Number of processors per chip.{polling-threads=# Number of polling threads.{quiet or -q Do not produce any output (default).{stats=# or -s Gather statistics starting at cycle #. -s alone means no statistics are gatheredunless this feature is turned on by the program.{spmd Start execution of user program in SPMD mode (default).{no-spmd or {spsd Start program execution running only one user thread.{summary Output an execution summary.{trace=# or -t Trace execution starting at cycle #. -t alone means no trace is generatedunless this feature is turned on by the program.{user Run program in user mode (default).{user-threads=# Reserve a number of user threads. These threads will not participate inthe SPMD execution. 12



{verbose or -v Produce verbose output. Multiple -v (-vv for instance) increases verbosity.This option controls the amount of information dumped to stdout and written into thetrace �les.{help Display a help list.{usage Display a short usage message.4.2 Kernel executionBy default, the simulator loads and executes a microkernel (included as part of the softwaredistribution), which is responsible for the execution of the user program starting from main. Ifneeded, a di�erent kernel �le can be speci�ed using the option --kernel-name.In some instances, a program needs to be run in supervisor state, i.e., without loading andexecuting the kernel �rst. This can be done by providing the option --kernel. In our regressiontestsuite, for instance, the interrupt handlers are tested using this procedure.While using the microkernel, the user needs to be aware that at least one thread is reservedfor kernel operations. Since the Cyclops-64 architecture does not support preemption, theruntime system can only control execution on thread units remotely, by means of the inter-thread interrupt. Therefore, having a thread unit in supervisor state ensures that a chip canbe brought to a predetermined status in the event that a program stops responding.4.3 SPMD executionAfter initialization, the microkernel automatically spawns all available threads, which then startthe execution of the user program from main. This is called execution in SPMD mode, andit is the default in the simulator. The user still has some control over the total number ofthreads spawned by the kernel. For instance, the simulator can be told to leave a number ofthread units idle so that the user program can assign them a function afterwards. This is donewith option --user-threads. Additionally, when inter-chip communication is expected to beintensive, the user can instruct the communication library to have a certain number of threadspolling the A-switch. This is done with option --polling-threads. The reason for having twoseparate options is that the latter leaves threads in supervisor state, which is a requirement tooperate the A-switch, whereas the former results in threads switching to problem or user state.Finally, execution in SPMD mode can be disabled with the option --no-spmd. In thisscenario, the microkernel spawns a single thread, so the user program needs to handle theremaining threads itself. In this mode, the option --polling-threads still applies.13
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Figure 4: Cyclops-64 software toolchain5 ExperienceThe goal of FAST is three-fold: FAST is designed for the purpose of architect design veri�cation(section 5.1). As part of the C64 toolchain, FAST provides the basic platform for early systemsoftware development and testing (section 5.2). FAST has been in use by other users forapplication development and testing. Although not cycle accurate, the timing informationprovided by the simulator has proven to be useful for performance estimation and applicationtuning as well (section 5.3).5.1 Design veri�cationFor the purpose of architecture design veri�cation, the execution trace generated by FASTis compared to the output of the VHDL simulator that reproduces the C64 at a gate level.Initial veri�cation of the C64 design was carried out following this procedure with a set of shortprograms intended to test the C64 instruction set architecture [11].The Cyclops-E is another cellular architecture design, target to the embedded market. The�rst hardware implementation of a single-chip Embedded Cyclops system was accomplishedwith DIMES, an FPGA-based multiprocessor emulation system [21]. Concurrently with thedevelopment of DIMES an earlier version of the FAST simulator, known as CeDIMES, was alsoimplemented [9]. Since this simulation tool is also binary-compatible, once the hardware emu-lation system was brought up, design veri�cation started immediately. A test suite consisting ofmore than 200 programs speci�cally designed to test the Cyclops-E ISA were run on the actualhardware platform and the results were compared to those produced by the simulator. Theinitial testing revealed a few bugs in the chip design, which were �xed by the chip architect.14



5.2 System software development5.2.1 ToolchainFAST is part of the software toolchain available for application development on the C64 plat-form, see Figure 4. Programs written in C or Fortran are compiled using a porting of theGCC-3.2.3 suite. The assembler and linker, which are based on binutils-2.11.2, along with thenecessary libraries, produce a 64-bit ELF executable that can then be loaded into FAST andexecuted. The C standard and math libraries are based in newlib-1.10.0. In addition, we wrotethe TNT runtime system and the CNET communication libraries to manage hardware resourcessuch as the thread units and the A-switch, respectively.5.2.2 Thread libraryWe reported our work in the design of a thread model for C64 that maps directly to thearchitecture assisted by a native thread runtime library, called TNT (or TiNy Threads) [8]. Inthe development, debugging and evaluation of the TNT library, FAST's capability to accuratelysimulate a large number of hardware threads with practical time has proven to be useful.5.2.3 Spin lockFor a thread library, it is important that all components are e�ciently implemented. In mul-tithreaded environments, especially for architectures like C64 with 150 threads on a chip, spinlock, as an indirect synchronization mechanism is known to be a key factor for scalability. Forthis reason, we conducted a study on spin lock algorithms on the C64 architecture. We imple-mented eight programs based on well known spin lock algorithms: three based on test-and-set,one on tickets, two on array queue, and two on list queue [15]. All programs consist of a shortcritical section (a single variable update) enclosed within calls to procedures that acquire andrelease a lock following the corresponding algorithm. The entire process (lock, critical section,unlock) is repeated a thousand times as part of a loop body. We run the programs on FASTwith memory contention enabled and measure the execution time as well as the overhead dueto contention in the crossbar. As expected, the results show list-based queuing locks are themost e�cient algorithms, see Figure 5(a). On C64, contrarily to most shared memory multipro-cessors, array-based queuing lock methods do not perform well, because there is no data cache.In other words, accesses to the array queue are as expensive as any memory operation seenin test-and-set based implementations. Indeed, test-and-set based algorithms with linear andexponential backo� perform better. Not surprisingly, list queue locks generate the least amountof memory tra�c on the crossbar, since threads spin locally on their own scratchpad memory,see Figure 5(b). That means they would interfere least with the normal execution of a programif it had additional memory accesses. As a result of this experience, the implementation ofmutexes in the TNT library is based on list queue locks.15
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(a) Execution time (in ms) (b) Execution delay (in ms)Figure 5: Spin lock programs5.2.4 Communication libraryWith the A-switch module, FAST can be used to simulate C64 multichip system con�gurations.With this feature, we developed a communication library implemented as several layers, eachaccessible through its own interface. At the lowest level, the packet transfer layer accessesthe A-switch directly, hiding all hardware details from layers above. A second layer, built ontop of the packet transfer layer, provides user-level remote memory read and write, inter-chipsynchronization primitives and remote procedure call mechanisms. Finally, we are in the processof porting the SHMEM library [17] to the C64 architecture based on the two previous layers.5.3 Application development and evaluationTo demonstrate FAST is functionally accurate, stable and hence, useful for software develop-ment and performance estimation, we write several benchmarks programs to con�rm that thetrends predicted by the simulator match to what the C64 architecture is capable of.5.3.1 GUPSTable Toy, which is also called Random Access benchmark, is an important benchmark includedin the HPC Challenge Benchmark Suite [1]. It uses a metric known as GUPS (Giga Updates PerSecond) to evaluate the random access capabilities of the memory system. In the context of thisexperience, we use Table Toy to verify that FAST re
ects the C64 memory system accurately.The kernel operations of Table Toy can be summarized as follows:1 tmp1 = stable[j]; (load)2 tmp2 = table[i]; (load)3 val = tmp2 xor tmp1; (xor)4 table[i] = val; (store) 16
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attens when the number ofthreads exceeds 16. In both cases, the maximum achievable memory bandwidth is not reached.It appears that the pseudo random numbers generated in Table Toy result in several threadsaccessing a memory bank at the same time. Hence, the bandwidth limitation is not due to thecrossbar network but to con
icts accessing the memory banks.To prove our hypothesis, we write three separate microbenchmarks with a deterministicaccess pattern to the memory banks. In our �rst microbenchmark, New Toy 1, each threadissues 3 store operations every 8 cycles. In addition, each thread targets one SRAM bankonly. Therefore, a processor issues 6 store operations every 8 cycles to the on-chip SRAMmemory. This represents 75% of the peak throughput of the crossbar which is indeed achievedbecause there are no con
icts as the memory bank addressed by each thread unit is di�erent,see Figure 7(a). The other microbenchmarks test the o�-chip DRAM memory subsystem indi�erent ways. In New Toy 2, each thread targets one of the 16 DRAM subbanks based onthe thread identi�er. Therefore, threads 0 and 16 access subbank 0, threads 1 and 17 accesssubbank 1, and so forth. A DRAM subbank can only service one request every 32 cycles, this is15 MUPS, but all 16 subbanks can service requests in parallel. Figure 7(b) con�rms the expectedresult. As long as no more than 16 threads are active, the DRAM throughput increases linearly,at a rate of 15 MUPS per thread, up to 250 MUPS. In New Toy 3, every thread executes 1617
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New Toy 3(a) GUPS from New Toy 1 (b) MUPS from New Toy 2 and 3)Figure 7: New Toys on a C64 nodeconsecutive stores every 22 cycles and each store targets one of the DRAM subbanks. Thatmeans a thread can issue operations to memory faster than the memory can handle. Figure 7(b)shows that for a small number of active threads, contention can be tolerated, and the crossbarand DRAM memory system deliver the peak throughput, 250 MUPS. Finally, as contentionincreases, performance drops.5.3.2 Matrix-matrix-multiplyAs an example of what an application developer can expect to learn using the FAST toolset,we hereby report a tuning experience using the matrix-matrix-multiply program for a problemsize of 1024 � 1024. Throughout this exercise we use the simulator's accurate time counter,the histograms �le with the instruction mix and the execution trace to determine the cause ofdelays and/or bottlenecks that may prevent the program from achieving higher performance.Our baseline is a straightforward sequential code with the matrices stored in DRAM. Theprogram that is compiled with -O3, achieves 16.7 MFLOPS. From the trace �le, we found thatthe main reasons for the low performance are the poor data re-usage and the long latencyto access DRAM. In order to improve the performance, we unroll the two outermost loops 4times each and manually prefetch data and re-schedule the instructions with the hints fromthe trace �les generated by FAST. In the resulting code, data is fed to the 
oating point unitin a pipelined manner such that all load latencies are hidden. This implementation achieves216.1 MFLOPS, a speedup of 13 compared to the baseline version. We also parallelized ourtuned MxM program to make use of multiple thread units. As shown in Figure 8, the curveof the parallel version scales almost linearly up to 32 threads and then 
ats out because of thebandwidth limitation. Afterwards, it even drops when memory contention becomes too high.We believe higher performance can be achieved by employing other techniques. However thisis not the purpose of this experiment. 18
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Figure 8: MFLOPS for the matrix-matrix-multiply with prefetching on a C64 node5.3.3 Multi-chip benchmarksTo verify the correctness (not the accuracy) of FAST's multichip simulation and the commu-nication libraries, we developed an assorted set of multichip multithreaded benchmarks. Itincludes implementations of matrix-matrix-multiply, 1D Laplace solver, heat conduction andSobel edge detection.6 Related workTo analyze and understand the impact of various architectural parameters and components aswell as study the application performance and get detailed statistics, both academia and indus-try developed a number of simulators. Simulation frameworks for microarchitecture researchand design exploration, such as SimpleScalar [7, 3], Microlib [18], Liberty [23], RSIM [12] andTurantdot [16], concentrate on accurately modeling the architecture design and normally theyare cycle accurate. FAST is a functional simulator since cycle accurate simulation would betoo slow for a system consisting of one or more C64 chips. There are also full system simu-lators capable of running commercial workloads on an unmodi�ed operating system, such asSIMOS [20], Simics [13] and PearPC [4]. A C64 compute engine is attached to a host system.The host system provides a familiar computing environment to application developers. FASTonly simulates the compute engine running a custom microkernel, whereas conventional OSservices are provided by the native OS running on the host system.Recently a new generation of simulators capable of simulating SMT and CMP architectureshave been developed: SMTSIM [22], SESC [19], GEMS [14], M5 [5] and Mambo [6]. It wouldappear the latter simulation frameworks as well as extensions of SimpleScalar, Simics, SimOSand Turantdot are normally used to simulate 2/4/8 way SMT/CMP processors under multipro-gramming, thread level speculation, and commercial workloads1. FAST is designed to simulateand model a CMP system consisting of several C64 nodes, each with up to 150 processing1Based on papers published in HPCA from 2000 to 2005.19



cores. However, the C64 architecture is designed for the purpose of running massively paral-lel applications, which deal with the complexity of scienti�c and engineering multithreadingworkloads.Probably, the closest related work to FAST is the Cyclops-32 simulator. These simulators areas similar as the architectures they simulate. However, there are signi�cant di�erences as well.For instance, FAST detects dependences and con
icts as instructions are executed. Therefore,it directly produces performance estimates. On the other hand, the C32 simulator does nothave timing information. Performance estimates are generated by two other performance tools(a cache simulator and a trace analyzer) that post-process the execution trace produced by thesimulator [2].7 SummaryThis paper presents FAST, a functionally accurate simulation toolset for the IBM Cyclops-64 architecture that is fast, 
exible and e�cient. To the best of our knowledge, it is theonly simulation tool capable of simulating multichip multithreaded cellular architectures withreasonable accuracy and practical speed. We report some preliminary results and illustrate,through case studies, how the FAST tool chain accomplishes its purpose of architecture designveri�cation as well as early system and application software development and testing.As future work, we plan to increase the amount of pro�le information FAST produces, in-cluding text and data symbols, and to incorporate integer counters to facilitate the performanceanalysis of multithreaded programs.AcknowledgmentsWe acknowledge support from IBM, in particular, Monty Denneau and Henry Warren. Wethank ETI for support of this work. We also acknowledge our government sponsors. Finally,we also thank many CAPSL members for helpful discussions.References[1] HPC challenge benchmark. URL http://icl.cs.utk.edu/hpcc.[2] G. S. Alm�asi, C. Ca�scaval, J. G. Casta~nos, M. Denneau, W. Donath, M. Eleftheriou,M. Giampapa, H. Ho, D. Lieber, J. E. Moreira, D. Newns, M. Snir, and H. S. Warren, Jr.Demonstrating the scalability of a molecular dynamics application on a peta
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