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Abstract

In this paper we present a new framework for analysis and optimization of shared memory

parallel programs. Our framework is based on two key concepts: (1) concurrency relation

and (2) isolation semantics. Two statements are said to be concurrent if there is an execution

in which two threads can execute the two statements simultaneously. Isolation semantics

essentially treats critical sections as being isolated or atomic. The main contributions of

this paper are as follows:

• We present a simple algorithm for computing concurrency relation among two or

more statements in a parallel program that includes cobegin/coend, parallel for,

barrier, post/wait, and critical sections.

• We propose a new framework for solving data flow problems by reifying two key

concepts: concurrency relation and isolation semantics for critical sections. As an

example we solve the pointer analysis problem using our framework To the best of

our knowledge ours is the first work that directly incorporates isolation semantics for

solving data flow analysis.

• We formulate the lock assignment problem for assigning locks to critical sections.

For a special class of non-interfering critical sections, we will show that the optimal

lock assignment problem can be reduced to a graph coloring problem. In general, we

conjecture that the optimal lock assignment problem is NP-hard. We present a simple

algorithm that tries to assign the minimal set of locks to critical sections without

reducing the fine-grained parallelism. To the best of our knowledge, ours is the first

work that formulates and solves the problem of lock assignment for critical sections.

• To study the feasibility and validity of our approach we implemented lock assign-

ment and pointer analysis using the Omni [33] OpenMP Compiler. We present some

preliminary experimental results of our implementation.
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1 Introduction

OpenMP [28] is an open standard for writing portable and scalable shared memory parallel ap-

plications. Analysis and optimization of such shared memory parallel programs is challenging.

For instance, OpenMP programs often use a single global lock for all critical sections. Although

the global lock for critical sections provides a simpler programming model, it has severe perfor-

mance penalty. One of the key problem that we will solve in this paper is the lock assignment

problem: Given a set of critical sections, find the minimum number of locks that are needed to

control the critical sections without reducing parallelism among critical sections. In order to

solve the lock assignment problem, we require an understanding of data interferences among

critical sections. Now in the presence of concurrency, computing data interferences among

critical sections is difficult and requires data flow analysis. The second key problem that we

will address in this paper is data flow analysis for multithreaded programs. We propose a new

framework for solving data flow problems by reifying two key concepts: concurrency relation

and isolation semantics for critical sections. We show how to extend the classical sequential

“meet-over-all-paths” data flow analysis to parallel programs by reifying these two concepts.

We illustrate our parallel program analysis framework for pointer analysis and use the result

for solving the problem of lock assignment for critical sections.

1.1 Motivation

Consider the example parallel program shown in Figure 1. We use OpenMP/HPF like nota-

tion for expressing parallelism and synchronization. The program begins execution as a single

(parent) thread. When a parallel region (that is, cobegin) is encountered, the parent (master)

thread generates a team of threads to execute the enclosed code sections. We will assume that

each section is executed by a single thread. A critical section in the code enforces the mu-

tual exclusion among multiple threads. It specifies a “structured block” that can be executed

exclusively by one thread at any time. When the team of threads complete, they synchronize

and terminate at coend, leaving only the parent thread to proceed. In our framework we use

two key concepts: concurrency relation and isolation semantics.

• Concurrency relation will allow us to determine when two or more statements are po-

tentially concurrent. In our framework we do not introduce any explicit ordering among

critical sections in different parallel sections. Figure 1(b) illustrates the parallel control

flow graph (PCFG) for the example program shown in Figure 1(a). For the example

program we can use simple graph reachability to determine concurrency relation. Con-

sider the two statements 5 and 33, since the two statements are in two different parallel

sections, and there is no path from 5 to 33 or from 33 to 5, we consider them to be con-

current.1 Now consider the statements 8 and 18, the two statements are also concurrent,

and since they are in critical sections they are also mutually exclusive. For now let us

assume that all critical sections are controlled by the same “global lock”. Notice that two

1Barrier and post/wait constructs can complicate concurrency relation.
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CS2

CS2 CS3

CS1

33: print

{w, z}

{x, y}

{x, y, z, w}

{x, y, z, w}

CS1

CS2 CS3

{w, z}

{x, y}{x, y, z, w}

z = 5

w = 6

lock

w = z

t = w

z = t

unlock

print(x,y,z,w)

lock

x = 10

y = 20

t = x 

x = y

y = t

unlock

print(x,y,z,w)

print(x,y,z,w)

coend

cobegin

x=1,y=2,z=3,w=4

lock

t = x 

y = t

t = w

w = z

z = t

unlock

x = y

11: print {1, 2, 10, 20} {3, 4, 5, 6}{3, 4, 5, 6}

31: print

33: print

{20}

{2, 10, 20}

{10}

{1, 10, 20}

{3, 4, 5, 6}

{3, 4, 5, 6}

{3, 4, 5, 6}

{3, 4, 5, 6}

x y z w

0:    main() {
1:       int x=1, y=2, z=3, w=4; //shared
2:       cobegin
3:       section:
4:            int t;   // private
5:            z = 5;

7:            critical {  // CS1
6:            w = 6;

9:                 w = z;
10:               z = t;
11:               print(x, y, z, w);
12:          }
13:      section:

8:                 t = w;

14:          int t;   // private
15:          critical {  // CS2
16:               t = x;
17:               x = y;
18:               y = t;
19:               t = w;
20:               w = z;
21:               z = t;
22:          }
23:      section:
24:          int t;  // private
25:          critical { // CS3
26:               x = 10;
27:               y = 20;
28:               t = x;
29:               x = y;
30:               y = t;
31:               print(x, y, z, w);
32:          }
33:          print(x, y, z, w);
35:      coend
35:   }

{1, 2, 10, 20}

(a)

(b)

(c)

(d)

(e)

5

6

8

9

10

11

23

26

27

28

29

30

31

33

1

16

17

18

19

20

21

CS3

CS1

Figure 1: (a) Example program (b) PCFG (c) Concurrency graph (d) Concurrency graph with

only critical sections, (e) Possible values that can be printed out

statements are mutually exclusive only if they are also concurrent. Figure 1(c) illustrates

the concurrency relation, represented as a concurrency graph, for the example program in

which we have collapsed all statements in a critical section into one node.

• The second key concept that we will use in our framework is the atomicity of critical

sections: the result of an execution of a critical section is the same as if the execution

happens as a single, indivisible unit with respect to all activities of other atomic opera-

tions. Therefore critical sections have a transaction-like semantics [12] in which all other

(concurrent) threads either observe all of the execution of the critical section or none of

it. We will call the resulting semantics for critical sections as isolation semantics.

Data Flow Analysis: To illustrate how we use concurrency information and isolation seman-

tics during data flow analysis, consider the reaching definition data flow problem (we discuss

pointer analysis problem later in the paper). The definition z = 5 at line 5 can reach the print

statement at line 33, and that is because statement 5 and 33 are concurrent. Now consider the
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statements inside the critical section CS3. The only definitions of x and y that can reach the

print statement at line 31 are those that are defined inside the critical section at 26 and 27.

This is because of isolation semantics of the critical section. Figure 1(e) illustrates all possible

values of x, y, z, and w that can be printed at the corresponding print statements. Therefore the

reaching definition problem consists of propagating definition points over PCFG and at each

program point we include the reaching definition information from concurrent statements, and

we handle data flow information inside a critical section in isolation (see Section 4 for details).

Lock Assignment Next we briefly show how to use concurrency information for lock assign-

ment. Once again consider the three critical sections shown in Figure 1. If one uses a single

global lock for all three critical sections then we unnecessarily reduce parallelism between the two

critical sections CS1 and CS3. That is because there is no data that is common between these

two critical sections, and hence can be executed concurrently and without mutual exclusion.

Figure 1(d) shows the concurrency graph with only critical sections. Using our lock assignment

algorithm we assign the locks to critical section as follows: CS1 = {0}, CS2 = {0, 1}, and

CS3 = {1}. Notice that we have assigned a set of locks to CS2, we will discuss the semantics

such lock sets later in the paper. In this paper we will formulate lock assignment problem and

present an algorithm that answers the following question: what is the minimum number of

locks that can be assigned to critical sections without reducing parallelism?

1.2 Contribution

To summarize the main contribution of this paper are as follows:

• We present a simple technique for computing concurrency relation among two or more

statements in a parallel program that includes cobegin/coend, parallel for, barrier,

post/wait, and critical sections. We use the result of our concurrency analysis for all

further analysis and optimization, including pointer analysis and lock assignment.

• We propose a new framework for solving data flow problems by reifying two key concepts:

concurrency relation and isolation semantics for critical sections. We show how to extend

the classical sequential “meet-over-all-paths” data flow analysis to parallel programs by

reifying these two concepts. As an example we solve the pointer analysis problem using our

framework. To the best of our knowledge ours is the first work that directly incorporates

isolation semantics for solving data flow problems.

• We formulate the lock assignment problem for assigning locks to critical sections. For a

special class of non-interfering critical sections, we will show that optimal lock assignment

problem can be reduced to a graph coloring problem. In general, we conjecture that

optimal lock assignment problem is NP-hard. We present a simple algorithm that tries

to assign the minimal set of locks to critical sections without reducing the fine-grained

parallelism. To the best of our knowledge, ours is the first work that formulates and solves

the problem of lock assignment for critical sections.
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• To study the feasibility and validity of our approach we implemented lock assignment and

pointer analysis using the Omni [33] OpenMP Compiler. We present some preliminary

experimental results of our implementation.

Organization The rest of this paper is organized as follows. In Section 2 we introduce a simple

language called µSMP for the purpose of illustrating our framework. In that section we also

briefly discuss isolation semantics for critical section. Concurrency Analysis, pointer analysis

and lock assignment are presented in Section 3, Section 4 and section 5, respectively. In Section

6 we discuss synchronization anomalies that can occur due to the incorrect placement of barriers

and post/wait constructs. In Section 7 we present empirical results using OpenMP model to

validate our approach. In Section 8 we discuss related work and conclude in Section 9.

2 Programming Model

In this section we introduce a simple language µSMP for the purpose of illustrating our frame-

work. A µSMP program is a structured programs and does not contain gotos, breaks, and

continue statements. The language µSMP follows a nested fork-join execution model. The

program begins execution as a single thread called the parent thread (also called the master

thread). When a parallel region is encountered, the parent (master) thread generates a team

of threads (child threads) to execute the enclosed code sections. When they complete, they

synchronize and terminate, leaving only the parent thread to proceed.

Parallelism is expressed using two parallel constructs: parallel for and cobegin/coend.

When control reaches a parallel for construct, all iterations of the loop body are started and

proceed concurrently and asynchronously, each by one thread. A cobegin/coend parallel region

consists of a set of sections, and each section can itself have other cobegin/coend regions or

parallel for regions. Each section in a cobegin/coend region is executed concurrently and

asynchronously with other sections in the region. To simplify the presentation, in µSMP we

restrict the class of programs that support only structured control flows for parallel for and

cobegin/coend — one cannot jump in and out of these parallel constructs arbitrarily.

There are three synchronization constructs in µSMP : barrier, post/wait, and critical

sections. The barrier construct enforces a coarse-grained, explicit ordering among a team of

threads. When a thread encounters a barrier, it waits until the whole team of threads reach

the same (barrier) point. After that, each thread begins executing the code (after the barrier)

concurrently. The barrier semantics requires that either all threads in a team or none of them

executes the barrier. A barrier binds to the closest enclosing cobegin/coend or parallel

for region. One or more barriers that bind to the same parallel region are considered to be

the same barrier (see Section 6). We also assume that the end of a parallel region contains an

implicit barrier in which all members of the region team terminate, except for the master thread,

which continues with the execution. The post/wait constructs can be used to implement the

producer/consumer synchronization. When a consumer thread executes a wait, it waits until

the corresponding producer thread executes a post.
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A critical section enforces the mutual exclusion among multiple threads. It specifies a

“structured block” that can be executed exclusively by one thread at any time. In this paper

we restrict that critical sections cannot contain any parallel and synchronization constructs.

We also assume that all critical sections are controlled by a global lock, and support atomicity:

the result of an execution of a critical section is the same as if the execution happens as a

single, indivisible unit with respect to all activities of other atomic operations. An operational

semantics of a critical section execution can be described as follows. First, the executing thread

needs to acquire the lock. The successful acquisition of a lock will begin the execution of the

critical section, making a copy of the shared data it needs to access into the private space of the

invoking thread (referred to as copy-in). Then, it starts the operations in the structured block

and all memory accesses are made to the private copy of the shared data. Finally, when the

execution of the code is finished, the private copy of the shared data will be copied back to the

shared address space (referred to as copy-out). Upon completion of the write back operations,

it releases the lock and the execution of the critical section terminates.

Note that a critical section has a transaction-like isolation semantics [12]: all other concur-

rent threads either observe all of the execution of the critical section or none of it. In other

words, the execution of a critical section will not affect or be affected by any other concurrent

accesses in any other atomic section instances. We will rely on this isolation semantics for all

of our data flow analysis and optimization. In the context of this paper, we assume that mem-

ory coherence property is observed on the shared memory: i.e. reads and writes from different

threads to the same memory location (including those incurred by copy-in and copy-out actions

in the critical section execution) should appear in a total order. Based on memory coherence,

a sequential consistent (SC) memory model [23] or its variations (SC-derived memory models:

e.g. weak consistency, release consistency, etc. [15, 7, 13]) can be implemented.

3 Concurrency Analysis

Concurrency analysis is a technique for determining whether two or more statements in a multi-

threaded program can potentially be executed either concurrently or mutually exclusively. Syn-

chronization constraints and mutual exclusion constraints among statements make the problem

more difficult. In general, precise interprocedural concurrency analysis in the presence of syn-

chronization constraints is undecidable [34], and a precise intraprocedural concurrency analysis

is NP-hard [41]

3.1 Parallel Control Flow Graph

The set of statements in a µSMP program and the control flow among them form a graph,

called the parallel control flow graph (PCFG). Since a µSMP program is a structured program,

the corresponding PCFG is a structured graph. Figure 2 illustrates how to construct PCFG for

each program construct in µSMP language. We insert control flow edges from a cobegin node

to the first statement node of each of the parallel sections of the corresponding parallel region,
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coend

parallel for(...){

}
body’body

cobegin

    body

(a) Parallel for

body2

cobegin

coend

cobegin
    section:

    section:
body1 body2body1

(b) Cobegin/Coend

critical{

    body
}

body

unlock

lock

(c) Critical

Section

body1

barrier

body1

body2

body2

barrier

(d) Barrier

s1

s2

s1;

s2

(e)

Statements

wait(v) post(v) wait(v)
thread 1 thread2

post(v)

(f) Post/Wait

body

    body
}

switch
mergefor (...){

(g) Sequential For Loop

body2

    body1
}
else{
    body2
}

switch

merge

body1

if(cond){

(h) Conditional Switch

Figure 2: PCFG Construction

and we also insert control flow edges from each of the last statement node in the corresponding

parallel section to the coend node. For parallel for we clone the body of the parallel for

once and treat the body and its clone as two parallel sections of a cobegin/coend parallel region.

Therefore we represent parallel for as in cobegin/coend parallel region. We interpret the

body and its clone as being two different iterations of the parallel loop, and for our analysis

purpose we do not care what those two iterations are. We insert a control flow edge from a post

node to a wait node that are parameterized with the same name. We also insert a control flow

edge from a statement node to another statement node if the corresponding statements follow

one another. We treat barriers as any other sequential statement. We represent sequential

loops, conditional, and simple statements as is traditionally done in the sequential programs.

Figure 3 illustrates an example program and its PCFG.

Since µSMP contains only structured constructs, we can organize the nodes in a PCFG

into a set of nested regions and represent them as a tree. In this paper we are only interested in

the following three kinds of regions (1) parallel region, (2) section region, and (3) critical region.

We will assume that the outer most region in a function is a cobegin/cobegin region with a

single section. Appendix gives a simple algorithm to construct a region tree. Figure 3(c) gives

region tree for the PCFG shown in Figure 3(a).
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(c)

    int x, y, z, u, w; //shared

    section: // section 1
        critical {  // CS1
            x ++;
            y ++;

    cobegin

        }
    section: // section 2
        wait (e);
        critical {  // CS2
            x ++;
            y ++;
            z ++;
        }
    section: // section 3
        critical {  // CS5
            u ++;
        }
        critical {  // CS4
            y ++;
            w ++;
        }
        post (e);
        critical {  // CS3
            z ++;
            w ++;
            u ++;
        }
    coend
}

wait(e)

CS2

CS1 CS5

CS4

post(e)

CS3

cobegin

coend

x ++ y ++ 

CS1

section 1

x ++ y ++ z ++ 

CS2wait(e)

section 2

CS5

u ++

CS4

y ++ w ++ z ++ w ++ u ++

CS3post(e)

section 3

parallel

root

CS1

CS2 CS3

CS4CS5

{x, y}

{x, y, z} {u, w, z}

{u} {y, w}

(a) (b) (d)

foo() {

Figure 3: (a) Example programs (b) PCFG (c) Region tree (d) Concurrency graph

3.2 Barriers and Epochs

We introduce the notion of epochs that will help simplify concurrency analysis in the presence

of barriers. The barrier semantics requires that either all threads in a team executes a barrier or

none of them executes the barrier. In a µSMP program the set of barriers in a parallel region

divide the parallel region into a set of “epochs” or “phases”, and each epoch in the parallel

region will be executed by all members of the team that belong to the same parallel region.

Consider the example program and its PCFG shown in Figure 4. Recall that we clone the

body of parallel for. The six barriers divides the parallel region in to three epochs: epoch

1 is made of S1, S2, S1’, and S2’, epoch 2 is made of S3 and S3’ and epoch 3 is made of

statement S4 and S4’. In Section 6 we give a barrier analysis technique for computing epochs.

When computing the epochs for a region we consider the inner nested parallel and critical

region to be like a single non-barrier statement. We also assume that there is an implicit

barrier at the end of a parallel region. Also, if a parallel region is inside a sequential loop, the

two iterations of the sequential loop will induce two different epoch sets of the parallel region.

In µSMP one can easily construct programs in which barriers are not correctly placed. Our

epoch analysis, described in Section 6, can also identify incorrectly placed barrier and post/wait

synchronization. For now let us assume programs are correct with respect to barrier semantics.

Notice that if two statements belong to the different epochs, they cannot be concurrent.
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(a)

switch

barrier

S1

barrier

S2

merge

S3

barrier

S4

switch

barrier

S1’

barrier

S2’

merge

S3’

barrier

S4’

cobegin

coend

parallel for (. . .){
      if(cond) {
            S1;
            barrier;
      }
      else {
            S2;
            barrier;
      }
      S3;
      barrier;
      S4;
}

(b)

Figure 4: Example of Epochs

3.3 Concurrency Relation

Two statements s1 and s2 in a program P is said to be concurrent if there exists an execution

of P such that there are two threads T1 and T2 than can either execute s1 and s2 simultane-

ously or mutually exclusively. Recall that in our PCFG we do not introduce explicit control

flow edges between critical sections in different parallel regions. Novillo et al., for instance,

use such explicit synchronization edges across critical section [31]. Such explicit control edges

between critical sections can miss some concurrency relation. In our work we use an aux-

iliary representation, called the concurrency relation, to capture the concurrency information.

The corresponding concurrency graph consists of a set of nodes representing statements and

undirected edges among nodes representing concurrency relation among the statements. There

is an edge from statement node s to another statement node t if the corresponding statements

s and t can either be executed simultaneously or mutually exclusively.

Proposition 3.1 Let s and t be any two statements in a PCFG. We say that s and t are

concurrent, denoted as Conc(s, t) if: (1) s and t belong to two different parallel sections of a

parallel region, (2) s and t are in the same epoch of the parallel region, and (3) there is no path

from s to t or from t to s.

The first condition is straight forward — if the two statements s and t are in the same

parallel section then they cannot be concurrent. The second condition is needed because two

epochs of a parallel region cannot be executed concurrently, and last condition is needed because

of post/wait control flow edges. It is important to remember that our concurrency relation

obtained using the above proposition is conservative: Conc(s, t) implies that there exists an

execution of the program so that two threads can execute s and t concurrently or mutually

exclusively. It is possible, due to resource constraint or scheduling constraints, that s and t can

be ordered (see also next section). It is important to note that Conc(s, t) is not transitive but

is symmetric. Sometimes we will use the notation Conc(s) to denote the set of all statements
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(nodes) that are concurrent with s. Note that r ∈ Conc(s) if and only if Conc(r, s).

3.4 Discussion

So far we have discussed intraprocedural concurrency analysis. Now consider the following

simple program.

bar() { foo(int *x, int *y) {

cobegin S1 ;

section: S2 ;

foo(p, q) ; }

section:

foo(a, a) ;

coend

}

Our concurrency analysis for foo() based on Proposition 3.1 will conclude that S1 and S2 are

not concurrent. The conclusion is actually not true in the context of interprocedural analysis,

because foo() is concurrently invoked twice from the parallel region, and S1 of first invocation

is concurrent with S2 of the second invocation. In general, computing interprocedural context

sensitive concurrency information is undecidable [34]. We can handle concurrency relation in

such a situation in two ways: (1) inline all functions at the expense of exponential blowup

(assuming recursive functions are not allowed) and apply Proposition 3.1, or (2) conservatively

assume two statements s1 and s2 in a function f are concurrent if f can be invoked either

directly or indirectly from a parallel region.

4 Pointer Analysis with Isolation Semantics

In Section 1 we briefly discussed the reaching definition problem. In this section we will discuss

the pointer analysis problem and show how to incorporate concurrency relation and isolation

semantics into the corresponding data flow equations. Pointer analysis consists of computing

points-to information at each program point. Given two program variables p and q, we say that

p points-to q, denoted as p → q, if p can contain the address of q. For heap allocated objects,

we say that p can point-to an object O if p can contain the address of O. The address of O is

not known at compile-time and one typically assigns compile-time address to heap objects. A

points-to graph consists of a set of nodes denoting either program variables, objects, or object

fields and edges denoting the points-to relations. We need pointer information to improve the

precision of lock assignment.

Pointer analysis for parallel programs introduce additional complexity due to interference

among multiple threads. Rugina and Rinard [36] proposed a interprocedural, flow-sensitive,
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int *p, *q, a, b,c ;

void Foo() {

1: cobegin

2: section:

3: p = &a ;

4: q = &c ;

5: p = q ;

6: section:

7: p = &b ;

8: p = &d ;

9: coend ;

}

(a)

int *p, *q, a, b, c ;

void Foo() {

1: cobegin

2: section:

3: critical{ // CS1

4: p = &a ;

5: q = &c ;

6: p = q ;

7: }

8: section:

9 critical { // CS2

10: p = &b ;

11: }

12: p = &d ;

13: coend ;

}

(b)

Figure 5: Example programs with and with out critical sections for pointer analysis

and context-sensitive pointer analysis algorithm for structured parallel programs, which gen-

erates a points-to graph at each program point, and takes the interference information into

account when computing the effect of each statement on the points-to graph for the next pro-

gram point. Rugina and Rinard, in their formalism, ignore synchronization constructs such as

locks, semaphores and critical sections, and so we cannot directly apply their technique for our

purpose.

4.1 Intraprocedural Analysis

In sequential programs the points-to information at node n depends only on what is generated

and killed at the node and the incoming points-to information at node n. In the context

of parallel programs, we also have to consider the points-to information generated by nodes

m ∈ Conc(n). We use the result of concurrency analysis to handle the points-to information

from concurrent nodes. To simplify the presentation we only consider the following kinds of

statements that affect the pointer analysis and present transfer function for each kind: (1)

p = &q, (2) p = q, (3) p = ∗q, and (4) ∗p = q. Let PointsTo(p) = {r|p → r}, the points-to

set of p at a program point. Consider the example shown in Figure 5(a). Since statement 7 is

concurrent with statements 3,4, and 5, p → b cannot be killed by any of these statement. On

the other hand the pointer assignment, p = q at statement 5 can kill p → a that is generated

at statement 3. Therefore, the points-to set after statement 5 is {p → c, p → b}.

Now let us slightly modify the program and introduce critical sections, which shown in

Figure 5(b). In this case the pointer p → b and p → d can be killed within the critical

10



section CS1 defined at 3, but not outside of the critical section. This is because of the isolation

semantics of the critical section. Therefore the points-to set after statement 5 and within

critical section is {p → c}. On the other hand the points-to set after the critical section is

{p → c, p → b, p → d}. Similarly, the points-to after critical section CS2 is {p → c, p → b}.

Recall that the memory model for critical sections follows isolation semantics (see Section 2).

We incorporate the isolation semantics in our data flow analysis. The classical Kildall data flow

analysis of sequential programs consists of two equations [20].

Out(s) = (In(s) − Kill(s)) ∪ Gen(s) (1)

In(s) =
⋃

r∈Pred(s)

Out(r) (2)

where Pred(s) denote the set of predecessor statements in the CFG. Let Conc(s) be the

set of statements that are concurrent with s. Let CS denote the set of statements in a critical

section (that is, a critical region). First let us define the following set.

F (s) =
⋃

r∈Conc(s) and r 6=CS

Gen(r) ∪

⋃

r∈Conc(s) and r=CS

Out(r)

F (s) is what we will add to classical data flow equation defined above. The first part of of F (s)

deals with concurrency relation for non critical sections and the second part deals with critical

sections.

Case 1: Inside a Critical Section Let s be a statement inside a critical section.

Out(s) = (In(s) − Kill(s)) ∪ Gen(s) (3)

In(s) =
⋃

r∈Pred(s)

Out(r) (4)

If s is the first statement inside the critical section, then In(s) is the points-to set at the

beginning of the critical section. Notice once again that we assume isolation semantics

for critical section. Therefore none of the concurrent statements can affect any pointer

information within a critical section.

Case 2: Critical Section With respect to statements outside the critical section, we treat

critical section as being atomic, and again due to isolation semantics of our memory

model. Let s be a critical section. The points-to set at the end of the critical section is

essentially the output set of the last statement inside the critical section. The data flow

equations for a critical section s are as follows:.

Out(s) = (In(s) − Kill(s)) ∪ Gen(s) (5)

In(s) =
⋃

r∈Pred(s)

Out(r) ∪ F (s) (6)
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Case 3: Non-Critical Section The data flow equations for a statement s that is not in a

critical section are as follows:

Out(s) = (In(s) − Kill(s)) ∪ Gen(s) ∪ F (s) (7)

In(s) =
⋃

r∈Pred(s)

Out(r) ∪ F (s) (8)

Notice that in the above three cases if F (s) is empty we get the classical sequential data

flow equations. The above data flow equations can be applied to any monotone data flow

problems. For pointer analysis we define the Gen and the Kill for the following statements.

Let K(s) = PointsTo(p) prior to the execution (analysis) of s.

• [s : p = &q] The Gen(s) = (p → q), and Kill(s) = K(s).

• [s : p = q] Let Q = PointsTo(q) then Gen(s) = {(p → t)|t ∈ Q} and the Kill(s) = K(s).

• [s : p = ∗q] Let Q = PointsTo(q) and T =
⋃

t∈Q PointsTo(t). Gen(s) = {(p → u)|u ∈ T}

and Kill(s) = K(s).

• [s : ∗p = q] Let P = PointsTo(p), T =
⋃

t∈P PointsTo(t), and Q = PointsTo(q).

Gen(s) = {(t → q)|t ∈ T and q ∈ Q} and Kill(s) = ∅.

To summarize, our equations for pointer analysis rely on two important properties: (1)

isolation semantics for critical sections and (2) concurrency information. Our equations are

a simple extension to the classical Kildall’s equations for sequential programs. The above

equations are general data flow equations that can be applied to other data flow problems.

4.2 Discussion

In this paper we have made a simplified assumption that computing concurrency relation is

independent of data flow in the program. This assumption is typically not valid in some

parallel programming model. For instance, we use name-based mechanism to link post(e)

and wait(e). Often if the parameter to post/wait is an object, we may need to perform

alias analysis to capture the control flow from post(a) to wait(b). The interaction between

concurrency relation and aliasing is more prevalent in object-oriented programming model, such

as Java. We will not go into the details of such interaction in this paper.

We use the result of pointer analysis to identify the set of locations that can be accessed

inside a critical section. We define location set LS(s) for a statement s as a set of locations that

can be either read or written by a statement. We simply follow Ghiya and Hendren approach

for computing the location sets for each statement [14]. For critical section, we take the union

of location set of each statement inside the critical section, and denote the location set of a

critical section cs as LS(cs). We will use the location set during lock assignment to determine

the data interference among critical sections.
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5 Lock Assignment

OpenMP requires that only one critical section is allowed to execute at one time anywhere in

the program, and therefore the corresponding critical section lock is a global lock. A single

global lock can drastically reduce the parallelism. Two concurrent critical sections that do

not access the same set of locations can be assigned two different locks. In this section we

present a solution to lock assignment. We show that for a class of programs in which there

are no data interference among critical section, the problem of lock assignment can be reduced

to graph coloring problem, and so the optimal solution for such programs is NP-hard. For

general programs where there are data interference among critical section, we conjecture that

the optimal solution is also NP-hard. We present a simple heuristic method for assigning locks

to critical sections.

5.1 Non-interference Critical Section

Consider a class of programs Pni that contain only non-interfering critical sections. Two con-

current critical sections cs1 and cs2 are said to be non-interfering if they do not access the

same set of locations, that is, LS(cs1) ∩ LS(cs2) = ∅. Note that if two critical sections are not

concurrent in Pni then they could have overlapping location sets. Ideally we should assign two

different locks to any two concurrent critical sections in Pni. Otherwise we are unnecessarily

constraining the parallelism between those two concurrent critical sections.

[ 1 ]

CS1 CS4CS5

CS2 CS3

[ 2 ]

[ 1 ]

{x}

{y, w} {u}

{w}{u}

[ 0 ][ 1 ]

(a)

[ 1 ]

CS1 CS4CS5

CS2 CS3

{u} {x, y} {y, w}

{x, y, z} {u, w, z}

[ 0 ]

[ 0, 1] [ 1 ]

[ 0 ]

(b)

Figure 6: An example of (a) Non-interfering concurrency graph and (b) General concurrency

graph. In the figure [ ] denotes lock assignment and { } denote location set.

We call the corresponding concurrency graphs of such a class of non-interfering programs

as non-interfering concurrency graphs (NICG). Figure 6(a) illustrates an example of NICG. It

is important to note that we cannot eliminate a critical section even if they do not interfere

with any other critical sections, since a critical section may be concurrent to itself. This can

happen if a critical section is inside a method Foo() and the method Foo() is invoked multiple

times from different parallel sections. Now one can define a “measure of parallelism” among

critical sections in a NICG as the number of edges in the graph. Given this definition we can

state the optimal lock assignment problem for NICG as follows: Find the minimum number of

locks that can be assigned to each critical section in NICG such that if there is an edge between
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two critical sections cs1 and cs2 then they both get different locks. One can immediately see

that the above problem is equivalent to the classical graph coloring problem — given a NICG

what is the minimum number of colors (i.e., locks) that are needed so that if there is an edge

(i.e., concurrency) between cs1 and cs2 the two nodes (critical sections) get different colors (i.e.,

locks). We can immediately see that even for this special class of programs which contain only

non-interfering critical sections, the problem of optimal lock assignment is NP-hard.2

5.2 General Critical Sections

For concurrency graphs with interfering critical sections, the problem of optimal lock assignment

can be hard. Consider the concurrency graph with interfering location sets shown in Figure 6(b).

One solution to the lock assignment for the critical section is shown in Figure 6(b), and the

solution is a minimal lock assignment, which uses two locks. Notice that we have assigned the

same lock (lock 1) to CS5 and to CS2 and CS3, although there is no common data set between

CS5 and CS2 or between CS5 and CS3. This should be fine since CS5 is not concurrent with

either CS2 or with CS3. For general concurrency graph, a critical section may be assigned more

than one locks, for example, CS2 in Figure 6(b). The semantics of such lock set in a critical

section is as follows: Before a thread can execute a critical section it has to acquire all locks

in the lock set, and once finished it has to release all locks in the lock set.3 Given the notion

of lock set for critical section, we can state the optimal lock assignment problem for general

concurrency graph as follows: Find the minimum number of locks that are needed so that (1)

two concurrent critical sections that have some common locks in their lock set only if the two

critical sections interfere, and (2) two concurrent critical sections get different lock set only if

they do not interfer. We conjecture that the stated optimal lock assignment problem is also

NP-hard.4

0

y z

x

0 1

(a)

[ 2 ]

CS1 CS4CS5

CS2 CS3

{u}

[ 0 ]

{y, w}

[ 0 ]

{x, y}

{x, y, z}

[ 0, 1 ]

{u, w, z}

[ 1 ]

(b)

Figure 7: Location constrain graph and suboptimal lock assignment

Next we present a simple algorithm for computing lock assignment for the set of critical

sections in a µSMP program. First let us introduce some notations. Let cs0, cs1, . . . csn be

2For certain classes of graphs, such as interval graphs, graph coloring problem can be solved in polynomial

time. We conjecture that NICG do not fall in those categories of graphs.
3The concept of lock set has been used in the context of concurrency control in transactional processing, see

http://www.iona.com/support/docs/manuals/orbix /33/html/orbixots33 pguide/concurrent.html.
4We believe the proof should be straightforward reduction of a known NP-hard problems, such as 3-SAT.
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the set of critical sections. Let LS(csi) be the set of memory locations that is accessed in

csi. Let CS(x) = {cs|x ∈ LS(cs)}, essentially CS(x) is the set of critical sections which

accesses the location x. For instance, consider Figure 7(b), LS(CS1) = {x, y} and CS(y) =

{CS1, CS2, CS4}. Let LScom =
⋃

i,j LS(csi)∩LS(csj) and Conc(csi, csj). Essentially, we add

a location x to LScom if x is accessed in at least two concurrent critical sections. For example in

Figure 7(b), LScom = {x, y, z}. Now we can make the following observation: If CS(x) ⊆ CS(y)

for any x, y ∈ LScom then x can be controlled by the same lock that controls y. Using this

heuristics we can easily construct a simple lock assignment algorithm as follows.

1. Construct a simple location constraint graph (LCG) G = (D,E), where nodes in D

represents the elements of LScom and there is an edge from y to x in G if CS(x) ⊆ CS(y).

The LCG for example in Figure 7(a) consists of three nodes {x, y, z} and one edge y → x

(see Figure 7). Notice that if CS(x) = CS(y) then there is an edge from x to y and from

y to x.

2. Compute the strongly connected components (SCCs) of G and collapse all non-trivial

SCCs and construct the acyclic graph Ga.

3. Initialize each root node in Ga with a different lock (a node is a root node if it does not

contain a predecessor node). For our example, we assign the two roots y and z Lock(y) = 0

and Lock(z) = 1.

4. Propagate the lock assignment from root nodes to all other nodes as follows: Lock(x) =
⋃

y∈Pred(x) Lock(y). Once again for our example, after propagation Lock(x) = 0.

5. Map the lock set assigned to each node in LCG back to critical section as follows:

CLock(c) =
⋃

x∈LS(c) Lock(x). The lock assignment after mapping back to critical section

is illustrated in Figure 7(b).

6. Assign new locks to all unassigned critical sections. For instance, after the previous steps,

CS5 is not (yet) assigned a lock, and so we simply give a new lock to such “orphaned” crit-

ical sections. This simplifies out implementation rather than use graph coloring heuristics

for “orphaned” critical sections. Note that we cannot simply remove the critical section

CS5 since it can be concurrent to itself.

5.3 Discussion

Automatic lock assignment for critical sections will help alleviate some of the complexity of

multithreaded programming. In OpenMP all unnamed critical sections are given the same

global lock.5 From a programmers perspective, the global lock model is straightforward: at any

instance only one thread is active inside any critical section. Consider only a data race free

program, global lock essentially supports the atomicity property that we assume in this paper.

5OpenMP has only recently introduced named critical sections, and all critical sections with the same name

should be assigned the same lock.
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Our lock assignment essentially preserves the semantics of global lock, even when different locks

are used for critical sections.

Our lock assignment algorithm requires assigning multiple locks to the same critical section.

If we constraint that each critical section must get a single lock, then the only way to do lock

assignment is to reduce parallelism among critical sections or split critical sections. Consider,

for instance, the motivating example in given in Figure 1. Using our approach we will assign

locks to the three critical section as follows: CS1 = {0}, CS2 = {0, 1} and CS3 = {1}. If

we constraint that only one lock can be assigned to each critical section then it is impossible

to assign locks to the critical sections with out reducing parallelism between CS1 and CS3.

In other words, all three critical sections will be assigned the same lock, and we loose the

parallelism between CS1 and CS3. An alternative approach is to split the critical section CS2

in to two parts CS2′ and CS′′ such that LS(CS2′) = {x, y} and LS(CS′′) = {z,w}. Now we

can easily assume that we can use two different locks and improve on the parallelism. One

can use graph partition algorithm for splitting critical sections. Splitting critical section is a

complementary optimization problem that is beyond the scope of this paper.

6 Synchronization Anamolies

In this section we briefly discuss anomalies that can occur due to the incorrect placement of

barrier and post/wait statements. We present techniques to detect some of the anomalies,

and as part of barrier anomaly detection we also show how to construct barrier epochs. Given

a µSMP program we want to ensure that one or more threads do not wait infinitely long at

a barrier point. This can happen when some members of a team never reach a barrier point

whereas others reach the barrier point. The threads that reach a barrier point will wait infinitely

long at the barrier point. In this section we present a simple static analysis to determine when

a µSMP program can give rise to infinite-wait state. In µSMP a parallel region can have

more than one barrier. Incorrect usage of barriers can introduce inconsistent epochs, and hence

infinite-wait error. For instance, consider piece of code show in Figure 6(a).

The two barriers at statement 4 and 8, can create inconsistent epochs — the epochs are

consistent only if the cond at statement 7 is true. A program contains inconsistent epochs if

one or more statements in a parallel region belong to more than one epoch. Barrier analysis is

a static analysis for determining consistent epochs in a parallel region. It is important to note

that epochs are defined with respect to a parallel region. In barrier analysis again assume that

all paths are feasible ignore all back edges in the PCFG. We also ignore post/wait edges during

barrier analysis.

Recall that a µSMP program is made of a set of nested parallel regions, and hence we

can represent the set of of parallel regions using a rooted tree.6 We perform barrier analysis

one region at a time. When analyzing an outer parallel region we consider the inner nested

parallel and critical region to be like a single non-barrier statement. With this understanding,

6We assume that the outermost region is also an implicit parallel region with only one section.
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1: cobegin

2: section:

3: S1 ;

4: barrier ;

5: S2 ;

6: section:

7: if(cond){

8: barrier ;

9: }

10: S3 ;

11: coend

(a)

1: cobegin

2: section:

3: S1 ;

4: wait(e)

5: barrier ;

6: S2 ;

7: section:

8: barrier ;

9: post(e)

10: S3 ;

11: coend

(b)

Figure 8: Examples illustrating arrier and post/wait anomalies

our barrier analysis simply consists of propagating “barrier information” starting from the

beginning of a parallel region to the end of the parallel region. We model each barrier in the

PCFG as an element of a data flow set called the barrier set. Associated with each element is an

epoch counter which indicates the current “epoch” — whenever we visit a barrier we increment

the epoch counter of all barriers that reach the current barrier. At control flow merge we take

the union of barrier set and also check if the epoch counter of the corresponding elements are

equal. If not, we trigger an epoch inconsistency error, which in turn can give rise infinite wait

at barrier points.

For post/wait analysis we want to determine which of the post/wait edges are illegal and

spurious. Consider the example program shown in Figure 6(b). We can see that the post/wait

edge from post(e) at 9 to wait(e) at 4 is will create deadlock. Now supposing we swap the

post(e) and wait(e) statements at line number 4 and 9. In this case we introduce unnecessary

control flow between them. The main reason for this is due to the presence of barriers. An

important observation to make is the fact that a post(e) and the corresponding wait(e) have

to be in the same (barrier) epoch. Otherwise we get unnecessary post/wait synchronization

that can lead to deadlocks. Therefore when inserting post/wait control flow edges we only

insert them if the corresponding post and wait are in the same epoch. It should be noted that

there can be illegal post/wait synchronization even within the same epoch and which can lead

deadlocks. We will not discuss analysis to detect such illegal post/wait edges in this paper.

7 Experimental Results

To study the feasibility and validity of our approach we implemented lock assignment and

pointer analysis using the Omni OpenMP Compiler. OpenMP is a portable and scalable pro-

gramming model and application developers can OpenMP directives to write parallel programs.

In this section we briefly discuss our implementation framework and present preliminary results

for lock assignment.
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Omni OpenMP Compiler (OOC) [33] is a source-to-source compiler that translates OpenMP

Fortran and C/C++ code with directives to C programs with Omni runtime support. Figure 9

shows our implementation part within the OOC. We implemented concurrency analysis, pointer

analysis and lock assignment as part of Omni’s backend. The Omni runtime systems is com-

posed of three parts. The runtime library API provides implementations for each OpenMP

constructs and directives to the general C compiler. The execution framework part executes

the parallel executable generated by the compiler in a fork-join model in the target platforms,

with the help of scheduling and resource management part. Lock acquisition, release and dead-

lock avoidance for critical sections are also implemented in the runtime system.

__ompc_barrier()

Create Threads

Serial Code

. . .
Parallel Code

. . .

Serial Code

Destroy Threads

fork

join

E
xe

cu
tio

n 
Fr

am
ew

or
k

functions to
implement
other OpenMP
constructs 
and directives

Other Transformations

Lock Assignment

Pointer & Acess
analysis

Concurrency Analysis

CFG

front End

OpenMP Source Code

Code Generation

C Compiler

Parallel Executable

Resource Management
Scheduling and C

om
pi

le
r

B
ac

k 
E

nd

Runtime System

Parallel Executable

Target Platforms

Runtime :Library API

__ompc_CS_enter()
__ompc_CS_exit()

Figure 9: Omni OpenMP Compiler and Runtime System Infrastructure

We chose OpenMP implementation of NAS parallel benchmark (NPB) version 3.2 suite to

evaluate our approach [2]. NPB consists of several kernels and simulated CFD (Computation

Fluid Dynamics) applications derived from important classes of aero-physics applications. The

main characteristics of NAS suite is given in Table 1. Some of the NAS applications use atomic

directives and we treat them as critical sections7.

We compiled the whole benchmark suite using Omni, calculated the number of statements

and edges in PCFG, and number of concurrency pairs. The results are summarized in Table 2.

An interesting example for lock assignment problem is the program UA in NPB. There are

44 critical sections (atomic directives) in 3 different parallel regions, and 18 of them are in the

parallel region in function transfb c 2. Concurrency analysis shows that each pair of critical

sections are concurrent, i.e., the interference graph is a clique of size 18. Three different arrays

are accessed in such critical sections - tmort, tx and mormult. Data access analysis shows that

9 critical sections access tmort and tx, and the other 9 access mormult only. According to our

lock assignment algorithm in section 5, we assign one lock to critical sections accessing tmort

and tx, and another lock to critical sections accessing mormult.

Both the original code and Omni-generated code are run at Sun Sparc 400MHz 4CPU SMP

7The atomic directive ensures that a specific memory location is updated atomically.
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Code Main Feature Base Parallel Barriers Critical

Language Regions Sections

BT Navier-Strokes equations Fortran 10 0 0

CG Conjugate Gradient method to Fortran 14 0 0

calculate matrix eigenvalue

DC Arithmetic data cube C 2 0 2

EP Embarrassingly parallel benchmark Fortran 2 0 1

FT FFT kernel Fortran 8 0 0

IS Integer sort kernel C 5 1 0

LU Navier-Strokes equations Fortran 9 3 2

LU-HP serial version of LU Fortran 15 0 2

MG MultiGrid method to solve Poisson equation Fortran 11 0 0

SP Navier-Strokes equations Fortran 14 0 2

UA Unstructured Adaptive NPB Fortran 58 0 44

Table 1: NPB Program Characteristics

Max Min Average

Statements in PCFG 485 5 63

Edges in PCFG 393 3 21

Edges in Concurrency Graph 114720 2 2440

Table 2: Concurrency Analysis Statistics for NPB3.2

machine. Table 3 summarizes the total execution time for the function transfb c 2 for different

number of threads, and Figure 10 shows corresponding speedup. We evaluated the performance

of only the function transfb c 2 instead of the whole program, since transfb c 2 takes a small

portion of the whole execution time.

Number of Threads 1 2 3 4

Without Lock Assignment 0.19s 0.51s 0.62s 0.76s

With Lock Assignment 0.20s 0.35s 0.35s 0.41s

Performance Improvement -5.3% 31.4% 43.5% 32.9%

Table 3: Performance Result (execution time) for Function transfb c 2

From Table 3 we can observe a 30% to 44% improvement in performance by refining the

global locks of critical sections in a multithreaded environment. One difficulty we faced during

experimentation is the availability of OpemMP benchmarks that contain critical sections. We

found only one benchmark that contains 44 atomic directives. We speculate that many scientific

benchmarks avoid critical sections due to performance problem associated with global locking.

Our lock assignment algorithm we can improve the performance of critical section, and we hope

this will encourage application developers to write critical sections with global locks.
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Original code without lock assignment
Omni generated code with lock assignment
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Figure 10: Lock assignment performance for transfb c 2

8 Related Work

Concurrency analysis is a widely studied field, and several approaches have been presented.

Callahan and Subhlok [5] proposed a data flow method to calculate a set of blocks which must

be executed before a block can be executed for a parallel program. Parallelism is expressed by

parallel case, and the synchronizations among threads are enforced by post and wait pair. This

method was extended by Callahan, Kennedy and Subhlok [4] to analyze parallel loops. Duester-

wald and Soffa [8] proposed a similar method in Ada rendezvous model, and uniquely, extended

it to interprocedural analysis. Masticola and Ryder [29] presented an iterative non-concurrency

analysis (a complement problem of concurrency analysis) framework. It first assumes a pes-

simistic estimation on CHT (Can’t Happen Together) relation, then refines it iteratively. It

still works for Ada, but includes binary semaphores as well as rendezvous. Naumovich and

Avrunin [30] proposed a different way to build up the program graph, in which synchronization

is expressed as a node, instead of edges. They used data flow equations to compute a MHP

(May Happen in Parallel) set for each node. The method proposed by Jeremiassen and Eggers

[18] was a bit different from all works listed above since it deals with course-grained, explicitly

parallel program with only barrier synchronization. Its basic idea is to divide the program into

a set of phases, and compute the control flow between them. Each phase consists of one or more

sequences of statements that are delimited by barrier and can execute concurrently. Lin has

essentially implemented Jeramiassen and Eggers work for OpenMP programming model [27].

Both Jeramiassen and Eggers and Lin do not focus on capturing inconsistent barrier placement.

Our work goes beyond just concurrency analysis, we use the result of concurrency analysis for

pointer analysis and lock assignment. Also, our programming model also support post/wait

synchronization. Our barrier analysis is closely related to barrier inferencing proposed by Aiken

and Gay [1]. Our approach uses a simple barrier flow analysis to detect inconsistent barrier

placement and also to identify epochs. We use the result of barrier analysis to filter inconsistent

barrier programs and also to filter inconsistent post/wait programs.

There also have been a lot of efforts on parallel program representation. Sarkar and Si-

mons [39] proposed parallel program graphs (PPGs) that subsume program dependence graphs

(PDGs) [11] and conventional control flow graphs. Lee, etc. [26] proposed a concurrent con-
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trol flow graph (CCFG) for explicitly parallel shared memory programs with cobegin/coend

and parallel do parallel constructs and post/wait synchronization. They also proposed a

concurrent static single assignment (CSSA) form based on CCFGs. Lee [24] extended both the

CCFG and CSSA to cover barrier and locks synchronization constructs. Novillo, etc. [32]

proposed a parallel flow graph (PFG) which is an extension of CCFG with a different mutual

exclusion synchronization representation.

There have been a number of work for data flow analysis to verify explicitly stated program

properties [9, 3]. Programs are modeled as finite state or pushdown automata, the stated prop-

erties are varified using reachability properties. We take traditional data flow analysis based on

Kildall’s framework. Data flow analysis for explicit parallel program is another line of work that

is closely related to ours [16, 21, 25, 38] Grunwald and Srinivasan present data-flow equations

for computing reaching definition information for explicit parallel programs [16]. The data flow

equations are specialized for different kinds parallel and synchronization constructs. This com-

plicates the data flow analysis. Also, Grunwald and Srinivas require data independence with

copyin/copyout semantics at parallel sections and assumes weak consistency memory model.

Grunwald and Srinivasan does not handle critical sections or atomic sections. Knoop et al.

present a bit-vector data flow analysis for explicit parallel programs [21]. They assume stronger

consistency model with interleaving semantics, and do handle any synchronization constructs.

Lee et al present an algorithm for constructing concurrent static single assignment (CSSA) for

explicitly parallel programs and assume interleaving memory semantics [25]. They also restrict

to only event-based post/wait synchronization. Sarkar presents data flow equations for reach-

ing definitions using parallel program graph model of programs, that is an improvement over

Grunwald and Srinivasan work [38]. Also, Sarkar does not deal with critical sections. There

are a number of difference between our approach to the above related work. First of all, our

data flow equation is independent of parallel and synchronization constructs — our data flow

equation depend only on concurrency relation and isolation semantics for critical sections. We

chose isolation semantics mostly because we want to treat critical sections as being atomic, and

so we can naturally handle transaction memory model. Our data flow equation are a natu-

ral extension to classical Kildall equations, and if one drops F (s) from the equations, we get

the sequential data flow equation. Our equations can be applied to any monotone data flow

problems and not just reaching definition problem or bitvector problems. We have applied our

analysis to a non trivial pointer analysis data flow problem.

Shasha and Snir seminal work show how to model concurrency and synchronization relation

for programs that assume sequential consistency and apply the model for analyzing and opti-

mizing parallel programs [40]. The main focus of Shasha and Snir’s work is to detect critical

cycles in programs with implicit synchronization. Krishnamurthy and Yelick improve on Shasha

and Snir work with knowledge of exploit synchronization to eliminate certain spurious critical

cycles [22]. Navillo et al also model critical sections using explicit edges and cycels [31]. As

discussed in Section 3.3 such explicit edges for modeling critical section can complicate concur-

rency analysis. Krishnamurthy and Yelick also present post-wait and barrier analysis and our

work complements them. Our main focus in this paper is on data flow and pointer analysis
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rather than synchronization analysis to ordering among statements.

Recently Rugina and Rinard present pointer analysis for explicit parallel programs. There

are a number of differences between our pointer analysis and Rugina and Rinard pointer anal-

ysis for multithreaded programs. Two key concepts that we use in our pointer analysis are

(1) atomicity memory model for critical sections and (2) concurrency relation. We directly

incorporate these two concepts with in the classical data flow equations for pointer analysis.

Unlike Rugina and Rinard’s work we can naturally handle synchronization constructs, including

critical sections, post/wait, and barriers.

There have been a number of recent work on pointer and escape analysis for multithreaded

Java programs [6, 35, 37]. In Java threads are treated like objects and an explicit start instruc-

tion is used to create new threads. When a start instruction is executed the corresponding run

method defined in a class that implements Runnable interface is executed. Interthread analysis

essentially consists of mapping parent thread information to child thread information and the

mapping of child thread information back to parent information. Often interthread analysis

is treated like interprocedural analysis and therefore the resulting pointer information can be

conservative. Salcian and Rinard introduce program interaction graph for pointer/escape anal-

ysis of Java programs. Unlike other pointer/escape analysis Salcian and Rinard analysis model

Java threads more precisely. Although we have explicitly modeled Java threads in our work, we

can easily extend the work to deal with Java thread model. Once concurrency information is

computed for Java programs, we can reuse the data flow analysis that is described in this paper.

Recently there have been some work on concurrent slicing for multithreaded programs [10, 17]

Due to space constraint we will not discuss this line of research work.

Besides critical sections, atomic section is another mutual exclusion construct which follows

the atomicity semantics. Atomic sections is an important synchronization mechanism in X10

[19] - a new programming language for DARPA/IBM PERCS architecture.

To be the best of our we are not aware of any work on lock assignment for improving the

performance of parallel programs. We believe that with compiler taking over lock assignment

(similar to register assignment) one could simplify the programming model for by assuming

global locks for all critical sections (which is the case for OpenMP).

9 Conclusions

In this paper we proposed a new framework for analyzing and optimizing shared memory parallel

programs. Our approach reifies concurrency relation and isolation semantics and uses them for

all of our analysis and optimization. We showed how to apply our framework for solving pointer

analysis problem and lock assignment problem. We believe unnamed critical sections provide a

uniform model and simpler programming model for end users. We can then use lock assignment

to assign locks to critical sections to improve the performance of the program. Our approach to

pointer analysis is a straightforward extension to classical data flow analysis. We are currently

working towards applying our approach to object-based multithreaded programs, such as Java
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programs and X10 programs.

Acknowledgement

We would like to acknowledge Vivek Sarkar and Kemal Ebcioglu from IBM T.J. Watson Re-

search Center for fruitful discussion on this topic. We also thank useful discussions from mem-

bers of the CAPSL group at the University of Delaware, in particular Weirong Zhu, Hongbo

Rong, Hongbo Yang, and Joseph Manzano. Finally, the last two authors wish to acknowl-

edge the support in part by the Defense Advanced Research Projects Agency (DARPA) under

contract No. NBCH30390004.

References

[1] Alexander Aiken and David Gay. Barrier inference. In POPL ’98: Proceedings of the

25th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

342–354, New York, NY, USA, 1998. ACM Press.

[2] NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/.

[3] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the static

analysis of concurrent programs with procedures. In POPL ’03: Proceedings of the 30th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 62–

73, New York, NY, USA, 2003. ACM Press.

[4] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization in

a parallel programming tool. In Proceedings of the Second ACM SIGPLAN Symposium on

Principles & Practice of Parallel Programming, pages 21–30, Seattle, Washington, March

1990.

[5] David Callahan and Jaspal Sublok. Static analysis of low-level synchronization. In Pro-

ceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distributed

debugging, pages 100–111. ACM Press, 1988.

[6] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and

Samuel P. Midkiff. Stack allocation and synchronization optimizations for java using escape

analysis. ACM Trans. Program. Lang. Syst., 25(6):876–910, 2003.

[7] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering in mul-

tiprocessors. In Proceedings of the 13th Annual International Symposium on Computer

Architecture, pages 434–442, Tokyo, Japan, June 1986.

[8] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of proce-

dures using a data-flow framework. In TAV4: Proceedings of the symposium on Testing,

analysis, and verification, pages 36–48, New York, NY, USA, 1991. ACM Press.

23



[9] Matthew B. Dwyer and Lori A. Clarke. Data flow analysis for verifying properties of

concurrent programs. In Proceedings of the ACM SIGSOFT ’94 Symposium on the Foun-

dations of Software Engineering, pages 62–75, 1994.

[10] Matthew B. Dwyer and John Hatcliff. Slicing software for model construction. In Partial

Evaluation and Semantic-Based Program Manipulation, pages 105–118, 1999.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and Systems,

9(3):319–349, July 1987.

[12] Guang R. Gao and Vivek Sarkar. Analyzable atomic sections: Integrating fine-grained

synchronization and weak consistency models for scalable parallelism. Technical report,

Dept. of Electrical and Computer Engineering, University of Delaware, 2004. CAPSL TM

52.

[13] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory consistency and event ordering in scalable shared-memory

multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 15–26, Seattle, Washington, May 1990.

[14] Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In POPL ’98: Pro-

ceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 121–133, New York, NY, USA, 1998. ACM Press.

[15] J. R. Goodman. Cache consistency and sequential consistency. Technical Report 1006,

Department of Computer Science, University of Wisconsin, Madison, February 1991.

[16] Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly parallel programs.

In PPOPP ’93: Proceedings of the fourth ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 159–168, New York, NY, USA, 1993. ACM Press.

[17] John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan Sokolowski, and Hongjun

Zheng. A formal study of slicing for multi-threaded programs with JVM concurrency

primitives. In Static Analysis Symposium, pages 1–18, 1999.

[18] Tor E. Jeremiassen and Susan J. Eggers. Static analysis of barrier synchronization in

explicitly parallel systems. In Proceedings of the IFIP WG 10.3 Working Conference on

Parallel Architectures and Compilation Techniques, PACT ’94, pages 171–180, Montréal,
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A Parallel Region Tree

The following algorithm creates a nested region tree, where Child(s) denotes the children of s

in the region tree, and Succ(m) denotes the set of successor nodes of m in the PCFG.

RegionTree() {

1: create a parallel region r and a section region s

2: insert s in Child(r)

3: V isitRegion(s, Succ(root))

}

V isitRegion(Region s, NodeSet ns) {

4: foreach n ∈ ns and n is not yet visited {

5: Switch(Type(n)) {

6: case cobegin:

7: Create a parallel region node p

8: Insert p in Child(s)

9: VisitRegion(p, Succ(n))

10: break ;

11: case section:

12: Create a section region p

13: Insert p in Child(s)

14: VisitRegion(p, Succ(n))

15: break ;

16: case critical:

17: Create a critical region p

18: Insert p in Child(s)

19: VisitRegion(p, Succ(n))

20: break ;

21: case coend: Skip

22: break ;

23: case others:

24: Create a simple node p

25: Insert p in Child(s)

26: VisitRegion(s, Succ(n))

27: break ;

28: }

29: }

}
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