
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Multidimensional Kernel Generation

for Loop Nest Software Pipelining

Alban Douillet, Hongbo Rong, Guang R. Gao

CAPSL Technical Memo 64

February 14, 2006

Copyright c© 2006 CAPSL at the University of Delaware

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Single-dimension Software Pipelining (SSP) has been proposed as an effective software pipelin-
ing technique for multidimensional loops [18]. However, the scheduling methods that actually pro-
duce the kernel code have not been published yet. Because of the multi-dimensional nature of SSP
kernels, the scheduling problem is more complex and challenging than with modulo scheduling.
The scheduler must handle multiple subkernels and initiation rates, scheduling constraints specific
to SSP while producing a solution that minimizes the execution time of the final schedule.

In this paper three approaches are proposed: the flat method, which schedules operations from
different loop levels with the same priority, the level-by-level method, which schedules innermost
operations first and does not let other operations interfere with the already scheduled levels, and
the hybrid method, which uses the level-by-level mechanism for the innermost level and the flat
solution for the other levels. We also break a scheduling constraint introduced in earlier publications
and allow for a more compact kernel. The proposed approaches, combined with different sets of
heuristics, have been implemented in the Open64/ORC compiler, compared on loop nests from the
Livermore and NAS benchmarks.

i

Contents

1 Introduction 1

2 The SSP Kernel Generation Problem 2
2.1 Single-Dimension Software Pipelining . 2
2.2 Problem Statement . 3
2.3 Issues . 3

3 Breaking the Level Separation Constraint 4

4 Solution 5
4.1 Scheduling Approaches . 6
4.2 Enforcement of the SSP Scheduling Constraints . 7
4.3 Kernel Integrity . 8
4.4 Operation Selection . 9
4.5 Operation Scheduling . 9
4.6 Initiation Interval Increment . 9

5 Experiments 10
5.1 Comparison of the Scheduling Approaches . 10
5.2 Comparison of the Operation Selection Heuristics 11
5.3 Comparison of the II Increment Heuristics . 11

6 Related Work 12

7 Conclusion 12

List of Figures

1 SSP Compilation Framework . 1
2 Generic SSP Kernel . 2
3 Multiple Subkernels Issues . 4
4 Examples of Poor II Increment Decisions . 4
5 Removal of the Level Separation Constraint . 4
6 Example of Conditional Emission of Operations . 5
7 Scheduling Framework . 6
8 Advantage of the Flat Approach over the Level-by-Level Approach 7
9 Scheduling Blocks Example . 8
10 Comparison of the Quality of the Kernels . 10
11 Comparison of the Operation Selection Heuristics 11
12 Comparison of the II Increment Heuristics . 12

ii

1 Introduction

Software pipelining (SWP) is an important loop scheduling technique that overlaps the execution of
consecutive iterations of a loop to explores instruction-level parallelism [9, 14, 1, 8, 15, 19, 7, 2, 11, 10,
22]. Traditionally, it is applied to the innermost loop of a loop nest. The schedule can be extended to
outer loops by hierarchical reduction [9, 12, 20]. Alternately, loop transformations can be performed to
the innermost loop before SWP [3, 21, 13].

Single-dimension Software Pipelining (SSP) [18] is a unique resource-constrained framework for
software pipelining a loop nest. The scheduling technique overlaps the iterations of any loop in a loop
nest which satisfy the dependence constraints. The compilation framework is shown in Fig. 1. First the
loop level deemed the most profitable is selected and the multi-dimensional data dependence graph (n-D
DDG) is simplified into a one-dimensional DDG (1-D DDG) to be sent as input to the scheduler [18].
The kernel is then computed. If the register pressure is reasonable [5], registers are allocated [16] and
the final code is generated [17].

Selection

Loop

Simplification

Dependence

Construction

Schedule

Register Pressure

EvaluationAllocation

Register

Generation

Code allocated
register

kernel

loop

level DDG

1−D kernel

increase initiation intervalchoose different loop level

too high

ok

schedule

final

nest

loop

Figure 1: SSP Compilation Framework

However, the scheduling methods that actually produce the kernel code have not been published
yet. In this paper, we present for the first time algorithms for thekernel generationstep. The kernel
generation itself is far from simple - as it involves the overlapping of operations from several iteration
levels (dimensions) of a loop nest, a challenge not encountered in traditional software pipelining. There
now is one subkernel per loop level in the loop nest, each one with its own initiation interval. Those
subkernels interact with each other and optimizing one subkernel could have a negative impact on the
others. Moreover, when the scheduler fails and the initiation interval must be increased, which subkernel
should be chosen? After all, the main challenge is to generate a kernel that will, at the same time,
minimize the execution time of the final multi-dimensional schedule.

Three approaches are proposed and studied. Thelevel-by-levelapproach schedules the subkernel
one by one starting from the innermost. Once a subkernel has been scheduled, it cannot be undone.
Theflat approach does not lock a subkernel once fully scheduled. Operations from any loop level may
be considered and undo previous decisions made in a different subkernel. A larger solution space can
therefore be explored. Finally, thehybrid approach schedules the innermost subkernel first and locks it.
The other operations are then scheduled using the flat method. It allows for a shorter compilation time
than the fast method while exploring a large solution space and focusing resources on the innermost
loop.

1

We also break an SSP limitation that forced operation from different loop levels to be scheduled in
distinct stages and that may artificially bloat the size of the kernel. We prove that, with minor modifica-
tions to the code generator and without code size increase, operations other than innermost can actually
be scheduled in the same stage than operations from a different level.

The proposed approaches and heuristics associated with them have been implemented in the
Open64/ORC compiler and analyzed on loop nests from the Livermore and NAS benchmarks. Ex-
perimental results show that the three approaches produces comparable schedules in terms of execution
time and register pressure. However the level-by-level approach is more scalable and less dependent on
the heuristics being used. The hybrid approach suffers from the drawbacks of the two other methods.

The rest of the paper is organized as follows. First, the modulo scheduling technique used for single
loops is reviewed, followed by the SSP technique for multi-dimensional loops. In section 2, the kernel
generation problem for SSP is presented, along with the associated issues. Section 3 explain how to
schedule operations from different levels into the same stage. The next section presents the scheduling
methods in details. The last three sections are devoted toward experiments, related work, and conclusion,
respectively.

2 The SSP Kernel Generation Problem

2.1 Single-Dimension Software Pipelining

Single-dimension Software Pipelining (SSP) [18, 17, 16, 5] is a resource-constrained software pipelin-
ing method for both perfect and imperfect loop nests with a rectangular iteration space. Unlike other
approaches [9, 6, 20, 12], SSP does not necessarily software pipeline the innermost loop of a loop nest,
but directly software pipelines the loop level estimated to be the most profitable. The advantage of SSP
over modulo-scheduling (MS) is that instruction-level parallelism or data cache reuse properties present
in the outer loops are now accessible. Without prior iteration space transformations, a faster schedule
with better cache performance can be found. If the innermost loop level is chosen, SSP is equivalent
to classical modulo scheduling. SSP retains the simplicity of modulo scheduling, and yet may achieve
significantly higher performance [18].

empty

l 1 l 2
l n f n

T 2 T n

f 2

K2
Kn

f =01

T=T1

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

0

1

2

T−2

...

T−1

Modulo cyclestage index

K=K1

S=S1

S2

nS

Figure 2: Generic SSP Kernel

The final SSP schedule is derived from the SSP kernel. Unlike MS kernels, the SSP kernels have

2

multiple initiation intervals and are composed of one subkernelKi per loop leveli in the loop nest. Each
subkernel has its own number of stagesSi and initiation intervalTi. We notefi andli the index of the
first and last stages ofKi in the full kernel. Some slots must be empty because of the level separation
constraint presented next (Fig. 2).

2.2 Problem Statement

The operations in the kernel must obey the constraints described below. The resource constraint is the
same as with MS. However the dependence constraints now includes the number of unused cycles term
(uc), corresponding to the empty stages.uc will be defined in Sec. 4. The sequential and level separation
constraints only exist in SSP. Letσ(op) be the schedule time of operationop in the kernel. Then we
have:

• Resource Constraint: at any given cycle of the kernel, a hardware resource is not allocated to
more than one operation.

• Dependence Constraint: σ(op1)+ δ ≤ σ(op2)+k ∗T −uc(op1, op2, k) for all the dependences
from the 1-D DDG fromop1 to op2 whereδ is the latency of the dependence andk the distance.

• Sequential Constraint: σ(op) + δ ≤ Sp ∗ Tn for every positive dependence
−→
d = (d1, ..., dn)

originating fromop in the original multi-dimensional DDG and wheredp is the first non-null
element in the subvector(d2, ..., dn).

• Level Separation Constraint: operations from different loop levels cannot be scheduled in the
same stage.

The SSP kernel generation problem can then be formulated as follows: given a set of loop nest
operations and the associated 1-D DDG, schedule the operations so that the scheduling constraints are
honored and the initiation interval of each subkernel is minimized. Even in the simplest case where the
loop nest is a single loop, the problem is NP-hard.

2.3 Issues

Besides satisfying all the constraints mentioned above, several issues need to be solved. First, the
kernel is composed of subkernel with different initiation intervals which must be respected during the
scheduling process. In Fig. 3(a), the II of the innermost kernel is 2. When insertingop4, op3 must be
ejected to maintain the current II. Also, if a subkernel is rescheduled to a different cycle, one must make
sure that subkernel is not truncated as shown in Fig. 3(b)

Then the multiple II feature raises issues of its own. Which loop level should have priority when
minimizing the II of the subkernels. When the scheduler cannot find a solution and the II of one subker-
nel must be incremented, which subkernel to choose. Fig. 4 shows examples of poor schedule because
of poor II increment decisions.

3

op1

op2

op3

op5

op1

op2

op3

op4

op5
place op4

op3 is ejectedII=2

(a) Strict Initiation Rate of Subkernels

op1

op2

op3

op5
subkernel
schedule

1 cycle later

truncated subkernel

op1op3

op2op5

(b) Truncation of Subkernels

Figure 3: Multiple Subkernels Issues

� �
� �
� �
� �

� �
� �
� �
� �

op2

op3

op4

op5

op1 � �
� �
� �
� �

� � �
� � �

� �
� �

op2

op3

op4

op5

op1

� � �
� � �

	 	
	 	

� �
� �

next candidate:
op6 from level 2

increase II
1

Number of FUs: 2

problem still here!

(a) Decision does not solve the problem

op3 depends on op2

latency of op2: 2

Number of FUs: 3

increase II
2

op3

op4

op5

op6

op1

op2

correct schedule

II too high
2

op1op3

op4

op5

op6 op2

(b) Decision is not optimal

Figure 4: Examples of Poor II Increment Decisions

3 Breaking the Level Separation Constraint

The level separation constraint was originally introduced for implementation reasons. Operations from
different levels were required to be scheduled in distinct stages. We now show that this constraint is
unnecessary and can be simplified. The advantage is two-fold. First, it gives more freedom to the
scheduler which may be able to find a more compact kernel as shown in Fig. 5 whereop1 andop2 are
from different loop levels but scheduled in the same stage. Second, because the number of stages is
decreased, so is the register pressure.

separation limitationop4

op2

op3 op1 op2

op1

op4

op3

S = 3

without strict level

S = 2

Figure 5: Removal of the Level Separation Constraint

To produce a correct final schedule from such a kernel, it is sufficient to conditionally emit the
operations of the kernel. During the emission of stages for the execution of loop leveli only operations
from leveli and deeper are emitted. If operations from other loop levels are present in the stage, they are
simply ignored. Fig 6 shows the example of an outermost operationop2, which conditionally appears in
a stage of the middle loop.

Since the innermost loop is most frequently executed, it is not desirable to put operations from
other levels into the innermost sub-kernel, in case they artificially increase its II. Also the conditional
emission of operations in the innermost stages still require code duplication to be used. Therefore, we
enforce instead a weak limitation, called theinnermost level separation limitation, that forbids outer
loop operations to be scheduled into the innermost loop stages.

4

for I=0,N do

op1, op2

for J=0,M do

op3

for K=0,P do

op4, op5, op6

end for

end for

end for

(a) Triple Loop Nest

op1op2

op3

op4

op5op6

op2 and op3 are from
different loop levels

(b) Kernel

op6

op4

op5

op2

op3

op1

op4

op6

op4

op5

op5 op6

op4

op6

op4

op5

op5 op6

in the OLP
appears

op2 only

op6

op6

op4

op5

op3

op4

op5 op3

ILES

OLP

(c) Final Schedule

Figure 6: Example of Conditional Emission of Operations

4 Solution

The algorithm framework, shared by the three approaches, is derived from Huff’s algorithm [1, 14, 8]
and shown in Fig. 7. Starting with II=MII, the scheduler proceeds as follows. The minimum legal
scheduling distance (mindist) between any two dependent operations is computed. Using the mindist
information, the earliest and latest start time,estart andlstart respectively, of each operation is com-
puted. The differencelstart − estart, calledslack, is representative of the freedom of the operations
to be scheduled in the kernel. The operations are then scheduled in the kernel one after the other in a
heuristic-based operation selection order. If the scheduling of the current operation does not cause any
resource conflict, the choice is validated. Otherwise the conflicting operations are ejected. In both cases
theestart andlstart values of the other operations are updated accordingly. The process is repeated
until all the operations are scheduled. After too many iterations without success, the II of one of the sub-
kernels is incremented and the scheduler starts over. When a solution is found, the scheduler enforces
sequential constraint and returns successfully. The different steps are detailed in the next subsections.

The proposed approaches and the algorithm framework is correct. As shown in the next subsections,
all the scheduling constraints have been respected. Because the algorithm is based on the modulo
scheduling, the resource constraints are also honored.

Moreover, when applied to a single loop or to the innermost loop of a loop nest, the method becomes
the Huff’s modulo scheduling algorithm. Therefore our method subsumes modulo-scheduling as a
special case.

5

SSP SCHEDULER(approach, mii[], priority, ii incr method):

for each loop level i do

set ii[i] to mii[i]
end for

attempts← 0
while (attempts < max attempts) do

initialize mindist table, MRT

compute slack values

placed ops← 0
while (placed ops < max placed ops) do

choose next operation op according to approach and priority

if no operation left then

enforce sequential constraints

return success

schedule operation op

placed ops← placed ops + 1
eject operations violating resource constraints with op

eject operations violating dependence constraints with op

eject operations violating innermost level separation limitation with op

update slack and MRT

end while

choose level i to increase II according to ii incr method

ii[i]← ii[i] + 1
attempts← attempts + 1

end while

return failure

Figure 7: Scheduling Framework

4.1 Scheduling Approaches

Three different scheduling approaches are proposed.Flat schedulingtreats the loop nest as if it were
“flattened” as a single loop. When backtracking, conflicting operations from all levels can be ejected
from the schedule. The main advantage of this approach is its flexibility. Early decisions can always be
undone. Such flexibility leads to a larger solution space, and potentially better schedules. On the down
side, the search space might become too large and the method too slow to find a solution in time.

With level-by-level scheduling, the operations are scheduled in the order of their loop levels, starting
from the innermost. Once all the operations of one level are scheduled, the entire schedule becomes
a virtual operation from the point of view of the enclosing level. The virtual operation acts as a white
box both for dependences and resource usage. A direct property is that a subkernel computed earlier
cannot be undone through backtracking. The method has the advantage of being relatively simple and
fast. However the early scheduling decisions made in the inner loops might prevent the scheduler from
reaching optimal solutions in the outer levels. Figure 8 shows an example where the level-by-level
scheduler is forced to increase the initiation interval of the outer kernel to 3 in order to scheduleop1. On
the other hand, a flat scheduler can reschedule inner operations in other scheduling cycles and produce
a final kernel withII = 2.

The hybrid approach embeds the flat scheduling into a level-by-level framework. The innermost
level is scheduled first. Its kernel becomes a virtual operation and the flat scheduling method is used for
the other loop levels. The hybrid approach is intuitively a good compromise between level-by-level and

6

op2

op3

op4

op2

op3

op4 op1

op2

op3

op4

op1

op2

op3

op4

op1
innermost kernel

(fixed)

resource conflict
with op2 and op4

latency conflict
with op2

final kernel
II = 3

increase IIplace op1

(a) Level-by-Level Scheduling Solution

op1op2

op3

op1op2

op3

op1op2

op3

op4 place op2 place op4

final kernel
II = 2

resource conflict
eject op2 and op4

op4

(b) Flat Scheduling Solution

Figure 8: Advantage of the Flat Approach over the Level-by-Level Approach

flat scheduling, as confirmed by the experimental results. It can find better solutions than the level-by-
level method without paying the cost in terms of compile time.

4.2 Enforcement of the SSP Scheduling Constraints

The dependences are enforced through themindist table. If there is a dependence between two opera-
tionsop1 andop2 with a latency ofδ and a distance ofk, then we have the dependence constraint:

σ(op2) − σ(op1) ≥ δ − k ∗ T + uc(op1, op2, k) (1)

Because themindist value is computed once and for all before scheduling the operations, we need
to express the right-hand side of the inequality independently of the schedule time ofop1 andop2. Uc

corresponds to the number of empty cycles in the kernel betweenop1 andop2 in the final schedule. A
tight upper bound is the number of stages between the two operations,⌊σ(op2)/T ⌋−⌊σ(op1)/T ⌋+1+k,
times the maximum number of empty cycles in a stage,T − Tn. and becausex − 1 < ⌊x⌋ ≤ x, we
have:

uc(op1, op2, k) ≤

[

σ(op2) − σ(op1)

T
+ k + 2

]

∗ (T − Tn) (2)

If Equ. 1 is verified for that upper bound, then it is always verified. By injecting the upper bound of
uc from Equ. 2, we obtain after simplification:

σ(op2) − σ(op1) ≥
T

Tn

∗ (δ + 2 ∗ T − (k + 2) ∗ Tn) (3)

7

empty

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

1K

K2Kn

position of inner
kernels may vary

length of scheduling
blocks may vary

BEFOREAFTER INNERMOST

Figure 9: Scheduling Blocks Example

The right-hand side value of Equ. 3 is the value used to initializemindist(op1, op2). By construc-
tion, it guarantees that the dependence constraint is always enforced.

The sequential constraint is not enforced during the scheduling process, but as a posteriori transfor-
mation once a schedule that satisfies all other constraints has been found. The schedule is then scanned
and the sequential constraint checked. If it is not honored between two operations, empty stages are
inserted in the schedule until it is honored. The case occurs rarely enough to justify such a technique.

To enforce the innermost level separation limitation without any extra computation cost, the schedule
is conceptually split into threescheduling blocks: before, innermost and after. Operations that
lexically appear before (after, respectively) the innermost loop are scheduled independently into the
’before’ (’after’) scheduling block (Fig. 9). Innermost operations are scheduled into the ’innermost’
scheduling block. Within each scheduling block, the length of the schedule may vary without breaking
the separation limitation and final length of the full schedule is only known at the very end. The modulo
resource reservation table is shared between the three blocks.

When an operation is scheduled or when an operation is ejected, the slack of dependent operations
must be recomputed. In modulo scheduling, such an update is level-by-level and only operations that
need it are updated. Our case is slightly different to take care of the innermost level separation limitation.
In implementation, a dummySTART and a dummySTOPoperations are inserted and pre-scheduled at
the beginning and the end of each of the three scheduling blocks. If a dummy operation of one block
is ejected and rescheduled, because the distance between operations are related with the length of each
block, the slack of every operation within this block has to be recomputed.

4.3 Kernel Integrity

In the flat approach, the II is enforced by scheduling the operations first within the current boundaries
of the subkernel. If impossible, the operation is scheduled at some other cycle. The subkernel is then
correspondingly moved. All the operations not within the boundaries of the kernel are ejected. In the
level-by-level approach, the problem never arises as the subkernels are scheduled separately.

In the level-by-level approach, the integrity of the subkernels is enforced by forbidding the cycles
that would cause the subkernel to be truncated. With the flat approach, the problem does not exist
because the subkernels are never locked until the very end.

8

4.4 Operation Selection

The order in which operations are selected for scheduling influences the final shape of the kernel. The
following primary scheduling priorities based on the level of operations are used. Ininnermost first
order, the operations are scheduled in depth order, starting from the innermost. Inlexical order, the
operations are scheduled in the order they appear in the original source code. The lexical order follows
the order of most of the dependencies in the 1-D DDG. Inblock lexicalorder, the operations are sched-
uled in the order of scheduling blocks: before-innermost-after. The scheduling order follows the natural
order of the execution of the loops and of most dependencies. Finally, inunsortedorder, the loop level
of the operations does not influence the scheduling priority.

After the primary scheduling priorities, three secondary scheduling priorities are used to break ties.
With slack priority the operations with a smaller slack are scheduled first. Critical operations, i.e.
operations that use any critical resource (a resource used 90% of the time or more in the schedule), have
their slack divided by two to increase their priority. Withsmaller lstartpriority the operations with a
smaller latest start time are scheduled first. The priority can be seen as atop-downscheduling approach.
And with larger estartpriority the operations with a larger earliest start time are scheduled first. It is a
bottom-upscheduling approach.

4.5 Operation Scheduling

Once an operation has been chosen as the next candidate for scheduling, a schedule cycle that satisfy
the dependence, resource and level separation limitation must be allocated to it. There are several
steps to choose such a cycle. First one must identify the range of possible cycles where to schedule
the operation. An operation can be scheduled between itsestart and lstart values. If the operation
is to be scheduled in a top-down approach, find the smallest cycle within that range. Make sure that
the operation is scheduled within the II of the loop level it belongs to, and that it only uses available
resources. If the operation is to be scheduled in a bottom-up approach, find the latest cycle satisfying
the same conditions. If the operation was scheduled but has been ejected since, start the search after the
cycle it was scheduled to save time. If no cycle could be found, ignore the other scheduled operations,
the availability of resources, and the II of the level of the operation. If the operation is the virtual
operation, then schedule it only where it will not be truncated as explained earlier. Operations that may
be in conflict with the candidate operation will be ejected and rescheduled later.

4.6 Initiation Interval Increment

When the scheduler fails to find a solution with the current set of II values for each level, one loop level
must be chosen and its II incremented by one. Several approaches are proposed. Withlowest slack first,
the average slack of the operations of each level is computed. The II of the loop level with the lowest
average slack value is incremented. Withinnermost first, used in conjunction with the innermost first
scheduling priority, the levels are considered from the innermost to the outermost. The first level that
did not manage to schedule all its operations is chosen to increase the II. Its inner loops do not need to

9

increase their IIs because they, at some point during the scheduling process, managed to have all their
operations scheduled. Finally, withlexical, used in conjunction with the lexical scheduling priority, the
first loop level in lexical order that did not manage to schedule all its operations is chosen to increase
the II.

The last two approaches, innermost first and lexical, are dependent on the chosen scheduling priority
scheme. They cannot be used for other scheduling priorities.

5 Experiments

We have implemented the proposed approaches and heuristics in the native Open64/ORC2.1 compiler
and tested loop nests amenable to SSP from the NAS benchmark suite and the Livermore loop kernels.
Every level but the innermost was tried leading on a total of 24 loop nests. Each schedule was run three
times on an Itanium workstation.

Results showed that the three approaches produces comparable schedules in terms of execution time
and register pressure. However the level-by-level approach is more scalable and less dependent on the
heuristics being used. The hybrid approach suffers from the drawbacks of the two other methods.

5.1 Comparison of the Scheduling Approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

hyblblflatms

(a) Relative Execution Time

�� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

 0

 16

 32

 48

 64

 80

 96

hyblblflatms

(b) INT Register Usage

�� �
�
�

�
�
�

�
��
�

�
��
�

 0

 16

 32

 48

 64

 80

 96

hyblblflatms

(c) FP Register Usage

Figure 10: Comparison of the Quality of the Kernels

For each loop level of each loop nest, the best solution of each method was compared to the others.
The results are shown in Fig. 10. Overall SSP schedules are 35% faster than MS schedules but uses
on average 3.5 times more integer registers. The performance of the three proposed approaches is
comparable with a small advantage to the level-by-level approach. Indeed the search space of the flat
method is much larger than for the level-by-level approach and a solution cannot always be found in a
reasonable amount of time. In that case, the II of one level is increased, leading to sub-optimal solution
and a higher execution time. A direct consequence of this is a smaller number of stages and therefore
a lower register pressure. When the number of operations is limited, the flat approach is comparable to
the level-by-level approach.

10

The hybrid approach shows performance numbers below expectation. It appears that the method
took the worst of the two others. It puts pressure on the scheduler by giving too much priority to the
innermost level while being overwhelmed by the size of the solution space when using the flat scheduler.

5.2 Comparison of the Operation Selection Heuristics

Figure 11 compares the results of the different operation selection heuristics for each scheduling ap-
proach. The minimum execution time and register pressures were recorded and the relative difference
of each heuristic to the minimum was computed for each test case. The average is shown in the figure.
The first letter U, L, I, or B stand for the primary selection method: Unsorted, Lexical, Innermost first or
Block lexical respectively. The second letter S, E, or L for the secondary method: Slack, largest Estart
or smallest Lstart. Level-by-Level scheduling was only tested for the unsorted primary method because
all methods are equivalent when a single loop level is scheduled at a time.

� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

 0

 0.05

 0.1

 0.15

 0.2

 0.25

B
/E

B
/L

B
/SI/
E

I/
L

I/
S

L
/E

L
/L

L
/S

U
/E

U
/L

U
/S

execution time
register pressure

(a) Flat

� �
� �
� �
� �

�
�
�

�
�
�

� �
� � �

�

�
�
�
�

�
�
�
�

�	
��
������������ 0

 0.05

 0.1

 0.15

 0.2

 0.25

U
/E

U
/L

U
/S

execution time
register pressure

(b) Level-by-Level

� �
� �
� �
� �

�
�
�

�
�
� �

�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

	
	
	
	

�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

� �
� �
� �

�
�
�

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

�
�
�
�

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

 0

 0.05

 0.1

 0.15

 0.2

 0.25

B
/E

B
/L

B
/SI/
E

I/
L

I/
S

L
/E

L
/L

L
/S

U
/E

U
/L

U
/S

execution time
register pressure

(c) Hybrid

Figure 11: Comparison of the Operation Selection Heuristics

The flat scheduler appears to be highly dependent on the heuristics used. There is no clear best
heuristic. On average, each heuristic gives a solution 7.5% slower than the best heuristic for a give loop
nest while the integer register pressure is on average 18% higher. The best compromise can be found
with B/S and L/S. This high variations is also explained by the size of the solution space. Under the
looser constraints used by the flat scheduler, there exist several correct solutions that can be attained.

Under tighter constraints, used by the level-by-level scheduler and indirectly by the hybrid approach,
those variations disappear. The choice of the heuristics seems to have no influence on the quality of the
computed solution.

5.3 Comparison of the II Increment Heuristics

Figure 12 compares the II increment heuristics for the flat and hybrid schedulers where the heuristics
matter. As before, the average relative difference to the minimum for each test case under the same
scheduling approach is measured. The three heuristics, lowest Slack, Innermost first, and Lexical, are
noted S, I, and L, respectively.

11

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

 0

 0.1

 0.2

 0.3

LIS

(a) Flat

�
�
�

�
�
�

�� � �
� �
� �

� �
� �
� �

 0

 0.1

 0.2

 0.3

LIS

(b) Hybrid

Figure 12: Comparison of the II Increment Heuristics

For the flat scheduler, the lexical order produces the fastest schedules. One may add that the register
pressure is higher though. Indeed, because the right level is chosen when the II is incremented, a tighter
solution is found. With a lower II, the number of stages is greater and so is the register pressure. Lower
execution time comes to the expense of registers.

For the hybrid scheduler, the impact of the II increment heuristics is limited. Indeed, the innermost
level, which contains most of the operations, is treated as a special case. Therefore there is not much
scheduling pressure left for the other levels (2 to 3 maximum).

6 Related Work

SSP is not the only method to software pipeline loop nests. But it is the first one that has performed
a complete and systematic study on each of the subjects: scheduling, register allocation, and code
generation [18, 16, 17].

MS techniques were extended to handle loop nests through hierarchical reduction [9, 20, 12], in
order to overlap the prolog and the epilog of the inner loops of successive outer loop iterations. Although
seemingly similar in idea to the level-by-level approach proposed here, hierarchical reduction software
pipelines every loop level of the loop nest starting from the innermost, dependencies and resource usage
permitting. The dependence graph needs to be reconstructed each time before scheduling each level,
and cache effects are not considered. SSP only tries to software pipeline a single level and to execute its
inner loops sequentially. MS has also been combined with prior loop transformations [3, 21, 13].

Finally, there exists other theoretical loop nest software pipelining techniques such as hyperplane
scheduling [4]. They however do not consider fine-grain resources such as function units.

7 Conclusion

This paper proposed for the first time kernel generation methods (flat, level-by-level, hybrid) and heuris-
tics for the Single-dimension Software Pipelining framework. The flat approach schedules all the opera-
tions of the loop nest simultaneously. The level-by-level approach schedules the operations one level at

12

a time. Decisions made in deeper levels cannot be undone. The hybrid approach uses the level-by-level
approach for the innermost level and the flat approach for the others. We also break the strict level
separation limitation introduced in earlier publications [17]. We proved that each technique enforces all
the SSP scheduling constraints.

Experiments demonstrated that, although the three approaches shows comparable schedules in terms
of execution and register pressure, the level-by-level method is to be preferred because it is more scalable
and less dependent on the heuristics than the flat method. The hybrid approach unfortunately inherited
the drawbacks of the two other methods and produces slightly slower solutions.

13

References

[1] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software pipelining.ACM
Comput. Surv., 27(3):367–432, 1995.

[2] Erik R. Altman and Guang R. Gao. Optimal modulo scheduling through enumeration.Int. J.
Parallel Program., 26(3):313–344, 1998.

[3] Steve Carr, Chen Ding, and Philip Sweany. Improving software pipelining with unroll-and-jam. In
HICSS ’96: Proc. of 29th Hawaii Int. Conf. on System Sciences, pages 183–192. IEEE Computer
Society, 1996.

[4] Alain Darte, Robert Schreiber, B. Ramakrishna Rau, and Fréd́eric Vivien. Constructing and ex-
ploiting linear schedules with prescribed parallelism.ACM Trans. Des. Autom. Electron. Syst.,
7(1):159–172, 2002.

[5] Alban Douillet and Guang R. Gao. Register pressure in software-pipelined loop nests: Fast com-
putation and impact on architecture design. InProc. of the 18th International Workshop on
Languages and Compilers for Parallel Computing, Yorktown, New York, USA, October 2005.
Springer-Verlag.

[6] Guang R. Gao, Qi Ning, and V. Dongen. Extending software pipelining techniques for scheduling
nested loops. InProc. of 6th Int. Workshop on Lang. and Compilers for Parallel Computing, pages
340–357, 1994.

[7] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-constrained
rate-optimal software pipelining.IEEE Trans. Parallel Distrib. Syst., 7(11):1133–1149, 1996.

[8] Richard A. Huff. Lifetime-sensitive modulo scheduling. InPLDI ’93: Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and implementation, pages 258–
267. ACM Press, 1993.

[9] M. Lam. Software pipelining: an effective scheduling technique for vliw machines. InPLDI ’88:
Proc. of ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation, pages 318–328. ACM
Press, 1988.

[10] Josep Llosa. Swing modulo scheduling: A lifetime-sensitive approach. InPACT ’96: Proc. of the
1996 Conference on Parallel Architectures and Compilation Techniques, page 80. IEEE Computer
Society, 1996.

[11] Soo-Mook Moon and Kemal Ebcioğlu. Parallelizing nonnumerical code with selective scheduling
and software pipelining.ACM Trans. Program. Lang. Syst., 19(6):853–898, 1997.

[12] Kalyan Muthukumar and Gautam Doshi. Software pipelining of nested loops. InCC ’01: Pro-
ceedings of the 10th International Conference on Compiler Construction, pages 165–181, London,
UK, 2001. Springer-Verlag.

14

[13] D. Petkov, R. Harr, and S. Amarasinghe. Efficient pipelining of nested loops: unroll-and-squash.
In 16th Intl. Parallel and Distributed Processing Symposium (IPDPS ’02), Fort Lauderdale, FL,
April 2002. IEEE.

[14] B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for software pipelining loops. In
MICRO 27: Proc. of the 27th annual international symposium on Microarchitecture, pages 63–74.
ACM Press, 1994.

[15] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel processing: history, overview,
and perspective.J. Supercomput., 7(1-2):9–50, 1993.

[16] Hongbo Rong, Alban Douillet, and Guang R. Gao. Register allocation for software pipelined
multi-dimensional loops. InPLDI ’05: Proc. of the 2005 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 154–167, 2005.

[17] Hongbo Rong, Alban Douillet, R. Govindarajan, and Guang R. Gao. Code generation for single-
dimension software pipelining of multi-dimensional loops. InCGO ’04: Proc. of the Int. Sympo-
sium on Code generation and optimization, pages 175–186, 2004.

[18] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and Guang R. Gao. Single-
dimension software pipelining for multi-dimensional loops. InCGO ’04: Proc. of the Int. Sympo-
sium on Code generation and optimization, pages 163–174, 2004.

[19] John Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelining showdown:
optimal vs. heuristic methods in a production compiler. InPLDI ’96, pages 1–11, New York, NY,
USA, 1996. ACM Press.

[20] Jian Wang and Guang R. Gao. Pipelining-dovetailing: A transformation to enhance software
pipelining for nested loops. InCC ’96: Proc. of 6th Int. Conf. on Compiler Construction, pages
1–17. Springer-Verlag, 1996.

[21] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop transformations consid-
ering caches and scheduling.Int. J. Parallel Program., 26(4):479–503, 1998.

[22] Javier Zalamea, Josep Llosa, Eduard Ayguadé, and Mateo Valero. Register constrained modulo
scheduling.IEEE Trans. Parallel Distrib. Syst., 15(5):417–430, 2004.

15

