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Abstract

Efficient fine-grain synchronization is extremely impotitém effectively harness the computa-
tional power of large-scale multi-core (or many-core) é&sgftures. However, designing and im-
plementing fine-grain synchronization in such architextysresents several challenges, including
issues of synchronization induced overhead, storage szagbility, and the level of granularity to
which synchronization is applicable. This paper propobesgnchronization Sate Buffer (SSB),

a scalable architectural design for fine-grain synchrdiumahat efficiently performs synchroniza-
tions between concurrent threads. The design of SSB is atethwy the following simple obser-
vation: at any instance during the parallel execution only a small fraction of memory locations

are actively participating in synchronization. Based on this observation we present a fine-grain
synchronization design that records and manages the statesjuently synchronized data using
modest hardware support. We have implemented the SSB deglgmncontext of the 160-core IBM
Cyclops-64 architecture. Using detailed simulation, wespnt our experience for a set of bench-
marks with different workload characteristics. We demmatstthe effectiveness and efficiency of
the SSB solution: (i) fomutual exclusion, our solution uses fine-grain locking at each of the mem-
ory units to efficiently avoid unnecessary serializatiortted operations on different elements of
the same concurrent data structure; (ii) fead-after-write data-dependencies synchronization, our
method encourages the exploration of do-across style pfleel parallelism - wherbop-carried
data dependencies can often be directly implemented usiagfiain synchronization operations.
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1 Introduction

The design of high-performance processor chips is rapidly moving tsvyaany-core architectures that
integrate 10s (or beyond) of tightly-coupled processing cores on &sith{p [12, 18]. Intel recently
announced its research prototype many-core design with 80 coresrayieadie [55]. IBM Cyclops-64
will support 160 hardware thread units in one chip [23]. In order to futlijze the on-chip parallelism
provided by such many-core chips, it is important to exploit the fineagrarallelism that is available in
applications. The granularity of parallelism that can be efficiently expladitestich many-core proces-
sors is often limited by the lack of effective architectural support fiicieht fine-grain synchronization.
Software-only solutions (with very limited architectural support) can oftad te high synchronization
overhead, high storage cost, and poor scalability. It is often difficudven impossible to harness fine-
grain parallelism at compilation time. Consider the example shown in Figureiédhwhows the kernel
doall loop in the Random Access HPCC benchmark [1] implemented usingM@é&il. The critical
section ensures the read-modify-write operations in the loop to be pedatomically! Unstructured
references like the one shown in Figure 1 are impossible to analyze at cbonpilme. Therefore, the
compiler can only assign a single lock for the whole tatlé , which introduces unnecessary serializa-
tion. An efficient run-time fine-grain synchronization mechanism is s&mg to exploit such inherent
fine-grain parallelism.

#pragma onp parallel for private(ran,i,idx) shared(y, N, size)
for(i =0; i <N i++){

ran = rand();

idx = ran & (size - 1)
#pragnma onp critical

{
y[idx] = y[idx] op ran;
}
}
Figure 1: Random Access with DOALL Loop
for (i=1; i<n ; i++)

for ( k=0 ; k<i ; k++)
Wi] +=b[Kk][i] » W(i-k)-1];

Figure 2: Livermore Loop 6: Linear Recurrence Equations

Now consider the Livermore Loop 6 shown in Figure 2, which represgiasly used linear recur-
rence equations [25]. As shown in Figure 3, the outer loop computesrtneVgrand at each iteration
i ,Wi] depends on values computed in all previous iteration, th&{is] depends omj 1], W 2],

... ,Wi -1]. Such cross-iteration dependencies of akayakes it difficult to parallelize this loop at
compilation time [54]. Again, a fine-grain synchronization mechanism is gasémenforce the data
dependencies among concurrent threads.

The original benchmark allows data races as long as the percentag@atoexceed 1%. In the context this paper, we
enforce the mutual exclusion to examine fine-grain synchronizatiamamesms.
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Figure 3: Characteristics of Livermore Loop 6

There are several design choices that one can employ to implementdinesgnchronization. For
instance, HEP [51], Tera [5], MDP [19], Sparcle [3], M-Machirg4], the MT processor in Eldo-
rado [26], and others use hardware bits as tags (el¢yempty bits) to support word-level fine-grain
synchronization. These designs tag the entire memory of the machineduyadisgy additional access
state bits with each word in memory. Dataflow model-based architecturassthtte I-structure [8] and
M-structure [11] like fine-grain synchronization also exploit similar desigGiven that on-chip mem-
ory is one of the most precious resources for many-core chips, ame side of such design choices is
the overhead and the cost associated with tagging every word in the memory.

To address the problem of such high-cost synchronization mechanismmeade one key observa-
tion: at any instance during the parallel execution only a small fraction of memory locationsis actively
participating in synchronization. To further elaborate on the key observation, consider the kernel loop
shown in Figure 1. Let us assume a non-preemptive thread model. N@blethe number of active
threads and s’ < N, whereN is the size of the tablg[ ] . In the example, we can then observe that
at any instance, the number of memory locatiGhthat areactively participating in synchronization
is less than or equal t@, that is,S < T, and therefores « N.2 In other words, at any instance,
only a small part of the table need to be actively synchronized (i.e. locKEidgrefore, rather than
supporting fine-grain synchronization by tagging every word (in the Yabte can focus on recording
and managing synchronization states of only those actively synchdbnieenory words. One could
make a similar observation for the example Livermore Loop 6 kernel siowigure 2.3

2Even in a preemptive thread model, the number of threads is normati tess than the size of memory for a practical
multithreading program. Therefor® <« N generally holds.
3The key observation for the Livermore loop 6 is not straightforwaater in Section 5.4, we will discuss the details.



Based on this key observation, we introduce a novel synchronizatabitecture, with a modest
hardware extension to many-core architectures, cajaghronization State Buffer (SSB). SSB is a
small buffer attached to the memory controller of each memory bank. Itds@rd manages states
of active synchronized data units to support and accelerate word-level fine-grain synchronizatioB. SS
caches the states of memory locations that are currently accessedciat §8B synchronization op-
erations. An interesting aspect of our SSB design is that it avoids ensrmemory storage cost, and
still creates an illusion that each word in memory is associated with a set of gtatecan be used to
support word-level fine-grain synchronization. SSB can supporitshaset of synchronization func-
tionalities. In our current design, SSB can be used to enforce mutulalsext and read-after-write
data dependencies between threads. For mutual exclusion, SSBtsutifferent fine-grained locks,
including word-level read, write, and recursive locks. For datalssorization, SSB allows fine-grained
low-overhead synchronized read and write operations at word4leveemory. SSB supports several
modes of data synchronization, including two single-writer-singlelgeanodes, and one single-writer-
multiple-reader mode.

To understand the design space of SSB, we implemented our solution in teataufrthe 160-core
IBM Cyclops-64 (C64) chip architecture as a case study. We extenéed@# architecture simulator
with the new SSB architectural features to explore the design space esaigpd simulation.

For mutual exclusion, SSB supports different fine-grained locks, d@veguword-level read, write,
and recursive locks. Our approach exploits the ample parallelism fteat exists in operations on
different elements of concurrent data structures. Using SSB-bamedriin locking on each memory
unit, we avoid the unnecessary serialization of those operations. Foetlod Benchmarks that we
tested, we have observed up to 84% performance improvement using I&$Bcampared to software
only solutions.

For read-after-write data dependence synchronization, SSB allasvgifin low-overhead synchro-
nized read and write operations at word-level in memory. SSB suppersasenodes of data synchro-
nization, including two single-writer-single-reader modes, and one simgter-multiple-reader mode.
Our SSB design can efficiently exploit the do-across style loop-levallpism, where one can directly
implement loop-carried data dependences using SSB fine-grain syigdtion and eliminate the use
of unnecessary barriers in the loop. Our experimental results dératmsignificant performance gain
using such fine-grain data synchronization. For instance, using S&Bbserve a 312% performance
improvement over the coarse-grain based approach when solvingi@goesrence equations.

Finally, our experiments also demonstrate that 1) a small SSB for each meamirismormally suf-
ficient to record the access states of outstanding synchronizing datdauniislitithreading programs,
and 2) most of fine-grain synchronization operations are successful.

2 Design Principles of Synchronization State Buffer

In this section we lay the foundation for SSB and present the principtefffoient implementation of
fine-grain synchronization using SSB .



2.1 Many-Core Architecture

Architects are actively exploring the design space of many-core chiphvigcurrently in a state of flux.
The design choices for efficient implementation of a fine-grain synchatiaizsolution are likely to be
strongly influenced by the underlying architectural design and moaéhid paper, we focus on a class
of many-core architectures where a large number of simple cores and ynermadules are integrated
on a chip and connected via an on-chip interconnection network. Hearmopthese multi-core/many-
core chips include the recent announcement of the Intel terascaleb&higrd the Larrabee mini-cores
chip [2], and the IBM Cyclops-64 (C64) chip architecture [23]. In th&gper, we have implemented
SSB in the context of the C64 architecture.

One important feature of such many-core architectures is that the anfamthbip storage per core
is far less than traditional single core processors - by up to one to twosasflenagnitude. Therefore,
tagging every word in on-chip memory for fine-grain synchronizationneidugh cost. One of our
design objectives in SSB is to avoid such cost.

A few multi-core chip designs (such as the IBM Cell processor [27,1B&] Cyclops-64 [23] chip,
and the ClearSpeed CSX architecture [16]) empplicitly programmable local memory store for
each processing core rather than coherent data cache. The loeagtooach allows denser hardware
implementation and simplifies the microarchitecture by avoiding the complexity ahtagh compare
and late hit-miss detection, miss recovery, and coherence managenmiat@sswith cache hierar-
chies [28]. From the software perspective, non-deterministic memosnsadatencies of cache always
negatively affect compiler scheduling and optimizations. On the other tfamthcal store with low and
deterministic access latency can offer aids to the effectiveness of manplieo-based static scheduling
and optimizations, such as instruction scheduling, loop unrolling, and aetpipelining [24]. Unlike
many synchronization mechanisms built on coherent cache archite@@Bsnakes no such assump-
tion, and thus can be naturally implemented as the fine-grain synchronizatotvanigm for many-core
architectures with the local store approach.

Another important feature of such many-core architectures is that they efmploy a large number
of simple cores. For example, the IBM Cyclops-64 (C64) chip containschés (also called thread
units). C64 system software model and the associated programming andiexesnvironment are
centered around TiNy Threads [22]. One feature of the TiNy Thresatte efficient support of a non-
preemptive thread model: the core on which a thread is running is simply isiadehen the thread is
suspended. Under a many-core architecture such as C64, threadteswitching can be particularly
costly due to two reasons. First, since on-chip memory is precious and liméeithgsthe context
of a large number of threads in on-chip memory can become prohibitivelsnsige and impractical.
Second, saving the context in off-chip memory suffers from high latemzy low bandwidth. The
effectiveness of the non-preemptive model has been demonstrateghhitte mapping of a number
of applications onto C64 [15, 31,53, 56]. An assumption for designingiraplementing SSB that we
make throughout the paper is the non-preemptive thread execution model.
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2.2 Formalization of the Key Observation

Recall the key observation that at any instance only a small set of memotiplucare actively par-
ticipating in synchronization. We formalize this simple observation as follows7 e the number of
non-preemptive active threads and ¥t= M x B be number of memory locations, wheké is the
size of each memory bank aiitlis the number of memory banks. Observe thas usually far less than
M x B, thatis,T < M x B. Now letS(t) be the number of active synchronized memory locations at
any instance. In other wordsS(t) is the amount of synchronization in an application at any instance
t, and is given by:

S(t) < alt) x T, 1)

wherea(t) indicates the maximum number of distinct memory locations synchronized byadthte
any instanceé. Therefore a many-core architecture can take advantage of the &8Bdvhenever the
following relation holds:

St)<a(t)yxT < M x B, 2

For the examples shown in Figuredl(t) = 1 at any instance. Given thatB is much smaller thai/,
we can compute the average amount of synchronization at a memory$ank a

Sp = S(t)/B < M, ®3)

We will use Equations 1, 2, and 3 in the design of SSB in the next section.

3 Design of Synchronization State Buffer

SSB is a small buffer attached to the memory controller of each memory barkolds and manages
states of actively synchronized data units to support and acceleratelevel fine-grain synchroniza-
tion. In this section we will discuss the various design parameters of SSB.

3.1 Buffer Size

The first design parameter is the number of entfigsn an SSB for a memory bank The number
of entriesE), is related to the size of memory bank, as follows: E;, < M,. Now if E, = M;, SSB
design is equivalent to tagging every memory location. In SSB we want id sagging all memory
location, and therefore we want:

Ey, < M, (4)

From Equations 1, 2, and 3 we know that if an application can take ady@ofahe architectural design
objective of Equation 4, then the following is the design requirement tosike of the buffer:

Ey > Sy (5)
Let us generalize the above relation as follows:
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Ebzﬁbe (6)

whereg is a factor that relates the amount of synchronization in an application to tte/dwa resource
limitation. If 3 > 1 then SSB is cost effective, anddf < 1 then the performance of SSB is affected
since the buffer will fill up and we have to fall back to software mecharfis synchronization. Given
a particular buffer size, a compiler can optimize an application so as to réfdei@enount of synchro-
nization in the application. In practice, architects can determine the numbetrigfsg and the level of
set associativity of an SSB according to the class of applications to berseg@pthe transistor budget,
the power consumption requirements, and other design factors.

The SSB on the memory controller of each memory bank functions as a lotdblg Given the
small size of each SSB, the single-cycle lookup function can be easily imptedwith common hard-
ware technology and modest cost. Another merit of SSB is its de-tigettaand distributed nature,
because of the independence of each SSB . Therefore, the hardesirfor implementing SSB in-
creases only linearly proportional to the number of on-chip procgssines and memory banks, and
the complexity of hardware logic remains the same for each SSB. In othelsw86B is a scalable
fine-grain synchronization solution for many-core chips.

3.2 Structure of SSB

state (4-bits) counter (8-bits thread id address

Figure 4: One SSB Entry

The overall structure of an SSB entry is shown in 4. Each SSB entrysterf four parts: (1) ad-
dress field that is used to determine a unique location in a memory bankig@gltidentifier, whose size
is [log(T)], whereT is the number of non-preemptive threads supported by the underlying-coaay
architecture, (3) an 8-bits counter, and (4) a 4-bits field that can suppeto 16 different synchro-
nization modes. The address bits are used ksydo search the buffer and locate the entry of the
synchronized location. The remaining three fields forms the synchtamnzstate for that memory
location. Since we assume a non-preemptive thread execution model, thad'tkdi can be used to
identify a processing core as well as a unique software thread ruoniiigThe use of the counter field
depends on the type of synchronization operation that is performedhwiaavill explain in the next
section. Table 1 shows different synchronization modes that we suipgmur current design. An entry
in SSB is allocated and released according to its state and the functiorS&instruction operating
onit.

All memory instructions, including SSB instructions are handled in a FIFO nramhen arrive at
a particular memory bank through the on-chip interconnection networke S88 maintains the states
for synchronized memory locations in hardware, we avoid explicit soéyw@anaged synchronization
variables that cost extra memory. Also, with one memory transaction, Bnirf&8uction not only
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Table 1: SSB State Bits
| State Bits| Function | Description
0x0000 | WLOCK | Write Lock
0x0001 | RLOCK | Read Lock
0x0010 | WRLOCK | Write-Recursive Lock
0x0011 SR1 Single-Writer-Single-Reader Mode 1
0x0100 SR2 Single-Writer-Single-Reader Mode 2
0x0101 MRF Single-Writer-Multiple-Readers Full Mode
0x0110 MRL Single-Writer-Multiple-Readers Lock Mode
0x0111 MRQ Single-Writer-Multiple-Readers Queue Mode
0x1000 MRQL | Single-Writer-Multiple-Readers Queue Lock Mode

perform the synchronization on the memory location, but also brings thendatuhe processor on
success.

4 An Architectural Model for SSB

4.1 Support for Fine-Grain Locking

SSB associates locking functions with memory locations dynamically. When a mémeation needs
to be accessed exclusively, the lock operation is issued with the addriss location. In the SSB of
the corresponding memory bank, an entry for this address, if it ddesxigis, is allocated to monitor
the state of the memory location. If an entry already exists, the state might bgezhaccording
to the function of the operation. The return value of the operation informsythehronization state
to the software, and the software can then proceeds accordingly. &n8&B instruction takes the
address of a memory location to perform the locking operation, it doesenoire any pre-allocated
synchronization variable. As a result, SSB is able to smoothly and efficieatlgllé the cases where
the precise synchronization point cannot be resolved statically at cotimpde

SSB provides the following operations to perform the lock/unlock opersition

(RT, Value) = sw ock | (MemAddr);

[+ swock |I: acquire wite lock for location MemAddr =+/
/[ * and | oad the content */
[+ MemAddr: the address of the nenory | ocation */
[+ RT: return value, success or failure */
/* Val ue: the content of the nenory | ocation */
(RT, Value) = srlock_ | (MemAddr);

/* srlock _|: acquire read lock for |ocation MenmAddr =*/
[ * and | oad the content */



/* MemAddr: the address of the nenory | ocation * [
/* RT:. return value, success or failure * [
/* Val ue: the content of the nenory |ocation * [

sunl ock( MemAddr) ;
/* sunl ock: release the |lock for |ocation MemAddr */
[+ MemAddr: the address of the nenory |ocation */

The operationsswlock_| and srlock_| acquire awrite or read lock for the memory location
MemAddr respectively. Upon success, they also load the content of the memotioiotaValue.
The operatiorsunlock releases the lock previously acquired. Figure 5 illustrates how the lockkinlo
operations interact with the SSB hardware.

As shown in Figure 5(a)swlock_| acquires thearite lock for memory locationMemAddr. If
there is no record for this location in SSB, which means it is not locked pyo#rer thread, an entry
for this location is allocated, and the state is se¥MbOCK. Before this location is unlocked by the
owner, write/read lock acquisition from other threads will fail, and cause“tiounter (cnt)” to be
incremented by 1. The current value of “cnt” is returned to the threaddioate the failure. Therefore,
in WLOCK mode, the return value accurately reflects the status of runtime lock comtemtiche
memory location, i.e., how “hot” it is. Software may take advantage of this infoom&o implement
a contention manager, such as a backoff policy. SSB also supports recursive (or Ndstdd A thread
can repeatedly acquire the write lock it already owns. If a thread is theoamigr of the read lock, it can
upgrade the lock to a write lock. In both cases, the state is $#RbhOCK, and the “cnt” records the
number of the nested recursive locks. The software is required torpepiired lock/unlock operations.

The operatiorsrlock_| acquires aead lock for the memory locatioMemAddr. Multiple threads
can own the same read lock at the same time. The first successfulinoquiBocates an entry in SSB,
and sets the state ®LOCK. The “cnt” records the number of successful acquisitions. As dexstrib
before, when “cnt” is equal to 1, a write lock acquisition from the same thigable to upgrade the
lock to aWRLOCK. Except for this special case, all the write lock acquisitions will fail. Thiegvéor
of sunlock operation is shown in Figure 5(b). When a lock is finally released, theggonding entry
in SSB will be freed for reuse. It is worth noting ttatnlock does not return the “success”/“fail” result
to software. If asunlock fails, an exception is raised.

4.2 Fine-Grain Data Synchronization

SSB can help the programmer to exploit data-level parallelism by allowinggrgoroto perform syn-
chronized reads and writes at the word-level in memory. SSB providesd mstructions to support
fine-grained data synchronization that can enforce data depensiGetigeen concurrent threads.

In the current design, two different types of data synchronizatioswgrported: single-writer-single-
reader, and single-writer-multiple-reader data synchronization.
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swlock (TID)/
success

WLOCK
tid = TID

NOT
LOCKED

WLOCK
tid =TID

swlock (TID")/ fail
srlock (*) / fail

swlock (TID) /
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swlock (TID’)/
swlock (TID’)/ fail fail
tid =TID L R
swlock (TID)/ tid = TID
srlock(*)/ fail cnt=2 succ(ess) cnt=3 sr|?C_|I<(*)/
ai
swlock (TID) /
success
stlock (TID)/ success RLOCK \ srlock (*)/ success [ RLOCK o

tid =TID tid = TID

cnt=1 cnt=2

7 swlock (*)/fail W7
(a) states transition caused &ylock_| andsrlock_l operations

swlock (TID)/fail

sunlock (TID) /
NOT succe(ss )
LOCKED /™

WLOCK

tid = TID
cnt=2

sunlock (TID") / sunlock (TID’) /
fail fail

WLOCK
tid = TID

sunlock (TID)/
success

sunlock (TID) /
success

WRLOCK
tid = TID

- - - - —

tid =TID
cnt=1

sunlock (TID") / sunlock (TID) /
fail fail

RLOCK
tid =TID
cnt=1

RLOCK
tid =TID
cnt=2

sunlock (*) /

sunlock (*) / success success

(b) states transition caused bynlock operation

A circle represents the state of a memory location monitbye8SB . The edge shows the transition between
two states. Near the transition edge, the transition ctmdis described by a pair of text connected by a
“/” symbol. The left side of “/” shows the operation perforchto cause the transition; the right side of */”
indicates the return result of the operatidriD in the parentheses suggests that the operation is issued by
threadTID. TID' means a thread other than thréaB. The symbol %" in the parentheses means that it can
be “any thread”.

Figure 5: State transition diagram of SSB lock/unlock operations.

421 Single-Writer-Single-Reader (SWSR) Data Synchronization

SSB can help the programmer to exploit data-level parallelism by allowinggrgroto perform syn-
chronized reads and writes at the word-level in memory. The singlervgiiigle-reader (SWSR) syn-
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chronization enforces order between a thread that produces thendbsmather thread that consumes
the data. The following are the interfaces:

RT = sswsr_wl(MemAddr, Val ue);

[+ sswrsr_wl: SWBR synchronized wite node 1 * [
/* MemAddr: the address of the nenory |location x/
[+ Value: the Value to be witten to MemAddr */
/* RT: return value, success or failure x [

(RT, Value) = sswrsr_r1(MemAddr);

[* sswsr_rl: SWBR synchroni zed read node 1 */
/+* MemAddr: the address of the nmenmory |ocation */
/* RT: return value, success or failure */
/* Val ue: the content of the nenory | ocation * [

RT = sswsr_w2(MemAddr, Val ue);

[* sswsr_w2: SWBR synchroni zed wite node 2 */
[+ MemAddr: the address of the nenory l|location «/
[+ Value: the Value to be witten to MenmAddr */
/* RT: return val ue, success, failure or x /[
[ * reader’s thread id */

(RT, Value) = sswsr_r2(MenmAddr);

[* sswsr_r2: SWSR synchroni zed read node 2 *
[+ MemAddr: the address of the nenory |location x/
[+ RT: return value, success, failure, or wait =*/
[+ Value: the content of the nenory | ocation */

As shown in Figure 6(a)sswsr-wl and sswsr_rl can coordinate with software to support a
busy-wait approach. If the writer has not performsswsr_wl to the memory location addressed by
MemAddr yet, thesswsr_rl performed by the reader returns a failure. The reader needs todiy ag
with sswsr_rl afterwards. The reader can get the data only aftessiwesr w1 is finally performed,
which allocates an entry in the SSB, sets the staf&Ra&, and writes thé/alue into MemAddr. When
sswsr_rl is successfully executed, the entry in SSB is released, and the contddahokddr is loaded
for the reader.

A blocking strategy can be implemented wibwsr_ w2 andsswsr_r2. As illustrated by Figure 6(b),
if the reader performsswsr_r2 before thesswsr_w2 from the writer, an entry will be allocated in SSB,
the state is set t8BR2, and the counter is set to 1 to represent that the data is not available gahréad
id of the reader is also recorded. When the reader finds out that te vetue is “wait”, it voluntarily
suspends its execution and goes to sleep. Lassvsr-w2 instruction issued by the writer will write
Value into MemAddr, and set the counter to 0 to indicate the availability of the data. The instruction
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sswsr_w1/ success

T

sswsr_rl/ no
fail record

(a) Mode 1: a busy-wait approach

sswsr_rl/succes

sswsr_w2/
success

no
record

sswsr_r2/
success

sswsr_r2 (TID)/ sswsr_w2/
wait TID
| |
| |
\J

\
software: wakeup
thread TID

SR2
tid = TID
cnt=1

software: sleep

(b) Mode 2: a sleep-wakeup approach

A circle represents the state of a memory location monitbye8SB . The edge shows the transition between
two states. Near the transition edge, the transition cmdis described by a pair of text connected by a
/" symbol. The left side of “/” shows the operation perforchtd cause the transition; the right side of /"
indicates the return result of the operatidriD in the parentheses suggests that the operation is issued by
threadTID. “software:” means the operation that described by folfaytiext is performed by software.

Figure 6: State transition diagram of SSB Single-Writer-Single-Readeatipes.

also returns the thread idiD) of the reader to the writer. The write can wake up the sleeping reader.
The reader can now retrieve the valuedsyvsr_r2 and free the corresponding entry in the SSB.

4.2.2 SingleWriter-Multiple-Reader (SWMR) Data Synchronization

The single-writer-multiple-reader (SWMR) synchronization enforceieiong between a thread that
produces the data and a number of other threads that consume the defallolting are the interfaces:

RT = sswir_w( MenmAddr, Val ue, NuntX Readers);

[+ sswnr_w. SWWMR synchroni zed wite * [
/+* MemAddr: the address of the nenory |ocation  */
/* Value: the Value to be witten to MenmAddr */
/* Nunof Readers: the nunber of readers */
/* RT: return value, success, failure, */
/[ * or the pointer the wait queue */
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(RT, Value) = sswnr_r(MemAddr);

[+ sswnr _r: SWWR synchroni zed read */
[+ MemAddr: the address of the nenory | ocation */
[+ RT. return value, success, failure, | ock node, or qlock node */
[+ Value: the content of the nmenory |ocation upon success, or */
[ * the pointer to the queue if the RT is |ock node or */
[ * gueue node */

sswnr _ul (MemAddr, QueuePtr);

[+ sswir_ul: SWR queue unl ock */
[+ MemAddr: the address of the nenory | ocation */
/* QueuePtr: the pointer to the wait queue */

Figure 7 shows how SSB SWMR operations interact with software to petfugrdata synchroniza-
tion between one writer and multiple readers. In the ideal cassstiner_w write operation is executed
before all the read operations. As a result, an entry is allocated in thetB&Bate is set to MRF (full
mode), “cnt” (counter) is initialized tdl, which represents the number of readers, @aldie is written
into the memory location addressedMgmAddr. All the following sswmr_r operations read the value
from the memory and decrement the “cnt” by 1. When all the reads finisthenttnt” reaches 0, the
corresponding entry in SSB is freed.

However, it is possible that some readers issuessgwemr_r read operations before the write. The
first suchsswmr_r instruction allocates an entry in the SSB and sets the state to MRL (lock mode).
Then the thread that issues this read will initialize a wait queue, put itself ietqukue, and issue a
sswmr_ul instruction with the pointer to the tail of the wait queue as a parameters§ier_ul stores
the pointer into the memory location, and switches the state to MRQ (queue mole)tollowing
sswmr_r operations issued by other threads will get this pointer, with which adhraa enqueue itself.

As shown in Figure 7, if one or more threads are performing the enqueemtion, the state of the
SSB entry is MRQL (queue lock mode), which prevents the write from daing. After the enqueue
operation, the thread issuesgwmr_ul operation and goes to sleep. When the state of the SSB entry is
switched back to MRQ and sswmr_w operation arrives, the write can be performed, and the state is
changed to MRF. In this case, the queue pointer is returned to the writadftwaich then wakes up all

the threads in the queue. Since the state of the entry is already MRF, alldkersed threads as well as
other threads can now read data from the memory.

4.3 Hardware Resource Constraints

Since the (hardware) SSB is a fixed size buffer, for some applicatiooanitbecome full. In such
situation we trap to a software solution. Each hardware SSB (at a memoky, lzalled HSSB, has
its associated software SSB, called SSSB. An SSSB is an extension to @spmrding HSSB, and to
simplify our discussion we assume them to be fully associative. Each H88fins two bits, FBIT
and SBIT. FBIT is set to ON automatically by hardware whenever the HS$Brbes full, otherwise
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software: init the queue software:sleep software: enqueue
_ . o software:sleep A} / d

with pointer "ptr" AN 14 ,

AN sswmr_ul/ success

z N /
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/
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sswmr_r/
fail

software:
sleep

sswmr_w/ *
fail I
—_ sswmr_r/ | sgwmr_ul/

sswmr_ sswmr_w sswmr_w qlock (ptr) | success
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success success (ptr) :
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~ ~ software: wakeup readers V !
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A circle represents the state of an memory location mordtdne SSB . The “MEM =" in the parentheses

indicates the content of the memory location that is moadoby this SSB entry. The edge shows the
transition between two states. Near the transition edgeirémsition condition is described by a pair of text
connected by a “/” symbol. The left side of “/” shows the opienaperformed to cause the transition, with its
parameters in parentheses; the right side of */” indicdiegeturn result of the operation, with an additional

return value in parentheses. “software:” means the omeraliat described by following text is performed
by software.

Figure 7: State transition diagram of SSB Single-Writer-Multiple-Reader@jons.

it is OFF. The SBIT indicates whether there are software maintained emtrtae SSSB. When the
kernel starts, it initializes all the SSSBs. An HSSB also has a registird GREG that is initialized
during boot time by the kernel, holds a pointer to its corresponding S86Ban associated software
lock. The SSSB software structure is common across all applications @yskem. An entry in the
SSSB has the same structure as the HSSB entries. We assume that insttheti@nrive at a memory

bank are processed in an FIFO order. When an SSB instruction eeanbesearches the HSSB, there
are following possible cases:

Matching entry in HSSB?7 FBIT | SBIT | Case

Yes Any | Any | 1: HW only solution

No OFF | OFF | 2: HSSBis not full, HW only solution
No ON OFF | 3: HSSB is full, set SBIT on, trap to SW
No Any | ON 4: Entries in SSSB, trap to SW

Accordingly, the steps that are taken by the memory controller on the mermaakyib shown in
Figure 8.

The raised trap is handled using a software handler, to which the poiritee BREG, along with
the opcode and operands of the SSB instruction, are supplied as pasanidte handler is executed

13



Search the HSSB
if Find a matching entry
Perform normal operations
else
if SBIT is OFF
if FBIT is OFF
Create an entry in HSSB, perform operations on it
else
Set SBIT to ON, a software trap is raised
ese
A software trap is raised

RBOoOoNOMONPE

= o

Figure 8: Operations of Memory Controller

by the thread that issued the SSB instruction. The software lock assbuidkeeach SSSB has to be
acquired by the thread before it executes the handler, thus no oteadthcan change the states of an
SSSB simultaneously. It is possible that the state of the corresponding ki&Sthanged between the
duration of the raise of the trap and the acquisition of the lock. Therdfwesoftware handler will deal
with following cases:

SBIT | Matching Entry in HSSB? FBIT | Case

OFF | No need to check Any | 1: SSSB is empty, fall back to HW

ON Yes Any | 2: Fall back to HW

ON No OFF | 3: Attempt to promote the entry to HW
ON No ON 4: SW only solution

To check the state of SBIT, FBIT, and search the HSSB for matching, eqpecial instructions are
used. When the thread gets the lock and begins to execute the harfaigrchiecks the SBIT. If SBIT
is OFF, the SSSB is empty due to the operation of another thread who ownledkhareviously. As
suggested in case 1, the handler releases the lock and re-issues thestB&®Bion. If SBIT is on, the
handler issues an instruction to search the HSSB. If a matching entry id,fdus case 2, and the
handler takes the same action as case 1. Otherwise, it performs the opeoati®SSB, then check the
FBIT. If the FBIT is OFF, which is case 3, the handler attempts to flush thg enthe HSSB, also with
an instruction. If successful, the handler removes the software ewiry thhe SSSB. The remaining
step of case 3 and case 4 are the same. If the SSSB becomes emptydike &t the SBIT to OFF,
releases the lock, and returns. The steps performed by the harelmamarized in Figure 9.

The software mechanism will slow down the requested synchronizatiaatope However, it is
expected that a small SSB is normally sufficient for most multithreading progras we will show in
Section 5.5, for many benchmarks, only one has a small percentageabirepization operations that
encounter the “full” situation.

5 Evaluation

Our objective in this section is to illustrate the characteristics of SSB anfy ike efficiency and
effectiveness of SSB. We also compare SSB with other synchronizationamiesms. We explore the
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1 Acquire the corresponding software lock

2. Check the SBIT using a special instruction

3. if SBIT is ON

4, Search the HSSB using a special instruction

5. if Find a matching entry

6. Release the lock, re-issue the SSB instruction
7. ese

8. Search the SSSB

9. if Find a matching entry

10. Operate on the entry

11 else

12. Create an entry in SSSB

13. Operate on the entry

14. if The entry is not freed in SSSB

15. Check the FBIT using a special instruction
16. if FBIT is OFF

17. Flush the entry to HSSB using a special instruction
18. if Success

19. Remove the entry from SSSB

20. if SSSB is empty

21. Set the SBIT to OFF using a special instruction
22. Release the lock

23. else

24. Release the lock, re-issue the SSB instruction

Figure 9: Operations of the Software Handler

characteristics of SSB in the context of the IBM 160-core Cyclops&84] chip architecture [23],
which represents a class of many-core architectures that we disénssection 2.

5.1 C64 Architecture and Experimental Framework

Node
Processor 1 2 80 Chip
3D-mesh
ethernet
Host
Control
Crossbar Network network
[ | 1
GM || GM GM || GM GM || GM : !
controller memory

Figure 10: Cyclops-64 Chip Architecture
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C64 is evolved from a preliminary design of BlueGene/Cyclops archite¢tdj. As shown in Fig-
ure 10, the C64 chip contains 160 thread units (TU) (running at 500MHd)160 embedded SRAM
memory banks (32KB each) in a single silicon die. There are 80 floating paits, each of which
is shared by two TUs. A 32KB instruction cache, is shared among 10 T864.h@&s efficient support
for thread level execution, such as ISA-level sleep/wakeup instrigctiéor instance, a thread can stop
executing instructions for a number of cycles or indefinitely; while asleeartbe awaken by another
thread through a hardware interrupt. C64 features an explicitly ashibslesthree-level (Scratchpad
memory, on-chip SRAM, off-chip DRAM) memory hierarchy without datal@cA portion of each
SRAM bank can be configured as theeatchpad memory (SP), which can be accessed by a correspond-
ing TU with very low and deterministic latency. The remaining sections of aitlip SRAM banks
together form theylobal memory (GM) that is uniformly addressable by all TUs. There are 4 memory
controllers connected toff-chip DRAM banks (up to 2GB). All memory words are 8 bytes wide and
the memory is byte-addressable. The memory accesses to contiguossagdee are interleaved. For
example, the access to GM is interleaved to SRAM banks by a 64-byte &gumdhich ensures the full
utilization of the bandwidth and the SSBs attached to all memory banks. Menegsas to GM and
DRAM go through an on-chip crossbar network, which sustains a 384 GB-chip bandwidth. The
crossbar also guarantees a sequential consistency memory model @§4tohip architecture. Fence-
like instructions is not needed to ensure the order between memory opsrgtR) 60]. C64 provides
no hardware support for context switch, and uses a non-preentipia@d execution model. The peak
performance of a C64 chip is 80GFLOPS.

The current C64 architecture supports several synchronizatiohansms. Atomic in-memory
instructions, such afetch-and-add, can be used to implement varioggn-locks. The sleep/wakeup
instructions can be used to perform post/wait type of synchronizatidré-Bit signal bus, to which all
thread units are connected, provides a means to efficiently implement baffiercompare-and-swap
(CAS), linked-load, andstore-conditional instructions are not currently supported in the design of C64
chip architecture [23]. However, for the purpose of comparison, wiede the CAS instruction in the
ISA when simulating the C64 chip architecture.

We implemented the proposed SSB as an extension to the C64 ISA usingcaiex-driven binary-
compatible full-system simulator for the C64 many-core architecture [21]mdel the C64 chip de-
sign with the 160 cores, the three-level memory hierarchy, and thebeiosgerconnection network.
The simulator takes into account the main sources of pipeline delays and stadsgrocessor archi-
tecture, as well as models all details in the memory hierarchy, including d@rtén memory and the
crossbar network. The SSB extension to C64 is implemented in the simulatBrinStBuctions that
require return (data) values have the same latency as a load instructiemyisththe latency is same as
a store instruction. For our experiments we used a 16-entry SSB foroesachip memory bank, and
used a 1,024-entry SSB for each off-chip memory bank, both of whizB-avay set associative.

In the rest of the section we will compare SSB with the above synchronizaterhanism, and
answer the following questions: 1) What is the cost of a succesgifchsgnization operation? 2) How
effective is SSB for fine-grain mutual exclusion synchronization? 3y Eifective is SSB for fine-grain
data synchronization? and 4) How effective is SSB in exploiting finagrarallelism? The set of
benchmarks that we used for experiments are summarized in Table 2.
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Table 2: Summary of Benchmarks Analyzed for SSB Behavior

| Benchmark | Source | Description \
Random Access | HPCC Benchmarks [1] random updates of memory
Livermore Loop 13| Livermore Loops [25] 2-D particle-in-cell
Livermore Loop 14| Livermore Loops 1-D particle-in-cell
Loop G1 SSCA#2 [10] graph problem
Ordered Integer Set Common data structure hash-table based
K1, K2, K3 Kernel Loops from DOAcross Loops with constant
K4, K5, K6 SPEC OMP [52] & positive dependence distances
1D Laplace Solver | scientific application kernel | partial differential equations
Livermore Loop 6 | Livermore Loops linear recurrence equations
2D Wavefront scientific application kernel | 2D wavefront computation
| Benchmark | Data Set | Synchronization
Random Access | 2'7 64-bit integers write lock
Livermore Loop 13| 4K doubles forh table, write lock
512 iterations
Livermore Loop 14| 4K doubles for-h table, write lock
2,048 iterations
LoopG1 n = 213 write lock
Ordered Integer Set 25 buckets, average load 10Qvrite/read lock
K1, K2, K3 5000 iterations SWSR data
K4, K5, K6 synch.
1D Laplace Solver | 512,1024,2048,4096 SWSR data sync.
Livermore Loop 6 | 5K doubles SWMR data sync.
2D Wavefront 1K x 1K doubles SWSR data sync.

5.2 Cost of Successful Synchronization

Previous studies have shown that fine-grain synchronization resultecgessful synchronization in
most cases [36, 57], and this is also true for SSB-based fine-gragmreymzation (see Section 5.5).
Therefore, it is important to ensure that the cost of a successfahsynization is very low.

5.2.1 Finegrain lock

To measure the overhead of different synchronization mechanism, ate arsimple loop that iter-
ates 10,000 times and at each iteration a 64-bit integer value is loadedframmip SRAM, a simple

arithmetic operation is performed on the value, and the result is stored bdolk mwemory. A refer-

ence time is obtained by executing the loop sequentially without using arohsynization. Then the
synchronization overhead is calculated by comparing the reference timéheitxecution time of the
same code extended with synchronization operations. When using atesegspin lock, a lock has to
be acquired/released before/after accessing the memory location. Aréeckpproach can be imple-
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Figure 11: Overheads of Synchronization Mechanisms

mented using theompare-and-swap (CAS) instruction to commit the result into memory if the content
of the memory location has not changed since the last load. SSB-basga@yization is similar to the
spin lock in this case. The loop with synchronization is also executed on ke simgad, thus all the
synchronization operations (lock acquisition or CAS commitment) are sdatdsigure 11 shows that
SSB incurs the lowest cost among the three mechanisms. This can be attribtitedact that an SSB
instruction performs a successful synchronization and brings thendatthe processor in one memory
transaction.

5.2.2 Fine-grain data synchronization

Table 3: Overhead of successful SSB data synchronization operation

SSB Operations | Overhead (cycles
sswsrwl/sswsrrl 22
SSWSrw2/sswsrr2 24
sswmrw/sswmcr 26

In this experiment we use a simple loop of 10,000 iteration with 2 threads. Eaatidtecontains
a barrier operation. We get the reference time by employing one threastftrm a store before the
barrier, and the other to perform a load after the barrier. The overisesomputed by comparing the
reference time with the execution time of the same code but replacing thAaadreperation with SSB
synchronized write/read operation. The barrier in the code guasatiteesynchronized write happens
before the synchronized read, which is always successful asil& res

As shown in Table 3, the overhead of SSB data synchronization opeyatrensmall when per-
formed successfully. The major overhead comes from the differegigeelen a synchronized write and
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a normal store instruction. It takes 1 cycle to issue a normal store instrweiilbout introducing any
data dependence. However, a data dependence is formed betwegnahmsized write instruction
and the instruction that checks its return value (success, failure, ebedefbre, there is a latency simi-
lar to a load operation. One can hide this latency by issuing other indepand&uctions. Additional
overhead comes from the code that checks and handles the returoi/diaeSSB operations.

5.3 Effectiveness of SSB for Fine-Grain L ock

In this subsection, we examine the effectiveness of SSB for fine-grelkmip using four benchmarks,
where a conventional synchronization mechanism can not easily exgav#ilable parallelism: Table
Toy (also called Random Access) from the HPC Challenge benchnidrka$ of the Livermore loops,
and a hash-table based implementation of ordered integer set.

5.3.1 Random Access

As shown in Figure 1, the address of the memory location to be mutually ex@ljsiecessed is only
known right before entering the critical section. To ensure correstiilee programmer/compiler nor-
mally assigns a single lock to the whole array, which however serializes dwiton. One solution

to exploit the parallelism is to allocate an array of locks with the exact the sam@siZ], so that a
thread can acquire the corresponding lock in the array for a elemefitafnamically — once a thread
determines the member gf] to be accessed at runtime, it can acquire the corresponding lock in the
lock-array first. However, thikock-array approach doubles the memory usage. Using the SSB lock op-
erations, one can simply provide the runtime calculated address as a parartiezeSSB lock interface

to achieve the same effect as the lock-array approach without anyeagin memory usage.

T T T T T
120 -+ --------:-. Software Lock-Array (Test-and—S -
: : CAS-based lock—free approa
‘ SSB: swlock_l/sunlock

100
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60

Absolute Speedup

40

20

0 # T i I i
1 2 4 8 16 32 64 128
Num of Threads

Figure 12: Absolute Speedup of Random Access Benchmark

Figure 12 compares three parallelization schemes of Random Accdegglifierent fine-grain syn-
chronization mechanisms. The table is placed in on-chip SRAM. The softeekearray approach
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provides scalable performance, however, it incurs large memory wusegbeead, which is not practi-
cal for real applications. The CAS-based lock-free approach aehia similar speedup curve as the
lock-array one (the two curves overlapped in Figure 12). The SSBebsolution indicates the best per-
formance by fully exploiting the fine-grain parallelism with low cost synciration operations. When
running on 128 threads, it yields an absolute speedup of 101, outpénfpthe other two approaches
by 50.3% and 49.7% respectively without any extra memory usage.

5.3.2 LivermorelLoop 13 and 14

120 Coarse-Grain Spi‘n-LocP ,
SSB Fine-Grain Lock

100

80

60

Absolute Speedup

40

20

1 2 4 8 16 32 64 128
Num of Threads

Figure 13: Absolute Speedup of Livermore Loop 13

Because of the cross-iteration dependencies (which cannot be detdrstatically), Livermore
Loops 13 and 14 cannot be easily parallelized [54]. Within each iteratifew &lements of the array
are updated. However, the calculation of the indices is unpredictablesgmaidpendent. Since it is not
necessary to preserve the order of these updates, we use locksaotgaanutual exclusion for updating
elements of the array that can only be determined at runtime when running whiplenthreads.

Figure 13 and 14 compares coarse-grain synchronization with SSB:glinse-grain approach se-
rializes the updates to the array using an MCS [41] spin-lock to ensureahaxitiusion. The fine-grain
approach makes use of the SSB lock instructions to individually lock the losaiide updated. There-
fore, the iterations that access different locations do not contend a«th @her. The SSB-based fine-
grained synchronization exploits the inherent parallelism in the code wiithmecessarily serializing
the updates to non-conflicting locations of the arrays (see Figure 134ndh§ a result, we achieve
speedups of 114.3 and 72.4 on 128 threads for Loop 13 and Loopspgatively.
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Figure 14: Absolute Speedup of Livermore Loop 14

1 lock_init_arr(&Lock, n, TH);

2

3 node_Barrier();

4

5 pardo(u, 0, n, 1) {

6 for (j=G >outVertexlndex[u]; j<G >outVertexlndex[u+l]; j++) {
7 v = G>outVertexList[j];

8 if (!iskEdgePresent_QutVertex(G v, u)) {
9 nmy_I| ock( & Lock[V]);
10 i nDegr ee[ v] ++;
11 ny_unl ock( & Lock[V]);
12 i mpl i edEdgeFl ag[j] = 1;
13 i nVert exLi st Si ze++;
14 }
15 }
16 }
17
18 node_Barrier();
19

20 |lock_destroy_arr(&Lock, n, TH);

Figure 15: A Loop (1) Extracted from SSCA#2

5.3.3 A Kernel Loop from SSCA#2

The Scalable Synthetic Compact Applications Benchmark Suite 2 (SSCA#®sents a graph theo-
retic problem which is representative of computations in the fields of natienatisy, scientific comput-
ing, and computation biology [10]. A hallmark of the graph problem is the ilsegmemory accesses,
which leads to poor data locality and statically unsolvable synchronizatiotspo
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Figure 15 shows a loop extracted from SSCA#2 version 1.1. Let us calbthp as Loop~1. The
code is written using the Bader’'s SIMPLE library [9]. We briefly review th@or characteristics of the
code as follows:

e Linel: Initialize an array of: locks. With data type defined in the SIMPLE library, an elementin
thew Lock array is actually a pthread mutex. The functlook _init_arr is performed in parallel.
It is worth noting that: represents the number of vertices in the graph.

e Line5: pardois a do-all loop construct. It statically distributes iteratibto n — 1 of Loop G1
to all threadsu is the iterator.

e Line9, and 11: Using lockvL ock[v], my_lock andmy_unlock function form a critical section
for accessingnDegreev] mutually exclusively. In SIMPLE libraryny_lock andmy_unlock are
mapped tgthread_mutex_lock andpthread_mutex_unlock respectively.

e Line 20: Destroy the lock arrayL ock. The functionlock_destroy_arr is performed in parallel.

In order to exploit the inherent parallelism in the code, fine-grain syméhation is required. The
fine-grain synchronization approach taken in the loop shown in Figunes&$ a software lock-array
approach similar as the one we showed for Random Access benchmiagn &graph problem, the
number of vertices: is normally very large. Therefore, the allocation of arsdyock costs a lot of
memory space. For example, in our experiments, when we sef'?, the size ofvL ock array is 64K
bytes. Moreover, at runtime, thEcondition atline 8 is normally false. As a result, a large portion of
thevL ock is not actually used.

SSB-based fine-grain lock mechanism can avoid all the drawbacke sbftware-based one. Us-
ing SSB , there is no need to allocate tHeock array, which saves memory. At runtime, given the
address of a a particular element in the amalpegree, SSB lock/unlock instruction is used to ensure
the mutual exclusion for accessing it. For this particular example, it is worttotigg that the operation
inDegree[v] + + can be completed atomically in memory with instructddD_M on C64. However,
the set of in-memory atomic instructions provided by ISA can only cover limitéd ty@pe and oper-
ations. SSB presents a general fine-grain synchronization meghaiiis no limitation on data types
and operations.

Given the low overhead of SSB operations, the SSB-based approesindt only avoid the memory
cost for allocating the array of locks, but also improves the performaiegure 16 compares the
execution time of the SSB-based solution to the software-based one with'3. The execution time
for the software-based version includes the time spent on executingojhdndtialize, destroy the lock
array. The SSB -based version does not need to allocate and freeckhartay. From Figure 16, it
is clear that the SSB-based version performs faster than the softasee-bne in all cases. When the
number of threads increases to 128, the SSB-based one is 125% faster.
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Figure 16: Execution Time of the Lodg1 Extracted from SSCA#2

5.3.4 Hash Table Based Ordered Integer Sets

Hash table is a widely used data structure in many applications. In this stedyseva hash table
to implement an ordered integer set. The hash table has multiple buckdtanaaaging an ordered
linked list. Given an integer ke, the hash functior(k) determines the bucket, where the key might
be inserted, deleted, or accessed. We We implemented four differeming&nf concurrent hash tables:

Coarse-grain lock based version: each bucket is protected by a MCS spin-lock [20, 41], which
has to be acquired before the insertion, deletion, or search operatirelaased afterwards.

Lock-free version: uses Michael’s lock-free hash table algorithm [42]. Thezard pointers
mechanism is used to guarantee safe memory reclamation of lock-free cgegtdl as ABA-
safety [43].

sw-rwlock version: uses software based read and write locks. A lock variable is added &to th
data structure of the node of the hash table. Read locks are contiypaogsired and released for
accessed nodes, while the code travels through a selected ordereditinteederform the search
operation. When the position where the key to be inserted or deleted is, filnencbrresponding
read locks are upgraded to write locks, and the operations are pedoilhis version increases
the memory usage of every node by 50%.

SSB version: similar as the sw-rwlock version. SSB read and write lock operations acktos
replace the software-based ones. There is no need to modify the detarstrof the node, thus
no extra memory usage.

To evaluate the performance of these implementations, the hash table is initialikeiDvouckets

and a load factor of 100, which represents the average number of iteilmsghet. Each thread performs
1,000 operations, of which 20% are insertions, 20% are deletions, @¥tdae searches. At each
iteration, the operation to be performed is randomly determined, after vahgrhall random delay is
inserted.
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Figure 17: Implement hash table based integer set with different symightmn mechanisms.

Figure 17 shows that the SSB based version achieves the best perfermvben the number of
threads is greater than 1. The execution time of the coarse-grain loek-kassion keeps increasing
with the number of threads, because of the contention when multiple threeelssabe same bucket
concurrently. The other three fine-grain versions show near cdnstacution time even when the
number of threads reaches 128. With SSB instructions, the synchronizatishead is small when
there is no contention. Both the lock-free and sw-rwlock version neectseitk the return value of the
synchronization operations (CAS, or lock acquisition). Thereforenevithout contention, a synchro-
nization operation incurs overhead at least equal to a load operatiaadldition, the lock-free version
also needs to pay certain cost for the safe memory reclamation. As shovguiie B7, when running
on a single thread (i.e., no contention), the lock-free version and $wckwersion are 56% and 42%
slower than the sequential version, respectively, whereas the 8&Rtlversion is only 9% slower. In
all cases, the SSB version is at least 14% and up to 84% faster than théndhersions without any
extra memory usage.
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5.4 Effectiveness of SSB for Fine-Grain Data Synchronization

An important class of the target applications for large-scale multi-corétactires are scientific nu-
merical computations, many of which are intrinsically deterministic - that is fovanginput a fixed
output (result) should be produced no matter how the program ifigdened. Under a shared-memory
parallel programming model, it is critical that the data dependencies in soghgpns should be realized
efficiently to best exploit parallelism.

One of the functionalities of SSB is to provide efficient fine-grain datalsgonization, which en-
sures that a consumer thread reads a value at word-level in memoryftarlyt das been written by
a producer thread. Based on SSB, this section (1) compare SS84{asgrain data synchronization
to three software based synchronization methods [35] using 6 DOACR@&Xernel loops extracted
from SPEC OMP 2001 benchmark suite; (2) investigates the parallelizatitbmesf representative sci-
entific computation kernels using fine-grain data synchronization.

These kernels represent three typical computation patterns in scienffications: iterative ap-
proximation in finite difference method, linear recurrence with irregulétepa of data dependencies,
and the wavefront form of computation. For each kernel, we demonstoateit can be effectively
parallelized with word-level fine-grain data synchronization, which espes the producer-consumer
relation between the computation of concurrent threads. Unlike glolnehsgnization (i.e., barrier)
based coarse-grain parallelization, where read-after-write datadepees are enforced by making all
consumers wait for all producers at a common synchronization point,neefain data synchroniza-
tion based parallelization takes a point-to-point synchronization appredth allows the consumer
only waits for the data it needs for proceeding the computation. Therdiioeegrain synchronization
can avoid unnecessary waiting and global communication that causexhtseegrain barrier synchro-
nization. Using detailed simulation, our experimental results demonstrate:

e On multithreaded large-scale multi-core architectures, fine-grain dathargymization mechanism
is important and effective for exploiting fine-grain parallelism in scienéfplication kernels.

e For large-scale multi-core architecture, fine-grain synchronizatioedoparallelization schemes
can achieve significant performance improvement over the coarseegres. For the three rep-
resentative kernels we investigated, when running with 128 threadsgrfire based implemen-
tation outperforms the coarse-grain ones by 38.1%, 312%, and 94.9p&ctesly.

¢ With only modest hardware extension to multi-core architectures, SSB poaidefficient mech-
anism for enforcing read-after-write data dependencies at Vewad-in memory among concur-
rent threads.

54.1 Kernel Loopsfrom SPEC OMP

The 6 kernel loopsKk'1, K2, ..., K6, are extracted from multithreaded applications, sucBldsngrid
and318.galgel. 4 The cross-iteration dependence distance of all the kernels are wbasthpositive.

“These 6 kernel loops are the same ones used in the performancatievesection of [35].
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We parallelize those loops by statically assigning iterations to differentdkiiea round robin fashion.
We compared the SSB-based approach with the three software-bamduiayzation methods (SYS,
MAP, and MYS), which are recently proposed by Kejariwal et. al. [3%]r more details, please refer
to [35]. For the SSB-based approach, we use SSB SWSR operatientotoe the data dependencies
among threads.
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Figure 18: Performance of Multithreaded DOACROSS Kernel LodptST: dependence distance.)

The workloads for each iteration @f1, K2 and K3 are small. For instance, there is only one
arithmetic operation in the loop body &f1. Because of the low computation to synchronization ratio,
none of the methods show significant absolute speedup. However, asal ¢Figure 18(a), (b), (c)), it
is not surprising that SSB-based hardware approach shows befiampence than software methods.
For kernel K4, K5, K6, all with a two-level loop nest, the workloads inside each iteration of the
outer loop are large. The software methods can only exploit the parallefighe outer loop. The
SSB-based method can naturally exploit fine-gain parallelism in the lodp néth no overhead of
memory usage. Therefore, the SSB-based approach shows muchsbaltdiility than the software-
based approaches (Figure 18(d), (e), (f)). These 6 loops illustrateffectiveness of SSB-based fine-
grain data synchronization (compared to state-of-the-art softwam@agies) for DOACROSS loops
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for( i =0; i < ITERATIONS; i ++){
for( j=1; j< TOTALSIZE-1; j++ )
xnew[j] = 0.5+( x[(j-1)]+x[(j+1)]+b[j] );

for( j=1; j< TOTALSI ZE-1; j++){
X[j] = xnew[j];

Figure 19: Sequential version of 1D Laplace Solver

Thread 0 ! Thread 1 ! ! Thread k : ! Thread n-1

x array ’ |

Figure 20: 1D Laplace Solver: Partition the Array amenghreads

with simple cross-iteration dependencies. The following two benchmarksrdbes how SSB can help
in exploiting fine-grain parallelism of applications with complex data dependgnwhich cannot be
easily handled by software methods.

5.4.2 1D Laplace Solver

Laplace’s equations is a famous partial differential equation, which isriapioin many fields of sci-
ence, such as electromagnetism, astronomy, and fluid dynamics. Thepl&céaolver use a finite
difference method to achieve numerical approximation of the equation. Wa bhygpothetical 1D
Laplace solver to demonstrate the effectiveness of using fine-graatadsgnchronization to enforce
the read-after-write dependence among threads.

In the kernel of the Laplace solver, at each iteration, every positi@safigle-dimension array is
updated with a value function of its left and right neighbors that compuited the previous iteration.
All the elements of the array need to be updated before the next iteratits (Stee Figure 19). For
simplicity, within each iteration, two arrays are actually used. One stoeedata computed by previous
iteration, the other stores the data generated by the current iteration.

The multithreaded parallel implementation partitions the 1D array among thresssisowan in Fig-
ure 20. To enforce the producer-consumer relation, a barrier isrpgefl after allenew are computed,
and another barrier is executed afterew is copied taz. Thisbarrier based coarse-grain synchroniza-
tion scheme enforces each thread to wait for all others completing thentitenation before starting
the next one.

From the point of view of a thread, however, it only needs to wait for its meighbor threads to
supply the data at the border of its partition in order to continue its own compui@ee Figure 21).
Assuming that the portion of the array assigned to a thread is betweep,,.+ andz.,q, in order to
start its next iteration, this thread only needs to read two elements from itssigjolbrors. For instance,
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Figure 21: Data Dependencies and Synchronizations in 1D LaplacerSolv
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Figure 22: Barrier-based Coarse-Grain Synchronization vs. I&8Bd Fine-Grain Synchronization for
1D Laplace Solver. (Problem Size: 512, and 1,024)

for starting the computation afnewgq+ and znew.,q at iterations, the thread only needs its two
neighbors to write their results intQ.¢—1, andz.,4.1 at iteration; — 1.

Using this scheme, we can implement another parallel version of the salvey the SSB single-
writer-single-reader operations to perform the fine-grain data sgntation between threads. The
coarse-grain barriers are removed, the data synchronization is usefotae each thread to wait for
the data that is exactly necessary for starting the new iteration.

Figure 22 and 23 demonstrates the effectiveness of the SSB-basepdin synchronization, which
naturally expresses the data dependencies in the original 1D Laplaee gadblem. The “one-to-one
wait” data synchronization strategy avoids the unnecessary “all-to-#ll seenario due to the use of
barrier as well as the overhead of barrier. As a result, the SSB-Easegrain synchronization approach
beats the barrier based coarse-grain counterpart in all casesheved4 hardware-based barrier is very
efficient. For example, when the solver runs on 128 threads with a pratitennf 4,096, the SSB-based
version can achieve a speed up of 109, and outperform the caaisevgrsion by 38.1%.
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5.4.3 Linear Recurrence Equations (Livermore L oop 6)

We parallelize the loop shown in Figure 2 by assigning the iterations to diffémerads in a round-robin
fashion. The SSB single-reader-multiple-writer data synchronizatiomamésm is used to enforce the
read-after-write dependencies among iterations.

Our parallelization and synchronization scheme is shown in Figure 24, \ithistrates the case
where 8 iterations are concurrently executed by 4 threads, and thk sizerof round-robin scheduling
is 1 iteration. When thread 1 completes iteration 1, it notifies threads 2, 3, abdut the availability
of W1]. Thread 1 then executes iteration 5 according to the round-robin wottbdtton policy.
Although the computation of iteration 5 dependsl@iil] to 17 [4], it does not have to explicitly wait for
W1], since thread 1 itself computé¥ [1] previously. Similarly, when thread 2 moves to iteration 6, it
does not need to check the availabilityl®f[1],or W [2], becauséV[2] is computed by itself previously,
and wheni/[2] is available,W 1] is ensured to be available. By taking this synchronization strategy,
after the computation of an iteration, a thread performs a synchronizeglsswmr_w to the memory
to notify numthreads— 1 readers. When a thread begins a new iteratitm computelV [i], it uses
normal load operations to read froi#i[0] to W[(i — 1) — (numthreads- 1)], and uses synchronized
read 6swmr_r) to load the remaining nurthreads- 1 elements o#V. As a result, no matter how large
the problem size, the number of synchronization reads and writesedaqunly depends on the number
of threads. It is now obvious that this application kernel also satisfy theion 2 6(t) < M x B)
introduced in Section 2.

Figure 25 compares the fine-grain data synchronization based appwsitaca coarse-grain based
implementation as introduced in [25]. For the fine-grain approachchivak size, as explained above,
is the number of iterations to be scheduled per time by the round-robin algorftbr the coarse-grain
approach, the parallel version is based on a sequential version thaééa loop unrolled certain times
specified by thehunk_size. In Figure 25, wherthunk_size equals to 2 or 4, the speedups are calculated
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Figure 24: Parallelization and Synchronization of Livermore Loop 6

against the sequential versions, which have been loop unrolled twicktames respectively. Therefore,
the comparison of two curves will be meaningful, only if theink_size is the same.

As shown in Figure 25, by exploiting fine-grain parallelism, the fine-graita dgnchronization
based approach always performs better when running on a large nofriheeads. Figure 26 shows
the performance improvement of the SSB-based fine-grain approachh&/coarse-grain one (calcu-
lated as(Speedup fine—grain — SPeedupeoarse—grain)/SPeAdUPcoarse—grain)- From Figure 26, we can
observe that the performance improvement increases significantlytivberumber of threads is large.
For example, when 128 threads are used, the fine-grained appvithehchunk size of 4 achieves an ab-
solute speedup of 72, which demonstrates a 312% improvement over thepmrding coarse-grained
parallelization scheme. This proves the effectiveness of the SSB-Easegrain synchronization for
exploiting massive on-chip parallelism in the large-scale multi-core chipanlalso be noticed that the
fine-grain approach can take better advantage of the commonly useddtmization techniques, such
as loop unrolling. The performance advantage of the SSB-basedrfimeapproach is attributed to 1)
fine-grain parallelism exploited by SSB-based synchronization solWipbetter data locality; and 3)
the removal of the global communication caused by barriers.

30



80 .

Fine-Grain (cﬁunk_size': 1)—~—I
Coarse-Grain (chunk_size = 3j—+—

0F Fine-Grain (chunk_size = 2)--x--
Coarse-Grain (chunk_size = 2)-&---
60 | Fine-Grain (chunk_size = 4)--=--
a Coarse-Grain (chunk_size = 4)-o--- <
S _/,5* ____________ *
? 50 /
[}
o
n
L 40
>
2
o 30
<
20
10

0 == .
1 2 4 8 16 32 64 128
Num of Threads

Figure 25: Speedup of Parallelized Livermore Loop 6

350%
H 1 thread
,,,,,, O 2tveads W]
300% Il 4 threads
[l 8threads
Ol . O 16threads . .. ... ... ... M |
250% [ 32 threads
[l 64 threads
200%" - -- M-128threads - - - - - - -~ - - oo -

150%

100%

Performance Improvement

50%

0%

chunk size(1) chunk size(2) chunk size(4)

Figure 26: Livermore Loop 6: Fine-Grain vs Coarse-Grain

5.4.4 Wavefront Computation

Wavefront computations are common in scientific applications. Given a magexHigure 27), the left
and top edges of which are all 1, the computation of each remaining elenpEridieon its neighbors
to the left, above, and above-left. If the solution is computed in parallel, tmpotation at any instant
form a wavefront propagating toward in the solution space. Therghusform of computation get its
name as wavefront.
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Figure 28: Coarse-Grain Parallelization of Wavefront Computation: Nuofiehreadsl” = 4, Number
of Computation BlockdX =2 « T = 8.

Figure 28 illustrate the coarse-grain parallelization scheme inspired by Tb&] solution space is
partitioned along the: dimension. Letl’ be the number of threadX be the number of rows. Each
thread is assigned with the computation6f7" contiguous rows. In order to gain parallelism, the
solution space is further partitioned 6 blocks along the; dimensions. Each thread completes all
the computation in a block, joins a barrier, and start the computation of thebloekt. As shown in
Figure 28(b), the computation is performed as a pipeline, and the datadérées between blocks are
enforced by the barrier. The parametérdetermines the degree of the parallelism. With the increase
of K, the granularity of data associated with each barrier synchronizatiosrisang, and the number
of global synchronizations (barriers) required is increasing. Toerethe level of parallelism can be
exploited is determined by the efficiency of the barrier synchronizatiomeder, the cost of the barrier
normally increases with the number of threads.
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In our fine-grain implementation, the rows of the matrix are assigned to thieaal round-robin
fashion (moduldl’, see Figure 29). With this static scheduling policy, to compute an element, only
the availability of its above neighbor needs to be checked. SSB fine-gjrajte-writer-single-reader
synchronization can be used to force the data dependencies. Agaiaightéorward synchronization
scheme is to allow synchronized read/write on each data elements.

T0O —— ™ row O

L —— ™ row 1

T2 ——™ row 2

T3 ———™ row 3

TO ——™ row 4

1T — ™ row 5

T2 ————™ row 6

3 — ™ row 7

Figure 29: Fine-Grain Parallelization of Wavefront Computation: Numbdihoéadsl” = 4, Solution
Spaces x 8.

To improve the efficiency, avoid excessive synchronization, andceethe chance of a SSB be-
coming full, we takes a blocking approach. To reduce the amount of thehsgymization, we group 8
consecutive elements in a row as a block. Once a thread completes the domngdataa block, it writes
the first element of the block to the memory with a synchronized write, andttiee elements in the
block are written with normal store instruction. Afterwards the thread mavésstnext block. Before
the computation of a block, a thread performs a synchronized read toegi@istrelement of the block,
the remaining elements of the block are read with normal load instruction. Witmihgifain solution,
although the computation is still in a wavefront form, a thread can be kegtdsisoon as the block,
which it is waiting for, becomes available. Except the prolog and epilog sthtiee computation, all
threads can be kept usefully busy in a pipelined fashion. Unlike the gbgybahronization with barrier,
threads never wait unnecessarily using point-to-point data synclatammz

Our experiments are conducted witd@4 x 1024 matrix °. Figure 30 compares the speedups of
the fine-grain approach to the coarse-grain ones.

Recall that we group 8 consecutive elements in a row as a block in ougri@ie synchronization
based parallelization scheme. In the code, the calculation of the 8 element$oitkasbwritten in a
way that is similar as loop unrolling. To make a fair comparison, the inner mogtdbthe coarse-
grain based implementation is also unrolled 8 times. The absolute speedups ishBigure 30 is
also calculated against the sequential version, whose inner loop hasibedled 8 times. For the
coarse-grain approach, we examined three different versionsgayimenting different values aft'.

A 1024 x 1024 matrix of doubles exceeds the capacity of on-chip SRAM memory okati€64 chip design. For the
purpose of our experiments, we extend the on-chip SRAM memory toit@Me simulator.
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Figure 30: Absolute Speedup of Parallelized Wavefront Computationndtds the number of threads,
and K denotes the number of computation blocks

From Figure 30, it is apparent that the SSB-based fine-grain agpmaperforms the coarse-grain
ones when running with multiple concurrent threads. For the coarseggesions, it can also be ob-
served that a largeK can improve performance only if the number of threads is moderate. When
number of threads is large, the cost of barrier cancels out the perfomisenefit brought by associat-
ing finer grain of data (due to largéf) with each barrier synchronization.

Although the data dependencies in wavefront computation implies serializét®multithreaded
implementation with fine-grain data synchronization demonstrates the capabéitpltit the inherent
parallelism within such computation form. When running with 128 threads, tBet#Sed implementa-
tion shows an absolute speedup of 104, which outperforms the thresegrain synchronization based
implementation by 94.9%, 194.2%, and 392.7%, respectively.

5.5 Effectiveness of SSB for Fine-Grain Synchronization

We measured the percentage of successful synchronization amongditanizations issued for the
8 benchmarks shown in Table 4. We can see that even for large numbeeatls, most fine-grain
synchronization operations are successful, which in turn ensuresleivotsynchronization (see Sec-
tion 5.2).

The Livermore Loop 6 has relatively low successful rate compared trstfhis is because certain
portions of synchronized reads happen before the correspondicgrenized writes. We do not show
kernel loopsK'1, K2, ..., K6 in Table 4. For those loops, when the number of threads are smaller
than or equal to the dependence distance (shown as DIST in Figyrd&8ynchronization successful
rates are also very high. Otherwise, the rates are not high, since gastéion of synchronized reads
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Table 4: Synchronization Success Rates and SSB Full Rates

64 threads 128 threads
Benchmark Success| SSB Full || Success| SSB Full
Rate (%) | Rate (%)| Rate (%)| Rate (%)
Random Access 99.98% 0 99.96% 0
Livermore Loop 13 99.11% 0 98.42% 0
Livermore Loop 14 99.72% 0 99.59% 0
Loop G1 from SSCA#2 99.98% 0 99.97% 0
Ordered Integer Set 99.97% 0 99.93% | 0.0004%
1D Laplace Solver (4,096) 88.20% 0 84.29% 0
Livermore Loop 6 (chunk size = 4)) 87.52% 0 72.13% 0
Wavefront 99.86% 0 99.83% 0

are destined to fail at first attempt in such cases. For example, whemdkepce distance is 8 and 16
threads start computation at the same time, the first attempt of synchron&kettom thread 9 to 16
will fail, because the corresponding synchronized writes from thie@oB have not yet finished.

We also observed that only one benchmark encounters the situation thiee8SB happens to
be full. The percentage is only 0.0004% among all synchronization opesasued. In all other
benchmarks, the buffer is never filled up. This analysis shows that a S®BlIfor each memory bank is
normally sufficient to cache the access states of outstanding syndhgpdata units for multithreading
programs. Using modest hardware cost, SSB achieves the same sfi€etagh word of the entire
memory is tagged.

6 Related Work

Past research has indicated that fine-grain parallelism unleashedngydataflow models that use the
I-structure like fine-grain synchronization [8] far exceeded theacty of a given hardware architec-
ture to effectively exploit the parallelism [17]. Therefore, researsthave worked on solutions that
somehow “throttle” the parallelism during program execution. In this pagieen a large number of
processing cores and limited per core on-chip memory supported bylyinganany-core chip, we are
using a thread model where the number of active threads is always limitee lmyithber of available
hardware thread units, which avoids the excessive parallelism in one slomeftdsing SSB with lim-
ited size we throttle the parallelism in another dimension, and therefore thenaofquarallelism that
can exploited by active synchronization events is also limited. Our experihrestdts demonstrated
sufficient thread-level parallelism can be effectively “throttled” (@yulated) using SSB of small size.

Our SSB design provides an illusion that the entire memory is tagged atlexgil-and there-
fore can be considered as a “virtual tagged memory” design. The miffigredce between SSB and
the classical tagged memory (e.g. full/lempty bits) in HEP [51], Tera [5], MDH, [Sparcle [3], M-
Machine [34], the MT processor in Eldorado [26], and other machimesbeen explained in Section 1.
I-structure [8] memory system employed in some dataflow model based atahgte [8, 33] exploits
similar design as full/lempty bits based memory system. Tagging each word aiftiteereemory re-
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quires modification to off-the-shelf SRAM or DRAM technologies and intatusignificant storage
cost. Because of such cost, the number of state bits that can be taggedtd has to be small,

which can only be used to implement limited synchronization functionalities. Becaf the small

storage cost, SSB can afford to form much larger states in each ens\dh potentially support more
synchronization functionality.

The M-Machine [34] is another architecture that tags every memory locatidrallows fast syn-
chronization between three on-chip processors through regisistetlegommunication. Hardware
mechanisms such as QOLB [32], MAOs on SGI Origin [38], lock box [%*]$MT processor, SoC
lock cache [4], AMO [59] and others, target to improve the efficienclpok primitives. Unlike SSB
or tagged memory, they are not designed to provide architectural gdppword-level fine-grain syn-
chronization in memory. The M-Machine [34] also allows fast synchrditimdbetween three on-chip
processors through register-register communication. Sampson et. Japrff@sed barrier filters, a
hardware mechanism for enabling fast barrier synchronization on nautiahips.

Recently, hardware transactional memory (TM) [6,29,30,40,48%8a non-blocking synchroniza-
tion mechanism, has been proposed as a replacement for the lockslgasbdonization. A transaction
is a sequence of memory reads and writes executed by a single threell js\uaranteed to be atomic
and serializable. Most TM designs need to extend and modify the existalg @herence protocols
and speculative execution techniques. TM systems provide great pbterfaailitate multithreading
programming. Our current SSB design relies on blocking synchronizatiechanism, and it will be
interesting to see how to explore non-blocking synchronization in anl&8Blesign.

To efficiently parallelize loops, various compiler optimization techniquese lheen developed to
minimize the amount of fine-grain synchronization added for parallelizedcdass loops [7, 14, 37,
39, 44, 46, 47]. Those techniques can be combined with SSB-basédadra support to efficiently
parallelize do-across loops, especially useful when the synchtmmizasource requirements are more
than the number of SSB entries provided. Furthermore, some techniquedsoabe adapted to our
framework, for instance, to group multiple data synchronizations into one.

The Cyclops-64 [23] is evolved from a preliminary design of Cyclop$iaecture [13]. However,
there are significant differences between the two. The original Cydlipsintegrates 1282-bit pro-
cessing cores (thread units), each four of which share a floatimg ypait. In the current C64 design,
there are 16@4-bit thread units and 80 floating point units, each of which is shared by twodturgts.
For the memory hierarchy, in the original Cyclops design, all thread ghitse 16 on-chip 512KB
DRAM banks, and each four of the thread units share a 16-KB datacatle current C64 design em-
ploys scratchpad memory instead of data cache, and 160 on-chip SRAWd theat are shared between
all thread units.

7 Summary

This paper shows how fine-grain synchronization can be effectamdyefficiently supported in many-
core architecture design using tegnchronization state buffer (SSB) with only a modest hardware
extension. We experimented the SSB design in the context of IBM Cycld@s-dhitecture. Using
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detailed simulation, our experimental results demonstrate the effectivemesfficiency of our solution
for a set of benchmarks with different workload characteristics.

Our current design assumes the non-preemptive thread model, whidbes a good starting point
to implement the idea of SSB. To explore preemptive threads, virtualizatioothed more elaborate
hardware mechanisms will be necessary for implementing SSB design. Thalization of SSB is
beyond the scope of the current paper, and we regard this as impfutiarg work. Other possible
future research includes language extensions to map high-level atestsithe SSB synchronization
mechanism, compiler techniques that can optimize the allocation and schedul®Boresources,
and exploration of potential extensions of SSB mechanisms to facilitate pamaltgram debugging,
runtime performance monitoring, and other techniques that may take adeanitatjtes bookkeeping
by hardware.
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