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Abstract

Efficient fine-grain synchronization is extremely important to effectively harness the computa-
tional power of large-scale multi-core (or many-core) architectures. However, designing and im-
plementing fine-grain synchronization in such architectures presents several challenges, including
issues of synchronization induced overhead, storage cost,scalability, and the level of granularity to
which synchronization is applicable. This paper proposes theSynchronization State Buffer (SSB),
a scalable architectural design for fine-grain synchronization that efficiently performs synchroniza-
tions between concurrent threads. The design of SSB is motivated by the following simple obser-
vation: at any instance during the parallel execution only a small fraction of memory locations
are actively participating in synchronization. Based on this observation we present a fine-grain
synchronization design that records and manages the statesof frequently synchronized data using
modest hardware support. We have implemented the SSB designin the context of the 160-core IBM
Cyclops-64 architecture. Using detailed simulation, we present our experience for a set of bench-
marks with different workload characteristics. We demonstrate the effectiveness and efficiency of
the SSB solution: (i) formutual exclusion, our solution uses fine-grain locking at each of the mem-
ory units to efficiently avoid unnecessary serialization ofthe operations on different elements of
the same concurrent data structure; (ii) forread-after-write data-dependencies synchronization, our
method encourages the exploration of do-across style of loop-level parallelism - whereloop-carried
data dependencies can often be directly implemented using fine-grain synchronization operations.

i



Contents

1 Introduction 1

2 Design Principles of Synchronization State Buffer 3
2.1 Many-Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4
2.2 Formalization of the Key Observation . . . . . . . . . . . . . . . . . . . . . . . . .. 5

3 Design of Synchronization State Buffer 5
3.1 Buffer Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Structure of SSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 An Architectural Model for SSB 7
4.1 Support for Fine-Grain Locking . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7
4.2 Fine-Grain Data Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8

4.2.1 Single-Writer-Single-Reader (SWSR) Data Synchronization . . . . .. . . . . 9
4.2.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization . . . . . .. . 11

4.3 Hardware Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 12

5 Evaluation 14
5.1 C64 Architecture and Experimental Framework . . . . . . . . . . . . . . . . .. . . . 15
5.2 Cost of Successful Synchronization . . . . . . . . . . . . . . . . . . . . .. . . . . . 17

5.2.1 Fine-grain lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Fine-grain data synchronization . . . . . . . . . . . . . . . . . . . . . . . .. 18

5.3 Effectiveness of SSB for Fine-Grain Lock . . . . . . . . . . . . . . . . .. . . . . . . 19
5.3.1 Random Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Livermore Loop 13 and 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.3 A Kernel Loop from SSCA#2 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.4 Hash Table Based Ordered Integer Sets . . . . . . . . . . . . . . . . . . .. . 23

5.4 Effectiveness of SSB for Fine-Grain Data Synchronization . . . . . .. . . . . . . . . 25
5.4.1 Kernel Loops from SPEC OMP . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 1D Laplace Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.3 Linear Recurrence Equations (Livermore Loop 6) . . . . . . . . . . .. . . . . 29
5.4.4 Wavefront Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Effectiveness of SSB for Fine-Grain Synchronization . . . . . . . . .. . . . . . . . . 34

6 Related Work 35

7 Summary 36

ii



List of Figures

1 Random Access with DOALL Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Livermore Loop 6: Linear Recurrence Equations . . . . . . . . . . . . . .. . . . . . 1
3 Characteristics of Livermore Loop 6 . . . . . . . . . . . . . . . . . . . . . . .. . . . 2
4 One SSB Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 State transition diagram of SSB lock/unlock operations. . . . . . . . . . . .. . . . . . 9
6 State transition diagram of SSB Single-Writer-Single-Reader operations. . . . . . . . . 11
7 State transition diagram of SSB Single-Writer-Multiple-Reader Operations. . . . . . . 13
8 Operations of Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
9 Operations of the Software Handler . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
10 Cyclops-64 Chip Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 15
11 Overheads of Synchronization Mechanisms . . . . . . . . . . . . . . . . . .. . . . . 18
12 Absolute Speedup of Random Access Benchmark . . . . . . . . . . . . . .. . . . . . 19
13 Absolute Speedup of Livermore Loop 13 . . . . . . . . . . . . . . . . . . . .. . . . . 20
14 Absolute Speedup of Livermore Loop 14 . . . . . . . . . . . . . . . . . . . .. . . . . 21
15 A Loop (G1) Extracted from SSCA#2 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
16 Execution Time of the LoopG1 Extracted from SSCA#2 . . . . . . . . . . . . . . . . 23
17 Implement hash table based integer set with different synchronization mechanisms. . . 24
18 Performance of Multithreaded DOACROSS Kernel Loops. (DIST: dependence distance.) 26
19 Sequential version of 1D Laplace Solver . . . . . . . . . . . . . . . . . . .. . . . . . 27
20 1D Laplace Solver: Partition the Array amongn Threads . . . . . . . . . . . . . . . . 27
21 Data Dependencies and Synchronizations in 1D Laplace Solver . . . .. . . . . . . . . 28
22 Barrier-based Coarse-Grain Synchronization vs. SSB-based Fine-Grain Synchroniza-

tion for 1D Laplace Solver. (Problem Size: 512, and 1,024) . . . . . . . . .. . . . . . 28
23 Barrier-based Coarse-Grain Synchronization vs. SSB-based Fine-Grain Synchroniza-

tion for 1D Laplace Solver. (Problem Size: 2,048, and 4,096) . . . . . . . .. . . . . . 29
24 Parallelization and Synchronization of Livermore Loop 6 . . . . . . . . . .. . . . . . 30
25 Speedup of Parallelized Livermore Loop 6 . . . . . . . . . . . . . . . . . . .. . . . . 31
26 Livermore Loop 6: Fine-Grain vs Coarse-Grain . . . . . . . . . . . . . .. . . . . . . 31
27 Wavefront Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 32
28 Coarse-Grain Parallelization of Wavefront Computation: Number of ThreadsT = 4,

Number of Computation BlocksK = 2 ∗ T = 8. . . . . . . . . . . . . . . . . . . . . 32
29 Fine-Grain Parallelization of Wavefront Computation: Number of Threads T = 4, So-

lution Space8 × 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
30 Absolute Speedup of Parallelized Wavefront Computation. T denotes the number of

threads, and K denotes the number of computation blocks . . . . . . . . . . .. . . . . 34

List of Tables

1 SSB State Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Summary of Benchmarks Analyzed for SSB Behavior . . . . . . . . . . . . . .. . . . 17
3 Overhead of successful SSB data synchronization operations . . .. . . . . . . . . . . 18
4 Synchronization Success Rates and SSB Full Rates . . . . . . . . . . . . . .. . . . . 35

iii



1 Introduction

The design of high-performance processor chips is rapidly moving towards many-core architectures that
integrate 10s (or beyond) of tightly-coupled processing cores on a single chip [12, 18]. Intel recently
announced its research prototype many-core design with 80 cores on a single die [55]. IBM Cyclops-64
will support 160 hardware thread units in one chip [23]. In order to fullyutilize the on-chip parallelism
provided by such many-core chips, it is important to exploit the fine-grain parallelism that is available in
applications. The granularity of parallelism that can be efficiently exploitedin such many-core proces-
sors is often limited by the lack of effective architectural support for efficient fine-grain synchronization.
Software-only solutions (with very limited architectural support) can often lead to high synchronization
overhead, high storage cost, and poor scalability. It is often difficult or even impossible to harness fine-
grain parallelism at compilation time. Consider the example shown in Figure 1, which shows the kernel
doall loop in the Random Access HPCC benchmark [1] implemented using OpenMP API. The critical
section ensures the read-modify-write operations in the loop to be performed atomically.1 Unstructured
references like the one shown in Figure 1 are impossible to analyze at compilation time. Therefore, the
compiler can only assign a single lock for the whole tabley[], which introduces unnecessary serializa-
tion. An efficient run-time fine-grain synchronization mechanism is necessary to exploit such inherent
fine-grain parallelism.

#pragma omp parallel for private(ran,i,idx) shared(y,N,size)
for(i = 0; i < N; i++){

ran = rand();
idx = ran & (size - 1)

#pragma omp critical
{

y[idx] = y[idx] op ran;
}
}

Figure 1: Random Access with DOALL Loop

for ( i=1 ; i<n ; i++ )
for ( k=0 ; k<i ; k++ )

W[i] += b[k][i] * W[(i-k)-1];

Figure 2: Livermore Loop 6: Linear Recurrence Equations

Now consider the Livermore Loop 6 shown in Figure 2, which representswidely used linear recur-
rence equations [25]. As shown in Figure 3, the outer loop computes the arrayW, and at each iteration
i, W[i] depends on values computed in all previous iteration, that is,W[i] depends onW[1], W[2],
... ,W[i-1]. Such cross-iteration dependencies of arrayW makes it difficult to parallelize this loop at
compilation time [54]. Again, a fine-grain synchronization mechanism is essential to enforce the data
dependencies among concurrent threads.

1The original benchmark allows data races as long as the percentage does not exceed 1%. In the context this paper, we
enforce the mutual exclusion to examine fine-grain synchronization mechanisms.
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Figure 3: Characteristics of Livermore Loop 6

There are several design choices that one can employ to implement fine-grain synchronization. For
instance, HEP [51], Tera [5], MDP [19], Sparcle [3], M-Machine [34], the MT processor in Eldo-
rado [26], and others use hardware bits as tags (e.g.,full/empty bits) to support word-level fine-grain
synchronization. These designs tag the entire memory of the machine by associating additional access
state bits with each word in memory. Dataflow model-based architectures thatuse the I-structure [8] and
M-structure [11] like fine-grain synchronization also exploit similar designs. Given that on-chip mem-
ory is one of the most precious resources for many-core chips, one down side of such design choices is
the overhead and the cost associated with tagging every word in the memory.

To address the problem of such high-cost synchronization mechanisms, we made one key observa-
tion: at any instance during the parallel execution only a small fraction of memory locations is actively
participating in synchronization. To further elaborate on the key observation, consider the kernel loop
shown in Figure 1. Let us assume a non-preemptive thread model. Now letT be the number of active
threads and soT ≪ N , whereN is the size of the tabley[]. In the example, we can then observe that
at any instance, the number of memory locationsS that areactively participating in synchronization
is less than or equal toT , that is,S ≤ T , and thereforeS ≪ N .2 In other words, at any instance,
only a small part of the table need to be actively synchronized (i.e. locked). Therefore, rather than
supporting fine-grain synchronization by tagging every word (in the table), one can focus on recording
and managing synchronization states of only those actively synchronized memory words. One could
make a similar observation for the example Livermore Loop 6 kernel shownin Figure 2.3

2Even in a preemptive thread model, the number of threads is normally much less than the size of memory for a practical
multithreading program. ThereforeS ≪ N generally holds.

3The key observation for the Livermore loop 6 is not straightforward.Later in Section 5.4, we will discuss the details.
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Based on this key observation, we introduce a novel synchronization architecture, with a modest
hardware extension to many-core architectures, calledSynchronization State Buffer (SSB). SSB is a
small buffer attached to the memory controller of each memory bank. It records and manages states
of active synchronized data units to support and accelerate word-level fine-grain synchronization. SSB
caches the states of memory locations that are currently accessed by special SSB synchronization op-
erations. An interesting aspect of our SSB design is that it avoids enormous memory storage cost, and
still creates an illusion that each word in memory is associated with a set of states that can be used to
support word-level fine-grain synchronization. SSB can supports arich set of synchronization func-
tionalities. In our current design, SSB can be used to enforce mutual exclusion and read-after-write
data dependencies between threads. For mutual exclusion, SSB supports different fine-grained locks,
including word-level read, write, and recursive locks. For data synchronization, SSB allows fine-grained
low-overhead synchronized read and write operations at word-levelin memory. SSB supports several
modes of data synchronization, including two single-writer-single-reader modes, and one single-writer-
multiple-reader mode.

To understand the design space of SSB, we implemented our solution in the context of the 160-core
IBM Cyclops-64 (C64) chip architecture as a case study. We extended the C64 architecture simulator
with the new SSB architectural features to explore the design space using detailed simulation.

For mutual exclusion, SSB supports different fine-grained locks, including word-level read, write,
and recursive locks. Our approach exploits the ample parallelism that often exists in operations on
different elements of concurrent data structures. Using SSB-based fine-grain locking on each memory
unit, we avoid the unnecessary serialization of those operations. For the set of benchmarks that we
tested, we have observed up to 84% performance improvement using SSB when compared to software
only solutions.

For read-after-write data dependence synchronization, SSB allows fine-grain low-overhead synchro-
nized read and write operations at word-level in memory. SSB supports several modes of data synchro-
nization, including two single-writer-single-reader modes, and one single-writer-multiple-reader mode.
Our SSB design can efficiently exploit the do-across style loop-level parallelism, where one can directly
implement loop-carried data dependences using SSB fine-grain synchronization and eliminate the use
of unnecessary barriers in the loop. Our experimental results demonstrate significant performance gain
using such fine-grain data synchronization. For instance, using SSB, we observe a 312% performance
improvement over the coarse-grain based approach when solving linear recurrence equations.

Finally, our experiments also demonstrate that 1) a small SSB for each memory bank is normally suf-
ficient to record the access states of outstanding synchronizing data unitsfor multithreading programs,
and 2) most of fine-grain synchronization operations are successful.

2 Design Principles of Synchronization State Buffer

In this section we lay the foundation for SSB and present the principles for efficient implementation of
fine-grain synchronization using SSB .
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2.1 Many-Core Architecture

Architects are actively exploring the design space of many-core chip, which is currently in a state of flux.
The design choices for efficient implementation of a fine-grain synchronization solution are likely to be
strongly influenced by the underlying architectural design and model. In this paper, we focus on a class
of many-core architectures where a large number of simple cores and memory modules are integrated
on a chip and connected via an on-chip interconnection network. Examples of these multi-core/many-
core chips include the recent announcement of the Intel terascale chip [55] and the Larrabee mini-cores
chip [2], and the IBM Cyclops-64 (C64) chip architecture [23]. In thispaper, we have implemented
SSB in the context of the C64 architecture.

One important feature of such many-core architectures is that the amount of on-chip storage per core
is far less than traditional single core processors - by up to one to two orders of magnitude. Therefore,
tagging every word in on-chip memory for fine-grain synchronization incurs high cost. One of our
design objectives in SSB is to avoid such cost.

A few multi-core chip designs (such as the IBM Cell processor [27, 28],the Cyclops-64 [23] chip,
and the ClearSpeed CSX architecture [16]) employexplicitly programmable local memory store for
each processing core rather than coherent data cache. The local store approach allows denser hardware
implementation and simplifies the microarchitecture by avoiding the complexity of tag-match compare
and late hit-miss detection, miss recovery, and coherence management associated with cache hierar-
chies [28]. From the software perspective, non-deterministic memory access latencies of cache always
negatively affect compiler scheduling and optimizations. On the other hand,the local store with low and
deterministic access latency can offer aids to the effectiveness of many complier-based static scheduling
and optimizations, such as instruction scheduling, loop unrolling, and software pipelining [24]. Unlike
many synchronization mechanisms built on coherent cache architectures,SSB makes no such assump-
tion, and thus can be naturally implemented as the fine-grain synchronization mechanism for many-core
architectures with the local store approach.

Another important feature of such many-core architectures is that they often employ a large number
of simple cores. For example, the IBM Cyclops-64 (C64) chip contains 160cores (also called thread
units). C64 system software model and the associated programming and execution environment are
centered around TiNy Threads [22]. One feature of the TiNy Threadsis the efficient support of a non-
preemptive thread model: the core on which a thread is running is simply madeidle when the thread is
suspended. Under a many-core architecture such as C64, thread context-switching can be particularly
costly due to two reasons. First, since on-chip memory is precious and limited, saving the context
of a large number of threads in on-chip memory can become prohibitively expensive and impractical.
Second, saving the context in off-chip memory suffers from high latencyand low bandwidth. The
effectiveness of the non-preemptive model has been demonstrated through the mapping of a number
of applications onto C64 [15, 31, 53, 56]. An assumption for designing and implementing SSB that we
make throughout the paper is the non-preemptive thread execution model.
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2.2 Formalization of the Key Observation

Recall the key observation that at any instance only a small set of memory locations are actively par-
ticipating in synchronization. We formalize this simple observation as follows: Let T be the number of
non-preemptive active threads and letN = M × B be number of memory locations, whereM is the
size of each memory bank andB is the number of memory banks. Observe thatT is usually far less than
M × B, that is,T ≪ M × B. Now letS(t) be the number of active synchronized memory locations at
any instancet. In other words,S(t) is the amount of synchronization in an application at any instance
t, and is given by:

S(t) ≤ α(t) × T, (1)

whereα(t) indicates the maximum number of distinct memory locations synchronized by a thread at
any instancet. Therefore a many-core architecture can take advantage of the SSB design whenever the
following relation holds:

S(t) ≤ α(t) × T ≪ M × B, (2)

For the examples shown in Figure 1,α(t) = 1 at any instancet. Given thatB is much smaller thanM ,
we can compute the average amount of synchronization at a memory bank as

Sb = S(t)/B ≪ M, (3)

We will use Equations 1, 2, and 3 in the design of SSB in the next section.

3 Design of Synchronization State Buffer

SSB is a small buffer attached to the memory controller of each memory bank. Itrecords and manages
states of actively synchronized data units to support and accelerate word-level fine-grain synchroniza-
tion. In this section we will discuss the various design parameters of SSB.

3.1 Buffer Size

The first design parameter is the number of entriesEb in an SSB for a memory bankb. The number
of entriesEb is related to the size of memory bankMb as follows:Eb ≤ Mb. Now if Eb = Mb, SSB
design is equivalent to tagging every memory location. In SSB we want to avoid tagging all memory
location, and therefore we want:

Eb ≪ Mb (4)

From Equations 1, 2, and 3 we know that if an application can take advantage of the architectural design
objective of Equation 4, then the following is the design requirement for the size of the buffer:

Eb ≥ Sb (5)

Let us generalize the above relation as follows:

5



Eb ≃ β × Sb (6)

whereβ is a factor that relates the amount of synchronization in an application to the hardware resource
limitation. If β ≥ 1 then SSB is cost effective, and ifβ < 1 then the performance of SSB is affected
since the buffer will fill up and we have to fall back to software mechanism for synchronization. Given
a particular buffer size, a compiler can optimize an application so as to reducethe amount of synchro-
nization in the application. In practice, architects can determine the number of entries, and the level of
set associativity of an SSB according to the class of applications to be supported, the transistor budget,
the power consumption requirements, and other design factors.

The SSB on the memory controller of each memory bank functions as a look-uptable. Given the
small size of each SSB, the single-cycle lookup function can be easily implemented with common hard-
ware technology and modest cost. Another merit of SSB is its de-centralized and distributed nature,
because of the independence of each SSB . Therefore, the hardware cost for implementing SSB in-
creases only linearly proportional to the number of on-chip processing cores and memory banks, and
the complexity of hardware logic remains the same for each SSB. In other words, SSB is a scalable
fine-grain synchronization solution for many-core chips.

3.2 Structure of SSB

state (4−bits) counter (8−bits) thread id address

Figure 4: One SSB Entry

The overall structure of an SSB entry is shown in 4. Each SSB entry consists of four parts: (1) ad-
dress field that is used to determine a unique location in a memory bank, (2) thread identifier, whose size
is ⌈log(T )⌉, whereT is the number of non-preemptive threads supported by the underlying many-core
architecture, (3) an 8-bits counter, and (4) a 4-bits field that can support up-to 16 different synchro-
nization modes. The address bits are used as akey to search the buffer and locate the entry of the
synchronized location. The remaining three fields forms the synchronization state for that memory
location. Since we assume a non-preemptive thread execution model, the “thread id” can be used to
identify a processing core as well as a unique software thread runningon it. The use of the counter field
depends on the type of synchronization operation that is performed, which we will explain in the next
section. Table 1 shows different synchronization modes that we support in our current design. An entry
in SSB is allocated and released according to its state and the function of anSSB instruction operating
on it.

All memory instructions, including SSB instructions are handled in a FIFO manner when arrive at
a particular memory bank through the on-chip interconnection network. Since SSB maintains the states
for synchronized memory locations in hardware, we avoid explicit software-managed synchronization
variables that cost extra memory. Also, with one memory transaction, an SSB instruction not only

6



Table 1: SSB State Bits
State Bits Function Description

0x0000 WLOCK Write Lock
0x0001 RLOCK Read Lock
0x0010 WRLOCK Write-Recursive Lock
0x0011 SR1 Single-Writer-Single-Reader Mode 1
0x0100 SR2 Single-Writer-Single-Reader Mode 2
0x0101 MRF Single-Writer-Multiple-Readers Full Mode
0x0110 MRL Single-Writer-Multiple-Readers Lock Mode
0x0111 MRQ Single-Writer-Multiple-Readers Queue Mode
0x1000 MRQL Single-Writer-Multiple-Readers Queue Lock Mode

perform the synchronization on the memory location, but also brings the datum to the processor on
success.

4 An Architectural Model for SSB

4.1 Support for Fine-Grain Locking

SSB associates locking functions with memory locations dynamically. When a memory location needs
to be accessed exclusively, the lock operation is issued with the addressof this location. In the SSB of
the corresponding memory bank, an entry for this address, if it does not exists, is allocated to monitor
the state of the memory location. If an entry already exists, the state might be changed according
to the function of the operation. The return value of the operation informs thesynchronization state
to the software, and the software can then proceeds accordingly. Sincean SSB instruction takes the
address of a memory location to perform the locking operation, it does not require any pre-allocated
synchronization variable. As a result, SSB is able to smoothly and efficiently handle the cases where
the precise synchronization point cannot be resolved statically at compiletime.

SSB provides the following operations to perform the lock/unlock operations:

(RT, Value) = swlock_l(MemAddr);

/* swlock_l: acquire write lock for location MemAddr */

/* and load the content */

/* MemAddr: the address of the memory location */

/* RT: return value, success or failure */

/* Value: the content of the memory location */

(RT, Value) = srlock_l(MemAddr);

/* srlock_l: acquire read lock for location MemAddr */

/* and load the content */

7



/* MemAddr: the address of the memory location */

/* RT: return value, success or failure */

/* Value: the content of the memory location */

sunlock(MemAddr);

/* sunlock: release the lock for location MemAddr */

/* MemAddr: the address of the memory location */

The operationsswlock l and srlock l acquire awrite or read lock for the memory location
MemAddr respectively. Upon success, they also load the content of the memory location to Value.
The operationsunlock releases the lock previously acquired. Figure 5 illustrates how the lock/unlock
operations interact with the SSB hardware.

As shown in Figure 5(a),swlock l acquires thewrite lock for memory locationMemAddr. If
there is no record for this location in SSB, which means it is not locked by any other thread, an entry
for this location is allocated, and the state is set toWLOCK. Before this location is unlocked by the
owner, write/read lock acquisition from other threads will fail, and cause the “counter (cnt)” to be
incremented by 1. The current value of “cnt” is returned to the thread to indicate the failure. Therefore,
in WLOCK mode, the return value accurately reflects the status of runtime lock contention on the
memory location, i.e., how “hot” it is. Software may take advantage of this information to implement
a contention manager, such as a backoff policy. SSB also supports recursive (or nested) lock. A thread
can repeatedly acquire the write lock it already owns. If a thread is the onlyowner of the read lock, it can
upgrade the lock to a write lock. In both cases, the state is set toWRLOCK, and the “cnt” records the
number of the nested recursive locks. The software is required to perform paired lock/unlock operations.

The operationsrlock l acquires aread lock for the memory locationMemAddr. Multiple threads
can own the same read lock at the same time. The first successful acquisition allocates an entry in SSB,
and sets the state toRLOCK. The “cnt” records the number of successful acquisitions. As described
before, when “cnt” is equal to 1, a write lock acquisition from the same thread is able to upgrade the
lock to aWRLOCK. Except for this special case, all the write lock acquisitions will fail. The behavior
of sunlock operation is shown in Figure 5(b). When a lock is finally released, the corresponding entry
in SSB will be freed for reuse. It is worth noting thatsunlock does not return the “success”/“fail” result
to software. If asunlock fails, an exception is raised.

4.2 Fine-Grain Data Synchronization

SSB can help the programmer to exploit data-level parallelism by allowing a program to perform syn-
chronized reads and writes at the word-level in memory. SSB provides a set of instructions to support
fine-grained data synchronization that can enforce data dependencies between concurrent threads.

In the current design, two different types of data synchronization aresupported: single-writer-single-
reader, and single-writer-multiple-reader data synchronization.
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A circle represents the state of a memory location monitoredby SSB . The edge shows the transition between
two states. Near the transition edge, the transition condition is described by a pair of text connected by a
“/” symbol. The left side of “/” shows the operation performed to cause the transition; the right side of “/”
indicates the return result of the operation.TID in the parentheses suggests that the operation is issued by
threadTID. TID’ means a thread other than threadTID. The symbol “∗” in the parentheses means that it can
be “any thread”.

Figure 5: State transition diagram of SSB lock/unlock operations.

4.2.1 Single-Writer-Single-Reader (SWSR) Data Synchronization

SSB can help the programmer to exploit data-level parallelism by allowing a program to perform syn-
chronized reads and writes at the word-level in memory. The single-writer-single-reader (SWSR) syn-
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chronization enforces order between a thread that produces the data and another thread that consumes
the data. The following are the interfaces:

RT = sswrsr_w1(MemAddr, Value);

/* sswrsr_w1: SWSR synchronized write mode 1 */

/* MemAddr: the address of the memory location */

/* Value: the Value to be written to MemAddr */

/* RT: return value, success or failure */

(RT, Value) = sswrsr_r1(MemAddr);

/* sswrsr_r1: SWSR synchronized read mode 1 */

/* MemAddr: the address of the memory location */

/* RT: return value, success or failure */

/* Value: the content of the memory location */

RT = sswrsr_w2(MemAddr, Value);

/* sswsr_w2: SWSR synchronized write mode 2 */

/* MemAddr: the address of the memory location */

/* Value: the Value to be written to MemAddr */

/* RT: return value, success, failure or */

/* reader’s thread id */

(RT, Value) = sswrsr_r2(MemAddr);

/* sswsr_r2: SWSR synchronized read mode 2 */

/* MemAddr: the address of the memory location */

/* RT: return value, success, failure, or wait */

/* Value: the content of the memory location */

As shown in Figure 6(a),sswsr w1 and sswsr r1 can coordinate with software to support a
busy-wait approach. If the writer has not performedsswsr w1 to the memory location addressed by
MemAddr yet, thesswsr r1 performed by the reader returns a failure. The reader needs to try again
with sswsr r1 afterwards. The reader can get the data only after thesswsr w1 is finally performed,
which allocates an entry in the SSB, sets the state toSR1, and writes theValue into MemAddr. When
sswsr r1 is successfully executed, the entry in SSB is released, and the content ofMemAddr is loaded
for the reader.

A blocking strategy can be implemented withsswsr w2 andsswsr r2. As illustrated by Figure 6(b),
if the reader performssswsr r2 before thesswsr w2 from the writer, an entry will be allocated in SSB,
the state is set toSR2, and the counter is set to 1 to represent that the data is not available yet. The thread
id of the reader is also recorded. When the reader finds out that the return value is “wait”, it voluntarily
suspends its execution and goes to sleep. Later,sswsr w2 instruction issued by the writer will write
Value into MemAddr, and set the counter to 0 to indicate the availability of the data. The instruction
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A circle represents the state of a memory location monitoredby SSB . The edge shows the transition between
two states. Near the transition edge, the transition condition is described by a pair of text connected by a
“/” symbol. The left side of “/” shows the operation performed to cause the transition; the right side of “/”
indicates the return result of the operation.TID in the parentheses suggests that the operation is issued by
threadTID. “software:” means the operation that described by following text is performed by software.

Figure 6: State transition diagram of SSB Single-Writer-Single-Reader operations.

also returns the thread id (TID) of the reader to the writer. The write can wake up the sleeping reader.
The reader can now retrieve the value bysswsr r2 and free the corresponding entry in the SSB.

4.2.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization

The single-writer-multiple-reader (SWMR) synchronization enforces ordering between a thread that
produces the data and a number of other threads that consume the data. The following are the interfaces:

RT = sswmr_w(MemAddr, Value, NumOfReaders);

/* sswmr_w: SWMR synchronized write */

/* MemAddr: the address of the memory location */

/* Value: the Value to be written to MemAddr */

/* NumofReaders: the number of readers */

/* RT: return value, success, failure, */

/* or the pointer the wait queue */
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(RT, Value) = sswmr_r(MemAddr);

/* sswmr_r: SWMR synchronized read */

/* MemAddr: the address of the memory location */

/* RT: return value, success, failure, lock mode, or qlock mode */

/* Value: the content of the memory location upon success, or */

/* the pointer to the queue if the RT is lock mode or */

/* queue mode */

sswmr_ul(MemAddr, QueuePtr);

/* sswmr_ul: SWMR queue unlock */

/* MemAddr: the address of the memory location */

/* QueuePtr: the pointer to the wait queue */

Figure 7 shows how SSB SWMR operations interact with software to performthe data synchroniza-
tion between one writer and multiple readers. In the ideal case, thesswmr w write operation is executed
before all the read operations. As a result, an entry is allocated in the SSB, the state is set to MRF (full
mode), “cnt” (counter) is initialized toN, which represents the number of readers, andValue is written
into the memory location addressed byMemAddr. All the following sswmr r operations read the value
from the memory and decrement the “cnt” by 1. When all the reads finish andthe “cnt” reaches 0, the
corresponding entry in SSB is freed.

However, it is possible that some readers issue thesswmr r read operations before the write. The
first suchsswmr r instruction allocates an entry in the SSB and sets the state to MRL (lock mode).
Then the thread that issues this read will initialize a wait queue, put itself into the queue, and issue a
sswmr ul instruction with the pointer to the tail of the wait queue as a parameter. Thesswmr ul stores
the pointer into the memory location, and switches the state to MRQ (queue mode). The following
sswmr r operations issued by other threads will get this pointer, with which a thread can enqueue itself.
As shown in Figure 7, if one or more threads are performing the enqueueoperation, the state of the
SSB entry is MRQL (queue lock mode), which prevents the write from happening. After the enqueue
operation, the thread issues asswmr ul operation and goes to sleep. When the state of the SSB entry is
switched back to MRQ and asswmr w operation arrives, the write can be performed, and the state is
changed to MRF. In this case, the queue pointer is returned to the writer thread, which then wakes up all
the threads in the queue. Since the state of the entry is already MRF, all the awakened threads as well as
other threads can now read data from the memory.

4.3 Hardware Resource Constraints

Since the (hardware) SSB is a fixed size buffer, for some applications, itcan become full. In such
situation we trap to a software solution. Each hardware SSB (at a memory bank), called HSSB, has
its associated software SSB, called SSSB. An SSSB is an extension to its corresponding HSSB, and to
simplify our discussion we assume them to be fully associative. Each HSSBcontains two bits, FBIT
and SBIT. FBIT is set to ON automatically by hardware whenever the HSSB becomes full, otherwise
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A circle represents the state of an memory location monitored by SSB . The “MEM =” in the parentheses
indicates the content of the memory location that is monitored by this SSB entry. The edge shows the
transition between two states. Near the transition edge, the transition condition is described by a pair of text
connected by a “/” symbol. The left side of “/” shows the operation performed to cause the transition, with its
parameters in parentheses; the right side of “/” indicates the return result of the operation, with an additional
return value in parentheses. “software:” means the operation that described by following text is performed
by software.

Figure 7: State transition diagram of SSB Single-Writer-Multiple-Reader Operations.

it is OFF. The SBIT indicates whether there are software maintained entriesin the SSSB. When the
kernel starts, it initializes all the SSSBs. An HSSB also has a register, called SREG that is initialized
during boot time by the kernel, holds a pointer to its corresponding SSSBand an associated software
lock. The SSSB software structure is common across all applications on thesystem. An entry in the
SSSB has the same structure as the HSSB entries. We assume that instructions that arrive at a memory
bank are processed in an FIFO order. When an SSB instruction reaches and searches the HSSB, there
are following possible cases:

Matching entry in HSSB? FBIT SBIT Case
Yes Any Any 1: HW only solution
No OFF OFF 2: HSSB is not full, HW only solution
No ON OFF 3: HSSB is full, set SBIT on, trap to SW
No Any ON 4: Entries in SSSB, trap to SW

Accordingly, the steps that are taken by the memory controller on the memory bank is shown in
Figure 8.

The raised trap is handled using a software handler, to which the pointer inthe SREG, along with
the opcode and operands of the SSB instruction, are supplied as parameters. The handler is executed
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1. Search the HSSB
2. if Find a matching entry
3. Perform normal operations
4. else
5. if SBIT is OFF
6. if FBIT is OFF
7. Create an entry in HSSB, perform operations on it
8. else
9. Set SBIT to ON, a software trap is raised
10. else
11. A software trap is raised

Figure 8: Operations of Memory Controller

by the thread that issued the SSB instruction. The software lock associated with each SSSB has to be
acquired by the thread before it executes the handler, thus no other threads can change the states of an
SSSB simultaneously. It is possible that the state of the corresponding HSSBhas changed between the
duration of the raise of the trap and the acquisition of the lock. Therefore, the software handler will deal
with following cases:

SBIT Matching Entry in HSSB? FBIT Case
OFF No need to check Any 1: SSSB is empty, fall back to HW
ON Yes Any 2: Fall back to HW
ON No OFF 3: Attempt to promote the entry to HW
ON No ON 4: SW only solution

To check the state of SBIT, FBIT, and search the HSSB for matching entry, special instructions are
used. When the thread gets the lock and begins to execute the handler, itfirst checks the SBIT. If SBIT
is OFF, the SSSB is empty due to the operation of another thread who owned thelock previously. As
suggested in case 1, the handler releases the lock and re-issues the SSBinstruction. If SBIT is on, the
handler issues an instruction to search the HSSB. If a matching entry is found, it is case 2, and the
handler takes the same action as case 1. Otherwise, it performs the operations on SSSB, then check the
FBIT. If the FBIT is OFF, which is case 3, the handler attempts to flush the entry to the HSSB, also with
an instruction. If successful, the handler removes the software entry from the SSSB. The remaining
step of case 3 and case 4 are the same. If the SSSB becomes empty, the handler sets the SBIT to OFF,
releases the lock, and returns. The steps performed by the handler are summarized in Figure 9.

The software mechanism will slow down the requested synchronization operation. However, it is
expected that a small SSB is normally sufficient for most multithreading programs. As we will show in
Section 5.5, for many benchmarks, only one has a small percentage of synchronization operations that
encounter the “full” situation.

5 Evaluation

Our objective in this section is to illustrate the characteristics of SSB and verify the efficiency and
effectiveness of SSB. We also compare SSB with other synchronization mechanisms. We explore the
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1. Acquire the corresponding software lock
2. Check the SBIT using a special instruction
3. if SBIT is ON
4. Search the HSSB using a special instruction
5. if Find a matching entry
6. Release the lock, re-issue the SSB instruction
7. else
8. Search the SSSB
9. if Find a matching entry
10. Operate on the entry
11. else
12. Create an entry in SSSB
13. Operate on the entry
14. if The entry is not freed in SSSB
15. Check the FBIT using a special instruction
16. if FBIT is OFF
17. Flush the entry to HSSB using a special instruction
18. if Success
19. Remove the entry from SSSB
20. if SSSB is empty
21. Set the SBIT to OFF using a special instruction
22. Release the lock
23. else
24. Release the lock, re-issue the SSB instruction

Figure 9: Operations of the Software Handler

characteristics of SSB in the context of the IBM 160-core Cyclops-64 (C64) chip architecture [23],
which represents a class of many-core architectures that we discussedin Section 2.

5.1 C64 Architecture and Experimental Framework
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Figure 10: Cyclops-64 Chip Architecture
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C64 is evolved from a preliminary design of BlueGene/Cyclops architecture [13]. As shown in Fig-
ure 10, the C64 chip contains 160 thread units (TU) (running at 500MHz)and 160 embedded SRAM
memory banks (32KB each) in a single silicon die. There are 80 floating point units, each of which
is shared by two TUs. A 32KB instruction cache, is shared among 10 TUs. C64 has efficient support
for thread level execution, such as ISA-level sleep/wakeup instructions. For instance, a thread can stop
executing instructions for a number of cycles or indefinitely; while asleep itcan be awaken by another
thread through a hardware interrupt. C64 features an explicitly addressable three-level (Scratchpad
memory, on-chip SRAM, off-chip DRAM) memory hierarchy without data cache. A portion of each
SRAM bank can be configured as thescratchpad memory (SP), which can be accessed by a correspond-
ing TU with very low and deterministic latency. The remaining sections of all on-chip SRAM banks
together form theglobal memory (GM) that is uniformly addressable by all TUs. There are 4 memory
controllers connected tooff-chip DRAM banks (up to 2GB). All memory words are 8 bytes wide and
the memory is byte-addressable. The memory accesses to contiguous address space are interleaved. For
example, the access to GM is interleaved to SRAM banks by a 64-byte boundary, which ensures the full
utilization of the bandwidth and the SSBs attached to all memory banks. Memory accesses to GM and
DRAM go through an on-chip crossbar network, which sustains a 384 GB/s on-chip bandwidth. The
crossbar also guarantees a sequential consistency memory model for theC64 chip architecture. Fence-
like instructions is not needed to ensure the order between memory operations [23, 60]. C64 provides
no hardware support for context switch, and uses a non-preemptivethread execution model. The peak
performance of a C64 chip is 80GFLOPS.

The current C64 architecture supports several synchronization mechanisms. Atomic in-memory
instructions, such asfetch-and-add, can be used to implement variousspin-locks. The sleep/wakeup
instructions can be used to perform post/wait type of synchronization. A16-bit signal bus, to which all
thread units are connected, provides a means to efficiently implement barriers. Thecompare-and-swap
(CAS), linked-load, andstore-conditional instructions are not currently supported in the design of C64
chip architecture [23]. However, for the purpose of comparison, we include the CAS instruction in the
ISA when simulating the C64 chip architecture.

We implemented the proposed SSB as an extension to the C64 ISA using an execution-driven binary-
compatible full-system simulator for the C64 many-core architecture [21]. Wemodel the C64 chip de-
sign with the 160 cores, the three-level memory hierarchy, and the crossbar interconnection network.
The simulator takes into account the main sources of pipeline delays and stalls inthe processor archi-
tecture, as well as models all details in the memory hierarchy, including contention in memory and the
crossbar network. The SSB extension to C64 is implemented in the simulator. SSB instructions that
require return (data) values have the same latency as a load instruction, otherwise the latency is same as
a store instruction. For our experiments we used a 16-entry SSB for eachon-chip memory bank, and
used a 1,024-entry SSB for each off-chip memory bank, both of which are 8-way set associative.

In the rest of the section we will compare SSB with the above synchronizationmechanism, and
answer the following questions: 1) What is the cost of a successful synchronization operation? 2) How
effective is SSB for fine-grain mutual exclusion synchronization? 3) How effective is SSB for fine-grain
data synchronization? and 4) How effective is SSB in exploiting fine-grain parallelism? The set of
benchmarks that we used for experiments are summarized in Table 2.
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Table 2: Summary of Benchmarks Analyzed for SSB Behavior

Benchmark Source Description

Random Access HPCC Benchmarks [1] random updates of memory
Livermore Loop 13 Livermore Loops [25] 2-D particle-in-cell
Livermore Loop 14 Livermore Loops 1-D particle-in-cell
LoopG1 SSCA#2 [10] graph problem
Ordered Integer Set Common data structure hash-table based
K1, K2, K3 Kernel Loops from DOAcross Loops with constant
K4, K5, K6 SPEC OMP [52] & positive dependence distances
1D Laplace Solver scientific application kernel partial differential equations
Livermore Loop 6 Livermore Loops linear recurrence equations
2D Wavefront scientific application kernel 2D wavefront computation

Benchmark Data Set Synchronization

Random Access 217 64-bit integers write lock
Livermore Loop 13 4K doubles forh table, write lock

512 iterations
Livermore Loop 14 4K doubles forrh table, write lock

2,048 iterations
LoopG1 n = 213 write lock
Ordered Integer Set 25 buckets, average load 100write/read lock
K1, K2, K3 5000 iterations SWSR data
K4, K5, K6 synch.
1D Laplace Solver 512,1024,2048,4096 SWSR data sync.
Livermore Loop 6 5K doubles SWMR data sync.
2D Wavefront 1K × 1K doubles SWSR data sync.

5.2 Cost of Successful Synchronization

Previous studies have shown that fine-grain synchronization results in successful synchronization in
most cases [36, 57], and this is also true for SSB-based fine-grain synchronization (see Section 5.5).
Therefore, it is important to ensure that the cost of a successful synchronization is very low.

5.2.1 Fine-grain lock

To measure the overhead of different synchronization mechanism, we wrote a simple loop that iter-
ates 10,000 times and at each iteration a 64-bit integer value is loaded fromon-chip SRAM, a simple
arithmetic operation is performed on the value, and the result is stored back tothe memory. A refer-
ence time is obtained by executing the loop sequentially without using any synchronization. Then the
synchronization overhead is calculated by comparing the reference time withthe execution time of the
same code extended with synchronization operations. When using a test-and-set spin lock, a lock has to
be acquired/released before/after accessing the memory location. A lock-free approach can be imple-
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Figure 11: Overheads of Synchronization Mechanisms

mented using thecompare-and-swap (CAS) instruction to commit the result into memory if the content
of the memory location has not changed since the last load. SSB-based synchronization is similar to the
spin lock in this case. The loop with synchronization is also executed on a single thread, thus all the
synchronization operations (lock acquisition or CAS commitment) are successful. Figure 11 shows that
SSB incurs the lowest cost among the three mechanisms. This can be attributedto the fact that an SSB
instruction performs a successful synchronization and brings the datum to the processor in one memory
transaction.

5.2.2 Fine-grain data synchronization

Table 3: Overhead of successful SSB data synchronization operations

SSB Operations Overhead (cycles)
sswsrw1/sswsrr1 22
sswsrw2/sswsrr2 24
sswmrw/sswmrr 26

In this experiment we use a simple loop of 10,000 iteration with 2 threads. Each iteration contains
a barrier operation. We get the reference time by employing one thread to perform a store before the
barrier, and the other to perform a load after the barrier. The overhead is computed by comparing the
reference time with the execution time of the same code but replacing the store/load operation with SSB
synchronized write/read operation. The barrier in the code guarantees the synchronized write happens
before the synchronized read, which is always successful as a result.

As shown in Table 3, the overhead of SSB data synchronization operations are small when per-
formed successfully. The major overhead comes from the difference between a synchronized write and
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a normal store instruction. It takes 1 cycle to issue a normal store instructionwithout introducing any
data dependence. However, a data dependence is formed between the synchronized write instruction
and the instruction that checks its return value (success, failure, etc.). Therefore, there is a latency simi-
lar to a load operation. One can hide this latency by issuing other independent instructions. Additional
overhead comes from the code that checks and handles the return valueof the SSB operations.

5.3 Effectiveness of SSB for Fine-Grain Lock

In this subsection, we examine the effectiveness of SSB for fine-grain locking using four benchmarks,
where a conventional synchronization mechanism can not easily exploit the available parallelism: Table
Toy (also called Random Access) from the HPC Challenge benchmarks [1], two of the Livermore loops,
and a hash-table based implementation of ordered integer set.

5.3.1 Random Access

As shown in Figure 1, the address of the memory location to be mutually exclusively accessed is only
known right before entering the critical section. To ensure correctness, the programmer/compiler nor-
mally assigns a single lock to the whole array, which however serializes the execution. One solution
to exploit the parallelism is to allocate an array of locks with the exact the same size asy[], so that a
thread can acquire the corresponding lock in the array for a element ofy[] dynamically – once a thread
determines the member ofy[] to be accessed at runtime, it can acquire the corresponding lock in the
lock-array first. However, thislock-array approach doubles the memory usage. Using the SSB lock op-
erations, one can simply provide the runtime calculated address as a parameter to the SSB lock interface
to achieve the same effect as the lock-array approach without any overhead in memory usage.
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Figure 12: Absolute Speedup of Random Access Benchmark

Figure 12 compares three parallelization schemes of Random Access using different fine-grain syn-
chronization mechanisms. The table is placed in on-chip SRAM. The softwarelock-array approach
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provides scalable performance, however, it incurs large memory usageoverhead, which is not practi-
cal for real applications. The CAS-based lock-free approach achieves a similar speedup curve as the
lock-array one (the two curves overlapped in Figure 12). The SSB-based solution indicates the best per-
formance by fully exploiting the fine-grain parallelism with low cost synchronization operations. When
running on 128 threads, it yields an absolute speedup of 101, outperforming the other two approaches
by 50.3% and 49.7% respectively without any extra memory usage.

5.3.2 Livermore Loop 13 and 14
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Figure 13: Absolute Speedup of Livermore Loop 13

Because of the cross-iteration dependencies (which cannot be determined statically), Livermore
Loops 13 and 14 cannot be easily parallelized [54]. Within each iteration, afew elements of the array
are updated. However, the calculation of the indices is unpredictable and data-dependent. Since it is not
necessary to preserve the order of these updates, we use locks to guarantee mutual exclusion for updating
elements of the array that can only be determined at runtime when running with multiple threads.

Figure 13 and 14 compares coarse-grain synchronization with SSB. Thecoarse-grain approach se-
rializes the updates to the array using an MCS [41] spin-lock to ensure mutual exclusion. The fine-grain
approach makes use of the SSB lock instructions to individually lock the locations to be updated. There-
fore, the iterations that access different locations do not contend with each other. The SSB-based fine-
grained synchronization exploits the inherent parallelism in the code without unnecessarily serializing
the updates to non-conflicting locations of the arrays (see Figure 13 and 14). As a result, we achieve
speedups of 114.3 and 72.4 on 128 threads for Loop 13 and Loop 14, respectively.
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Figure 14: Absolute Speedup of Livermore Loop 14

1 lock_init_arr(&vLock, n, TH);
2
3 node_Barrier();
4
5 pardo(u, 0, n, 1) {
6 for (j=G->outVertexIndex[u]; j<G->outVertexIndex[u+1]; j++) {
7 v = G->outVertexList[j];
8 if (!isEdgePresent_OutVertex(G, v, u)) {
9 my_lock(&vLock[v]);

10 inDegree[v]++;
11 my_unlock(&vLock[v]);
12 impliedEdgeFlag[j] = 1;
13 inVertexListSize++;
14 }
15 }
16 }
17
18 node_Barrier();
19
20 lock_destroy_arr(&vLock, n, TH);

Figure 15: A Loop (G1) Extracted from SSCA#2

5.3.3 A Kernel Loop from SSCA#2

The Scalable Synthetic Compact Applications Benchmark Suite 2 (SSCA#2) represents a graph theo-
retic problem which is representative of computations in the fields of national security, scientific comput-
ing, and computation biology [10]. A hallmark of the graph problem is the irregular memory accesses,
which leads to poor data locality and statically unsolvable synchronization points.

21



Figure 15 shows a loop extracted from SSCA#2 version 1.1. Let us call this loop as LoopG1. The
code is written using the Bader’s SIMPLE library [9]. We briefly review themajor characteristics of the
code as follows:

• Line 1: Initialize an array ofn locks. With data type defined in the SIMPLE library, an element in
thevLock array is actually a pthread mutex. The functionlock init arr is performed in parallel.
It is worth noting thatn represents the number of vertices in the graph.

• Line 5: pardo is a do-all loop construct. It statically distributes iteration0 to n − 1 of LoopG1

to all threads.u is the iterator.

• Line 9, and 11: Using lockvLock[v], my lock andmy unlock function form a critical section
for accessinginDegree[v] mutually exclusively. In SIMPLE library,my lock andmy unlock are
mapped topthread mutex lock andpthread mutex unlock respectively.

• Line 20: Destroy the lock arrayvLock. The functionlock destroy arr is performed in parallel.

In order to exploit the inherent parallelism in the code, fine-grain synchronization is required. The
fine-grain synchronization approach taken in the loop shown in Figure 15uses a software lock-array
approach similar as the one we showed for Random Access benchmark. Given a graph problem, the
number of verticesn is normally very large. Therefore, the allocation of arrayvLock costs a lot of
memory space. For example, in our experiments, when we setn = 213, the size ofvLock array is 64K
bytes. Moreover, at runtime, theif condition atline 8 is normally false. As a result, a large portion of
thevLock is not actually used.

SSB-based fine-grain lock mechanism can avoid all the drawbacks of the software-based one. Us-
ing SSB , there is no need to allocate thevLock array, which saves memory. At runtime, given the
address of a a particular element in the arrayinDegree, SSB lock/unlock instruction is used to ensure
the mutual exclusion for accessing it. For this particular example, it is worthingnoting that the operation
inDegree[v] + + can be completed atomically in memory with instructionADD M on C64. However,
the set of in-memory atomic instructions provided by ISA can only cover limited data type and oper-
ations. SSB presents a general fine-grain synchronization mechanism with no limitation on data types
and operations.

Given the low overhead of SSB operations, the SSB-based approach does not only avoid the memory
cost for allocating the array of locks, but also improves the performance. Figure 16 compares the
execution time of the SSB-based solution to the software-based one withn = 213. The execution time
for the software-based version includes the time spent on executing the loop, initialize, destroy the lock
array. The SSB -based version does not need to allocate and free the lock array. From Figure 16, it
is clear that the SSB-based version performs faster than the software-based one in all cases. When the
number of threads increases to 128, the SSB-based one is 125% faster.
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Figure 16: Execution Time of the LoopG1 Extracted from SSCA#2

5.3.4 Hash Table Based Ordered Integer Sets

Hash table is a widely used data structure in many applications. In this study, we use a hash table
to implement an ordered integer set. The hash table has multiple buckets, each managing an ordered
linked list. Given an integer keyk, the hash functionh(k) determines the bucket, where the key might
be inserted, deleted, or accessed. We We implemented four different versions of concurrent hash tables:

• Coarse-grain lock based version: each bucket is protected by a MCS spin-lock [20, 41], which
has to be acquired before the insertion, deletion, or search operation, and released afterwards.

• Lock-free version: uses Michael’s lock-free hash table algorithm [42]. Thehazard pointers
mechanism is used to guarantee safe memory reclamation of lock-free objectsas well as ABA-
safety [43].

• sw-rwlock version: uses software based read and write locks. A lock variable is added into the
data structure of the node of the hash table. Read locks are continuously acquired and released for
accessed nodes, while the code travels through a selected ordered linkedlist to perform the search
operation. When the position where the key to be inserted or deleted is found, the corresponding
read locks are upgraded to write locks, and the operations are performed. This version increases
the memory usage of every node by 50%.

• SSB version: similar as the sw-rwlock version. SSB read and write lock operations are used to
replace the software-based ones. There is no need to modify the data structure of the node, thus
no extra memory usage.

To evaluate the performance of these implementations, the hash table is initialized with 10 buckets
and a load factor of 100, which represents the average number of items per bucket. Each thread performs
1,000 operations, of which 20% are insertions, 20% are deletions, and 60% are searches. At each
iteration, the operation to be performed is randomly determined, after whicha small random delay is
inserted.
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Figure 17: Implement hash table based integer set with different synchronization mechanisms.

Figure 17 shows that the SSB based version achieves the best performance when the number of
threads is greater than 1. The execution time of the coarse-grain lock-based version keeps increasing
with the number of threads, because of the contention when multiple threads access the same bucket
concurrently. The other three fine-grain versions show near constant execution time even when the
number of threads reaches 128. With SSB instructions, the synchronization overhead is small when
there is no contention. Both the lock-free and sw-rwlock version needs tocheck the return value of the
synchronization operations (CAS, or lock acquisition). Therefore, even without contention, a synchro-
nization operation incurs overhead at least equal to a load operation. Inaddition, the lock-free version
also needs to pay certain cost for the safe memory reclamation. As shown in Figure 17, when running
on a single thread (i.e., no contention), the lock-free version and sw-rwlock version are 56% and 42%
slower than the sequential version, respectively, whereas the SSB-based version is only 9% slower. In
all cases, the SSB version is at least 14% and up to 84% faster than the other two versions without any
extra memory usage.
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5.4 Effectiveness of SSB for Fine-Grain Data Synchronization

An important class of the target applications for large-scale multi-core architectures are scientific nu-
merical computations, many of which are intrinsically deterministic - that is for a given input a fixed
output (result) should be produced no matter how the program is parallelized. Under a shared-memory
parallel programming model, it is critical that the data dependencies in such programs should be realized
efficiently to best exploit parallelism.

One of the functionalities of SSB is to provide efficient fine-grain data synchronization, which en-
sures that a consumer thread reads a value at word-level in memory only after it has been written by
a producer thread. Based on SSB, this section (1) compare SSB-based fine-grain data synchronization
to three software based synchronization methods [35] using 6 DOACROSSstyle kernel loops extracted
from SPEC OMP 2001 benchmark suite; (2) investigates the parallelization ofthree representative sci-
entific computation kernels using fine-grain data synchronization.

These kernels represent three typical computation patterns in scientific applications: iterative ap-
proximation in finite difference method, linear recurrence with irregular pattern of data dependencies,
and the wavefront form of computation. For each kernel, we demonstratehow it can be effectively
parallelized with word-level fine-grain data synchronization, which expresses the producer-consumer
relation between the computation of concurrent threads. Unlike global synchronization (i.e., barrier)
based coarse-grain parallelization, where read-after-write data dependencies are enforced by making all
consumers wait for all producers at a common synchronization point, the fine-grain data synchroniza-
tion based parallelization takes a point-to-point synchronization approach, which allows the consumer
only waits for the data it needs for proceeding the computation. Therefore, fine-grain synchronization
can avoid unnecessary waiting and global communication that caused by coarse-grain barrier synchro-
nization. Using detailed simulation, our experimental results demonstrate:

• On multithreaded large-scale multi-core architectures, fine-grain data synchronization mechanism
is important and effective for exploiting fine-grain parallelism in scientificapplication kernels.

• For large-scale multi-core architecture, fine-grain synchronization based parallelization schemes
can achieve significant performance improvement over the coarse-grain ones. For the three rep-
resentative kernels we investigated, when running with 128 threads, fine-grain based implemen-
tation outperforms the coarse-grain ones by 38.1%, 312%, and 94.9% respectively.

• With only modest hardware extension to multi-core architectures, SSB provides an efficient mech-
anism for enforcing read-after-write data dependencies at word-level in memory among concur-
rent threads.

5.4.1 Kernel Loops from SPEC OMP

The 6 kernel loops,K1, K2, ...,K6, are extracted from multithreaded applications, such as314.mgrid
and318.galgel. 4 The cross-iteration dependence distance of all the kernels are constant and positive.

4These 6 kernel loops are the same ones used in the performance evaluation section of [35].
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We parallelize those loops by statically assigning iterations to different threads in a round robin fashion.
We compared the SSB-based approach with the three software-based synchronization methods (SYS,
MAP, and MYS), which are recently proposed by Kejariwal et. al. [35].For more details, please refer
to [35]. For the SSB-based approach, we use SSB SWSR operations toenforce the data dependencies
among threads.
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Figure 18: Performance of Multithreaded DOACROSS Kernel Loops. (DIST: dependence distance.)

The workloads for each iteration ofK1, K2 andK3 are small. For instance, there is only one
arithmetic operation in the loop body ofK1. Because of the low computation to synchronization ratio,
none of the methods show significant absolute speedup. However, in all cases (Figure 18(a), (b), (c)), it
is not surprising that SSB-based hardware approach shows better performance than software methods.
For kernelK4, K5, K6, all with a two-level loop nest, the workloads inside each iteration of the
outer loop are large. The software methods can only exploit the parallelismof the outer loop. The
SSB-based method can naturally exploit fine-gain parallelism in the loop nests with no overhead of
memory usage. Therefore, the SSB-based approach shows much betterscalability than the software-
based approaches (Figure 18(d), (e), (f)). These 6 loops illustratethe effectiveness of SSB-based fine-
grain data synchronization (compared to state-of-the-art software approaches) for DOACROSS loops
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for( i = 0; i < ITERATIONS; i++){
for( j=1; j< TOTALSIZE-1; j++ )

xnew[j] = 0.5*( x[(j-1)]+x[(j+1)]+b[j] );
for( j=1; j< TOTALSIZE-1; j++){

x[j] = xnew[j];
}

Figure 19: Sequential version of 1D Laplace Solver
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Figure 20: 1D Laplace Solver: Partition the Array amongn Threads

with simple cross-iteration dependencies. The following two benchmarks illustrates how SSB can help
in exploiting fine-grain parallelism of applications with complex data dependencies, which cannot be
easily handled by software methods.

5.4.2 1D Laplace Solver

Laplace’s equations is a famous partial differential equation, which is important in many fields of sci-
ence, such as electromagnetism, astronomy, and fluid dynamics. The 1D Laplace solver use a finite
difference method to achieve numerical approximation of the equation. We usea hypothetical 1D
Laplace solver to demonstrate the effectiveness of using fine-grained data synchronization to enforce
the read-after-write dependence among threads.

In the kernel of the Laplace solver, at each iteration, every position ofa single-dimension array is
updated with a value function of its left and right neighbors that computed from the previous iteration.
All the elements of the array need to be updated before the next iteration starts (see Figure 19). For
simplicity, within each iteration, two arrays are actually used. One stores the data computed by previous
iteration, the other stores the data generated by the current iteration.

The multithreaded parallel implementation partitions the 1D array among threads, as shown in Fig-
ure 20. To enforce the producer-consumer relation, a barrier is performed after allxnew are computed,
and another barrier is executed afterxnew is copied tox. Thisbarrier based coarse-grain synchroniza-
tion scheme enforces each thread to wait for all others completing the current iteration before starting
the next one.

From the point of view of a thread, however, it only needs to wait for its twoneighbor threads to
supply the data at the border of its partition in order to continue its own computation (see Figure 21).
Assuming that the portion of thex array assigned to a thread is betweenxstart andxend, in order to
start its next iteration, this thread only needs to read two elements from its two neighbors. For instance,
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Figure 21: Data Dependencies and Synchronizations in 1D Laplace Solver
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Figure 22: Barrier-based Coarse-Grain Synchronization vs. SSB-based Fine-Grain Synchronization for
1D Laplace Solver. (Problem Size: 512, and 1,024)

for starting the computation ofxnewstart andxnewend at iterationi, the thread only needs its two
neighbors to write their results intoxstart−1, andxend+1 at iterationi − 1.

Using this scheme, we can implement another parallel version of the solver using the SSB single-
writer-single-reader operations to perform the fine-grain data synchronization between threads. The
coarse-grain barriers are removed, the data synchronization is used toenforce each thread to wait for
the data that is exactly necessary for starting the new iteration.

Figure 22 and 23 demonstrates the effectiveness of the SSB-based fine-grain synchronization, which
naturally expresses the data dependencies in the original 1D Laplace solver problem. The “one-to-one
wait” data synchronization strategy avoids the unnecessary “all-to-all wait” scenario due to the use of
barrier as well as the overhead of barrier. As a result, the SSB-basedfine-grain synchronization approach
beats the barrier based coarse-grain counterpart in all cases, eventhe C64 hardware-based barrier is very
efficient. For example, when the solver runs on 128 threads with a problemsize of 4,096, the SSB-based
version can achieve a speed up of 109, and outperform the coarse-grain version by 38.1%.
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Figure 23: Barrier-based Coarse-Grain Synchronization vs. SSB-based Fine-Grain Synchronization for
1D Laplace Solver. (Problem Size: 2,048, and 4,096)

5.4.3 Linear Recurrence Equations (Livermore Loop 6)

We parallelize the loop shown in Figure 2 by assigning the iterations to different threads in a round-robin
fashion. The SSB single-reader-multiple-writer data synchronization mechanism is used to enforce the
read-after-write dependencies among iterations.

Our parallelization and synchronization scheme is shown in Figure 24, whichillustrates the case
where 8 iterations are concurrently executed by 4 threads, and the chunk size of round-robin scheduling
is 1 iteration. When thread 1 completes iteration 1, it notifies threads 2, 3, and 4about the availability
of W [1]. Thread 1 then executes iteration 5 according to the round-robin work distribution policy.
Although the computation of iteration 5 depends onW [1] to W [4], it does not have to explicitly wait for
W [1], since thread 1 itself computedW [1] previously. Similarly, when thread 2 moves to iteration 6, it
does not need to check the availability ofW [1],orW [2], becauseW [2] is computed by itself previously,
and whenW [2] is available,W [1] is ensured to be available. By taking this synchronization strategy,
after the computation of an iteration, a thread performs a synchronized write sswmr w to the memory
to notify numthreads− 1 readers. When a thread begins a new iterationi to computeW [i], it uses
normal load operations to read fromW [0] to W [(i − 1) − (num threads− 1)], and uses synchronized
read (sswmr r) to load the remaining numthreads− 1 elements ofW . As a result, no matter how large
the problem size, the number of synchronization reads and writes required only depends on the number
of threads. It is now obvious that this application kernel also satisfy the Equation 2 (S(t) ≪ M × B)
introduced in Section 2.

Figure 25 compares the fine-grain data synchronization based approach with a coarse-grain based
implementation as introduced in [25]. For the fine-grain approach, thechunk size, as explained above,
is the number of iterations to be scheduled per time by the round-robin algorithm. For the coarse-grain
approach, the parallel version is based on a sequential version that has been loop unrolled certain times
specified by thechunk size. In Figure 25, whenchunk size equals to 2 or 4, the speedups are calculated
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Figure 24: Parallelization and Synchronization of Livermore Loop 6

against the sequential versions, which have been loop unrolled twice and4 times respectively. Therefore,
the comparison of two curves will be meaningful, only if thechunk size is the same.

As shown in Figure 25, by exploiting fine-grain parallelism, the fine-grain data synchronization
based approach always performs better when running on a large number of threads. Figure 26 shows
the performance improvement of the SSB-based fine-grain approach over the coarse-grain one (calcu-
lated as(Speedupfine−grain − Speedupcoarse−grain)/Speedupcoarse−grain). From Figure 26, we can
observe that the performance improvement increases significantly whenthe number of threads is large.
For example, when 128 threads are used, the fine-grained approachwith a chunk size of 4 achieves an ab-
solute speedup of 72, which demonstrates a 312% improvement over the corresponding coarse-grained
parallelization scheme. This proves the effectiveness of the SSB-basedfine-grain synchronization for
exploiting massive on-chip parallelism in the large-scale multi-core chips. Itcan also be noticed that the
fine-grain approach can take better advantage of the commonly used loop optimization techniques, such
as loop unrolling. The performance advantage of the SSB-based fine-grain approach is attributed to 1)
fine-grain parallelism exploited by SSB-based synchronization solution;2) better data locality; and 3)
the removal of the global communication caused by barriers.
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Figure 26: Livermore Loop 6: Fine-Grain vs Coarse-Grain

5.4.4 Wavefront Computation

Wavefront computations are common in scientific applications. Given a matrix (see Figure 27), the left
and top edges of which are all 1, the computation of each remaining element depends on its neighbors
to the left, above, and above-left. If the solution is computed in parallel, the computation at any instant
form a wavefront propagating toward in the solution space. Therefore, this form of computation get its
name as wavefront.
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Figure 28: Coarse-Grain Parallelization of Wavefront Computation: Number of ThreadsT = 4, Number
of Computation BlocksK = 2 ∗ T = 8.

Figure 28 illustrate the coarse-grain parallelization scheme inspired by [58]. The solution space is
partitioned along thex dimension. LetT be the number of threads,X be the number of rows. Each
thread is assigned with the computation ofX/T contiguous rows. In order to gain parallelism, the
solution space is further partitioned toK blocks along they dimensions. Each thread completes all
the computation in a block, joins a barrier, and start the computation of the nextblock. As shown in
Figure 28(b), the computation is performed as a pipeline, and the data dependencies between blocks are
enforced by the barrier. The parameterK determines the degree of the parallelism. With the increase
of K, the granularity of data associated with each barrier synchronization is decreasing, and the number
of global synchronizations (barriers) required is increasing. Therefore, the level of parallelism can be
exploited is determined by the efficiency of the barrier synchronization. However, the cost of the barrier
normally increases with the number of threads.
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In our fine-grain implementation, the rows of the matrix are assigned to threads in a round-robin
fashion (moduloT , see Figure 29). With this static scheduling policy, to compute an element, only
the availability of its above neighbor needs to be checked. SSB fine-grainsingle-writer-single-reader
synchronization can be used to force the data dependencies. Again, a straightforward synchronization
scheme is to allow synchronized read/write on each data elements.
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Figure 29: Fine-Grain Parallelization of Wavefront Computation: Number ofThreadsT = 4, Solution
Space8 × 8.

To improve the efficiency, avoid excessive synchronization, and reduce the chance of a SSB be-
coming full, we takes a blocking approach. To reduce the amount of the synchronization, we group 8
consecutive elements in a row as a block. Once a thread completes the computation for a block, it writes
the first element of the block to the memory with a synchronized write, and the other elements in the
block are written with normal store instruction. Afterwards the thread moves to the next block. Before
the computation of a block, a thread performs a synchronized read to get the first element of the block,
the remaining elements of the block are read with normal load instruction. With the fine-grain solution,
although the computation is still in a wavefront form, a thread can be kept busy as soon as the block,
which it is waiting for, becomes available. Except the prolog and epilog stageof the computation, all
threads can be kept usefully busy in a pipelined fashion. Unlike the globalsynchronization with barrier,
threads never wait unnecessarily using point-to-point data synchronization.

Our experiments are conducted with a1024 × 1024 matrix 5. Figure 30 compares the speedups of
the fine-grain approach to the coarse-grain ones.

Recall that we group 8 consecutive elements in a row as a block in our fine-grain synchronization
based parallelization scheme. In the code, the calculation of the 8 elements in a block is written in a
way that is similar as loop unrolling. To make a fair comparison, the inner most loop of the coarse-
grain based implementation is also unrolled 8 times. The absolute speedups shown in Figure 30 is
also calculated against the sequential version, whose inner loop has been unrolled 8 times. For the
coarse-grain approach, we examined three different versions by experimenting different values ofK.

5A 1024 × 1024 matrix of doubles exceeds the capacity of on-chip SRAM memory of current C64 chip design. For the
purpose of our experiments, we extend the on-chip SRAM memory to 10Min the simulator.
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From Figure 30, it is apparent that the SSB-based fine-grain approach outperforms the coarse-grain
ones when running with multiple concurrent threads. For the coarse-grain versions, it can also be ob-
served that a largerK can improve performance only if the number of threads is moderate. When
number of threads is large, the cost of barrier cancels out the performance benefit brought by associat-
ing finer grain of data (due to largerK) with each barrier synchronization.

Although the data dependencies in wavefront computation implies serialization, the multithreaded
implementation with fine-grain data synchronization demonstrates the capability toexploit the inherent
parallelism within such computation form. When running with 128 threads, the SSB-based implementa-
tion shows an absolute speedup of 104, which outperforms the three coarse-grain synchronization based
implementation by 94.9%, 194.2%, and 392.7%, respectively.

5.5 Effectiveness of SSB for Fine-Grain Synchronization

We measured the percentage of successful synchronization among all synchronizations issued for the
8 benchmarks shown in Table 4. We can see that even for large number ofthreads, most fine-grain
synchronization operations are successful, which in turn ensures low cost of synchronization (see Sec-
tion 5.2).

The Livermore Loop 6 has relatively low successful rate compared to others. This is because certain
portions of synchronized reads happen before the corresponding synchronized writes. We do not show
kernel loopsK1, K2, ..., K6 in Table 4. For those loops, when the number of threads are smaller
than or equal to the dependence distance (shown as DIST in Figure 18), the synchronization successful
rates are also very high. Otherwise, the rates are not high, since certainportion of synchronized reads
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Table 4: Synchronization Success Rates and SSB Full Rates
64 threads 128 threads

Benchmark Success SSB Full Success SSB Full
Rate (%) Rate (%) Rate (%) Rate (%)

Random Access 99.98% 0 99.96% 0
Livermore Loop 13 99.11% 0 98.42% 0
Livermore Loop 14 99.72% 0 99.59% 0
LoopG1 from SSCA#2 99.98% 0 99.97% 0
Ordered Integer Set 99.97% 0 99.93% 0.0004%
1D Laplace Solver (4,096) 88.20% 0 84.29% 0
Livermore Loop 6 (chunk size = 4) 87.52% 0 72.13% 0
Wavefront 99.86% 0 99.83% 0

are destined to fail at first attempt in such cases. For example, when dependence distance is 8 and 16
threads start computation at the same time, the first attempt of synchronized read from thread 9 to 16
will fail, because the corresponding synchronized writes from thread1 to 8 have not yet finished.

We also observed that only one benchmark encounters the situation wherethe SSB happens to
be full. The percentage is only 0.0004% among all synchronization operations issued. In all other
benchmarks, the buffer is never filled up. This analysis shows that a smallSSB for each memory bank is
normally sufficient to cache the access states of outstanding synchronizing data units for multithreading
programs. Using modest hardware cost, SSB achieves the same effect as if each word of the entire
memory is tagged.

6 Related Work

Past research has indicated that fine-grain parallelism unleashed by some dataflow models that use the
I-structure like fine-grain synchronization [8] far exceeded the capacity of a given hardware architec-
ture to effectively exploit the parallelism [17]. Therefore, researchers have worked on solutions that
somehow “throttle” the parallelism during program execution. In this paper, given a large number of
processing cores and limited per core on-chip memory supported by underlying many-core chip, we are
using a thread model where the number of active threads is always limited by the number of available
hardware thread units, which avoids the excessive parallelism in one dimension. Using SSB with lim-
ited size we throttle the parallelism in another dimension, and therefore the amount of parallelism that
can exploited by active synchronization events is also limited. Our experimental results demonstrated
sufficient thread-level parallelism can be effectively “throttled” (or regulated) using SSB of small size.

Our SSB design provides an illusion that the entire memory is tagged at word-level, and there-
fore can be considered as a “virtual tagged memory” design. The major difference between SSB and
the classical tagged memory (e.g. full/empty bits) in HEP [51], Tera [5], MDP [19], Sparcle [3], M-
Machine [34], the MT processor in Eldorado [26], and other machines, has been explained in Section 1.
I-structure [8] memory system employed in some dataflow model based architectures [8, 33] exploits
similar design as full/empty bits based memory system. Tagging each word of the entire memory re-
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quires modification to off-the-shelf SRAM or DRAM technologies and introduces significant storage
cost. Because of such cost, the number of state bits that can be tagged to a word has to be small,
which can only be used to implement limited synchronization functionalities. Because of the small
storage cost, SSB can afford to form much larger states in each entry, thus can potentially support more
synchronization functionality.

The M-Machine [34] is another architecture that tags every memory locationand allows fast syn-
chronization between three on-chip processors through register-register communication. Hardware
mechanisms such as QOLB [32], MAOs on SGI Origin [38], lock box [54] for SMT processor, SoC
lock cache [4], AMO [59] and others, target to improve the efficiency of lock primitives. Unlike SSB
or tagged memory, they are not designed to provide architectural support for word-level fine-grain syn-
chronization in memory. The M-Machine [34] also allows fast synchronization between three on-chip
processors through register-register communication. Sampson et. al. [50] proposed barrier filters, a
hardware mechanism for enabling fast barrier synchronization on multi-core chips.

Recently, hardware transactional memory (TM) [6,29,30,40,45,48,49], a non-blocking synchroniza-
tion mechanism, has been proposed as a replacement for the lock-basedsynchronization. A transaction
is a sequence of memory reads and writes executed by a single thread, which is guaranteed to be atomic
and serializable. Most TM designs need to extend and modify the existing cache coherence protocols
and speculative execution techniques. TM systems provide great potential to facilitate multithreading
programming. Our current SSB design relies on blocking synchronization mechanism, and it will be
interesting to see how to explore non-blocking synchronization in an SSB-like design.

To efficiently parallelize loops, various compiler optimization techniques, have been developed to
minimize the amount of fine-grain synchronization added for parallelized do-across loops [7, 14, 37,
39, 44, 46, 47]. Those techniques can be combined with SSB-based hardware support to efficiently
parallelize do-across loops, especially useful when the synchronization resource requirements are more
than the number of SSB entries provided. Furthermore, some techniques can also be adapted to our
framework, for instance, to group multiple data synchronizations into one.

The Cyclops-64 [23] is evolved from a preliminary design of Cyclops architecture [13]. However,
there are significant differences between the two. The original Cyclopschip integrates 12832-bit pro-
cessing cores (thread units), each four of which share a floating point unit. In the current C64 design,
there are 16064-bit thread units and 80 floating point units, each of which is shared by two thread units.
For the memory hierarchy, in the original Cyclops design, all thread unitsshare 16 on-chip 512KB
DRAM banks, and each four of the thread units share a 16-KB data cache. The current C64 design em-
ploys scratchpad memory instead of data cache, and 160 on-chip SRAM banks that are shared between
all thread units.

7 Summary

This paper shows how fine-grain synchronization can be effectivelyand efficiently supported in many-
core architecture design using thesynchronization state buffer (SSB) with only a modest hardware
extension. We experimented the SSB design in the context of IBM Cyclops-64 architecture. Using
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detailed simulation, our experimental results demonstrate the effectivenessand efficiency of our solution
for a set of benchmarks with different workload characteristics.

Our current design assumes the non-preemptive thread model, which provides a good starting point
to implement the idea of SSB. To explore preemptive threads, virtualization andother more elaborate
hardware mechanisms will be necessary for implementing SSB design. The virtualization of SSB is
beyond the scope of the current paper, and we regard this as importantfuture work. Other possible
future research includes language extensions to map high-level constructs to the SSB synchronization
mechanism, compiler techniques that can optimize the allocation and scheduling of SSB resources,
and exploration of potential extensions of SSB mechanisms to facilitate parallel program debugging,
runtime performance monitoring, and other techniques that may take advantage of states bookkeeping
by hardware.
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