
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Efficient Fine-Grain Synchronization on a Multi-Core Chip

Architecture: A Fresh Look

Weirong Zhu†

Ziang Hu

Guang R. Gao

CAPSL Technical Memo 67

July 17, 2006

Copyright c© 2006 CAPSL at the University of Delaware

†Email: weirong@capsl.udel.edu

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Multi-core chip architectures are becoming mainstream, permitting increasing on-chip paral-
lelism through hardware support for multithreading. Fine-grain synchronization is essential to the
effective utilization of the capacity provided by future high-performance multi-core architectures.
However, there are also new challenges realizing such fine-grain synchronization in large-scale
multi-core chip architectures – such as the IBM Cyclops-64 chip that contains more than 100 pro-
cessing cores and employs a memory organization with explicitly addressable memory segments
instead of data cache.

This paper presents a fresh look at the challenges and proposes a scalable solution for fine-grain
synchronization that efficiently enforcesmutual exclusion andread-after-write data-dependencies
between concurrent threads. Using the Cyclops-64 chip architecture as a case study, we illustrate
how to use a smallSynchronization State Buffer (SSB) associated with each memory bank to acceler-
ate the fine-grain synchronization by recording and managing the states of frequently synchronized
data units with modest hardware extensions. We demonstratethe effectiveness and efficiency of the
proposed solution.

• For mutual exclusion: Using distributed fine-grain locking at each of the memory units, we
avoid the unnecessary serialization of operations on different elements of the same concurrent
data structure and achieve this goal efficiently.

• For read-after-write data-dependencies synchronization: our method encourages the explo-
ration of do-across style of loop-level parallelism - whereloop-carried data dependencies can
often be directly implemented by the application of the fine-grain synchronization operations
and the removal of useless barriers.

The experimental results demonstrate significant performance gain due to the use of the above
fine-grain synchronization solutions.

i

Contents

1 Introduction 1

2 Cyclops-64 Large-Scale Multi-Core Chip Architecture 3
2.1 C64 Chip Architecture .. 3
2.2 Synchronization Mechanisms in Current C64 Design 5

3 Efficient Fine-Grain Synchronization on Cyclops-64 5
3.1 Structure of SSB . 6
3.2 Memory Efficient Synchronization 7
3.3 Support for Fine-Grain Locking 7

3.3.1 A Motivating Example . 7
3.3.2 Implementation of Fine-Grain Lock . 8

3.4 Support for Fine-Grain Data Synchronization 10
3.4.1 Single-Writer-Single-Reader (SWSR) Data Synchronization 10
3.4.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization 12

3.5 Other Design Issues .. . 13
3.5.1 Support Load Linked (LL), and Store Conditional (SC) Operations. 13
3.5.2 Handling Hardware Resource Limitation . 14

4 Experimental Results 14
4.1 Characterization and Performance of Fine-Grain Locks 15

4.1.1 Synchronization Overhead .15
4.1.2 Exploit Fine-Grain Parallelism of Application Kernels 15

4.2 Characterization and Performance of Fine-Grain Data Synchronization 19
4.2.1 Synchronization Overhead .19
4.2.2 Exploit Fine-Grain Parallelism of Application Kernels 20

4.3 Synchronization Success Rates 24

5 Related Work 24

6 Summary 25

List of Figures

1 Cyclops-64 Chip Architecture .. 4
2 One SSB Entry . 6
3 Example: Table Toy . 8
4 State transition diagram of SSB lock/unlock operations. 9
5 State transition diagram of SSB Single-Writer-Single-Reader operations. 11
6 State transition diagram of SSB Single-Writer-Multiple-Reader Operations. 13
7 Overheads of Synchronization Mechanisms 15
8 Speedup of Table Toy parallelized with different synchronization mechanisms 16
9 Speedup of Livermore Loop 13 parallelized with different synchronization mechanisms 17
10 Speedup of Livermore Loop 14 parallelized with different synchronization mechanisms 17
11 Implement Hash Table based integer set with different synchronizationmechanisms. . 19
12 Livermore Loop 6 .. 20
13 Characteristics of Livermore Loop 6 20
14 Parallelization and Synchronization of Livermore Loop 6 21
15 Speedup of Parallelized Livermore Loop 6 22
16 Characteristics of Wavefront Computation 23
17 Speedup of Parallelized Wavefront Computation 23

ii

List of Tables

1 SSB State Bits . 7
2 Overhead of successful SSB data synchronization operations 20
3 Synchronization Success Rates and SSB Full Rates 24

iii

1 Introduction

As an alternative to the conventional single-thread wide-issue superscalar processor, the design of high-
performance chip architectures is now rapidly moving towards the multi-coreapproach that integrates
an increasing number of tightly-coupled processing cores on a single chip. As advances in IC processing
technology have led to hundreds of millions (now reaching 1 billion and beyond) of transistors being
fabricated on a single silicon die, it becomes possible to construct large-scale multi-core chip architec-
tures. For instance, the IBM Cyclops-64 petaflop supercomputer project features a chip architecture that
integrates more than one hundred thread units and memory banks on a single chip [17].

In order to fully utilize the on-chip parallelism provided by large-scale multi-core chip architectures,
it is important to exploit the fine-grain parallelism that is available in applications. It is well understood
that the granularity of parallelism that can be exploited on a multiprocessor machine is determined by
the synchronization mechanisms provided [13], which is also applicable to multi-core architectures.

It now appears that the parallel system community converges towards the opinion that fine-grain
synchronization is essential to the effective exploitation of fine-grain parallelism on utilization of the
capacity provided by future high-performance multi-core architectures.On large-scale multi-core chips
- such as the IBM Cyclops-64 chip that contains well over 100 hardware thread units - the on-chip stor-
age available per processor is far less (often 1-2 orders less) than traditional single core microprocessors.
Therefore, a new memory organization may be employed that will provide explicitly addressable mem-
ory segments (e.g. Scratchpad memory, on-chip SRAM, etc.) instead of datacache. On the other
hand, there are plenty of distributed resources (e.g. large number ofthread and memory units, ample
on-chip interconnection bandwidth, etc.) available to facilitate efficient fine-grain coordination between
processing cores and memory. Therefore, the following new challengesare emerging with respect to
fine-grain synchronization solutions in multi-core architectures:

• Such solutions should be scalable and can fully exploit the parallelism due to the distributed on-
chip resources.

• Such solutions should be supported with limited on-chip resources – unlike previous proposals
(e.g. full/empty bits in Tera memory systems [6], or I-Structure [9] support indataflow architec-
tures, where in-memory synchronization is usually realized by enhancingthe entire memory of
the machine).

• Such solutions should incur low synchronization overhead.

• Such solutions should be able to support a variety of synchronization functionalities.

• Such solutions should be able to smoothly and efficiently handle the cases where the precise
synchronization point cannot be resolved statically at compile time.

This paper presents a fresh look at those challenges and proposes ascalable solution for supporting
fine-grain synchronization on large-scale multi-core chip architectures. Using the IBM Cyclops-64 chip
architecture as a case study, we illustrate a novel architectural extensioncalled synchronization state

1

buffer (SSB), that efficiently enforcesmutual exclusion andread-after-write data-dependencies between
concurrent threads with fine-grain synchronizations.

Hardware support for fine-grain synchronization has been explored in several architectures built or
proposed before. HEP [39], Tera [6], MDP [14], Alewife [2,25],M-Machine [24], the MT processor in
Eldorado [18], and others use hardware bits (e.g.,full/empty bits) as tags to support word-level fine-grain
synchronization. Often by default the entire memory of the machine is tagged by associating additional
access state bits with each word in memory. Fine-grain synchronization is achieved by accessing those
word-level state bits in memory. For large-scale multi-core chips, on-chip memory is one of the most
precious resources. The approach that tags each word of the entire memory requires modification to off-
the-shelf SRAM or DRAM technologies and introduces significant on-chipand off-chip storage cost.
Because of such cost, the number of state bits that can be tagged to a memory word has to be small,
which can only be used to implement limited synchronization functionalities.

In this paper, we explore an alternative solution, which is motivated by the observation that the num-
ber of fine-grain synchronized memory locations that are active (in use) at any moment is far less than
the number of words in the entire memory. Furthermore, for both mutual exclusion (e.g. lock/unlock)
and data synchronization (e.g. synchronized write/read), which are ofinterest in this paper, the associ-
ated states of synchronized memory location(s) can be naturally released when the synchronization is
completed (e.g. via unlock or synchronized reads).

To this end, we introduce a novel hardware extension to C64-like large-scale multi-core architec-
tures. To simplify the hardware design and avoid enormous on-chip memory storage cost but still create
an illusion that each word in memory is associated with a set of states, our approach only attaches a
small synchronization state buffer (SSB) to the memory controller of each memory bank. This small
SSB caches the access states of memory locations that are currently accessed by SSB synchroniza-
tion operations. Although the SSB for each memory bank is small, our experiments show that an SSB
with limited number of entries for each memory bank is sufficient to support common multithreading
programs, even those running with a large number of threads. Moreover, in order to use fine-grain
data synchronization to efficiently parallelize loops, various compiler optimization techniques have
been developed to minimize the amount of fine-grain synchronization addedfor parallelized do-across
loops [8,12,26,27,34,36,37] and others. Those techniques canbe combined with SSB-based hardware
support to efficiently parallelize do-across loops. This is especially useful when the synchronization
resource requirements are greater than the number of SSB entries provided. Furthermore, some tech-
niques can also be adapted to our framework, for instance, to group multipledata synchronizations into
one.

Because of the relatively smaller storage cost, each SSB entry can afford to encode larger states –
thus can support more synchronization functionality than the previous proposals. To avoid the bottleneck
in a centralized organization and enhance the scalability, each memory bank isattached with its own
SSB . Therefore, SSB, which is as distributed as other on-chip resources (e.g. thread units, and on-chip
SRAM banks, etc.), can take full advantage of ample on-chip interconnection bandwidth. Also, previous
studies [25,41] have shown that fine-grain synchronization resultsin successful synchronization in most
cases. Therefore, our SSB design ensures that the cost of a successful synchronization should be very
small.

2

In order to evaluate the efficiency of this method, we (1) extend the IBM Cyclops-64 architecture
simulator with the new SSB architectural features, (2) design a hardware/software interface for SSB
access and management. Using detailed simulation with microbenchmarks and application kernels, our
experimental results demonstrate the effectiveness and efficiency of theproposed fine-grain synchro-
nization method.

• For mutual exclusion: our method exploits the ample parallelism that often exists inoperations
on different elements of the concurrent data structures. Using distributed fine-grain locking on
each memory unit, we avoid the unnecessary serialization of those operations without incurring
any extra memory usage. In addition, the SSB has also resulted in considerable reduction of the
overhead of each individual lock/unlock pair. Also, compared to thesoftware-only solutions, up
to 65% performance improvement has been observed for the benchmarkswe tested.

• For read-after-write dependence synchronization: our method encourages the exploration of do-
across style loop-level parallelism - whereloop-carried data dependence can often be directly
implemented by the application of our fine-grain solutions and the removal of barriers. Our ex-
perimental results demonstrate significant performance gain due to the use of such fine-grain syn-
chronization. For instance, by adopting a fine-grain synchronization based parallelization scheme,
we observe a 449% performance improvement over the coarse-grain based approach when solving
linear recurrence equations.

• The experiments also demonstrate that 1) a small SSB for each memory bank is normally sufficient
to record and manage the access states of outstanding synchronizing data units for multitheading
programs, and 2) most of fine-grain synchronizations are successful.

2 Cyclops-64 Large-Scale Multi-Core Chip Architecture

The Cyclops-64 (C64) [17] is a petaflop supercomputer project underdevelopment at IBM T.J. Watson
Laboratory. It is designed to serve as a dedicated petaflop compute engine for running high performance
scientific and engineering applications, such as molecular dynamics to study protein folding [5], or
image processing to support real-time medical procedures.

2.1 C64 Chip Architecture

The C64 chip architecture (see Figure 1) employs a large-scale multi-core-on-a-chip design by integrat-
ing 160 hardware threads units, and the same amount of embedded SRAM memory banks in a single
silicon chip. A C64 chip has 80 processors, each with two thread units (TU), a floating-point unit (FP)
and two SRAM memory banks of 32KB each. A 32KB instruction cache, not shown in the figure, is
shared among five processors. The basic unit of memory, a word, in C64is 8 bytes long. The C64 chip
architecture represents a major departure from mainstream microprocessor design in several aspects:

3

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

GM GM GM GM GMGM

A−switch

Host
interface HD

3D−mesh

Crossbar Network

DDR2 SDRAM
controller

Off−chip
memory

Figure 1: Cyclops-64 Chip Architecture

1. The C64 chip integrates a large number of (160) processing elements, embedded memory and
communication hardware in the same piece of silicon.

2. A thread unit (TU), the C64 computational cell, is a simple 64-bit, single issue, in-order RISC
processor with a small instruction set architecture (60 instruction groups)operating at a moderate
clock rate (500MHz).

3. C64 incorporates efficient support for thread level execution. For instance, a thread can stop
executing instructions for a number of cycles or indefinitely; and when asleep it can be woken up
by another thread through a hardware interrupt. All the thread units within achip connect to a
16-bit signal bus, which provides a means to efficiently implement barriers.

4. The C64 features a three-level (Scratchpad (SP) memory, on-chip SRAM, off-chip DRAM) mem-
ory hierarchy without data cache. Instead a portion of each thread unit’s corresponding on-chip
SRAM bank is configured as the scratchpad memory (SP). Therefore, the thread unit can access
to its own SP with very low latency, which provides a fast temporary storage toexploit locality
under software control. The remaining sections of all on-chip SRAM banks together form the
global memory (GM) that is uniformly addressable from all thread units. There are 4 off-chip
memory controllers connected to 4 off-chip DRAM banks. The current design size for DRAM is
1GB.

5. C64 also employs the Network-on-Chip (NoC) concept. All on-chip resources are connected to an
on-chip crossbar network, which sustains a 4GB/s bandwidth per port per direction, which results
in 384 GB/s bandwidth per direction in total. The crossbar network also guarantees that C64 chip
architecture issequentially consistent. Thus, there is no need to issue fence-like instructions after
each memory operation to ensure the order between them [42].

6. C64 provides no resource virtualization mechanisms: the thread execution isnon-preemptive and
there is no hardware virtual memory manager. The former means the OS will not interrupt the

4

user thread running on a thread unit unless the user explicitly specifies termination or an excep-
tion occurs. The latter means the three-level memory hierarchy of the C64 chip is visible to the
programmer.

A maximum configuration of a C64 system consisting of 13,824 C64 chips, connected by a 3D
mesh network, is expected to achieve over 1 petaflop peak performance.To the best of our knowledge,
the C64 project is one of the most ambitious petaflop supercomputer projects currently under active
development. A first C64 system is planned to be installed in 2007.

2.2 Synchronization Mechanisms in Current C64 Design

Several synchronization mechanisms have been implemented for current C64 chip architecture design.
Atomic in-memory instructions, such asfetch-and-add, andswap can be used to implement various
widely acceptedspin-locks, such astest-and-set, ticket lock, and linked-list basedMCS [30]. In
C64, in-memory atomic instructions only block the memory bank where they operate upon while the
remaining banks continue servicing other memory requests. The C64 sleep/wakeup instructions can
be used to efficiently implement post/wait type of synchronization. The C64 chiparchitecture also
provides a 16-bit signal bus to which all thread units within a chip are connected, that provides a means
to efficiently implement barriers. It is worth noting that thecompare-and-swap (CAS) [11], linked-load,
andstore-conditional instructions are not currently supported in the design of C64. However,for the
purpose of comparison, we implemented the CAS instruction in the C64 simulator [15].

3 Efficient Fine-Grain Synchronization on Cyclops-64

In this paper, we propose a novel architectural extension calledsynchronization state buffer (SSB) to
large-scale multi-core chip architectures, like C64. SSB is a small buffer attached to the memory con-
troller of each memory bank. It records and manages states of frequentlysynchronized data units to
support and accelerate word-level fine-grain synchronization.

SSB can be used to enforce mutual exclusion and read-after-write datadependencies between a large
number of threads. In the case of mutual exclusion, SSB allows each memoryword to be individually
locked with minimal overhead. SSB supports various locks: read lock (shared lock), write lock (exclu-
sive lock), as well as recursive lock. For data synchronization that enforces the read-after-write depen-
dencies between threads, SSB allows fine-grained low-overhead synchronized read and write operation
on word in memory. SSB supports several modes of data synchronization:two single-writer-single-
reader modes, and one single-writer-multiple-reader mode. By coordinating with the software, SSB
efficiently facilitates fine-grained synchronizations to help multithreading programs exploit fine-grained
parallelism inherent in applications. The design of SSB will be elaborated infollowing subsections.

5

3.1 Structure of SSB

We now take the C64 chip architecture as an example to explain the design. SSB, a special hardware
buffer, is embedded into the memory controller of each memory bank, which caches the states for mem-
ory locations accessed by SSB instructions. This buffer realizes the lookup-table function in a single
clock cycle, which can be implemented with the common cache technology. As anexperimental design,
we associate each SRAM bank with an 8-entry SSB, and each DRAM bankwith a 1,024-entry SSB,
both of which are 8-way set associative. In practice, the number of entries, and the level of set asso-
ciativity can be adjusted according to the transistor budget, and the powerconsumption requirements,
etc.

state counter thread id address

4 bits 8 bits 8 bits N bits

Figure 2: One SSB Entry

Each entry of the SSB is used to record and manage the states of a memory word that is accessed
by SSB instructions at runtime. Because of the small storage cost, each SSB entry can afford to use a
number of bits (for example, 20 bits in our current design) to encode the synchronization states. Thus,
SSB can effectively support a variety of synchronization functionalities. The structure of one entry is
shown in Figure 2. The address is thekey used for the search in the SSB. The rightmost N-bits holds the
address of a memory location. The number N is determined by the number of bitsneeded to identify a
unique memory address in the corresponding memory bank. In our design for current C64 chip, 13 bits
and 25 bits is chosen for SSB on SRAM bank and on DRAM bank respectively. The remaining fields
compose the states of the corresponding memory location. The next 8-bits isthe “thread id” field, which
is used to record the ownership information of the entry. An 8-bit field supports up to 256 threads, while
C64 currently has 160 thread units. Since the thread execution in C64 is non-preemptive, the “thread
id” can be used to identify a hardware thread unit as well as a unique software thread running on it. The
next 8-bits is a “counter” field. Its usage differs for various groups of SSB operations, which will be
explained later. The leftmost 4-bits can keep up to 16 types of modes for the entry to support different
SSB operations. Table 1 shows the meaning of the modes currently proposed in the design. An entry in
SSB is allocated and released according to its state and the function of the SSBinstruction operating on
it.

An SSB instruction is treated the same way as other memory instructions by the C64on-chip cross-
bar network, which delivers all memory requests to the destined memory bank. Upon arriving at a
particular memory bank, SSB instructions as well as other memory instructions, are served based on a
FIFO discipline.

6

Table 1: SSB State Bits
State Bits Function Description

0x0000 WLOCK Write Lock
0x0001 RLOCK Read Lock
0x0010 WRLOCK Write-Recursive Lock
0x0011 SR1 Single-Writer-Single-Reader Mode 1
0x0100 SR2 Single-Writer-Single-Reader Mode 2
0x0101 MRF Single-Writer-Multiple-Readers Full Mode
0x0110 MRL Single-Writer-Multiple-Readers Lock Mode
0x0111 MRQ Single-Writer-Multiple-Readers Queue Mode
0x1000 MRQL Single-Writer-Multiple-Readers Queue Lock Mode
0x1001 LLSC Linked-Load and Store-Conditional Mode

3.2 Memory Efficient Synchronization

Using SSB fine-grain synchronization operation is memory efficient. First, since SSB maintains the
states for the synchronized memory locations in hardware, there is no need to allocate correspond-
ing software-managed synchronization variables, which cost extra memory. Second, with one memory
transaction, a SSB instruction does not only perform the synchronizationon the memory location, but
also brings the datum to the processor upon success. Therefore, compared to ordinary load operation,
SSB synchronization operation only adds negligible overhead and savesthe number of memory trans-
actions needed.

3.3 Support for Fine-Grain Locking

In order to achieve fine-grained synchronization, SSB provides highly flexible dynamic locking func-
tionality. SSB associates locking functions with memory locations dynamically. When a memory loca-
tion needs to be accessed exclusively, the lock operation is issued with theaddress of this location. In
the SSB of the corresponding memory bank, an entry for this address, if not exists, is allocated to mon-
itor the state of the memory location. If an entry already exists, the state might bechanged according to
the function of the operation. The return value of the operation informs the state to the software, which
then proceeds accordingly. Since an SSB instruction takes the address of a memory location to perform
the locking operation, it does not require any pre-allocated synchronization variable. As a result, SSB
is able to smoothly and efficiently handle the cases where the precise synchronization point cannot be
resolved statically at compile time.

3.3.1 A Motivating Example

Figure 3 shows how the kernel loop in Table Toy (also known as Random Access) [1] can be imple-
mented with critical section in OpenMP. Although it is not strictly required by theoriginal benchmark,
for the purpose of illustration, we use critical section to guarantee the read-modify-write operations

7

#pragma omp parallel for private(idx,i,tmp) shared(x,y,N)
for(i = 0; i < N; i++){

idx = rand();
tmp = x[i];

#pragma omp critical
{

y[idx] = y[idx] op tmp;
}

}

Figure 3: Example: Table Toy

in the loop to be performed atomically. Unstructured references, subscripted subscripts like those in
Figure 3, are the hallmark of irregular applications [28]. Unstructured references like the one in the
above critical section are impossible to analyze at compile time. As a consequence, the compiler can
only assign a single lock in this case. Given a large enough tabley[] (much larger than the number of
threads) and a high quality uniform random number generator, the chance of conflicts to access the same
y[idx] is very low. That is, the application itself inherently has enough parallelism, which can not be
exploited because of the serialized execution of instances of the critical section. The dynamic locking
functionality of SSB helps exploit the parallelism by avoiding the serialization.

3.3.2 Implementation of Fine-Grain Lock

SSB provides following operations to perform the lock/unlock operations:

(RT, Value) = swlock_l(MemAddr);
/* swlock_l: acquire write lock for location MemAddr */
/* and load the content */
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location */

(RT, Value) = srlock_l(MemAddr);
/* srlock_l: acquire read lock for location MemAddr */
/* and load the content */
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location */

sunlock(MemAddr);
/* sunlock: release the lock for location MemAddr */
/* MemAddr: the address of the memory location */

The swlock l and srlock l acquire thewrite lock and theread lock for the memory location
MemAddr respectively. Upon success, they also load the content of the memory location to Value.
sunlock releases the lock previously acquired. Figure 4 illustrates how the lock/unlock operations in-
teract with the SSB hardware.

As shown in Figure 4(a),swlock l acquires thewrite lock for memory locationMemAddr. If there
is no record for this location in SSB, which means it is not locked by any otherthread, an entry for

8

WLOCK
tid = TID
cnt = 1

WLOCK
tid = TID
cnt = 2

cnt = 2
tid = TID
WRLOCK

cnt = 3
tid = TID
WRLOCK

 cnt = 1

RLOCK
tid = TID
 cnt = 2

tid = TID
RLOCK

LOCKED

NOT swlock (TID’)/ fail

srlock (*) / fail

srlock (*)/ successsrlock (TID)/ success

swlock (TID)/
 success

 success
swlock (TID’)/

 fail

swlock (TID) /

 success
swlock (TID)/

swlock (TID) /
 success

srlock(*)/
 fail

swlock (TID’)/fail swlock (*)/fail

swlock (TID’)/
 fail

srlock(*)/
 fail

(a) states transition caused byswlock l andsrlock l operations

LOCKED
NOT WLOCK

tid = TID

WLOCK
tid = TID
cnt = 2cnt = 1

cnt = 1 cnt = 2

WRLOCK
tid = TIDtid = TID

WRLOCK

RLOCK

 cnt = 1
tid = TID

 cnt = 2
tid = TID
RLOCK

sunlock (TID) /
 success

sunlock (TID) / success

 success

sunlock (TID)/
 success

sunlock (*) / success success
sunlock (*) /

sunlock (TID) /

sunlock (TID’) /
 fail

sunlock (TID’) /
 fail

sunlock (TID’) /
 fail

sunlock (TID’) /
 fail

(b) states transition caused bysunlock operation

A circle represents the state of a memory location monitoredby SSB . The edge shows the transition between
two states. Near the transition edge, the transition condition is described by a pair of text connected by a
“/” symbol. The left side of “/” shows the operation performed to cause the transition; the right side of “/”
indicates the return result of the operation.TID in the parentheses suggests that the operation is issued by
threadTID. TID’ means a thread other than threadTID. The symbol “∗” in the parentheses means that it can
be “any thread”.

Figure 4: State transition diagram of SSB lock/unlock operations.

this location is allocated, and the state is set toWLOCK. Before this location is unlocked by the owner,
write/read lock acquisition from other thread will fail, and cause the “counter(cnt)” incremented by 1.

9

The current value of “cnt” is returned to the thread to indicate the failure.Therefore, inWLOCK mode,
the return value accurately reflects the status of runtime lock contention on the memory location, i.e.,
how “hot” it is. Software may take advantage of this information to implement acontention manager,
such as a backoff policy. SSB also supports recursive (or nested) lock. A thread can repeatedly acquire
the write lock it already owns. If a thread is the only owner of the read lock, it can upgrade the lock to
a write lock. In both cases, the state is set toWRLOCK, and the “cnt” records the number of the nested
recursive locks. The software is required to perform paired lock/unlock operations, which guarantees
the number of lock and unlock operations to be equal.

srlock l acquiresread lock for memory locationMemAddr. Multiple threads can own the same
read lock at the same time. The first successful acquisition allocates an entry in SSB, and sets the state
to RLOCK. The “cnt” records the number of successful acquisitions. As described before, when “cnt”
is equal to 1, a write lock acquisition from the same thread is able to upgrade the lock to aWRLOCK.
Except for this special case, all the write lock acquisitions will fail. The behavior of sunlock operation
is shown in Figure 4(b). When a lock is finally released, the corresponding entry in SSB will be freed
for reuse.

3.4 Support for Fine-Grain Data Synchronization

In C64, SSB can help the programmer to exploit data-level parallelism by allowing the program to
perform synchronized read and write at the word-level in memory. ssbprovides a set of instructions
to support fine-grained data synchronization that can enforce data dependencies between concurrent
threads.

In the current design, two different types of data synchronization aresupported: single-writer-single-
reader, and single-writer-multiple-reader data synchronization.

3.4.1 Single-Writer-Single-Reader (SWSR) Data Synchronization

The single-writer-single-reader (SWSR) synchronization enforces ordering between a thread that pro-
duces the data and another thread that consumes the data. The following are the interfaces provided by
SSB :

RT = sswrsr_w1(MemAddr, Value);
/* sswrsr_w1: SWSR synchronized write mode 1 */
/* MemAddr: the address of the memory location */
/* Value: the Value to be written to MemAddr */
/* RT: return value, success or failure */

(RT, Value) = sswrsr_r1(MemAddr);
/* sswrsr_r1: SWSR synchronized read mode 1 */
/* MemAddr: the address of the memory location */
/* RT: return value, success or failure */
/* Value: the content of the memory location */

RT = sswrsr_w2(MemAddr, Value);
/* sswsr_w2: SWSR synchronized write mode 2 */

10

/* MemAddr: the address of the memory location */
/* Value: the Value to be written to MemAddr */
/* RT: return value, success, failure or */
/* reader’s thread id */

(RT, Value) = sswrsr_r2(MemAddr);
/* sswsr_r2: SWSR synchronized write mode 2 */
/* MemAddr: the address of the memory location */
/* RT: return value, success, failure, or wait */
/* Value: the content of the memory location */

As shown in Figure 5(a), thesswsr w1 andsswsr r1 can coordinate with software to support a
busy-wait approach. If the writer has not performedsswsr w1 to the memory location addressed by
MemAddr yet, thesswsr r1 performed by the reader returns a failure. The reader needs to try again
with sswsr r1 afterwards. The reader can get the data only after thesswsr w1 is finally performed,
which allocates an entry in the SSB, sets the state toSR1, and writes theValue into MemAddr. When
the sswsr r1 is successfully executed, the entry in SSB is released, and the content ofMemAddr is
loaded for the reader.

sswsr_w1/ success

record
no

SR1

sswsr_r1/success

sswsr_r1/
 fail

(a) Mode 1: a busy-wait approach

record
no SR2

cnt = 0

 success
sswsr_w2/

success
sswsr_r2/

SR2

cnt = 1
 tid = TID

sswsr_w2/
 TID

sswsr_r2 (TID)/
 wait

software: sleep software: wakeup
thread TID

(b) Mode 2: a sleep-wakeup approach

A circle represents the state of a memory location monitoredby SSB . The edge shows the transition between
two states. Near the transition edge, the transition condition is described by a pair of text connected by a
“/” symbol. The left side of “/” shows the operation performed to cause the transition; the right side of “/”
indicates the return result of the operation.TID in the parentheses suggests that the operation is issued by
threadTID. “software:” means the operation that described by following text is performed by software.

Figure 5: State transition diagram of SSB Single-Writer-Single-Reader operations.

11

Other than the busy-wait approach, a blocking strategy can be implemented with the sswsr w2
and sswsr r2 operations, and the instruction-level sleep/wakeup support of C64. Asillustrated by
Figure 5(b), if the reader performssswsr r2 before thesswsr w2 from the writer, an entry will be
allocated in SSB, the state is set toSR2, and the counter is set to 1 to represent that the data is not
available yet. The thread id of the reader is also recorded. When the reader finds out that the return
value is “wait”, it issue asleep instruction to suspend the execution and go to sleep. Later, thesswsr w2
instruction issued by the writer will write theValue into MemAddr, and set the counter to 0 to indicate
the availability of the data. The instruction also returns the thread id (TID) of the reader to the writer.
Then the writer issues a hardware interrupt to wake up the reader. After having been awakened, the
reader can now retrieve the value bysswsr r2 and free the corresponding entry in the SSB.

3.4.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization

enforces ordering between a thread that produces the data and a number of other threads that consume
the data. The following are the interfaces:

RT = sswmr_w(MemAddr, Value, NumOfReaders);
/* sswmr_w: SWMR synchronized write */
/* MemAddr: the address of the memory location */
/* Value: the Value to be written to MemAddr */
/* NumofReaders: the number of readers */
/* RT: return value, success, failure, */
/* or the pointer the wait queue */

(RT, Value) = sswmr_r(MemAddr);
/* sswmr_r: SWMR synchronized read */
/* MemAddr: the address of the memory location */
/* RT: return value, success, failure, lock mode, or qlock mode */
/* Value: the content of the memory location upon success, or */
/* the pointer to the queue if the RT is lock mode or */
/* queue mode */

sswmr_ul(MemAddr, QueuePtr);
/* sswmr_ul: SWMR queue unlock */
/* MemAddr: the address of the memory location */
/* QueuePtr: the pointer to the wait queue */

Figure 6 shows how SSB SWMR operations interact with software to perform the data synchroniza-
tion between one writer and multiple readers. In the ideal case, thesswmr w write operation is executed
before all the read operations. As a result, an entry is allocated in the SSB, the state is set to MRF (full
mode), “cnt” (counter) is initialized toN, which represents the number of readers, andValue is written
into the memory location addressed byMemAddr. All the following sswmr r operations read the value
from the memory and decrement the “cnt” by 1. When all the reads finish andthe “cnt” reaches 0, the
corresponding entry in SSB is freed.

However, it is possible that some readers issue thesswmr r read operations before the write. The
first suchsswmr r instruction allocates an entry in the SSB and sets the state to MRL (lock mode).
Then the thread that issues this read will initialize a wait queue, put itself into the queue, and issue a

12

sswmr_w
(value, N readers)/
success

no

record

MRQ

cnt = 0

(MEM = ptr)

MRL

cnt = 0

sswmr_ul (ptr)/

success

MRQL

cnt = 1

(MEM = ptr)

qlock (ptr)
sswmr_r/

MRQL

cnt = 2

(MEM = ptr)

sswmr_ul/
success

sswmr_ul/ success

sswmr_r/

qlock (ptr)

sswmr_w/
 fail

sswmr_w/
 fail

MRF

cnt = N

(MEM= value)

sswmr_w
(value, N readers)/
success (ptr)

software: wakeup readers

sswmr_r/

success (value)

MRF

cnt = N−1

(MEM= value)

MRF

(MEM= value)

cnt = 1

sswmr_r/

success (value)

in the queue

software: init the queue

with pointer "ptr"
software:sleep

software: enqueuesoftware:sleep

software:
sleep

software:
enqueue

locksswmr_r/

sswmr_w/
 fail

sswmr_r/
 fail

A circle represents the state of an memory location monitored by SSB . The “MEM =” in the parentheses
indicates the content of the memory location that is monitored by this SSB entry. The edge shows the
transition between two states. Near the transition edge, the transition condition is described by a pair of text
connected by a “/” symbol. The left side of “/” shows the operation performed to cause the transition, with its
parameters in parentheses; the right side of “/” indicates the return result of the operation, with an additional
return value in parentheses. “software:” means the operation that described by following text is performed
by software.

Figure 6: State transition diagram of SSB Single-Writer-Multiple-Reader Operations.

sswmr ul instruction with the pointer to the tail of the wait queue as a parameter. Thesswmr ul stores
the pointer into the memory location, and switches the state to MRQ (queue mode). The following
sswmr r operations issued by other threads will get this pointer, with which a thread can enqueue itself.
As shown in Figure 6, if one or more threads are performing the enqueueoperation, the state of the
SSB entry is MRQL (queue lock mode), which prevents the write from happening. After the enqueue
operation, the thread issues asswmr ul operation and goes to sleep. When the state of the SSB entry is
switched back to MRQ and asswmr w operation arrives, the write can be performed, and the state is
changed to MRF. In this case, the queue pointer is returned to the writer thread, which then wakes up all
the threads in the queue. Since the state of the entry is already MRF, all the awakened threads as well as
other threads can now read data from the memory.

3.5 Other Design Issues

3.5.1 Support Load Linked (LL), and Store Conditional (SC) Operations

Normally by extending cache protocols, current mainstream processor architectures support the Load
Linked (LL), and Store Conditional (SC) instructions as atomic primitives to implement other atomic

13

operations. However, “none allow nesting or interleaving of LL/SC pairs, and most prohibit any mem-
ory access between LL and SC” [33]. It is apparent that it is straightforward to support the LL/SC
instructions on C64 using SSB to monitor the states of memory location accessedby LL/SC. For the
synchronization operations introduced in previously, the SSB only interacts with a group of SSB instruc-
tions, it does not need to handle normal load and store. However, to support the semantics of LL/SC,
the normal store operations need to be monitored by SSB as well. By implementing LL/SC with SSB,
there is also no limitation in nesting or interleaving LL/SC pairs, or other memory accesses between LL
and SC.

3.5.2 Handling Hardware Resource Limitation

Given a memory bank, the size of the corresponding SSB is limited. It is possible that the destination
set in the SSB is full when an SSB instruction is executed. In such a case, two different mechanisms are
provided. For the first one, an indication of failure is returned to the calling thread, which may decide
to retry afterwards. The other mechanism is based on exception handling toresolve this limitation of
hardware resource, if the trap bit in the opcode of the instruction is set. Exception handler manages
a software table for each set of SSB as an extension to the hardware SSB. There is a hardware bit
associated with each set in the SSB to indicate whether there are softwaremaintained entries or not.
When the corresponding set in SSB is full, or there is no matching entry in hardware SSB but the
bit is on, the exception will be triggered. It is apparent that the exception handling will slow down
the requested synchronization operation. However, it is expected that the hardware synchronization
resource provided by SSB is normally sufficient for most of multithreading programs. As to be shown in
Section 4.3, for all benchmarks we tested, only one benchmark has 0.001%synchronization operations
that encounter the “full” situation.

4 Experimental Results

The experiments are conducted on the C64 FAST simulator [15], which is an execution-driven, binary-
compatible simulator of a multi-chip C64 system. It accurately models the functionalbehavior of hard-
ware components in a C64 system. In addition, it generates timing information thataccounts for the
main sources of pipeline delays and stalls such as contention in memory, the crossbar, and/or other
functional units. FAST has been extensively used by the C64 architecture design team at IBM for the
purpose of chip design verification, and dozens of system software developer and application scientists
for early application development. More details of the simulator are given in [15]. The SSB extension to
C64 is implemented in the simulator. SSB instructions that require return valueshave the same latency
as a load instruction, otherwise as a store instruction. Currently, multithreading programs for C64 can
be coded with either the Pthread-like TiNy Threads (TNT) API [16] or OpenMP.

14

integer add
store
load
loop overhead
sync. overhead

 0

 10

 20

 30

 40

 50

 60

SSBCAS−tagTest−and−set

C
y
cl

es

Figure 7: Overheads of Synchronization Mechanisms

4.1 Characterization and Performance of Fine-Grain Locks

4.1.1 Synchronization Overhead

One of the design criteria of SSB is that the cost of a successful synchronization operation should be
very small. To demonstrate this, we measure the overhead of different synchronization mechanisms with
a microbenchmark. In the microbenchmark, a reference time is obtained by executing a 10,000 iteration
loop sequentially without using any synchronization. Each iteration of the loop loads a 64-bit long
integer from the on-chip SRAM, performs a simple arithmetic operation (add), and stores it back to the
memory. Then the overhead is calculated by comparing this reference time withthe execution time of
the same code extended with synchronization operations. For using a test-and-set spinlock, a lock has to
be acquired before accessing the memory location. After the operation on the location finishes, the lock
is released. A lock-free approach can be implemented using thecompare-and-swap (CAS) instruction
to commit the result into memory if the content of the memory location is not changed since the last
load. IBM tag methodology [22] is used for ABA-prevention [22, 32], which adds extra overhead and
complicates the data structure. The microbenchmark is executed on a single thread. Therefore, there is
no contention and all the synchronization operations (lock acquisition or CAS commitment) are always
successful. Figure 7 shows the results of our measurements. Upon successful synchronization, SSB-
based operations incur the lowest overhead among all the mechanisms.

4.1.2 Exploit Fine-Grain Parallelism of Application Kernels

Efficient fine-grain locking mechanisms can help to exploit the inherent parallelism within applica-
tions, especially when the precise synchronization point cannot be resolved statically at program-
ming/compiling time. In this subsection, we examine four benchmarks, where a conventional syn-
chronization mechanism can not easily exploit the available parallelism: Table Toy (also called Random

15

Access) from the HPC Challenge benchmarks [1], two of the Livermore loops, and a hash-table based
implementation of ordered integer set.

Table Toy. As shown in Figure 3, the address of the memory location to be mutually exclusively
accessed is only known right before entering the critical section. In thiscase, if a conventional spin-
lock is used, the programmer or the compiler normally assigns a single lock to thewhole array, which
serializes the execution. One possible solution is to allocate an array of locks, whose size is exactly the
same as they[] array. Therefore, once a thread determines the member ofy[] to be accessed at runtime,
it can acquire the corresponding lock in the lock-array first. However,this lock-array approach at least
doubles the memory usage, which is normally not acceptable. By using the SSBlock operations, the
programmer/compiler can simply provide the runtime calculated address as a parameter to the SSB lock
interface to achieve the same effect as the lock-array approach withoutany overhead to memory usage.

 0

 20

 40

 60

 80

 100

 120

 128 64 32 16 8 4 2 1

A
b
so

lu
te

 S
p
ee

d
u
p

Num of Threads

Software Lock−Array (Test−and−Set)
CAS−based lock−free approach with IBM ABA−prevention tag

SSB: swlock_l/sunlock

Figure 8: Speedup of Table Toy parallelized with different synchronization mechanisms

Figure 8 compares three parallelization scheme of Table Toy using different synchronization mech-
anisms. The table is placed in on-chip SRAM. The software lock-array approach provides scalable
performance, however, it incurs large memory usage overhead, whichis not practical for real appli-
cations. The CAS-based lock-free approach makes use of IBM tag methodology to prevent the ABA
problem and presents the worst performance among the three. The SSB-based solution indicates the
best performance by fully exploiting the fine-grain parallelism with low cost synchronization opera-
tions. When running on 128 threads, it yields an absolute speedup of 101, outperforming the other two
approaches by 50.6% and 64.9% respectively without any extra memory usage.

Livermore Loops. Because of the cross-iteration dependencies (and the dependence distance can not be
determined statically), Livermore Loops 13, and 14 can not be easily parallelized. Within each iteration,
certain members of an array are updated. However, the calculation of the indices is unpredictable
and data-dependent. Since it is not necessary to preserve the order of those updates, we use locks to
guarantee that the runtime-determined member of the array is updated mutually exclusively.

Figure 9 and 10 compares two approaches that attempt to parallelize the twoloops. The coarse-grain
approach serializes the updates to the array using a spin-lock (the MCS lock [30] used here) to ensure

16

 0

 20

 40

 60

 80

 100

 128 64 32 16 8 4 2 1

A
bs

ol
ut

e
S

pe
ed

up

Num of Threads

Coarse-Grain Spin-Lock
SSB Fine-Grain Lock

Figure 9: Speedup of Livermore Loop 13 parallelized with different synchronization mechanisms

mutual exclusion. The fine-grain approach makes use of the SSB lock instructions to lock the location
to be updated individually. With SSB, the iterations that do not access the samelocation do not contend
with each other. Figure 9 and 10 shows that the coarse-grain approachdoes not scale well because
of the serialization of the updates to the arrays. The SSB-based fine-grained synchronization exploits
the inherent parallelism in the code without unnecessarily serializing the updates to non-conflicting
locations of the arrays. Figure 9 and 10 demonstrates that the fine-grain approach can achieve a speedup
of 88.4 and 75.2 on 128 threads for Loop 13 and Loop 14 respectively.

 0

 20

 40

 60

 80

 100

 128 64 32 16 8 4 2 1

A
bs

ol
ut

e
S

pe
ed

up

Num of Threads

Coarse-Grain Spin-Lock
SSB Fine-Grain Lock

Figure 10: Speedup of Livermore Loop 14 parallelized with different synchronization mechanisms

Hash Table Based Ordered Integer Sets.Hash table is a common data structure widely used in system

17

programs as well as applications as a search structure. In this study, the hash table is used to implement
an ordered integer set. The hash table has multiple buckets, each managing an ordered linked list. Given
an integer keyk, the hash functionh(k) determines the bucket, where the key might be inserted, deleted,
or sought. We implemented four different versions of concurrent hashtables:

• Coarse-grain lock based version: each bucket is protected by a spin-lock.

• Lock-free version: uses Michael’s lock-free hash table algorithm [31]. Thehazard pointers mech-
anism is used to guarantee safe memory reclamation of lock-free objects as well as ABA-safe [33].

• sw-rwlock version: uses software based read and write locks. A lock variable is added into the
data structure of the node in the hash table. Read locks are continuously acquired and released for
accessed nodes, while the code travels through a selected ordered linked list to perform the search
operation. When the position where the key to be inserted or deleted is found, the corresponding
read locks are upgraded to write locks, and the operations are performed. This version increases
the memory usage of every node by 50%.

• SSB version: similar as the sw-rwlock version. SSB read and write lock operations are used to
replace the software-based ones. There is no need to modify the data structure of the node, thus
there is no extra memory usage.

To evaluate the performance of these implementations, a microbenchmark is used. The hash table is
initialized with 10 buckets and a load factor of 100, which represents the average number of items per
bucket. Each thread performs 1,000 operations, of which 20% are insertions, 20% are deletions, and
60% are searches. At each iteration, the operation to be performed is randomly determined, after which
a small random delay is inserted.

Figure 11 shows that the SSB based version achieves best performances when the number of threads
is greater than 1. The execution time of the coarse-grain lock-based version keeps increasing with the
number of threads, because of the contention when multiple threads access the same bucket concurrently.
The other three fine-grain versions show near constant execution time even when the number of threads
reaches 128.

With SSB instructions, there is no synchronization overhead when there is no contention. The lock-
free version, however, always needs to check the return value of the CAS instruction, when committing
the result to the memory. Therefore, even without contention, the CAS based lock-free implementa-
tion incurs synchronization overhead. The lock-free version also needs to pay certain cost for the safe
memory reclamation. The acquisition of the software-based lock of the sw-rwlock version can not avoid
synchronization overhead either. As shown in Figure 11, when running on a single thread (i.e., there is
no contention), the lock-free version and sw-rwlock version are 58% and 45% slower than the sequential
version respectively, while the SSB -based version is only 6% slower. Inall cases, the SSB version is at
least 17% and up to 36% faster than the other two versions without any extra memory usage.

18

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

64 threads

128 threads

 0

 20

 40

 60

 80

 100

 120

 140

 160

SSBcoarse−grain−lockseq

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

64 threads

128 threads

 0

 5

 10

 15

 20

 25

SSBsw−rwlocklock−freeseq

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

(m
il

li
se

co
n
d
s)

Y-axis: the normalized execution time by number of threads.

Figure 11: Implement Hash Table based integer set with different synchronization mechanisms.

4.2 Characterization and Performance of Fine-Grain Data Synchronization

4.2.1 Synchronization Overhead

Just like the SSB locking operations, the SSB data synchronization operations incur very low overhead
upon successful synchronized write and read. We also use a microbenchmark to measure the overhead
of the SSB data synchronization operations. In the microbenchmark, a reference time is obtained by
executing a loop of 10,000 iterations with 2 threads. Each iteration containsa barrier operation. One
thread performs a store operation before the barrier, and the other oneperforms a load operation after
the barrier. Then the overhead is computed by comparing this reference timewith the execution time of
the same code but replacing the store/load operation with SSB synchronized write/read operation. The
barrier in the code guarantees the synchronized write happens beforethe synchronized read, which is
always successful as a result. As shown in Table 2, the overhead of SSB data synchronization operations
are very small when performed successfully. The overhead mainly comesfrom the code that checks and
handles the return value of the synchronization operations.

19

Table 2: Overhead of successful SSB data synchronization operations

SSB Operations Overhead (cycles)
sswsrw1/sswsrr1 3
sswsrw2/sswsrr2 5
sswmrw/sswmrr 6

4.2.2 Exploit Fine-Grain Parallelism of Application Kernels

To evaluate the performance of fine-grain data synchronization with the proposed architectural support,
we monitored the performance of two representative application kernels:linear recurrence equations,
and wavefront computation. We demonstrate how these kernels can be parallelized to exploit fine-grain
parallelism, with co-operation between hardware and software.

Linear Recurrence Equations (Livermore Loop6).

for (i=1 ; i<n ; i++)
for (k=0 ; k<i ; k++)

W[i] += b[k][i] * W[(i-k)-1];

Figure 12: Livermore Loop 6

Livermore loop 6 (Figure 12) represents the general linear recurrence equations, which are widely
used in linear algebra computations. As shown in Figure 13, the outer loop computes an arrayW .
Iteration i computesW [i], which depends onW [0],W [1], ... , W [i − 1]. As a result, each iteration
depends on all previous iterations. The cross-iteration dependencies of array W makes it difficult to
parallelize this loop.

iter 1

iter 2

iter 3

iter 4

W[0]

W[0]

W[0]

W[0]

W[1]

W[1]

W[1]

W[1]

W[2]

W[2]

W[2]

W[3]

W[3]W[4]

write read

Figure 13: Characteristics of Livermore Loop 6

We parallelize the loop by assigning the iterations to different threads through a round-robin fashion.

20

The SSB data single-writer-multiple-reader data synchronization mechanismis used to enforce the read-
after-write dependencies among iterations.

Our parallelization and synchronization strategy is shown in Figure 14, which illustrates the case
that 8 iterations are concurrently executed by 4 threads, and the chunksize of round-robin scheduling
is 1 iteration. During the computation, when thread 1 completes iteration 1, it notifies threads 2, 3,
and 4 about the availability ofW [1] such that they can perform their computation for iteration 2, 3,
4. Then thread 1 moves to iteration 5 according to the round-robin work distribution policy. Although
the computation of iteration 5 depends onW [1] to W [4], it does not actually need to wait forW [1],
becauseW [1] is computed by thread 1 itself earlier. Similarly, when thread 2 moves to iteration 6, it
does not need to check the availability ofW [1],orW [2], becauseW [2] is computed by itself previously,
and whenW [2] is available,W [1] is ensured to be available. By taking this synchronization strategy,
after the computation of an iteration, a thread performs a synchronized write sswmr w to the memory
indicating numthreads− 1 readers. When a thread begins a new iterationi to computeW [i], it uses a
normal load operation to read fromW [0] to W [(i − 1) − (num threads− 1)], and uses synchronized
read (sswmr r) to load the remaining numthreads− 1 elements ofW . As a result, no matter how large
the problem size, the number of synchronization reads and writes required only depend on the number
of threads.

W[0]

W[0]

W[0]

W[0]

W[0]

W[0]

W[0]

W[0]

W[1]

W[1]

W[1]

W[1]

W[1]

W[1]

W[1]

W[1]

W[2]

W[2]

W[2]

W[2]

W[2]

W[2]

W[3]

W[3]W[2]

W[3]

W[3]

W[3]

W[3]

W[4]

W[4]

W[4]

W[4]

W[4]

W[5]

W[5]

W[5]

W[5]

W[6]

W[6]

W[6]

W[7]

W[7]W[8]

write read

iter 1

iter 3

iter 2

iter 4

iter 5

iter 6

iter 7

iter 8

TH 1

TH 2

TH 3

TH 4

TH 1

TH 2

TH 3

TH 4

work
distribution

4 threads, round-robin scheduling, chunk size = 1.

Figure 14: Parallelization and Synchronization of Livermore Loop 6

Figure 15 compares the fine-grain data synchronization based approach with a coarse-grain based
one for computing aW array with size 5,120. Instead of the outeri loop, the coarse-grain synchro-
nization based scheme only parallelizes the innerk loop. Since there is no cross-iteration dependence
for the inner loop, all iterations are independent. For iterationi of the outer loop, we distribute the
computation of the inner loop to multiple threads. Each thread completes its task, reduces its local sum

21

to theW [i], then waits on a barrier1, which ensures that all threads completes the task before starting
the next iterationi + 1. As shown in Figure 15, by exploiting fine-grain parallelism, the fine-grain data
synchronization based approaches are always better than the coarse-grain based one when running on
a large number of threads. For example, when 128 threads are used, the fine-grained approach with a
chunk size of two iterations for the round-robin scheduling achieves an absolute speedup of 68, which
demonstrates a 449% improvement over the coarse-grained parallelization scheme.

 0

 10

 20

 30

 40

 50

 60

 70

 128 64 32 16 8 4 2 1

A
bs

ol
ut

e
S

pe
ed

up

Num of Threads

Coarse-Grain Synchronization
Fine-Grain Data Synchronization (chunk size = 1 iter)

Fine-Grain Data Synchronization (chunk size = 2 iters)

Figure 15: Speedup of Parallelized Livermore Loop 6

Wavefront Computation. Wavefront computations are common in scientific applications. As shown in
Figure 16, given a matrix, the left and top edges of which are all 1, the computation of each remaining
element depends on its neighbors to the left, above, and above-left. For aparallel computation, it is
natural to use data synchronization to enforce the data dependencies between threads.

In our implementation, the rows of the matrix are assigned to threads in a round-robin fashion. In
this parallelization strategy, to compute an element, only the availability of its aboveneighbor needs
to be checked. To reduce the amount of the synchronization, we group 8consecutive elements in
a row as a block. Once a thread completes the computation for a block, it writesthe first element
of the block to the memory with a synchronized write (sswsr w2), the other elements in the block
are written with normal store instruction. Afterwards the thread moves to the next block. Before the
computation of a block, a thread performs a synchronized read (sswsr r2) to get the first element of
the block, the remaining elements of the block are read with normal load instruction. The usage of
sswsr w2 andsswsr r2 instructions are described in Section 3.4.1. Figure 17 shows the speedupof our

1It is worth noting that hardware-based barrier on C64 is very efficient.The measurement from our microbenchmark shows
that it only takes 500 cycles for 128 threads to join and leave a barrier.

22

1

1

1

1 1

5

5

7

7

13

25

25

63

11

3

Figure 16: Characteristics of Wavefront Computation

parallelization of the wavefront computation on a4096×4096 2 matrix. Although the data dependencies
in wavefront computation implies serialization, the multithreaded implementation withfine-grain data
synchronization demonstrates the capability to exploit the parallelism. Whenrunning with 128 threads,
the SSB -based implementation shows an absolute speedup of 104.8.

 0

 20

 40

 60

 80

 100

 128 64 32 16 8 4 2 1

A
bs

ol
ut

e
S

pe
ed

up

Num of Threads

Multithreaded Wavefront Computation

Figure 17: Speedup of Parallelized Wavefront Computation

23

Table 3: Synchronization Success Rates and SSB Full Rates
64 threads 128 threads

Benchmark Success SSB Full Success SSB Full
Rate (%) Rate (%) Rate (%) Rate (%)

Table Toy 99.98% 0 99.96% 0
Livermore Loop 13 99.03% 0 99.24% 0
Livermore Loop 14 99.58% 0 99.14% 0
Hash Table 99.96% 0.0011% 99.92% 0.0013%
Livermore Loop 6 (chunk size = 1) 95.97% 0 90.96% 0
Livermore Loop 6 (chunk size = 2) 96.95% 0 92.66% 0
Wavefront 99.71% 0 99.63% 0

4.3 Synchronization Success Rates

For the six benchmarks used in the experiments, we also report the synchronization success rates, i.e,
the percentage of successful synchronizations. As shown in Table 3, even when running with a large
number of threads, most of the fine-grain synchronization operations are successful, which shows the
righteous of our philosophy to ensure the low overhead of successfulfine-grain synchronizations. Also
shown in the table, for all experiments, only 0.001% of synchronization operations used by the Hash
Table benchmark encounter the situation that the SSB happens to be full. In all other benchmarks, this
situation never happens. This evidence shows that a small SSB for eachmemory bank is normally
sufficient to cache the access states of outstanding synchronizing data units for multitheading programs.
Using modest hardware cost, SSB achieves the same effect as if each word of the entire memory is
tagged.

5 Related Work

The Cyclops-64 [17] is evolved from a preliminary design of Cyclops architecture [10]. However, there
are significant differences between the two. The original Cyclops chipintegrates 12832-bit processing
cores (thread units), each four of which share a floating point unit. Inthe current C64 design, there are
160 64-bit thread units and 80 floating point units, each of which is shared by two thread units. For
the memory hierarchy, in the original Cyclops design, all thread units share16 on-chip 512KB DRAM
banks, and each four of the thread units share a 16-KB data cache. The current C64 design employs
scratchpad memory instead of data cache, and 160 on-chip SRAM banks that are shared between all
thread units.

The difference between SSB and tagged memory (e.g. full/empty bits) in other machines [2, 3, 6,
14, 18, 24, 25, 39] has been explained in the section of introduction. TheM-Machine [24] does not

2For large matrix, which has to be stored in the off-chip DRAM, we partition itinto smaller matrices, each of which can fit
into on-chip SRAM. Using the same technique in [21], the computation is performed on a small matrix that is already loaded
into SRAM. At the same time, certain number of helper threads prefetch the next small matrix to be computed. The same
synchronization mechanism is used for the computation of the small matrix.

24

only tag every memory location with a single synchronization bit, but also allows fast synchronization
between three on-chip processors through register-register communication. However, there is no study
showing that the shared register approach can scale to large number ofprocessing cores on a chip. Pro-
posals of hardware support of locking, such as hardware queue based QOLB [23], lock box [40] for
SMT processor, SoC lock cache [4], and others, target to improve the efficiency of locking synchroniza-
tion primitives. However, unlike SSB or tagged memory, none of them support word-level fine-grain
synchronization in memory.

Recently hardware transactional memory (TM) [7,19,20,29,35,38],a non-blocking synchronization
mechanism, has been proposed as a replacement for the lock-based synchronization. A transaction is a
sequence of memory reads and writes executed by a single thread, whichis guaranteed to be atomic and
serializable. TM systems provide great potential to facilitate multithreading programming, however,
those proposals require far from modest hardware modifications. MostTM systems need to extend
and modify the existing cache coherence protocols and speculative execution techniques, which are not
employed in C64-like large-scale multi-core chip architectures.

6 Summary

Using IBM Cyclops-64 as a case study, this paper shows how fine-grainsynchronization can be effec-
tively and efficiently supported with the proposedsynchronization state buffer (SSB) on the emerging
large-scale multi-core chip architectures. The proposed solution makes use of only modest hardware
extension to support word-level fine-grain synchronization in memory. The experimental results demon-
strate the effectiveness and efficiency of our solution by showing significant performance improvement
for several representative benchmarks due to the use of SSB fine-grain synchronization mechanism. To
the best of our knowledge, this paper is the first work that explores hardware support of word-level fine-
grain synchronization for large-scale multi-core architectures, such as C64. The future work includes:
1) investigate language extension to map high-level constructs to the SSB synchronization mechanism;
2) study compiler techniques that can optimize the allocation and scheduling ofthe SSB resources,
especially for important scientific and engineering applications; and 3) explore potential extensions of
SSB mechanisms to facilitate parallel program debugging, runtime performance monitoring, and other
techniques that may take advantage of states bookkeeping by hardware.

Acknowledgment

We would like to acknowledge the support from IBM, in particular, Monty Denneau, who is the architect
of the IBM Cyclops-64 architecture, ETI, the Department of Defense, the Department of Energy (DE-
FC02-01ER25503), the National Science Foundation (CNS-0509332), and other government sponsors.
We would also like to acknowledge other members of the CAPSL group at University of Delaware,
who provide a stimulus environment for scientific discussions and collaborations, in particular Ioannis
Venetis, Juan del Cuvillo, Yuan Zhang, and Geoff Gerfin. We would alsolike to thank Vugranam
Sreedhar for the useful discussions.

25

References

[1] HPC chanllenge benchmark.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeoung, Geoffrey
D’Souza, and M. Parkin. Sparcle: An evolutionary processor designfor large-scale multipro-
cessors.IEEE Micro, 13(3):48–61, June 1993.

[3] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: a processor ar-
chitecture for multiprocessing. InProceedings of the 17th annual international symposium on
Computer Architecture, pages 104–114, 1990.

[4] B. Akgul and V. Mooney. The system-on-a-chip lock cache.International Journal of Design
Automation for Embedded Systems, 7(1-2):139–174, September 2002.

[5] G.S. Almasi, C. Cascaval, J.G. Castanos, M. Denneau, W. Donath, M.Eleftheriou, M.Giampapa,
H. Ho, D. Lieber, J.E. Moreira, D. Newns, M. Snir, and H.S. Warren Jr. Demonstrating the scal-
ability of a molecular dynamics application on a petaflops computer. InProceedings of the 2001
International Conference on Supercomputing, pages 393–406, Sorrento, Napoli, Italy, June 16-21,
2001.

[6] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield, and Burton
Smith. The Tera computer system.SIGARCH Comput. Archit. News, 18(3b):1–6, 1990.

[7] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.Leiserson, and Sean Lie.
Unbounded transactional memory. InProceedings of the Eleventh International Symposium on
High-Performance Computer Architecture, pages 316–327. Feb 2005.

[8] James H. Anderson and Mark Moir. Universal constructions for large objects. InInternational
Workshop on Distributed Algorithms, pages 168–182, 1995.

[9] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data structures for parallel com-
puting. ACM Trans. Program. Lang. Syst., 11(4):598–632, 1989.

[10] C. Cascaval, J.G. Castanos, L. Ceze, M. Denneau, M. Gupta, J.E. Moreira D. Lieber, K. Strauss,
and Jr. H.S. Warren. Evaluation of a multithreaded architecture for cellular computing. InProceed-
ings of the 8th International Symposium on High Performance Computer Architecture (HPCA),
Boston, Massachusetts.

[11] R. P. Case and A. Padges. Architecture of the IBM system 370.Communications of the ACM,
21(1):73–96, January 1978.

[12] Ding-Kai Chen. Compiler Optimizations for Parallel Loops with Fine-Grained Synchronization.
PhD thesis, University of Illinois at Urbana-Champaign, 1994.

[13] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of synchronization and granu-
larity on parallel systems. InISCA ’90: Proceedings of the 17th annual international symposium
on Computer Architecture, pages 239–248, 1990.

26

[14] W. J. Dally and et. al. The message-driven processor.IEEE Micro., 12(2):23–39, 1992.

[15] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. FAST: A functionally accurate sim-
ulation toolset for the Cyclops64 cellular architecture. InWorkshop on Modeling, Benchmarking,
and Simulation (MoBS2005), in conjuction with ISCA2005, Madison, Wisconsin, June 2005.

[16] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. TiNyThreads: A thread virtual ma-
chine for the Cyclops64 cellular architecture. InFifth Workshop on Massively Parallel Processing,
in conjuction with IPDPS2005, page 265, Denver, Colorado, USA, April 2005.

[17] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops principles of operation. Technical report,
IBM Watson Research Center, Yorktown Heights,, April 2005.

[18] John Feo, David Harper, Simon Kahan, and Petr Konecny. Eldorado. In Proceedings of the 2nd
conference on Computing frontiers, pages 28–34, 2005.

[19] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.Davis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. InProceedings of the 31st Annual International Symposium
on Computer Architecture, page 102. Jun 2004.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-
free data structures. InISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture, pages 289–300, New York, NY, USA, 1993. ACM Press.

[21] Ziang Hu, Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Optimization of dense matrix mul-
tiplication on IBM Cyclops-64: Challenges and experiences. Inthe 12nd International European
Conference on Parallel Processing (Euro-Par2006), August 29 - September 1 2006.

[22] IBM. IBM system/370 extended architecture, principle of operation.1983. Publication No. SA22-
7085.

[23] Alain Kägi and Doug Burger James R. Goodman. Efficient synchronization: Let them eat QOLB.
In Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-97),
pages 170–180, 1997.

[24] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carter, Andrew Chang, and
Whay S. Lee. Exploiting fine-grain thread level parallelism on the MIT multi-ALU processor. In
Proceedings of the 25th annual international symposium on Computer architecture, pages 306–
317, Washington, DC, USA, 1998.

[25] D. Kranz, B. H. Lim, and A. Agarwal. Low-cost support for fine-grain synchronization in multi-
processors. Technical Report MIT/LCS/TM-470, 1992.

[26] V. P. Krothapalli and P. Sadayappan. Removal of redundant dependences in doacross loops with
constant dependencies. InProceedings of the 1991 Conference on the Principle and Practice of
Parallel Programming, April 1991.

27

[27] Zhiyuan Li and Walid Abu-Sufah. A technique for reducing synchronization overhead in large
scale multiprocessors. InProceedings of the 12th Annual International Symposium on Computer
Architectures, pages 284–291, May 1985.

[28] Collin McCurdy and Charles Fischer. User-controllable coherence for high performance shared
memory multiprocessors. pages 73–82, San Diego, CA, 2003.

[29] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Hassan Chafi, Christos
Kozyrakis, and Kunle Olukotun. Architectural semantics for practical transactional memory. In
Proceedings of the 33rd International Symposium on Computer Architecture, pages 53–65, Wash-
ington, DC, USA, 2006.

[30] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
onshared-memory multiprocessors.ACM Transactions on Computer Systems, 9(1):21–65, Febru-
ary 1991.

[31] Maged M. Michael. High performance dynamic lock-free hash tablesand list-based sets. Inthe
14th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 73–82, August
2002.

[32] Maged M. Michael. ABA prevention using single-word instructions. Technical Report RC23089
(W0401-136), IBM Thomas J. Watson Research Center, Yorktown Heights, NY, January 2004.

[33] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.IEEE Trans.
Parallel Distrib. Syst, 15(6):491–504, 2004.

[34] S. P. Midkiff and D.A. Padua. Compiler algorithms for synchronization. IEEE Transactions on
Computers, 36(12):1485–1495, Dec 1987.

[35] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.
LogTM: Log-based transactional memory. InProceedings of the 12th International Symposium
on High Performance Computer Architecture (HPCA), February 2006.

[36] M. F. P. O’Boyle, L. Kervella, and F. Bodin. Synchronization minimization in a SPMD execution
model.J. Parallel Distrib. Comput., 29(2):196–210, 1995.

[37] Ramakrishnan Rajamony and Alan L. Cox. Optimally synchronizaing DOACROSS loops on
shared memory multiprocessors. InProceedings of 1997 International Conference on Parallel
Architectures and Compiliation Techniques, 1997.

[38] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based programs.
In Proceedings of the Tenth Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 5–17. Oct 2002.

[39] Burton Smith. The architecture of HEP. In Janusz S. Kowalik, editor,Parallel MIMD Computa-
tion: HEP Supercomputer and Its Applications, Scientific Computation Series, pages 41–55. MIT
Press, Cambridge, MA, 1985.

28

[40] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting fine-grained syn-
chronization on a simultaneous multithreading processor. InProceedings of the Fifth International
Symposium on High-Performance Computer Architecture, pages 54–58, Orlando, Florida, January
9–13, 1999.

[41] Donald Yeung and Anant Agarwal. Experience with fine-grain synchronization in MIMD ma-
chines for preconditioned conjugate gradient. InProceedings of the fourth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, pages 187–192, 1993.

[42] Yuan Zhang, Weirong Zhu, Fei Chen, Ziang Hu, and Guang R. Gao. Sequential consistency revisit:
the sufficient condition and method to reason the consistency model of a multiprocessor-on-a-chip
architecture. InInternational Conference of Parallel and Distributed Computing and Networks
(PDCN2005), Innsbruck, Austria, February 2005.

29

