University of Delaware
(1]) Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Efficient Fine-Grain Synchronization on a Multi-Core Chip
Architecture: A Fresh Look

Weirong Zhut
Ziang Hu
Guang R. Gao

CAPSL Technical Memo 67
July 17, 2006

Copyright (© 2006 CAPSL at the University of Delaware

tEmail: weirong@capsl.udel.edu

University of Delaware e 140 Evans Hall @ Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

Multi-core chip architectures are becoming mainstreanmfigng increasing on-chip paral-
lelism through hardware support for multithreading. Figrain synchronization is essential to the
effective utilization of the capacity provided by futureghiperformance multi-core architectures.
However, there are also new challenges realizing such fiamie-gynchronization in large-scale
multi-core chip architectures — such as the IBM Cyclops-6ih that contains more than 100 pro-
cessing cores and employs a memory organization with éttpladdressable memory segments
instead of data cache.

This paper presents a fresh look at the challenges and geposcalable solution for fine-grain
synchronization that efficiently enforcesutual exclusion andread-after-write data-dependencies
between concurrent threads. Using the Cyclops-64 chigtanthre as a case study, we illustrate
how to use a smafynchronization State Buffer (SSB) associated with each memory bank to acceler-
ate the fine-grain synchronization by recording and marngtiia states of frequently synchronized
data units with modest hardware extensions. We demonshaeffectiveness and efficiency of the
proposed solution.

e For mutual exclusion: Using distributed fine-grain locking at each of the memanitgyy we
avoid the unnecessary serialization of operations onrdifiteelements of the same concurrent
data structure and achieve this goal efficiently.

e For read-after-write data-dependencies synchronization: our method encourages the explo-
ration of do-across style of loop-level parallelism - whiexgp-carried data dependencies can
often be directly implemented by the application of the fgmain synchronization operations
and the removal of useless barriers.

The experimental results demonstrate significant perfoomaain due to the use of the above
fine-grain synchronization solutions.

Contents

1 Introduction 1
2 Cyclops-64 Large-Scale Multi-Core Chip Architecture 3
2.1 C64Chip Architecture 3
2.2 Synchronization Mechanismsin Current Cé4 Design 5
3 Efficient Fine-Grain Synchronization on Cyclops-64 5
3.1 Structure of SSB L e 6
3.2 Memory Efficient Synchronization 7
3.3 Supportfor Fine-GrainLocking, 7
3.3.1 AMotivating Example
3.3.2 Implementation of Fine-GrainLock
3.4 Support for Fine-Grain Data Synchronization 10
3.4.1 Single-Writer-Single-Reader (SWSR) Data Synchronization 10
3.4.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization 12
3.5 OtherDesignlssues e 13
3.5.1 Support Load Linked (LL), and Store Conditional (SC) Operations 13
3.5.2 Handling Hardware Resource Limitation
4 Experimental Results 14
4.1 Characterization and Performance of Fine-GrainLocks 15
4.1.1 SynchronizationOverhead 15
4.1.2 Exploit Fine-Grain Parallelism of Application Kernels 15
4.2 Characterization and Performance of Fine-Grain Data Synclatamz. 19
4.2.1 SynchronizationOverhead 19
4.2.2 Exploit Fine-Grain Parallelism of Application Kernels 20
4.3 Synchronization SuccessRates e e 24
5 Related Work 24
6 Summary 25
List of Figures
1 Cyclops-64 Chip Architecture 4
2 One SSBENtry
3 Example: Table Toy
4 State transition diagram of SSB lock/unlock operations. 9
5 State transition diagram of SSB Single-Writer-Single-Reader operatians 11
6 State transition diagram of SSB Single-Writer-Multiple-Reader Operations. . . . 13
7 Overheads of Synchronization Mechanisms 15
8 Speedup of Table Toy parallelized with different synchronization meisms 16
9 Speedup of Livermore Loop 13 parallelized with different synchmtion mechanisms 17
10 Speedup of Livermore Loop 14 parallelized with different syncization mechanisms 17
11 Implement Hash Table based integer set with different synchronizatchanisms. . 19
12 Livermore LOOp 6 e e e e e 20
13 Characteristics of Livermore Loop 6 e 20
14 Parallelization and Synchronization of Livermore Loop6 21
15 Speedup of Parallelized Livermore Loop 6 0. .. 22
16 Characteristics of Wavefront Computation 23
17 Speedup of Parallelized Wavefront Computation 23

14

List of Tables
1 SSB State Bits

2 Overhead of successful SSB data synchronization operations........
3 Synchronization Success Ratesand SSBFullRates

1 Introduction

As an alternative to the conventional single-thread wide-issue s@gt@rgrocessor, the design of high-
performance chip architectures is now rapidly moving towards the multiagpeoach that integrates
an increasing number of tightly-coupled processing cores on a singleAhgdvances in IC processing
technology have led to hundreds of millions (nhow reaching 1 billion and lyohtransistors being
fabricated on a single silicon die, it becomes possible to construct saae-multi-core chip architec-
tures. For instance, the IBM Cyclops-64 petaflop supercomputergpfegtures a chip architecture that
integrates more than one hundred thread units and memory banks on a kipdlErt.

In order to fully utilize the on-chip parallelism provided by large-scale mudtie chip architectures,
it is important to exploit the fine-grain parallelism that is available in applicatitins well understood
that the granularity of parallelism that can be exploited on a multiprocessdrimegis determined by
the synchronization mechanisms provided [13], which is also applicable to cou#tiarchitectures.

It now appears that the parallel system community converges towardgithierothat fine-grain
synchronization is essential to the effective exploitation of fine-graialigéism on utilization of the
capacity provided by future high-performance multi-core architect@adarge-scale multi-core chips
- such as the IBM Cyclops-64 chip that contains well over 100 harelttaead units - the on-chip stor-
age available per processor is far less (often 1-2 orders less) #twhitiainal single core microprocessors.
Therefore, a new memory organization may be employed that will providegkpaddressable mem-
ory segments (e.g. Scratchpad memory, on-chip SRAM, etc.) instead otagzia. On the other
hand, there are plenty of distributed resources (e.g. large numitlereaid and memory units, ample
on-chip interconnection bandwidth, etc.) available to facilitate efficientdiaéa coordination between
processing cores and memory. Therefore, the following new challeargesmerging with respect to
fine-grain synchronization solutions in multi-core architectures:

e Such solutions should be scalable and can fully exploit the parallelism due thstnibuted on-
chip resources.

e Such solutions should be supported with limited on-chip resources — unkk@ops proposals
(e.g. full/lempty bits in Tera memory systems [6], or I-Structure [9] suppadbiaflow architec-
tures, where in-memory synchronization is usually realized by enhatioingntire memory of
the machine).

e Such solutions should incur low synchronization overhead.
e Such solutions should be able to support a variety of synchronizatiatidnalities.
e Such solutions should be able to smoothly and efficiently handle the cases thieeprecise

synchronization point cannot be resolved statically at compile time.

This paper presents a fresh look at those challenges and propssaalale solution for supporting
fine-grain synchronization on large-scale multi-core chip architestugsing the IBM Cyclops-64 chip
architecture as a case study, we illustrate a novel architectural exteradied synchronization state

buffer (SSB), that efficiently enforcesutual exclusion andread-after-write data-dependencies between
concurrent threads with fine-grain synchronizations.

Hardware support for fine-grain synchronization has been exgblior several architectures built or
proposed before. HEP [39], Tera [6], MDP [14], Alewife [2, 2B];Machine [24], the MT processor in
Eldorado [18], and others use hardware bits (éu)/empty bits) as tags to support word-level fine-grain
synchronization. Often by default the entire memory of the machine is taggassbciating additional
access state bits with each word in memory. Fine-grain synchronizationiévedtby accessing those
word-level state bits in memory. For large-scale multi-core chips, on-chip myeimione of the most
precious resources. The approach that tags each word of the emtirerynreequires modification to off-
the-shelf SRAM or DRAM technologies and introduces significant on-ahig off-chip storage cost.
Because of such cost, the number of state bits that can be tagged to a membtyawdo be small,
which can only be used to implement limited synchronization functionalities.

In this paper, we explore an alternative solution, which is motivated by therehtion that the num-
ber of fine-grain synchronized memory locations that are active (inaisny moment is far less than
the number of words in the entire memory. Furthermore, for both mutual éswl(s.g. lock/unlock)
and data synchronization (e.g. synchronized write/read), which aneepést in this paper, the associ-
ated states of synchronized memory location(s) can be naturally rele&sedthe synchronization is
completed (e.g. via unlock or synchronized reads).

To this end, we introduce a novel hardware extension to C64-like lax@e-multi-core architec-
tures. To simplify the hardware design and avoid enormous on-chip nyestavage cost but still create
an illusion that each word in memory is associated with a set of states, owaapponly attaches a
small synchronization state buffer (SSB) to the memory controller of each memory bank. This small
SSB caches the access states of memory locations that are currentlyedcbgsSSB synchroniza-
tion operations. Although the SSB for each memory bank is small, our expesrsieow that an SSB
with limited number of entries for each memory bank is sufficient to suppaonnoon multithreading
programs, even those running with a large number of threads. Memeiovorder to use fine-grain
data synchronization to efficiently parallelize loops, various compiler optimizagohniques have
been developed to minimize the amount of fine-grain synchronization dddedrallelized do-across
loops [8,12,26,27,34,36,37] and others. Those techniquelsecaombined with SSB-based hardware
support to efficiently parallelize do-across loops. This is especialfuusden the synchronization
resource requirements are greater than the number of SSB entriesgpkofAdrthermore, some tech-
niques can also be adapted to our framework, for instance, to group mdki@gesynchronizations into
one.

Because of the relatively smaller storage cost, each SSB entry cad &ffencode larger states —
thus can support more synchronization functionality than the previagp®pals. To avoid the bottleneck
in a centralized organization and enhance the scalability, each memory batt&cised with its own
SSB . Therefore, SSB, which is as distributed as other on-chip e=®(e.g. thread units, and on-chip
SRAM banks, etc.), can take full advantage of ample on-chip interctiondziandwidth. Also, previous
studies [25,41] have shown that fine-grain synchronization résutsccessful synchronization in most
cases. Therefore, our SSB design ensures that the cost of asiutsynchronization should be very
small.

In order to evaluate the efficiency of this method, we (1) extend the IBildps-64 architecture
simulator with the new SSB architectural features, (2) design a haedsaditware interface for SSB
access and management. Using detailed simulation with microbenchmarkspdicetzon kernels, our
experimental results demonstrate the effectiveness and efficiency pfdpesed fine-grain synchro-
nization method.

e For mutual exclusion: our method exploits the ample parallelism that often existsenations
on different elements of the concurrent data structures. Using digtdbirte-grain locking on
each memory unit, we avoid the unnecessary serialization of thosetiopsravithout incurring
any extra memory usage. In addition, the SSB has also resulted in cob$deduction of the
overhead of each individual lock/unlock pair. Also, compared tcstifevare-only solutions, up
to 65% performance improvement has been observed for the benchmeatisted.

e For read-after-write dependence synchronization: our method eagesithe exploration of do-
across style loop-level parallelism - whdap-carried data dependence can often be directly
implemented by the application of our fine-grain solutions and the removalroéiza Our ex-
perimental results demonstrate significant performance gain due to thesusdhdine-grain syn-
chronization. For instance, by adopting a fine-grain synchronizatisedoygarallelization scheme,
we observe a 449% performance improvement over the coarse-gsait &jpproach when solving
linear recurrence equations.

e The experiments also demonstrate that 1) a small SSB for each memory bankadlysufficient
to record and manage the access states of outstanding synchronizingidsa for multitheading
programs, and 2) most of fine-grain synchronizations are suctessfu

2 Cyclops-64 Large-Scale Multi-Core Chip Architecture

The Cyclops-64 (C64) [17] is a petaflop supercomputer project wtelaxlopment at IBM T.J. Watson
Laboratory. It is designed to serve as a dedicated petaflop computedaginnning high performance
scientific and engineering applications, such as molecular dynamics to stoiynpfolding [5], or
image processing to support real-time medical procedures.

2.1 C64 Chip Architecture

The C64 chip architecture (see Figure 1) employs a large-scale multboesechip design by integrat-
ing 160 hardware threads units, and the same amount of embedded SRAbyrtEanks in a single
silicon chip. A C64 chip has 80 processors, each with two thread urity @ floating-point unit (FP)
and two SRAM memory banks of 32KB each. A 32KB instruction cache, nota in the figure, is
shared among five processors. The basic unit of memory, a word, ins@adytes long. The C64 chip
architecture represents a major departure from mainstream micropodesgyn in several aspects:

3

Node

Processor 1 2 80 Chip
3D-mesh
T T Tt U GRS Gigabit
ethernet
Host
Control
Crossbar Network network
| ‘
GM || GM GM || GM GM || GM : :
DDR2 SDRAM Off-chip
controller memory

Figure 1: Cyclops-64 Chip Architecture

. The C64 chip integrates a large number of (160) processing elemertisdded memory and
communication hardware in the same piece of silicon.

. A thread unit (TU), the C64 computational cell, is a simple 64-bit, singlesjssuorder RISC
processor with a small instruction set architecture (60 instruction gragesating at a moderate
clock rate (500MHz).

. C64 incorporates efficient support for thread level executiorr. ifgiance, a thread can stop
executing instructions for a number of cycles or indefinitely; and wistgea it can be woken up
by another thread through a hardware interrupt. All the thread units withhipaconnect to a
16-bit signal bus, which provides a means to efficiently implement barriers.

. The C64 features a three-level (Scratchpad (SP) memory, onRhipMSoff-chip DRAM) mem-
ory hierarchy without data cache. Instead a portion of each thread gpitesponding on-chip
SRAM bank is configured as the scratchpad memory (SP). Thereferghrbad unit can access
to its own SP with very low latency, which provides a fast temporary storag&plwit locality
under software control. The remaining sections of all on-chip SRAM &aogether form the
global memory (GM) that is uniformly addressable from all thread units.réaee 4 off-chip
memory controllers connected to 4 off-chip DRAM banks. The curresigh size for DRAM is
1GB.

. C64 also employs the Network-on-Chip (NoC) concept. All on-chipueses are connected to an
on-chip crossbar network, which sustains a 4GB/s bandwidth per @odifgction, which results

in 384 GB/s bandwidth per direction in total. The crossbar network alacegitees that C64 chip
architecture isequentially consistent. Thus, there is no need to issue fence-like instructions after
each memory operation to ensure the order between them [42].

. C64 provides no resource virtualization mechanisms: the threadtexets non-preemptive and
there is no hardware virtual memory manager. The former means the OS wifitaupt the

4

user thread running on a thread unit unless the user explicitly specifiemégion or an excep-
tion occurs. The latter means the three-level memory hierarchy of the Q4schsible to the
programmer.

A maximum configuration of a C64 system consisting of 13,824 C64 chips)exted by a 3D
mesh network, is expected to achieve over 1 petaflop peak performBmtiee best of our knowledge,
the C64 project is one of the most ambitious petaflop supercomputer projeotsitty under active
development. A first C64 system is planned to be installed in 2007.

2.2 Synchronization Mechanisms in Current C64 Design

Several synchronization mechanisms have been implemented for cu€wchi® architecture design.
Atomic in-memory instructions, such &etch-and-add, andswap can be used to implement various
widely acceptedspin-locks, such agest-and-set, ticket lock, and linked-list base®dCS [30]. In
C64, in-memory atomic instructions only block the memory bank where they tepepan while the
remaining banks continue servicing other memory requests. The C64 siepfvinstructions can
be used to efficiently implement post/wait type of synchronization. The C64 arsipitecture also
provides a 16-bit signal bus to which all thread units within a chip are@cted, that provides a means
to efficiently implement barriers. It is worth noting that ttmmpare-and-swap (CAS) [11], linked-load,
and store-conditional instructions are not currently supported in the design of C64. Howésethe
purpose of comparison, we implemented the CAS instruction in the C64 simul&jor [1

3 Efficient Fine-Grain Synchronization on Cyclops-64

In this paper, we propose a novel architectural extension cajteahronization state buffer (SSB) to
large-scale multi-core chip architectures, like C64. SSB is a small buffehatao the memory con-
troller of each memory bank. It records and manages states of freq@gntthronized data units to
support and accelerate word-level fine-grain synchronization.

SSB can be used to enforce mutual exclusion and read-after-writdeja@adencies between a large
number of threads. In the case of mutual exclusion, SSB allows each mamaiyto be individually
locked with minimal overhead. SSB supports various locks: read lockdgdhack), write lock (exclu-
sive lock), as well as recursive lock. For data synchronization tifatrees the read-after-write depen-
dencies between threads, SSB allows fine-grained low-overhealdreywized read and write operation
on word in memory. SSB supports several modes of data synchronizévonsingle-writer-single-
reader modes, and one single-writer-multiple-reader mode. By coordjnatth the software, SSB
efficiently facilitates fine-grained synchronizations to help multithreadingrnaras exploit fine-grained
parallelism inherent in applications. The design of SSB will be elaboratklawing subsections.

5

3.1 Structure of SSB

We now take the C64 chip architecture as an example to explain the designaSgecial hardware

buffer, is embedded into the memory controller of each memory bank, whittesdhe states for mem-
ory locations accessed by SSB instructions. This buffer realizes thepemble function in a single

clock cycle, which can be implemented with the common cache technology. &ganmental design,

we associate each SRAM bank with an 8-entry SSB, and each DRAMwiginla 1,024-entry SSB,

both of which are 8-way set associative. In practice, the numbertdesnand the level of set asso-
ciativity can be adjusted according to the transistor budget, and the powsumption requirements,
etc.

state counter thread id address

4 bits 8 bits 8 bits N bits

Figure 2: One SSB Entry

Each entry of the SSB is used to record and manage the states of a memdrhatds accessed
by SSB instructions at runtime. Because of the small storage cost, e8cbrfd@ can afford to use a
number of bits (for example, 20 bits in our current design) to encode thehsynization states. Thus,
SSB can effectively support a variety of synchronization functiomalitiThe structure of one entry is
shown in Figure 2. The address is #&y used for the search in the SSB. The rightmost N-bits holds the
address of a memory location. The number N is determined by the number nébidsd to identify a
unique memory address in the corresponding memory bank. In our desigarfent C64 chip, 13 bits
and 25 bits is chosen for SSB on SRAM bank and on DRAM bank respéctiVhe remaining fields
compose the states of the corresponding memory location. The next 8this'ikread id” field, which
is used to record the ownership information of the entry. An 8-bit fielghettp up to 256 threads, while
C64 currently has 160 thread units. Since the thread execution in C64-sreemptive, the “thread
id” can be used to identify a hardware thread unit as well as a uniqtwasefthread running on it. The
next 8-bits is a “counter” field. Its usage differs for various groupS®B operations, which will be
explained later. The leftmost 4-bits can keep up to 16 types of modes fontiyete support different
SSB operations. Table 1 shows the meaning of the modes currently ptbijpahie design. An entry in
SSBis allocated and released according to its state and the function of thas®i®Btion operating on
it.

An SSB instruction is treated the same way as other memory instructions by then&#p cross-
bar network, which delivers all memory requests to the destined memory Bdp&n arriving at a
particular memory bank, SSB instructions as well as other memory instructicmserved based on a
FIFO discipline.

Table 1. SSB State Bits
State Bits| Function \ Description
0x0000 | WLOCK | Write Lock
0x0001 | RLOCK | Read Lock
0x0010 | WRLOCK | Write-Recursive Lock
0x0011 SR1 Single-Writer-Single-Reader Mode 1
0x0100 SR2 Single-Writer-Single-Reader Mode 2
0x0101 MRF Single-Writer-Multiple-Readers Full Mode
0x0110 MRL Single-Writer-Multiple-Readers Lock Mode
0x0111 MRQ Single-Writer-Multiple-Readers Queue Mode
0x1000 MRQL | Single-Writer-Multiple-Readers Queue Lock Moge
0x1001 LLSC Linked-Load and Store-Conditional Mode

3.2 Memory Efficient Synchronization

Using SSB fine-grain synchronization operation is memory efficient. FirstesSSB maintains the
states for the synchronized memory locations in hardware, there isattoeallocate correspond-
ing software-managed synchronization variables, which cost extra ge®®cond, with one memory
transaction, a SSB instruction does not only perform the synchronizatisghe memory location, but
also brings the datum to the processor upon success. Thereforpar to ordinary load operation,
SSB synchronization operation only adds negligible overhead and se/esmber of memory trans-
actions needed.

3.3 Support for Fine-Grain Locking

In order to achieve fine-grained synchronization, SSB providedyhftgxible dynamic locking func-
tionality. SSB associates locking functions with memory locations dynamicallervdhmemory loca-
tion needs to be accessed exclusively, the lock operation is issued wilkddhess of this location. In
the SSB of the corresponding memory bank, an entry for this address,akists, is allocated to mon-
itor the state of the memory location. If an entry already exists, the state mighbged according to
the function of the operation. The return value of the operation informgdte ® the software, which
then proceeds accordingly. Since an SSB instruction takes the adfleesgemory location to perform
the locking operation, it does not require any pre-allocated synidation variable. As a result, SSB
is able to smoothly and efficiently handle the cases where the precise asgizetion point cannot be
resolved statically at compile time.

3.3.1 A Motivating Example
Figure 3 shows how the kernel loop in Table Toy (also known as Randoress) [1] can be imple-
mented with critical section in OpenMP. Although it is not strictly required byahginal benchmark,

for the purpose of illustration, we use critical section to guarantee themealify-write operations

7

#pragma onp parallel for private(idx,i,tnp) shared(x,y,N)
for(i =0; i <N i++){

idx = rand();

tmp = x[i];
#pragma onp critical

{

y[idx] = y[idx] op tnp;
}

Figure 3: Example: Table Toy

in the loop to be performed atomically. Unstructured references, spbetrsubscripts like those in
Figure 3, are the hallmark of irregular applications [28]. Unstructuréereaces like the one in the
above critical section are impossible to analyze at compile time. As a consexuke compiler can
only assign a single lock in this case. Given a large enough tap{enuch larger than the number of
threads) and a high quality uniform random number generator, the elofinonflicts to access the same
ylidx] is very low. That is, the application itself inherently has enough paralleligmchwcan not be
exploited because of the serialized execution of instances of the critatadrseThe dynamic locking
functionality of SSB helps exploit the parallelism by avoiding the serialization.

3.3.2 Implementation of Fine-Grain Lock
SSB provides following operations to perform the lock/unlock operations:

(RT, Value) = sw ock_| (MemAddr);

/* swock_|: acquire wite lock for |ocation MemAddr */
/* and | oad the content */
/* MemAddr: the address of the nenory |ocation */
/* RT: return value, success or failure */
/* Value: the content of the menory | ocation */

(RT, Value) = srlock_| (MemAddr);

/* srlock_|: acquire read |l ock for |ocation MemAddr */
/* and | oad the content */
/* MemAddr: the address of the nenory |ocation */
/* RT: return value, success or failure */
/* Value: the content of the menory |ocation */

sunl ock(MemAddr)
/* sunlock: release the lock for |ocation MemAddr */
/* MemAddr: the address of the nenory |ocation */

The swlock_l and srlock_|I acquire thewrite lock and theread lock for the memory location
MemAddr respectively. Upon success, they also load the content of the memotioiotaValue.
sunlock releases the lock previously acquired. Figure 4 illustrates how the ldokkioperations in-
teract with the SSB hardware.

As shown in Figure 4(agwlock_l acquires thavrite lock for memory locatiorMemAddr. If there
is no record for this location in SSB, which means it is not locked by any dtlhread, an entry for

8

NOT swlock (TID)/

WLOCK
success

WLOCK \ swlock (TID’)/ fail

>| tid=TID . tid=TID -
LOC@ =1 srlock (*) / fail ent=2
swlock (TID) / '
Succéss) swlocllfai(l'I'ID)/
swlock (TID’)/
fail WRLOCK), SWlock (TID)/ WRLOCK
tid = TID td=TID | =7
cnt=2 cnt=3
srlock(*)/
. *
fail swiock (TID) / sflock(:)f
success
stlock (TID)/ success RLOCK Y srlock (*)/ success / RLOCK
>| tid=TID tid=TID |~ >

cnt=1 cnt=2

swlock (TID")/fail swlock (*)/fail

sunlock (TID) /
success

WLOCK
tid = TID
cnt=2

sunlock (TID) / sunlock (TID’) /
fail fail

WLOCK
tid = TID

NOT
LOCKED

sunlock (TID)/
success

sunlock (TID) /

success WRLOCK

tid = TID

- - — —

tid = TID

cnt=1
sunlock (TID) / sunlock (TID) /
fail fail

RLOCK
tid = TID
cnt=1

sunlock (*) /
success$

RLOCK
tid =TID
cnt=2

sunlock (*) / success

(b) states transition caused synlock operation

A circle represents the state of a memory location monitbye8SB . The edge shows the transition between
two states. Near the transition edge, the transition cimmdis described by a pair of text connected by a
/" symbol. The left side of /" shows the operation perforchto cause the transition; the right side of /"
indicates the return result of the operatidriD in the parentheses suggests that the operation is issued by

threadTID. TID’ means a thread other than thréaB. The symbol %” in the parentheses means that it can
be “any thread”.

Figure 4: State transition diagram of SSB lock/unlock operations.

this location is allocated, and the state is saMioOCK. Before this location is unlocked by the owner,
write/read lock acquisition from other thread will fail, and cause the “coutd)” incremented by 1.

9

The current value of “cnt” is returned to the thread to indicate the faillinerefore, inW/LOCK mode,
the return value accurately reflects the status of runtime lock contentidmeamemory location, i.e.,
how “hot” it is. Software may take advantage of this information to implemesuingention manager,
such as a backoff policy. SSB also supports recursive (or nesigd)Acthread can repeatedly acquire
the write lock it already owns. If a thread is the only owner of the read, ibdan upgrade the lock to
a write lock. In both cases, the state is se&tMBLOCK, and the “cnt” records the number of the nested
recursive locks. The software is required to perform paired lockélinéperations, which guarantees
the number of lock and unlock operations to be equal.

srlock_l acquiresread lock for memory locationMemAddr. Multiple threads can own the same
read lock at the same time. The first successful acquisition allocategrgrireSSB, and sets the state
to RLOCK. The “cnt” records the number of successful acquisitions. As dextiiefore, when “cnt”
is equal to 1, a write lock acquisition from the same thread is able to upgradecthto awRLOCK.
Except for this special case, all the write lock acquisitions will fail. Theav@r of sunlock operation
is shown in Figure 4(b). When a lock is finally released, the correspgretitry in SSB will be freed
for reuse.

3.4 Support for Fine-Grain Data Synchronization

In C64, SSB can help the programmer to exploit data-level parallelism byiafiothe program to
perform synchronized read and write at the word-level in memory.psstides a set of instructions
to support fine-grained data synchronization that can enforce dptndencies between concurrent
threads.

In the current design, two different types of data synchronizatioawgrported: single-writer-single-
reader, and single-writer-multiple-reader data synchronization.

3.4.1 Single-Writer-Single-Reader (SWSR) Data Synchronization

The single-writer-single-reader (SWSR) synchronization enforogsrimg between a thread that pro-
duces the data and another thread that consumes the data. The follosvthg mnterfaces provided by
SSB:

RT = sswsr_wl(MemAddr, Value);

/* sswsr_wl: SWSR synchronized wite node 1 */
/* MemAddr: the address of the nenory |ocation */
/* Value: the Value to be witten to MemAddr */
/* RT: return value, success or failure */

(RT, Value) = sswsr_r1(MemAddr);

/* sswsr_rl: SWBR synchroni zed read node 1 */
/* MemAddr: the address of the nenory |ocation */
/* RT: return value, success or failure */
/* Value: the content of the menory | ocation */

RT = sswsr_w2(MemAddr, Val ue);
/* sswsr_w2: SWBR synchroni zed wite node 2 */

10

/* MemAddr: the address of the nenory location */
/* Value: the Value to be witten to MemAddr */
/* RT: return val ue, success, failure or */
/* reader’s thread id */

(RT, Value) = sswsr_r2(MemAddr);

/* sswsr_r2: SWBR synchroni zed wite node 2 */
/* MemAddr: the address of the nenory location */
/* RT: return value, success, failure, or wait */
/* Value: the content of the menory | ocation */

As shown in Figure 5(a), theswsr w1l andsswsr_rl can coordinate with software to support a
busy-wait approach. If the writer has not performs=sgvsr_wl to the memory location addressed by
MemAddr yet, thesswsr_r1 performed by the reader returns a failure. The reader needs to fry aga
with sswsr_rl afterwards. The reader can get the data only aftestinesr w1 is finally performed,
which allocates an entry in the SSB, sets the stag&Ri, and writes th&/alue into MemAddr. When
the sswsr_rl is successfully executed, the entry in SSB is released, and the contel@noAddr is
loaded for the reader.

sswsr_w1/ success

— X

sswgr_rl/ no
fail record

(a) Mode 1: a busy-wait approach

sswsr_w2/
success

sswsr_r2/
success

sswsr_r2 (TID)/
wait

sswsr_w2/
TID
|
|

SR2
tid = TID
cnt=1

software: wakeup

software: sleep thread TID

(b) Mode 2: a sleep-wakeup approach

A circle represents the state of a memory location monitbye8SB . The edge shows the transition between
two states. Near the transition edge, the transition ciamdis described by a pair of text connected by a
/" symbol. The left side of /" shows the operation perforchto cause the transition; the right side of “/”
indicates the return result of the operatidfD in the parentheses suggests that the operation is issued by
threadTID. “software:” means the operation that described by folfaptext is performed by software.

Figure 5: State transition diagram of SSB Single-Writer-Single-Readeatipes.

11

Other than the busy-wait approach, a blocking strategy can be implemeittethessswsr_w2
and sswsr_r2 operations, and the instruction-level sleep/wakeup support of Cé4illussrated by
Figure 5(b), if the reader perfornsswsr_r2 before thesswsr.w2 from the writer, an entry will be
allocated in SSB, the state is set3®2, and the counter is set to 1 to represent that the data is not
available yet. The thread id of the reader is also recorded. When therrigadls out that the return
value is “wait”, it issue aleep instruction to suspend the execution and go to sleep. Latessther_w?2
instruction issued by the writer will write tHéalue into MemAddr, and set the counter to 0 to indicate
the availability of the data. The instruction also returns the threadlid)(of the reader to the writer.
Then the writer issues a hardware interrupt to wake up the readen Wfting been awakened, the
reader can now retrieve the value $swsr_r2 and free the corresponding entry in the SSB.

3.4.2 Single-Writer-Multiple-Reader (SWMR) Data Synchronization

enforces ordering between a thread that produces the data and arrafratieer threads that consume
the data. The following are the interfaces:

RT = sswnr_w(MenmAddr, Val ue, Nun®X Readers);

/* sswm_w. SWWR synchroni zed wite */
/* MemAddr: the address of the nenory |ocation */
/* Value: the Value to be witten to MemAddr */
/* Nunof Readers: the nunber of readers */
/* RT: return val ue, success, failure, */
/* or the pointer the wait queue */

(RT, Value) = sswnr_r(MenmAddr);

/* sswmr_r: SWWR synchroni zed read */
/* MemAddr: the address of the nenmory |ocation */
/* RT: return value, success, failure, lock nmode, or qlock node */
/* Value: the content of the nenory |ocation upon success, or */
/* the pointer to the queue if the RT is |ock node or */
/* gueue node */

sswnr _ul (MemAddr, QueuePtr);

/* sswr_ul: SWWR queue unl ock */
/* MemAddr: the address of the nenory |ocation */
/* QueuePtr: the pointer to the wait queue */

Figure 6 shows how SSB SWMR operations interact with software to pertfoe data synchroniza-
tion between one writer and multiple readers. In the ideal casesthar_w write operation is executed
before all the read operations. As a result, an entry is allocated in thetBSBate is set to MRF (full
mode), “cnt” (counter) is initialized tdl, which represents the number of readers, éalde is written
into the memory location addressedMgmAddr. All the following sswmr_r operations read the value
from the memory and decrement the “cnt” by 1. When all the reads finishhenttnt” reaches 0, the
corresponding entry in SSB is freed.

However, it is possible that some readers issuestivenr_r read operations before the write. The
first suchsswmr_r instruction allocates an entry in the SSB and sets the state to MRL (lock mode).
Then the thread that issues this read will initialize a wait queue, put itself istgukue, and issue a

12

software: init the queue software:sleep software: enqueue
: /

'

. . ., software:sleep »
with pointer "ptr" \ p >
AN

~ /
R sswmr_ul/success /
4 /

* /
N,

sswmr_ul (ptr)/

/
/7

MRQL
cnt=1

sswmr_tr/ s/ ’
qlock (ptr)

sswmr_r/ lock <
success cnt=0

(MEM = ptr) (MEM = ptr) software:
sswmr_w/ sswmr_r/ sieep
fail fail sswmr_w/ *
fail I
y sswmr_r/ sswmr_ul/
SSWIILD sswmr_w sswmr_w qlock (ptr) | success
success (value) (value, N readers)/ (value, N readers)/ AN *
success

success (ptr)

cnt =N-1

software:

enqueue
cnt=1 q

—_——————

(MEM= value) 7 (MEM= value) sswmr 1/ (MEM= value)
success (value)
- ! 0
T~ software: wakeup readers * ,'
in the queue 7

A circle represents the state of an memory location morttdne SSB . The “MEM =" in the parentheses

indicates the content of the memory location that is moadoby this SSB entry. The edge shows the
transition between two states. Near the transition edgetrémsition condition is described by a pair of text
connected by a “/” symbol. The left side of “/” shows the opienaperformed to cause the transition, with its
parameters in parentheses; the right side of */” indicdiegeturn result of the operation, with an additional

return value in parentheses. “software:” means the omerdiat described by following text is performed
by software.

Figure 6: State transition diagram of SSB Single-Writer-Multiple-Reader&jons.

sswmr_ul instruction with the pointer to the tail of the wait queue as a parameters§er_ul stores

the pointer into the memory location, and switches the state to MRQ (queue moke)tolfowing
sswmr_r operations issued by other threads will get this pointer, with which adrcaa enqueue itself.

As shown in Figure 6, if one or more threads are performing the enqueemtion, the state of the
SSB entry is MRQL (queue lock mode), which prevents the write from éaipg. After the enqueue
operation, the thread issuesawmr_ul operation and goes to sleep. When the state of the SSB entry is
switched back to MRQ and sswmr_w operation arrives, the write can be performed, and the state is
changed to MRF. In this case, the queue pointer is returned to the writadttlwhich then wakes up all

the threads in the queue. Since the state of the entry is already MRF, alldkerzed threads as well as
other threads can now read data from the memory.

3.5 Other Design Issues
3.5.1 Support Load Linked (LL), and Store Conditional (SC) Operations

Normally by extending cache protocols, current mainstream procesdutestures support the Load
Linked (LL), and Store Conditional (SC) instructions as atomic primitives to impla other atomic

13

operations. However, “none allow nesting or interleaving of LL/SCsand most prohibit any mem-
ory access between LL and SC” [33]. It is apparent that it is straigh#fial to support the LL/SC
instructions on C64 using SSB to monitor the states of memory location acdessedSC. For the
synchronization operations introduced in previously, the SSB only irtsanath a group of SSB instruc-
tions, it does not need to handle normal load and store. However, pogupe semantics of LL/SC,
the normal store operations need to be monitored by SSB as well. By implemehi{&g¢ with SSB,
there is also no limitation in nesting or interleaving LL/SC pairs, or other memomssaes between LL
and SC.

3.5.2 Handling Hardware Resource Limitation

Given a memory bank, the size of the corresponding SSB is limited. It isShjp@skat the destination
setin the SSB is full when an SSB instruction is executed. In such a casdiftarent mechanisms are
provided. For the first one, an indication of failure is returned to the ggathinead, which may decide
to retry afterwards. The other mechanism is based on exception handliegdiee this limitation of
hardware resource, if the trap bit in the opcode of the instruction is setepfiga handler manages
a software table for each set of SSB as an extension to the hardwareT8&f® is a hardware bit
associated with each set in the SSB to indicate whether there are softaar&ined entries or not.
When the corresponding set in SSB is full, or there is no matching entryrowlaae SSB but the
bit is on, the exception will be triggered. It is apparent that the exceptoling will slow down
the requested synchronization operation. However, it is expectédhiddnardware synchronization
resource provided by SSB is normally sufficient for most of multithreadiognams. As to be shown in
Section 4.3, for all benchmarks we tested, only one benchmark has 0f§0tdironization operations
that encounter the “full” situation.

4 Experimental Results

The experiments are conducted on the C64 FAST simulator [15], which isesmuition-driven, binary-
compatible simulator of a multi-chip C64 system. It accurately models the functiehalvior of hard-
ware components in a C64 system. In addition, it generates timing informatioadbatints for the
main sources of pipeline delays and stalls such as contention in memory, gsbaroand/or other
functional units. FAST has been extensively used by the C64 architedtisign team at IBM for the
purpose of chip design verification, and dozens of system softvesea@per and application scientists
for early application development. More details of the simulator are giverbin The SSB extension to
C64 is implemented in the simulator. SSB instructions that require return Vadweshe same latency
as a load instruction, otherwise as a store instruction. Currently, multiingepdograms for C64 can
be coded with either the Pthread-like TiNy Threads (TNT) API [16] or DyE.

14

60

O integer add

50 O storg

 load

W loop overhead
W sync. overhead

40 1

30 7

Cycles

20 7

10 [7

Test—and—set CAS—tag SSB

Figure 7: Overheads of Synchronization Mechanisms

4.1 Characterization and Performance of Fine-Grain Locks
4.1.1 Synchronization Overhead

One of the design criteria of SSB is that the cost of a successful symightion operation should be
very small. To demonstrate this, we measure the overhead of differestir®nization mechanisms with
a microbenchmark. In the microbenchmark, a reference time is obtaineebyteg a 10,000 iteration
loop sequentially without using any synchronization. Each iteration of the loads a 64-bit long
integer from the on-chip SRAM, performs a simple arithmetic operation (aahd) stores it back to the
memory. Then the overhead is calculated by comparing this reference timeéheigixecution time of
the same code extended with synchronization operations. For usingaateset spinlock, a lock has to
be acquired before accessing the memory location. After the operatioe tocttion finishes, the lock
is released. A lock-free approach can be implemented usingothpare-and-swap (CAS) instruction
to commit the result into memory if the content of the memory location is not chanigeel the last
load. IBM tag methodology [22] is used for ABA-prevention [22, 32],ie¥hadds extra overhead and
complicates the data structure. The microbenchmark is executed on a siegle. tiiherefore, there is
no contention and all the synchronization operations (lock acquisition & ¢énmitment) are always
successful. Figure 7 shows the results of our measurements. Upassfutcsynchronization, SSB-
based operations incur the lowest overhead among all the mechanisms.

4.1.2 Exploit Fine-Grain Parallelism of Application Kernels

Efficient fine-grain locking mechanisms can help to exploit the inhererallpism within applica-
tions, especially when the precise synchronization point cannot bévedsstatically at program-
ming/compiling time. In this subsection, we examine four benchmarks, whereverdmnal syn-
chronization mechanism can not easily exploit the available parallelisnte Tak (also called Random

15

Access) from the HPC Challenge benchmarks [1], two of the Livermanedpand a hash-table based
implementation of ordered integer set.

Table Toy. As shown in Figure 3, the address of the memory location to be mutually exaljsiv
accessed is only known right before entering the critical section. IncHss, if a conventional spin-
lock is used, the programmer or the compiler normally assigns a single lock wehtble array, which
serializes the execution. One possible solution is to allocate an array of Wlc&se size is exactly the
same as thg]] array. Therefore, once a thread determines the memhgy tf be accessed at runtime,
it can acquire the corresponding lock in the lock-array first. Howetier lock-array approach at least
doubles the memory usage, which is normally not acceptable. By using théoSISBperations, the
programmer/compiler can simply provide the runtime calculated address amnagter to the SSB lock
interface to achieve the same effect as the lock-array approach withpatverhead to memory usage.

T T T T T T
Software Lock—Array (Test—and—Set) —+— -
CAS-based lock—free approach with IBM ABA—prevention tag —><—

‘ ‘ SSB: SW. oc‘kil/sunloc‘

100 R SR s e e

120 -

80

60

Absolute Speedup

40

20

N A 1 i |
1 2 4 8 16 32 64 128
Num of Threads

Figure 8: Speedup of Table Toy parallelized with different synchrdisizanechanisms

Figure 8 compares three parallelization scheme of Table Toy using diffeyachronization mech-
anisms. The table is placed in on-chip SRAM. The software lock-arrayoapp provides scalable
performance, however, it incurs large memory usage overhead, vwehiodt practical for real appli-
cations. The CAS-based lock-free approach makes use of IBM tagodwtigy to prevent the ABA
problem and presents the worst performance among the three. Thea&8B-solution indicates the
best performance by fully exploiting the fine-grain parallelism with low cgsichronization opera-
tions. When running on 128 threads, it yields an absolute speedup pbuierforming the other two
approaches by 50.6% and 64.9% respectively without any extra menagg.us

Livermore Loops. Because of the cross-iteration dependencies (and the dependdanealan not be
determined statically), Livermore Loops 13, and 14 can not be easiyigiazed. Within each iteration,
certain members of an array are updated. However, the calculation ofdioesnis unpredictable
and data-dependent. Since it is not necessary to preserve the dbtHes® updates, we use locks to
guarantee that the runtime-determined member of the array is updated mutcallyively.

Figure 9 and 10 compares two approaches that attempt to parallelize tteopgo The coarse-grain
approach serializes the updates to the array using a spin-lock (the MCB@jased here) to ensure

16

Absolute Speedup

100

Coarse-Grain Spi‘n-LocM
SSB Fine-Grain Lock
80
60
40
20
Y I o

1 2 4 8 16 32 64
Num of Threads

128

Figure 9: Speedup of Livermore Loop 13 parallelized with differentiyonization mechanisms

mutual exclusion. The fine-grain approach makes use of the SSB locldtisirs to lock the location
to be updated individually. With SSB, the iterations that do not access thelgeatien do not contend
with each other. Figure 9 and 10 shows that the coarse-grain appdoashnot scale well because
of the serialization of the updates to the arrays. The SSB-based fimedjisynchronization exploits
the inherent parallelism in the code without unnecessarily serializing ttatep to non-conflicting
locations of the arrays. Figure 9 and 10 demonstrates that the fine-ppaiveah can achieve a speedup
of 88.4 and 75.2 on 128 threads for Loop 13 and Loop 14 respectively.

Absolute Speedup

100

Coarse-Grain Spi‘n-LocH
SSB Fine-Grain Lock

80

60

40

20

1 2 4 8 16 32 64
Num of Threads

128

Figure 10: Speedup of Livermore Loop 14 parallelized with differentlyonization mechanisms

Hash Table Based Ordered Integer Setd-ash table is a common data structure widely used in system

17

programs as well as applications as a search structure. In this studgsiinéalble is used to implement
an ordered integer set. The hash table has multiple buckets, each mamagidgrad linked list. Given

an integer keyt, the hash function (k) determines the bucket, where the key might be inserted, deleted,
or sought. We implemented four different versions of concurrent tesas:

e Coarse-grain lock based version: each bucket is protected by a spin-lock.

e Lock-freeversion: uses Michael’s lock-free hash table algorithm [31]. Tagard pointers mech-
anism is used to guarantee safe memory reclamation of lock-free objectd as WBA-safe [33].

e sw-rwlock version: uses software based read and write locks. A lock variable is added &to th
data structure of the node in the hash table. Read locks are continuogsisegcand released for
accessed nodes, while the code travels through a selected orderedibht@perform the search
operation. When the position where the key to be inserted or deleted is, inencbrresponding
read locks are upgraded to write locks, and the operations are pedofirhis version increases
the memory usage of every node by 50%.

e SIB version: similar as the sw-rwlock version. SSB read and write lock operations aktos
replace the software-based ones. There is no need to modify the detarstrof the node, thus
there is no extra memory usage.

To evaluate the performance of these implementations, a microbenchmard.ig hechash table is
initialized with 10 buckets and a load factor of 100, which represents thrage@umber of items per
bucket. Each thread performs 1,000 operations, of which 20% arditmsr20% are deletions, and
60% are searches. At each iteration, the operation to be performedismbndetermined, after which
a small random delay is inserted.

Figure 11 shows that the SSB based version achieves best perfeswainen the number of threads
is greater than 1. The execution time of the coarse-grain lock-bassidvdeeps increasing with the
number of threads, because of the contention when multiple threads #oesame bucket concurrently.
The other three fine-grain versions show near constant executionienewen the number of threads
reaches 128.

With SSB instructions, there is no synchronization overhead when theoeci@tention. The lock-
free version, however, always needs to check the return value @AS instruction, when committing
the result to the memory. Therefore, even without contention, the CASI haske-free implementa-
tion incurs synchronization overhead. The lock-free version alsdsigepay certain cost for the safe
memory reclamation. The acquisition of the software-based lock of theviyek version can not avoid
synchronization overhead either. As shown in Figure 11, when rgronira single thread (i.e., there is
no contention), the lock-free version and sw-rwlock version are 589#&% slower than the sequential
version respectively, while the SSB -based version is only 6% slowell tases, the SSB version is at
least 17% and up to 36% faster than the other two versions without arsyregtnory usage.

18

160 T
W 1 thread

140 E3-2threads - - - - oo -
B 4 threads

[8 threads

120 [i6threads 77T T

100 (M -64threads - - - - - - - oo —
L{ N R EEAERE R 7
(VN nanEREEEE A | DR 7

ZIVN et A SRR 7

Normalized Execution Time (milliseconds)

seq coarse—grain—lock SSB

25
| thread
[] 2 threads
I 4 threads
20 [Sireads T T gl
[16 threads
[32 threads
B 64 threads

Normalized Execution Time (milliseconds)

seq lock—free sw—rwlock SSB

Y-axis: the normalized execution time by number of threads.

Figure 11: Implement Hash Table based integer set with different synidation mechanisms.

4.2 Characterization and Performance of Fine-Grain Data Syichronization

4.2.1 Synchronization Overhead

Just like the SSB locking operations, the SSB data synchronization operatour very low overhead
upon successful synchronized write and read. We also use a mictobark to measure the overhead
of the SSB data synchronization operations. In the microbenchmarker@mee time is obtained by
executing a loop of 10,000 iterations with 2 threads. Each iteration cordaiasrier operation. One
thread performs a store operation before the barrier, and the oth@edioems a load operation after
the barrier. Then the overhead is computed by comparing this referenceitime execution time of
the same code but replacing the store/load operation with SSB synatlomiite/read operation. The
barrier in the code guarantees the synchronized write happens bigéosgnchronized read, which is
always successful as a result. As shown in Table 2, the overhe&Bod&a synchronization operations
are very small when performed successfully. The overhead mainly doomeshe code that checks and
handles the return value of the synchronization operations.

19

Table 2: Overhead of successful SSB data synchronization opexation

SSB Operations | Overhead (cycles
sswsrwl/sswsrrl 3
SSWSIW2/SSswsrr2 5
sswmrw/sswmrr 6

4.2.2 Exploit Fine-Grain Parallelism of Application Kernels

To evaluate the performance of fine-grain data synchronization withrtmmped architectural support,
we monitored the performance of two representative application kerirdsir recurrence equations,
and wavefront computation. We demonstrate how these kernels candblelpaad to exploit fine-grain
parallelism, with co-operation between hardware and software.

Linear Recurrence Equations (Livermore Loop6).

for (i=1; i<n; i++)
for (k=0 ; k<i ; k++)
Wi] += b[k][i] * W(i-k)-1];

Figure 12: Livermore Loop 6
Livermore loop 6 (Figure 12) represents the general linear reazerequations, which are widely
used in linear algebra computations. As shown in Figure 13, the outer loaputes an arrayV'.

Iteration: computesiV[i], which depends oM’ [0],W 1], ... , W[i — 1]. As a result, each iteration

depends on all previous iterations. The cross-iteration dependericaesap 11 makes it difficult to
parallelize this loop.

write : read

)
) -)
o) o))
))))

Figure 13: Characteristics of Livermore Loop 6

We parallelize the loop by assigning the iterations to different threads thitmund-robin fashion.

20

The SSB data single-writer-multiple-reader data synchronization mechanis®d to enforce the read-
after-write dependencies among iterations.

Our parallelization and synchronization strategy is shown in Figure 1&hwitustrates the case
that 8 iterations are concurrently executed by 4 threads, and the slrekf round-robin scheduling
is 1 iteration. During the computation, when thread 1 completes iteration 1, it sdtifieads 2, 3,
and 4 about the availability dfi’[1] such that they can perform their computation for iteration 2, 3,
4. Then thread 1 moves to iteration 5 according to the round-robin workbdistm policy. Although
the computation of iteration 5 depends @1] to W[4], it does not actually need to wait fé¥[1],
becauséV[1] is computed by thread 1 itself earlier. Similarly, when thread 2 moves to iteratiion 6
does not need to check the availabilityl®f[1],or W [2], becauséV[2] is computed by itself previously,
and wheni/[2] is available,W 1] is ensured to be available. By taking this synchronization strategy,
after the computation of an iteration, a thread performs a synchronideglsswmr_w to the memory
indicating numthreads— 1 readers. When a thread begins a new iteratitmcomputel¥/[i], it uses a
normal load operation to read frof [0] to W[(i — 1) — (humthreads— 1)], and uses synchronized
read 6swmr_r) to load the remaining nurthreads- 1 elements o#V. As a result, no matter how large
the problem size, the number of synchronization reads and writes edauity depend on the number
of threads.

work write . read
distribution ! ‘

TH1 | iter 1@ § WI0]
TH2 | iter2 @
3 =
o)

H3 iter 3

| ()
TH4iter8 @ @ @

4 threads, round-robin scheduling, chunk size = 1.

Figure 14: Parallelization and Synchronization of Livermore Loop 6

Figure 15 compares the fine-grain data synchronization based appwsitaca coarse-grain based
one for computing &V array with size 5,120. Instead of the outdobop, the coarse-grain synchro-
nization based scheme only parallelizes the irinkyop. Since there is no cross-iteration dependence
for the inner loop, all iterations are independent. For iteraiiah the outer loop, we distribute the
computation of the inner loop to multiple threads. Each thread completes its tds&esdts local sum

21

to the W [i], then waits on a barriey, which ensures that all threads completes the task before starting
the next iterationi + 1. As shown in Figure 15, by exploiting fine-grain parallelism, the finergdaita
synchronization based approaches are always better than the-ga@irsbased one when running on

a large number of threads. For example, when 128 threads are usdimhetiyrained approach with a
chunk size of two iterations for the round-robin scheduling achievebsolate speedup of 68, which
demonstrates a 449% improvement over the coarse-grained parallelizitemes

70

ne-Grain Data Synchronization (chunk size = 2 it

Coarse-Grain Syn :hronizatiW
ine-Grain:Data Synchronization (chunk size = 1 iter)
60 F % ,_

50

40

30

Absolute Speedup

20 = -

10

1 2 4 8 16 32 64 128
Num of Threads

Figure 15: Speedup of Parallelized Livermore Loop 6

Wavefront Computation. Wavefront computations are common in scientific applications. As shown in
Figure 16, given a matrix, the left and top edges of which are all 1, dhgatation of each remaining
element depends on its neighbors to the left, above, and above-left. gasaiel computation, it is
natural to use data synchronization to enforce the data dependengiesbe¢hreads.

In our implementation, the rows of the matrix are assigned to threads in a-robirdfashion. In
this parallelization strategy, to compute an element, only the availability of its atighbor needs
to be checked. To reduce the amount of the synchronization, we gragms®&cutive elements in
a row as a block. Once a thread completes the computation for a block, it Wréd#rst element
of the block to the memory with a synchronized writs\sr_w2), the other elements in the block
are written with normal store instruction. Afterwards the thread moves to tkiebieck. Before the
computation of a block, a thread performs a synchronized reswist_r2) to get the first element of
the block, the remaining elements of the block are read with normal load instructioe usage of
sswsr_w2 andsswsr_r2 instructions are described in Section 3.4.1. Figure 17 shows the spefkaiup

LIt is worth noting that hardware-based barrier on C64 is very efficieme. measurement from our microbenchmark shows
that it only takes 500 cycles for 128 threads to join and leave a barrier.

22

1|1
1 :5 4,,13"_25
1|7 (25/63

Figure 16: Characteristics of Wavefront Computation

parallelization of the wavefront computation on@6 x 4096 2 matrix. Although the data dependencies
in wavefront computation implies serialization, the multithreaded implementationfiwékgrain data
synchronization demonstrates the capability to exploit the parallelism. Wimging with 128 threads,
the SSB -based implementation shows an absolute speedup of 104.8.

' " Multithreaded Wavefront C'omputatié% /

100 ’
a 80
g ,
o
[}
<
n 60
[} /
£ /
Ie)
2 40
<

/,/
20 -
-+ /,
b
1 2 4 8 16 32 64 128

Num of Threads

Figure 17: Speedup of Parallelized Wavefront Computation

23

Table 3: Synchronization Success Rates and SSB Full Rates

64 threads 128 threads
Benchmark Success| SSB Full|| Success| SSB Full
Rate (%) | Rate (%) | Rate (%)| Rate (%)
Table Toy 99.98% 0 99.96% 0
Livermore Loop 13 99.03% 0 99.24% 0
Livermore Loop 14 99.58% 0 99.14% 0
Hash Table 99.96% | 0.0011%]| 99.92% | 0.0013%
Livermore Loop 6 (chunk size = 1) 95.97% 0 90.96% 0
Livermore Loop 6 (chunk size =2) 96.95% 0 92.66% 0
Wavefront 99.71% 0 99.63% 0

4.3 Synchronization Success Rates

For the six benchmarks used in the experiments, we also report the sgirettion success rates, i.e,
the percentage of successful synchronizations. As shown in Taleke8 when running with a large
number of threads, most of the fine-grain synchronization operatiensuagcessful, which shows the
righteous of our philosophy to ensure the low overhead of succdsstufjrain synchronizations. Also
shown in the table, for all experiments, only 0.001% of synchronizationatipes used by the Hash
Table benchmark encounter the situation that the SSB happens to be fullotines benchmarks, this
situation never happens. This evidence shows that a small SSB fomezmlory bank is normally
sufficient to cache the access states of outstanding synchronizingnitatbon multitheading programs.
Using modest hardware cost, SSB achieves the same effect as if eatlofitbe entire memory is
tagged.

5 Related Work

The Cyclops-64 [17] is evolved from a preliminary design of Cyclogh#ecture [10]. However, there
are significant differences between the two. The original Cyclopsinlegrates 1282-hit processing
cores (thread units), each four of which share a floating point unthdrcurrent C64 design, there are
160 64-bit thread units and 80 floating point units, each of which is shared by twadhuaits. For
the memory hierarchy, in the original Cyclops design, all thread units ditaoa-chip 512KB DRAM
banks, and each four of the thread units share a 16-KB data catteecufrent C64 design employs
scratchpad memory instead of data cache, and 160 on-chip SRAM batlar¢hshared between all
thread units.

The difference between SSB and tagged memory (e.g. full/empty bits) in otrodimea [2, 3, 6,
14,18, 24, 25, 39] has been explained in the section of introduction. MFMachine [24] does not

2For large matrix, which has to be stored in the off-chip DRAM, we partitiontd smaller matrices, each of which can fit
into on-chip SRAM. Using the same technique in [21], the computationrfeeed on a small matrix that is already loaded
into SRAM. At the same time, certain number of helper threads prefetcheakt small matrix to be computed. The same
synchronization mechanism is used for the computation of the small matrix.

24

only tag every memory location with a single synchronization bit, but also alfast synchronization
between three on-chip processors through register-register coicatian. However, there is no study
showing that the shared register approach can scale to large nungrece$sing cores on a chip. Pro-
posals of hardware support of locking, such as hardware quessl QOLB [23], lock box [40] for
SMT processor, SoC lock cache [4], and others, target to improvdftbierecy of locking synchroniza-
tion primitives. However, unlike SSB or tagged memory, none of them supmod-level fine-grain
synchronization in memory.

Recently hardware transactional memory (TM) [7,19, 20,29, 35a838pn-blocking synchronization
mechanism, has been proposed as a replacement for the lock-baskrbsjzation. A transaction is a
sequence of memory reads and writes executed by a single thread isvhiddranteed to be atomic and
serializable. TM systems provide great potential to facilitate multithreadingrgmuging, however,
those proposals require far from modest hardware modifications. Mdssystems need to extend
and modify the existing cache coherence protocols and speculatigetaxetechniques, which are not
employed in C64-like large-scale multi-core chip architectures.

6 Summary

Using IBM Cyclops-64 as a case study, this paper shows how fine-gyaithronization can be effec-
tively and efficiently supported with the propossghchronization state buffer (SSB) on the emerging

large-scale multi-core chip architectures. The proposed solution makes vsly modest hardware

extension to support word-level fine-grain synchronization in memdrg.ekperimental results demon-
strate the effectiveness and efficiency of our solution by showingfsignt performance improvement
for several representative benchmarks due to the use of SSB &iresynchronization mechanism. To
the best of our knowledge, this paper is the first work that explonetwzae support of word-level fine-

grain synchronization for large-scale multi-core architectured) asaC64. The future work includes:
1) investigate language extension to map high-level constructs to the $8Bragization mechanism;

2) study compiler techniques that can optimize the allocation and schedulitig &SB resources,

especially for important scientific and engineering applications; and@pee potential extensions of
SSB mechanisms to facilitate parallel program debugging, runtime penficamaonitoring, and other

technigues that may take advantage of states bookkeeping by hardware.

Acknowledgment

We would like to acknowledge the support from IBM, in particular, MontybBeau, who is the architect
of the IBM Cyclops-64 architecture, ETI, the Department of DefenseDipartment of Energy (DE-
FC02-01ER25503), the National Science Foundation (CNS-050983& other government sponsors.
We would also like to acknowledge other members of the CAPSL group at tditivef Delaware,
who provide a stimulus environment for scientific discussions and collabosain particular loannis
Venetis, Juan del Cuvillo, Yuan Zhang, and Geoff Gerfin. We would Bksoto thank Vugranam
Sreedhar for the useful discussions.

25

References

[1] HPC chanllenge benchmark.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Matd Yeoung, Geoffrey
D’'Souza, and M. Parkin. Sparcle: An evolutionary processor desigfarge-scale multipro-
cessorslEEE Micro, 13(3):48-61, June 1993.

[3] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatawi@PRIL: a processor ar-
chitecture for multiprocessing. IRroceedings of the 17th annual international symposium on
Computer Architecture, pages 104—-114, 1990.

[4] B. Akgul and V. Mooney. The system-on-a-chip lock cachaternational Journal of Design
Automation for Embedded Systems, 7(1-2):139-174, September 2002.

[5] G.S. Almasi, C. Cascaval, J.G. Castanos, M. Denneau, W. DonatBldftheriou, M.Giampapa,
H. Ho, D. Lieber, J.E. Moreira, D. Newns, M. Snir, and H.S. WarrerDEmonstrating the scal-
ability of a molecular dynamics application on a petaflops computelPréneedings of the 2001
International Conference on Supercomputing, pages 393—-406, Sorrento, Napoli, Italy, June 16-21,
2001.

[6] Robert Alverson, David Callahan, Daniel Cummings, Brian Kob]éilan Porterfield, and Burton
Smith. The Tera computer syste® GARCH Comput. Archit. News, 18(3b):1-6, 1990.

[7] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charlekdiserson, and Sean Lie.
Unbounded transactional memory. Pnoceedings of the Eleventh International Symposium on
High-Performance Computer Architecture, pages 316-327. Feb 2005.

[8] James H. Anderson and Mark Moir. Universal constructions faydaobjects. Innternational
Workshop on Distributed Algorithms, pages 168—-182, 1995.

[9] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: aatructures for parallel com-
puting. ACM Trans. Program. Lang. Syst., 11(4):598-632, 1989.

[10] C. Cascaval, J.G. Castanos, L. Ceze, M. Denneau, M. Guptayldieira D. Lieber, K. Strauss,
and Jr. H.S. Warren. Evaluation of a multithreaded architecture for cetlafaputing. InProceed-
ings of the 8th International Symposium on High Performance Computer Architecture (HPCA),
Boston, Massachusetts.

[11] R. P. Case and A. Padges. Architecture of the IBM system E@nmunications of the ACM,
21(1):73-96, January 1978.

[12] Ding-Kai Chen. Compiler Optimizations for Parallel Loops with Fine-Grained Synchronization.
PhD thesis, University of lllinois at Urbana-Champaign, 1994.

[13] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impésynchronization and granu-
larity on parallel systems. IHSCA’90: Proceedings of the 17th annual international symposium
on Computer Architecture, pages 239-248, 1990.

26

[14] W. J. Dally and et. al. The message-driven proced&dtE Micro., 12(2):23-39, 1992.

[15] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. FASflinctionally accurate sim-
ulation toolset for the Cyclops64 cellular architecture Workshop on Modeling, Benchmarking,
and Smulation (MoBS2005), in conjuction with ISCA2005, Madison, Wisconsin, June 2005.

[16] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. TilNkeads: A thread virtual ma-
chine for the Cyclops64 cellular architecture Hifth Workshop on Massively Parallel Processing,
in conjuction with IPDPS2005, page 265, Denver, Colorado, USA, April 2005.

[17] Monty Denneau and Henry S. Warren, Jr. 64-bit Cyclops prlasipf operation. Technical report,
IBM Watson Research Center, Yorktown Heights,, April 2005.

[18] John Feo, David Harper, Simon Kahan, and Petr Konecny. Eldorln Proceedings of the 2nd
conference on Computing frontiers, pages 28-34, 2005.

[19] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, JohDBvis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunlek@un. Transactional
memory coherence and consistencyPhoceedings of the 31st Annual International Symposium
on Computer Architecture, page 102. Jun 2004.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: archit@l support for lock-
free data structures. IFB8CA '93: Proceedings of the 20th annual international symposium on
Computer architecture, pages 289-300, New York, NY, USA, 1993. ACM Press.

[21] Ziang Hu, Juan del Cuvillo, Weirong Zhu, and Guang R. Gao. Optitiozaf dense matrix mul-
tiplication on IBM Cyclops-64: Challenges and experienceghéil2nd International European
Conference on Parallel Processing (Euro-Par2006), August 29 - September 1 2006.

[22] IBM. IBM system/370 extended architecture, principle of operatid®83. Publication No. SA22-
7085.

[23] Alain Kagi and Doug Burger James R. Goodman. Efficient synchronizatidrthem eat QOLB.
In Proceedings of the 24th Annual International Symposium on Computer Architecture (1SCA-97),
pages 170-180, 1997.

[24] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carfendrew Chang, and
Whay S. Lee. Exploiting fine-grain thread level parallelism on the MIT multizAbrocessor. In
Proceedings of the 25th annual international symposium on Computer architecture, pages 306—
317, Washington, DC, USA, 1998.

[25] D. Kranz, B. H. Lim, and A. Agarwal. Low-cost support for fageain synchronization in multi-
processors. Technical Report MIT/LCS/TM-470, 1992.

[26] V. P. Krothapalli and P. Sadayappan. Removal of redundgmertdences in doacross loops with
constant dependencies. Rnoceedings of the 1991 Conference on the Principle and Practice of
Parallel Programming, April 1991.

27

[27] Zhiyuan Li and Walid Abu-Sufah. A technique for reducing symetization overhead in large
scale multiprocessors. Proceedings of the 12th Annual International Symposium on Computer
Architectures, pages 284-291, May 1985.

[28] Collin McCurdy and Charles Fischer. User-controllable coherdoc high performance shared
memory multiprocessors. pages 73—-82, San Diego, CA, 2003.

[29] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi CathivHassan Chafi, Christos
Kozyrakis, and Kunle Olukotun. Architectural semantics for practicaismational memory. In
Proceedings of the 33rd International Symposium on Computer Architecture, pages 53—-65, Wash-
ington, DC, USA, 2006.

[30] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalabj@chronization
onshared-memory multiprocessofSCM Transactions on Computer Systems, 9(1):21-65, Febru-
ary 1991.

[31] Maged M. Michael. High performance dynamic lock-free hash tadbteslist-based sets. bhe
14th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 73—-82, August
2002.

[32] Maged M. Michael. ABA prevention using single-word instructiodgchnical Report RC23089
(W0401-136), IBM Thomas J. Watson Research Center, YorktownhtgigylY, January 2004.

[33] Maged M. Michael. Hazard pointers: Safe memory reclamation forfaedk objects| EEE Trans.
Parallel Distrib. Syst, 15(6):491-504, 2004.

[34] S. P. Midkiff and D.A. Padua. Compiler algorithms for synchronizatilBEE Transactions on
Computers, 36(12):1485-1495, Dec 1987.

[35] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark Dll, khnd David A. Wood.
LogTM: Log-based transactional memory. Pnoceedings of the 12th International Symposium
on High Performance Computer Architecture (HPCA), February 2006.

[36] M. F. P. O'Boyle, L. Kervella, and F. Bodin. Synchronization miniation in a SPMD execution
model. J. Parallel Distrib. Comput., 29(2):196-210, 1995.

[37] Ramakrishnan Rajamony and Alan L. Cox. Optimally synchronizai@ADROSS loops on
shared memory multiprocessors. Pnoceedings of 1997 International Conference on Parallel
Architectures and Compiliation Techniques, 1997.

[38] Ravi Rajwar and James R. Goodman. Transactional lock-fremugga of lock-based programs.
In Proceedings of the Tenth Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 5-17. Oct 2002.

[39] Burton Smith. The architecture of HEP. In Janusz S. Kowalik, edranallel MIMD Computa-
tion: HEP Supercomputer and Its Applications, Scientific Computation Series, pages 41-55. MIT
Press, Cambridge, MA, 1985.

28

[40] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry &yl Supporting fine-grained syn-
chronization on a simultaneous multithreading processd?raneedings of the Fifth I nternational
Symposium on High-Performance Computer Architecture, pages 54-58, Orlando, Florida, January
9-13, 1999.

[41] Donald Yeung and Anant Agarwal. Experience with fine-graincyanization in MIMD ma-
chines for preconditioned conjugate gradient.Phoceedings of the fourth ACM S GPLAN sym-
posium on Principles and practice of parallel programming, pages 187-192, 1993.

[42] Yuan Zhang, Weirong Zhu, Fei Chen, Ziang Hu, and Guang R. Saquential consistency revisit:
the sufficient condition and method to reason the consistency model of a rocétimor-on-a-chip
architecture. Innternational Conference of Parallel and Distributed Computing and Networks
(PDCNZ2005), Innsbruck, Austria, February 2005.

29

