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Abstract 
 
     This paper presents a feasibility study on the use of an embedded multi-core system-on-a-chip 
(SoC) architecture to accelerate server I/O subsystem functions, as an alternative to 
implementation via finite state machines (FSMs) and hardwired logic. The multi-core solution is 
significantly more programmable than FSMs and avoids many of their shortcomings. For the 
purposes of this SoC we use the Cyclops scalable embedded multiprocessor architecture 
(CyclopsE) that comprises one or more processor clusters, one or more local memory banks for 
storing data and/or instructions, and a local interconnect implemented via a crossbar switch. The 
I/O functionality was implemented in C language and verified on an FPGA-based prototype that 
emulated a server I/O subsystem handling storage area network traffic. Results showed that for 
the higher-level protocols of interest, a modest number of processor cores are sufficient to handle 
traffic up to 8 Gb/s.  Given the small silicon area and power requirements as well as good 
scalability of CyclopsE, much higher bandwidths can be accommodated with the use of larger 
numbers of cores. 
 
1. Introduction 
 
     The evolution of the Information Technology (IT) industry has created a growing number of 
new business applications that require significant improvement in server technology performance. 
These new business applications often come with unprecedented demands for distributed storage 
as well.  In the past few years, businesses installed significantly more storage capacity in their 
environments even when overall IT spending was basically flat. To effectively support these new 
business applications, the server processing and I/O capabilities need to be carefully balanced.  
Low-latency, high bandwidth, and security have become key requirements for an enhanced server 
I/O subsystem that handles distributed storage.  
     Computer systems are, in most cases, interconnected via a Fibre Channel SAN (Storage Area 
Network).  Fibre Channel is an industry-standard protocol that is used primarily for transporting 
higher-level I/O protocols, for example SCSI, between servers and storage devices. The 
connection of the servers to the SAN is done via host bus adapters (HBAs), which are typically 
PCI or PCI-X bus cards. In some system configurations, PCI-based HBAs have direct memory 
access to the system memory. However, the PCI bus and adapters generally do not meet the high 
security and data integrity requirements of some high-end server systems, such as the IBM 
zSeries. In this case, additional functionality could be implemented within the I/O subsystem to 
provide error detection, isolation and handling in the transfer of data between the PCI-based 
HBAs and the server’s system memory.  
      As the requirements for supporting high bandwidth I/O capability and security increase, the 
overhead introduced by this additional functionality may become a bottleneck in high-end server 
performance. This can be alleviated by increasing the processing capabilities of the server’s I/O 
subsystem that sits between a PCI-based HBA and the server’s I/O subsystem memory.  
      In this paper, we present a high performance system-on-a-chip (SoC) design that could be 
used to economically provide additional processing capacity in the zSeries I/O subsystem, and 
discuss a prototype that was built to accelerate specific I/O protocols, such as FICON (Fiber 
Connection) and Fibre Channel (FCP ).  The SoC is based on the CyclopsE embedded multi-core 
architecture that provides a scalable and easily programmable platform. 
      The paper is organized as follows: Section 2 discusses the system environment where 
function acceleration is being examined; Section 3, presents an overview of the SoC architecture 
and discusses the implementation of the FICON and FCP protocols; Section 4 discusses the 
prototype setup for simulating these protocols, and Section 5 presents simulation results. 
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2. System Architecture 
 
      FICON is an I/O protocol used in IBM mainframe computers and peripheral devices such as 
storage arrays and tape drives. Introduced in 1998, it takes the ESCON (Enterprise System 
CONnection) channel protocol and maps it into a Fibre Channel transport [1]. FICON now 
supports full-duplex data rates of 200 and 400 MB/sec and distances up to 100 kilometers. 
     The higher-level I/O protocol used by applications depends on the particular server 
architecture they are ported on. In the case of the IBM zSeries, the higher-level I/O protocol is 
based on channel programs that consist of multiple Channel Control Words (CCWs) [2]. A 
typical block diagram for FICON and FCP channel hardware is shown in Figure 1.  
      

 
 

Figure 1: I/O subsystem configuration 
 

[Gao:  To help readers – figure 1 and the description below might be tightened a little more.  
For example, please say more about the “embedded professors” ?  Where the proposed SoC 

will sit in this figure ?] 
     The system interface bridge contains the channel DMA engines, and allows the embedded 
processor to fetch or store small blocks of data directly from/to host memory. The HBA provides 
a channel interface to the Fibre Channel fabric. The HBA shares the local data storage memory 
that contains control structures and customer data with the embedded processor. To provide 
isolation of the HBA from the rest of the system as needed by the high security and data integrity 
requirements, all customer data transfers to/from the channel must pass through the local data 
storage.  
    The performance characteristics of our multi-core design were studied in a high-performance 
SoC design, as described in a later section. In our prototype, we implemented the required 
endpoint functionality for transferring packets between the channel logic and system interfaces 
for both FICON and FCP protocols. We also implemented packet header checking and validation, 
lost packet and out-of-order frame handling, storage interlock, local data storage addressing, and 
noncontiguous real memory addressing support.  
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     The basic I/O transfer flow can be described as follows: An application constructs a channel 
program defining the I/O operation and initiates the I/O request by executing a start subchannel 
(SSCH) instruction [2]. The FICON and FCP interface protocols are command/response protocols 
based on queue structures. Required information for the I/O request as part of SSCH operand is 
placed in the queues to describe the I/O request. An HBA can access these queues to determine 
the work that is to be done; likewise, the I/O subsystem firmware can access these queues to 
determine when an I/O operation has completed. 
     In inbound operations, packets received from the Fibre Channel network are delivered to a 
speed-matching buffer through PCI write requests from the HBA. Each packet received from the 
link by the HBA is partitioned into multiple frames for delivering to the I/O subsystem. The I/O 
request is validated, at the I/O subsystem, to ensure that it complies with the I/O service it 
belongs to and to determine the protocol and packet context it comes from, in case context 
switching is needed. If needed, context is switched based on the control information obtained 
from memory. Various fields in the header are inspected to determine where to transfer the packet 
payload. Packets lost on the link as well as frames received out-of-order are also handled. Errors 
are isolated by not allowing subsequent data to be written in memory.  I/O transfer completion 
status is placed into the corresponding response queue in the I/O subsystem firmware by the 
HBA. The firmware then checks to ensure that processing of frames is completed.  
     Outbound operations are simpler than inbound operations in the sense that less checking and 
error handling is required based on the assumption that the system bus offers higher data integrity 
than the SAN. Payload data are fetched either from local memory or from system memory based 
on the control information defined in the CCW. They are then combined with prepared header 
information and placed in the transmit buffer for transfer to the HBA. 
 
3.  SoC Architecture 
  
    Our SoC architecture is based on a programmable multiprocessor approach. The higher levels 
of VLSI integration made possible by 90nm, 65nm and smaller chip fabrication technologies have 
resulted in a shift towards multi-core chip implementations for the design of complex SoCs.  As 
the cost of processor cores in terms of chip area is becoming smaller with each generation of 
fabrication technology, it is becoming increasingly appealing to explore the replacement of finite-
state machines (FSMs) and random logic with programs running on the processor cores.  

The implementation of logic functions with FSMs typically represents an optimal solution in 
terms of number of logic gates, power, and speed. This is a result of the custom-made nature of 
an FSM solution that is tailored to the specific requirements of a particular problem. However, 
FSMs are usually difficult to implement and verify for correctness, take a longer time-to-market 
and, more importantly, are not flexible enough to accommodate changes or enhancements to the 
original specification. 
      A programmable approach, on the other hand, does not have any of the above shortcomings 
of FSMs and, if it can meet the performance, cost and power requirements of the problem, it can 
be a very attractive solution. For the purposes of this SoC we use the Cyclops embedded 
multiprocessor architecture that comprises one or more processor clusters, one or more local 
memory banks for storing data and/or instructions, and a local interconnect implemented via a 
crossbar switch [2]. 
      As shown in Figure 2, a single processor cluster contains 8 processor cores, a shared 
instruction cache, and local SRAM. The number of processors in a cluster and the size of the 
shared I-cache were selected to be on the design sweet-point considering silicon area, I-cache hit 
rate, and bandwidth between the I-cache and processors. The processors have a reduced general 
purpose instruction set derived from the PowerPC architecture, and a single-issue architecture 
with a four-stage deep pipeline. Each processor has its own register file, ALU, and instruction 
sequencer. The size of the instruction cache is 32 Kbytes, which is sufficient for network 
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applications, as shown in [4]. The I-cache bandwidth to the processors is sufficient to prevent 
instruction starvation. As most working sets of the processor fit in the I-cache, sharing of the I-
cache does not cause cache thrashing and increased instruction miss rate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Embedded Cyclops multiprocessor architecture 
 
      A key consideration in our prototype implementation is the partitioning of I/O operations.  
Hardware resources on CyclopsE work collaboratively to handle the I/O operations initiated by 
applications running on the server. The basic data and process flow of an I/O operation is shown 
in Figure 3. The actual protocol handling and data routing are carried out by the code running in 
parallel on the processors contained in the multiprocessor subsystem.  A processor core (i.e., 
dispatcher processor) handles the interface with HBA and dispatches frames to other processor 
cores (i.e., worker processor) based on the operational context of each frame. The dispatcher 
processor also validates the I/O request to ensure that it complies with the I/O service it belongs 
to.  
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Figure 3: Basic I/O operation flow 

      
      The I/O requests generated by the dispatcher processor are placed in the request queues of 
their corresponding worker processors. Each worker processor then performs protocol handling, 
header checking, error handling and isolation, and data transfer as previously discussed. Errors 
are isolated by not allowing subsequent data to be written into system memory when an error 
occurred.  When an I/O transfer is completed, its status is written in the response queue in the I/O 
subsystem firmware by the HBA. The firmware in the I/O subsystem will then check with 
CyclopsE to ensure that the processing of frames is completed.  
     The number of processor cores required for the transfer of data is based on the target network 
bandwidth and packet size used.  Smaller packet sizes significantly increase the overhead in 
processing header information and thus would require more processor cores. The same applies for 
the network bandwidth. More processor cores would be required in more demanding network 
bandwidth environments. 
 
4. Simulation environment 
 
     The experiment environment for the data router design is based on an iterative emulation of 
the CyclopsE embedded multiprocessor architecture – DIMES [5]. Directly mapping multi-core 
system logic into a FPGA chip proves to be impossible, because the target logic size well exceeds 
the capacity of even the largest FPGA chips existing in the market today. The iterative emulation 
technique exploits the repetition of identical logic elements that exists in the multi-core chip 
design by physically instantiating only one copy of the combinatorial logic element in the FPGA 
chip, while emulating multiple sequential logic instances with shift registers and/or RAM blocks 
in a time-sharing fashion. As shown in Figure 4, the DIMES system is implemented upon an off-
the-shelf Alpha-Data ADM-XRC-II board with one Xilinx XC2V8000 FPGA chip. The host PC 
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runs Linux and communicates with the emulated multi-core chip logic on the FPGA via the PCI 
bus. The current DIMES system can accommodate the target logic of 8 processors, on-chip  
memory banks, and the interconnection network of the proposed multiprocessor discussed earlier. 
 
 

 
 

Figure 4: DIMES system setup 
 
     The simulation software is composed of three major modules shown in Figure 5. HBASim is a 
program that simulates a PCI-X master device and injects data frames into the I/O Accelerator. 
zSSim is another program that simulates a PCI-X slave device which acts as a data sink for data 
received from the I/O Accelerator. The I/O Accelerator simulation system receives data from 
HBASim as a PCI-X slave in one side and sends data to zSSim as a PCI-X master in the other 
side. The PCI-X interfaces are simulated by socket connections in our system, so that raw data 
frames can be moved from HBASim to the I/O Accelerator, and the processed data frames can be 
further delivered from CyclopsE to zSSim. While HBASim and zSSim are both stand-alone 
processes running within the host Linux system, the I/O Accelerator multi-core simulator is 
actually composed of two parts: the host-side module running as a Linux process and the target-
side module running upon the emulated Cyclops embedded multi-core system in the Xilinx 
FPGA. The host-side module loads target application to the FPGA and handles socket 
communications with HBASim and zSSim, while the target-side module application actually 
performs the I/O Accelerator functionalities, such as packet header checking, protocol processing, 
and so on. Using the PCI device driver provided by the FPGA board vendor, information 
exchange between host-side and target-side modules is done by mapping part of the target-side 
module’s physical memory into the host-side module’s program virtual memory space. 
      Depending on the configuration, up to 8 physical processor cores can be deployed by the 
target-side module in the master-slaves mode. The host-side module application receives raw data 
frames from HBASim and puts them in the input data buffer of the target-side module. The 
dispatcher processor of the target-side module checks frames in the input data buffer and 
dispatches those frames to the worker processors for protocol processing, and tries to balance the 
loads of different worker processors at the same time. Once a frame has been processed by a 
worker processor, it is stored in its output data buffer, which is also visible by the host-side 
module. The host-side module is also responsible to check the output buffers of all worker 
processors and to send the processed frames out to zSSim, if any. 
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Figure 5: Test software structure 
 
    5. Results 
 

Our approach for server I/O acceleration is based on CyclopsE which, as previously 
described, is a self-contained architecture with its own memory and local interconnect. The 
number of processors and memory size are design parameters that depend on the target protocols 
to be implemented. It is our intention to provide a guideline for the SoC designer to determine 
these performance parameters through our experiment results shown in this section. 
     We conducted a set of experiments to determine the number of processors that would be 
needed to perform the transfer of FICON and FCP packets at various data rates and packet sizes. 
Our implementation of the I/O Accelerator for FICON and FCP was developed, parallelized, and 
implemented in C language. The I/O Accelerator program was then compiled with the CyclopE 
compiler and ran on the simulation environment, as described above. We have constructed test 
cases based on actual FICON and FCP trace data and collected statistics from the simulation runs 
of these test cases.  
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Figure 6:  FICON/FCP functionality performance profiling on CyclopsE 
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[Gao: please check figure 6 and the following descrition to make them matching each other. 
For example: the name      FICON SB2, FICON Payload and FICON CRC/32B should be 
clearly 1-1 explained.  Then, the numbers on top each bar should also match the numbers 
listed in the text below – e.g. 5,180ns and 17,420ns – where we can find these numbers in the 
fiture ? 
]. 
Figure 6 shows the cycles spent on some major protocol functions. FICON is more demanding in 
computation requirements than FCP due to its complexity in protocol and error handling. CRC 
computation in FICON took 4,928 cycles for every 32 bytes of payload data. This is expensive 
and should be offloaded to dedicated hardware.  In our analysis, assuming CRC computation is 
offloaded to hardware, on average of 2,590 cycles are needed for the processing of each FCP 
packet and 8,710 cycles are needed for each FICON packet. The latter involves memory accesses 
to resolve indirect addressing (3,560 cycles, shown as FICON SB2, in Figure 6). With CyclopE 
operating at 500 MHz, it means that it will take 5,180ns and 17,420ns to process a FCP packet 
and FICON packet, respectively.   

 
Figure 7:  Processing requirements as a function of packet size 

 
[Gao:  some of the colors in Figure 7 is hard to read.   Also, I cannot 

identify/comprehend easily  the two data points mentioned the end of the following 
paragraph.  Is there a way to improve this illustration ?] 

The time available for processing a packet is a function of packet size and network speed. 
The larger the packet size the more time is available required for the data router to process the 
data routing information. Figure 7 shows the minimum packet size requirements for FCP and 
FICON data routing, assuming the network bandwidth is 8 Gb/s. The results show that 8 
CyclopsE processors operating at 500 MHz can handle FICON traffic at 8 Gb/s, for the 2Kbyte 
Fibre Channel frame sizes currently being used. For FCP, 8 processors can handle frame sizes as 
small as 1,024 bytes. Configurations with more processors may be used for higher line speeds or 
smaller packet sizes.  
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Figure 8:  SoC hardware requirements for handling FCP 

Figure 8 shows the SoC hardware requirements for handling FCP and Figure 9 shows the 
SoC hardware requirements for handling FICON. The number of processors needed to handle 
traffic at a given speed decreases with an increase in packet size. This is because the time 
required for packet header processing/checking is basically independent of packet size. Larger 
packet sizes will result in a smaller packet incoming rate and thus would require fewer CyclopsE 
processors. 
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Figure 9:  SoC hardware requirements for handling FICON 

  
     The CyclopsE architecture is both scalable and silicon-area efficient, providing a lot of 
flexibility in the design of SoCs, as it allows a wide range in the number of integrated processor 
cores. We have estimated that a basic 8-core cluster that contains 32 Kbytes of local SRAM and 
32Kbytes of I-cache occupies 9 mm2 in 90nm CMOS technology. The area of larger 
configurations increases almost linearly with the number of integrated cores. 
 
6. Conclusions 
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     In this paper, we have investigated the acceleration of server I/O functionality using the 
CyclopsE embedded multiprocessor architecture. The processing functions involved in the 
FICON and Fibre Channel protocols were parallelized, written in C, and simulated on the DIMES 
FPGA simulator. The results showed that a modest number of processor cores are sufficient to 
implement the required functionality for next generation storage network speeds. This makes the 
embedded multiprocessor implementation an attractive solution, considering the ease of design 
and flexibility that a programmable solution offers. Given the advantage of silicon area, power 
requirements, and performance scalability of a multi-core architecture such as CyclopsE,  much 
higher bandwidths can be accommodated with the use of larger numbers of cores. Future work 
could involve the prototyping of more complex protocols such as TCP/IP or iSCSI. 
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