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Abstract

In this paper, we propose a compiler method for software pipelining of loop nests on multi-core
chip architectures. Our method is based on an extension to thesingle-dimension software-pipelining
(SSP)that was proposed to apply software pipelining to any loop level (possibly beyond innermost
level) in a loop nest. Using a Single-Program Multi-Data (SPMD) approach, we outline a method
that takes a loop nest, without any pragmas or modifications, as an input and produces a proven
correct deadlock-free multi-threaded schedule across the processing cores. Our proposed method
and algorithms were implemented in an Open64 based compiler framework retargeted to the IBM
Cyclops64 architecture. Experimental results show that our MT-SSP method generates correct,
deadlock-free multi-threaded schedules for the Cyclops-64 chip. On a collection of benchmarks
tested, the performance of our software pipelined code has demonstrated excellent scalability up to
100 cores tested1. The tiling factor automatically calculated by our compiler works very well in
keeping the load of the cores well balanced. Our experiments has also demonstrated good efficiency
of cross-iteration synchronization between thread units (cores) without using special machine atomic
synchronization instructions. The register pressure measured during the experiments are well within
the hardware limits of the architecture.

1Only 99 thread units were used in our experiments. See Section 6 for details
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1 Introduction

The designs of high-performance microprocessor chip architectures are rapidly adopting an organization
that integrates a growing number of multiple processing cores on a single chip [9]. Computer architects
are now experimenting large-scale multi-core chip architectures - such as the IBM Cyclops-64 cellular
architecture - where a single chip may contain more than one hundred thread units and memory banks,
and beyond. However, the success of such multi-core chips is depending on the advance in system
software technology (e.g. compiler technology, runtime software technology, etc.) where application
programs can be effectively mapped to fully utilize the on-chip parallelism capacity.

In this paper, we are mainly interested in developing an effective compiler technology for loop nests
on multi-core chip architectures. Although the technology of automatic program parallelization of loop
nests has made significant and interesting progress in the past, it is yet to demonstrate that such automatic
parallelization is practically and broadly applicable for multi-core chips in the near future. On the other
hand, parallel programming, although an interesting alternative worthwhile to pursue, but, judged on our
experience of parallel machines in the past two decades, is still a long term research task. Furthermore
it will not solve the so-called dusty-deck problem - where a large number of sequential programs need
to be migrated to the multi-core platform without heavy parallel programming investment.

On uniprocessor (single-core) architectures, however, software-pipelining (SWP) [10, 17, 11] is
probably the most effective compiler scheduling method for single loops, and often is a primary method
to enhance the performance for many loop-intensive programs. In this paper, we will demonstrate
that the software pipelining technology can be extended to apply to compiling loop nest for multi-core
chips. In fact, under our method, a sequential program (e.g. C, Fortran without any changes) can be
automatically compiled into software pipelined code that may fully exploit the parallelism capacity of
multi-core chips.

Our method is based on an extension to thesingle-dimension software-pipelining (SSP)[16] that
was proposed to extend SWP to any loop level (possibly beyond innermost level) in a loop nest. Under
our new SSP method - calledmultithreaded SSPor MT-SSP, loop iterations of a nest loop are mapped
to processing cores across a multi-core chip, and are initiated at a regular iterationinitiation interval
(II) and their execution is overlapped to fully exploit the potential parallelism. We hope that the work
proposed in this paper will demonstrate that it is indeed possible to repeat the success of software-
pipelining from single-core architectures to multi-core architectures.

In summary, this paper presents theMT-SSPsoftware-pipelining method to schedule loop nests on
multi-core architectures. Using a Single-Program Multi-Data (SPMD) approach, we outline a method
that takes a loop nest, without any pragmas or modifications, as an input and produces a proven cor-
rect deadlock-free multi-threaded schedule across the processing cores. We propose a parameterizable
light-weight synchronization mechanism to coordinate the synchronization/communication between it-
erations across different cores. Our method automatically handles workload distribution through an
automatic grouping of iteration (also called tiling in the paper), data communication and synchroniza-
tion.

Our proposed method and algorithms were implemented in an Open64 based compiler framework
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retargeted to the IBM Cyclops64 architecture. The multi-threaded multi-core schedule are tested on a
Cyclops architecture simulator and associated system software toolchain provided by ETI. Experimental
results show that our MT-SSP method generates correct, deadlock-free multi-threaded schedules for the
Cyclops-64 chip. On a collection of benchmarks tested, the performance of our software pipelined code
has demonstrated excellent scalability up to 100 cores tested. The tiling factor automatically calculated
by our compiler works very well in keeping the load of the cores well balanced. Our experiments
has also demonstrated good efficiency of cross-iteration synchronization between thread units without
using special machine atomic synchronization instructions. The register pressure measured during the
experiments are well within the hardware limits of the architecture.

The rest of the paper is divided as follows. The next section introduces the background of the paper,
describes the SSP method for single-core architectures, and the IBM Cyclops-64 architecture. Section 3
presents the problem addressed and the challenges to overcome. The next two sections explain the multi-
threaded SSP solutions and its implementation for the IBM Cyclops-64 architecture. Section 6 presents
the experimental results. The last two sections are dedicated toward related work and conclusion.

2 Background

2.1 Single-dimension Software-Pipelining

Single-dimension Software Pipelining (SSP) [16] is a resource-constrained software pipelining method
for both perfect and imperfect loop nests on single-core architectures. Unlike other approaches [10, 22,
11], SSP does not necessarily software pipeline the innermost loop of a loop nest, but directly software
pipelines the loop level estimated to be the most profitable. From the SSP point of view, the loop levels
enclosing the selected loop are ignored. Therefore, the selected loop is seen as the outermost loop.
Within an outermost loop iteration, inner loops are executed sequentially.

Beside being able to software pipeline any loop level and overlap the execution of the prolog and epi-
log of the inner loops, SSP is able, unlike MS, to take advantage of instruction-level parallelism or data
locality properties present in the outer loops. Without prior loop transformations, a faster schedule can
be found. If the innermost loop level is chosen, SSP is equivalent to classical modulo scheduling. SSP
retains the simplicity of modulo scheduling, and yet may achieve significantly higher performance [16].

SSP takes as input a loop nest of depthn. We noteNi the number of iterations for each loop level,
level 1 being the outermost level andn the innermost. The operations of the loop nest are scheduled into
a multi-dimensional kernelof S stages with an initiation intervalT [7]. An example for a double loop
nest is shown in Fig. 1(a). The kernel is partitioned into subkernels, one per loop level. The number of
stages and the index of the first and last stage of the subkernel of loop leveli are notedSi, fi, andli,
respectively (Fig. 1(b)).

The kernel is used as a template to build theideal schedule, where an outermost iteration is issued
every T cycles and all the dependences are respected (Fig. 1(c). Outermost iterations (columns in
the figure) are run in parallel. Within one outermost iteration, inner iterations (shades of gray) are
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Figure 1: Single-Core SSP Example

executed sequentially. However there may be resource conflicts if two instances of the same stage are
run simultaneously.

To avoid the conflicts a delay is introduced everySn outermost iterations to produce thesingle-
core final scheduleas shown in Fig. 1(d). Repeating patterns are then found: outermost loop pattern
(OLP) and innermost loop pattern (ILP). prolog, draining/filling patterns (DFP), and epilog may also
appear [15].
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2.2 The IBM Cyclops-64 Architecture

The Cyclops-64 (C64) is the latest version of the Cyclops cellular architecture designed to serve as a
dedicated petaflop compute engine for running high performance applications [4, 5]. A C64 supercom-
puter is attached to a host system through a number of Gigabit Ethernet links. The host system provides
a familiar computing environment to application software developers and end users.

Gigabit
ethernet

FPGA

Control
network

1 2Processor 80 Chip

Node

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

GM GM GM GM GMGM

A−switch

Host
interface HD

3D−mesh

Crossbar Network

DDR2 SDRAM
controller

Off−chip
memory

Figure 2: Cyclops-64 node

A C64 is built out of tens of thousands of C64 processing nodes arranged in a 3D-mesh network.
Each processing node consists of a C64 chip, external DRAM, and a small amount of external interface
logic. A C64 chip employs a many-core-on-a-chip design with a large number of hardware thread
units, half as many floating point units, embedded memory, an interface to the off-chip DDR2 SDRAM
memory and bidirectional inter-chip routing ports, see Figure 2. A C64 chip has 80 processors, each with
two thread units, a floating-point unit and two SRAM memory banks of 32KB each. A 32KB instruction
cache, not shown in the figure, is shared among five processors. The C64 chip has no data cache. Instead
a portion of each SRAM bank can be configured as scratchpad memory (SP). The remaining sections of
SRAM together form the global memory (GM) that is uniformly addressable from all thread units.

3 Problem Description

3.1 Problem Statement

In this apply, we apply the SSP technique to multi-threaded cellular architectures. We assume that the
SSP ideal schedule has already been computed and that registers have been allocated to the loop variants.
The multi-threaded final schedule must now be defined and computed. Despite the differences between
the single-core final schedule and the multi-threaded final schedule, the earlier SSP steps( namely loop
selection, kernel generation and register allocation), do not require any modification.
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3.2 Issues

Multiple challenges must be faced to produce a multi-threaded final schedule. First, the dependence
and resource constraints must be respected. Similarly to the single-core case, an operation cannot be
scheduled before all the operations on which it depends are committed. However, with multi-threaded
architectures, memory dependences may exist between independent thread units and synchronization is
required to guarantee a sequential order between the memory accesses to the same memory location.

Second, how to make sure that a thread unit does not run ahead of the others? How to implement
a light-weight synchronization scheme? How to parameterize the synchronization mechanism so that
the execution time of the multi-threaded final schedule is minimized? If the synchronization occurs too
often, no useful work is done. If synchronization occurs too rarely, thread units are idle and no work is
done.

Third, the workload distribution over the large number of thread units available in multi-threaded
cellular architectures must be fast and keep all the thread units as busy as possible to minimize the
overall execution time of the multi-threaded final schedule.

Fourth, cross-iteration dependences between outermost iterations scheduled on separate thread units
require the thread units to communicate the data and to synchronize each other. This exchange must
occur only between outermost iterations scheduled on separate thread units.

Finally, as for every applications requiring synchronization, the multi-threaded final schedule must
be deadlock-free.

4 Multi-Threaded Single-Dimension Software-Pipelining

In the SSP framework, we assume that the ideal schedule, common to both the single-core and multi-
threaded versions of SSP, has already been computed. We now present how to generate the multi-
threaded final schedule from the ideal schedule.

4.1 Multi-Threaded Final Schedule

In order to resolve the resource conflicts that may appear in the ideal schedule, single-core SSP adds
a delay everySn outermost iterations. Instead, in MT-SSP, we schedule each group ofSn outermost
iterations on a separate thread unit, as shown in Fig. 3. The choice ofSn outermost iterations is dictated
by the kernel.Sn is the maximum number of outermost iterations that can be executed in parallel on
the same core without any resource conflict. Indeed, the innermost subkernel is made ofSn stages
and innermost operations are scheduled in that subkernel so that there is no resource conflict. If two
instances of the same innermost stage are executed simultaneously, as it is the case in the ideal schedule
as soon asSn + 1 outermost iterations are allowed to run in parallel, the resource conflict-free property
is lost.

As the outermost iterations are issued everyT cycles in the ideal schedule and the final schedule is
computed by partitioning the ideal schedule into groups ofSn iterations, all the thread units execute the
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Figure 3: MT-SSP Final Schedule Example

same schedule, including the synchronization operations described in the next section. Therefore the
MT-SSP final schedule is a Single-Program Multiple-Data (SPMD) schedule and thread units will be
able to share the same instruction cache.

4.2 Synchronization

The schedule naturally requires synchronization. A stage being scheduled on one thread unit cannot
be executed until the stages scheduled earlier in the ideal schedule have completed. Synchronization
operations are therefore added to the MT-SSP final schedule. Their locations in the schedule are chosen
to minimize code duplication during code generation. AWAIT operation is placed before each repeating
pattern while aSIGNAL operation is placed after. Those repeating patterns are similar to the patterns
appearing the single-core final schedule [15]. In the example in Fig. 3, three patterns appear: the
prolog, the epilog and the innermost loop pattern (ILP). In the general case the repeating patterns are
not necessarily of the same size. The first thread unit does not require anyWAIT operations and the last
thread unit does not require anySIGNAL operations.

6



op2
op3op4

op2

op1

op1

op2
op3

load

store

sync

dependence

(a) No Stall: the dependence is re-
spected

op1

op1

op2
op3op3op4

op2

op2

stall
cache miss

at the same time
load and store executed

sync

(b) Stall without Synchronization De-
lay: the dependence is not respected

op3op4
op2

op1

op1

op2
op3

op2

stall
cache miss

extra wait

no conflict

after the store
synchronization

(c) Stall with Synchronization De-
lay: the dependence is respected

Figure 4: Synchronization Delay Example

In addition of the synchronization points mentioned above, a synchronization delay must be intro-
duced to guarantee the correctness of the schedule. Let us consider the example shown in Fig. 4. Let
us assume thatop4 is a store instruction to a memory location which will be accessed byop3 two outer-
most iterations later. There is a memory dependence fromop4 to op3. When generating the kernel, the
dependence was taken into account. If both instruction groups are executed on the same processor or
no stall occurs, the dependence is respected (Fig. 4(a)). In a multi-threaded schedule, the store and load
instructions may be scheduled on two different thread units. If the execution ofop2 is stalled because of
some memory port contention for instance, the second thread unit would not be affected andop3 would
be executed beforeop4 has completed (Fig. 4(b). To prevent this situation, an extraWAIT operation is
added. Thus the dependence fromop4 to op3 is respected (Fig. 4(c). Symmetrically aSIGNAL operation
is also added so that there are as manyWAIT thanSIGNAL operations.

Since the SSP loop selection step does not allow loop levels with negative dependences to be
software-pipelined, there cannot be any negative dependence between outermost iterations. There-
fore the synchronization signals are unidirectional, from one thread unit to its direct successor. The
graph of synchronization signals between outermost iterations forms a tree. If theSIGNAL instruction
is non-blocking, then the multi-threaded SSP schedule isdeadlock-free. If an outermost dependence
spans several thread units, the cascading of synchronization signals will ensure that the dependence is
respected.

4.3 Innermost Loop Tiling

To reduce the synchronization costs, the execution of theNn−1 instances of the innermost loop pattern
is tiled into tiles ofG iterations. IfG is not a multiple ofNn−1, the last tile only contains the remaining
instances. TheWAIT andSIGNAL operations are issued at the entrance and exit of each tile, respectively.
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The value ofG that will minimize the length of the final schedule,Gmin, can be approximated at
compile-time using the schedule function presented in Sec. 4.4. Using the first derivative of the schedule
overG, we obtain:

Gmin =

√√√√√w ∗ (Nn − 1) ∗
(
1 +

∏j=n−1
j=2 (Nj − 1)

)
T ∗ Sn ∗

(⌊
N1
Sn

⌋
− 1

) (1)

Gmin is very close to the empiric value ofG for which the execution time is minimized as shown in
Sec. 6. Since the first derivative of the schedule function is used to computeGmin, the formula is
identical for kernels with multiple initiation intervals.

4.4 Schedule Function

Given a kernel with single initiation interval, the schedule function of the final schedule can be ex-
pressed. Let us consider the instance of an operationop at iteration

−→
I = (i1, . . . , in). We noteσ(op, 0)

the schedule cycle of the operation in the kennel. The schedule function of the multi-threaded SSP
schedule for imperfect loop nests with a single initiation interval can be written as shown in Eqn. 2. The
computation of the function is explained in Sec. 4.4.

f(op,
−→
I ) = σ(op, 0) + i1 ∗ T +

k=n∑
k=2

ik ∗ timeLk
+

(⌊
N1

Sn

⌋
− 1

)
∗ (ln ∗ T + G ∗ Sn ∗ T )

+
(⌊

N1

Sn

⌋
− 2

)
∗ 2 ∗ w + syncsPerGroup ∗ w (2)

where

timeLk
=

i=n∑
i=k

(Si − Si+1) ∗ T ∗
j=i∏

j=k+1

Nj


Sn+1 = 0

syncsPerGroup = 3 +
Nn − 1

G
+

Nn − 1
G

∗
j=n−1∏

j=2

(Nj − 1) +
i=n−1∑

i=2

j=i∏
j=2

(Nj − 1)

Theorem 1 Given an imperfect loop nest and an SSP kernel with a single initiation interval, the sched-
ule function proposed in Equation 2 respects both the dependencies from the n-D DDG and the resource
constraints.

Proof. To prove the theorem we must show that the dependences and the resource constraints are
respected. As the single-core schedule function without the delay term already respects the dependences
and the terms added in the multi-threaded function are all positive, the dependences are respected. And
since onlySn outermost iterations are by construction executed on a single thread unit, there is no
resource conflict.�
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5 Implementation on IBM Cyclops-64 Chip Architecture

5.1 Overview

Iteration groups are executed on the thread units in a round-robin fashion. The synchronization signals
from the last thread unit are redirected to the first thread unit. The number of iteration groups does not
have to be a multiple of the number of thread units. Fig. 5 shows an example where only 3 thread units
are available and 5 iteration groups are to be executed.

All the thread units but the first directly reach a wait instruction after their initialization and will not
start executing iteration groups until the first thread unit has started. The thread unit to execute the last
iteration group sends an extra synchronization completion signal to the first thread unit. When a thread
unit has completed the execution of all its iteration groups and has sent all the required signals, it goes to
sleep. When the first thread unit has received the completion signal from the last thread unit, it returns
to the main program.

5.2 Synchronization

Synchronization is implemented using a Lamport’s clock. Each thread unit has two counters. The
first counter, namedsynchronization counter, is used to count the number of synchronization signals
received. The second counter is the internal clock of the thread unit and is called theclock counter. It
represents the progress of the thread unit and is incremented after eachWAIT instruction. When reaching
a WAIT instruction, the execution on a thread unit is allowed to continue only if the synchronization
counter is greater or equal to the clock counter.

The WAIT instruction is implemented with an active loop, although aSLEEP instruction could
have been used. Since a single thread is executed by each thread unit, active loops were chosen. The
SIGNAL instruction is a non-blocking atomic add-in-memory instruction.

In order to minimize the execution time of theWAIT instruction, the synchronization counter is
placed in the scratch-pad memory of the thread unit being signaled. The value can then be quickly
read by the receiving thread unit without using the crossbar network. Although the signal instruction
travels over the crossbar network, the signal instruction is non-blocking. Therefore, the sending thread
unit does not pay the cost of accessing the scratch-pad memory of the receiving thread unit. The clock
counter, which is not accessed by the other thread units, is placed in a dedicated register of the thread
unit for fast access.

The first outermost iteration group, executed on the first thread unit, does not require any synchro-
nization signal to execute. Therefore the synchronization counter of the first thread unit is initialized
to the number of synchronization signals that an outermost iteration group needs to receive to run to
completion,syncsPerGroup. Thus theWAIT instructions of the first group will never block.

The synchronizations signals sent by the thread unit that executes the last outermost iteration group
are received by the next thread unit, even if that thread unit is not required to execute any other outermost
iteration. Afterward the completion signal is sent to the first thread unit.
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Figure 5: Execution of the Multi-Threaded Final Schedule on an IBM Cyclops-64 chip
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5.3 Cross-Iteration Register Dependences

In the IBM Cyclops-64 architecture where threads units do not share registers, cross-iteration register
dependences (dependences between outermost iterations whose values are stored in registers, not mem-
ory) require the insertion of copy operations to copy the value from one thread unit to the next. On
single-core architectures, the problem does not exist as there is a single register file.

During the compilation the register dependence is transformed into a memory dependence. We issue
memory spill instructions to copy the value from the register to a buffer in the scratch-pad memory of
the destination thread unit. The value is then restored using a single memory load. The scratch-pad
memory of the receiving thread unit was chosen because memory spills are non-blocking and memory
restores from the local scratch-pad memory are fast because of the direct access of a thread unit to its
scratch-pad memory. As the cross-iteration register dependences are known at compile-time, the buffer
and offset to its respective values are statically allocated.

Memory spill instructions only need to be issued by the last outermost iteration of an iteration
group and memory restore instructions by the first. Within an instruction group, the value is transferred
from one outermost iteration to the next using registers as usual. If the value is to be used by another
outermost iteration than the next (meaning that the distance of the cross-iteration register dependence is
greater than 1), register copies and memory spills/restores will bring that value to the recipient outermost
iteration in a cascaded fashion.

The mechanism is implemented by adding memory spill and restore instructions at the ends of each
cross-iteration dependence during the loop selection phase. The kernel generator then produces an SSP
kernel which contains those extra operations. While emitting the assembly code, the memory spill
operations are removed from every iteration but the last of an iteration group, and the memory restore
operations are removed from every iteration but the first of an iteration group. The removal of those
operations is accompanied by a register renaming transformation to take the change into account.

Fig. 6 shows an example of a cross-iteration register dependence. RegisterR is used and then
incremented by one in the first outermost iteration. The next outermost iteration uses the incremented
value and increments again the value in the register. Because the two outermost iterations are executed
on the same thread unit, the register is accessible to both iterations. However, the third iteration cannot
access that register. Instead, the value is spilled into a known location by the second iteration. The third
iteration retrieves the value from the buffer before using it. The spill and restore instructions only appear
in the first and last outermost iterations of an iteration group.

5.4 Code Generation Algorithms

The pseudo-code skeleton of the multi-threaded final schedule is shown in Fig. 7(a). The details of the
repeating loop patterns are shown in Fig. 7(b). The code is common to all thread units. The first thread
unit initiates the execution of the final schedule when sending its first signal to its direct neighbor. The
main loop iterates over the iteration groups that each thread unit must execute. The synchronization
delay is implemented by artificially incrementing the clock counter by 1.
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Figure 6: Cross-Iteration Register Dependence Example

Compared to the single-core processor code for the Intel Itanium architecture [15], there is no
outermost loop pattern anymore and the innermost loop pattern is now tiled. Register rotation is still
required in the prolog and epilog. The register rotation emulation technique used for the other patterns
is similar to the Itanium version and will not be described here. The patterns are now surrounded by
synchronization instructions.

The stage emission routine,Emit Stages(), shown in Fig. 8, takes into account the features of the
multi-threaded schedule and the absence of predicate registers in the IBM Cyclops-64 architecture. The
register offset is passed as a parameter alongtotal height, the number of instances of the kernel in the
pattern being emitted. Given the levellevel of the stages, the operations are emitted in the order of their
scheduling cycle.stage count stages are emitted starting from stagefirst stage + stage offset to
stagelast stage. If the number of emitted does not reachstage count, then the emission continues,
starting from stagefirst stage. This cyclic emission is required for the draining/filling patterns and
innermost loop patterns. The cross-iteration register dependence memory spill/restore operations are
conditionally emitted as explained in Section 5.3.
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[Initialization]
i1 ← my thread id
while i1 < N1 do

i1 ← i1 + num TUs
clock counter ← clock counter + 1
[Prolog]

for i2 = 0, N2 − 1 do
for i3 = 0, N3 − 1 do

. . .
for i = 1, (N

n
− 1)/G do

wait()
for g = 1, G do

[ILP]
end for
signal()

end for
. . .
if i3 < N3 − 1 then

[DFP3]
end if

end for
if i2 < N2 − 1 then

[DFP2]
end if

end for

rotate registers()
[Epilog]
signal()

end while
[Conclusion]

(a) Multi-Threaded Code Skeleton

[Prolog] =
wait()
for i = f1, ln − 1 do

Emit Stages(f1, l1, Sn, 1, 0,
i − f1 − (Sn − 1), ln − f1)

if i < ln − 1 then
rotate registers()

end if
end for
signal()

[ILP] =
for i = 0, Sn − 1 do

Emit Stages(fn, ln, Sn, n,−i − 1, i, Sn)
end for

[DFPlvl] =
wait()
for i = 0, llvl − flvl do

Emit Stages(flvl, llvl, Sn, lvl,−i − 1,
fn − flvl + i, llvl − flvl + 1)

end for
signal()

[Epilog] =
wait()
for i = ln, l1 + Sn − 1 do

Emit Stages(f1, l1, Sn − max(i − l1, 0),
1, 0, i− Sn + 1, l1 − ln + 1)

rotate registers()
end for
signal()

(b) Loop Patterns Expansion

Figure 7: Code Generation Algorithms

An operation is emitted using theemit ops() routine. If the operations is a memory spill/restore
operation, then the address register must be switched to the register containing the address of the buffer
in the next thread unit. That information is only known at code-emission time and a dummy register had
been used so far. Then, the register indexes must adjusted according to thereg offset value.

For initialization each thread unit must compute the address of the buffer and synchronization
counter in the next thread unit. The synchronization counter is then initialized to 0. The clock counter
is set to 1 for all the thread units but the first so that the thread units do not start until told so by the
previous thread unit. The clock counter of the first thread unit is initialized withsyncsPerGroup to be
able to execute the first iteration group without requiring any synchronization signal. The live-in values
are copied in the local buffer of the first thread unit to bootstrap the execution.

For conclusion the thread unit to execute the last iteration group signals the first thread unit that the
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EMIT STAGES(first stage, last stage, stage count, level, register offset,
stage offset, total height)

for cycle = first cycle[level], f irst cycle[level] + T [level]− 1 do
stage counter ← stage count

reg offset← register offset

stage← first stage + stage offset

while stage ≤ last stage and stage counter > 0 do
if (operation is memory spill and stage counter 6= stage count)

or (operation is memory restore and stage counter 6= 1) then
do not emit this operation

end if
emit ops(level, stage, cycle, reg offset)
stage counter ← stage counter − 1
stage← stage + 1

end while

reg offset← register offset + total height

stage← first stage

while stage counter > 0 do
if (operation is memory spill and stage counter 6= stage count)

or (operation is memory restore and stage counter 6= 1) then
do not emit this operation

end if
emit ops(level, stage, cycle, reg offset)
stage counter ← stage counter − 1
stage← stage + 1

end while
end for

Figure 8: Stage Emission Algorithm

schedule is completed. All the thread units, but the first, then go to sleep (or terminate). The first thread
units waits for the completion signal to arrive and returns.

In order to reduce the execution time of the schedule, the loop control instructions, such as itera-
tion index increment and trip count comparison, have been added to the operations of the loop nest and
therefore scheduled in the kernel. As such, the register offset has been applied to the loop counter regis-
ters. The only instruction that has not been scheduled in the kernel is the branch instruction. Therefore,
the register offset must also be applied to the branch instruction. The loop control register used should
correspond to the one last defined in the last outermost iteration in an iteration group.

5.5 Correctness

We present here two properties that go toward proving that the IBM Cyclops-64 schedule is correct.
First the IBM Cyclops-64 implementation of the multi-threaded final schedule is alsodeadlock-free.
Indeed the signal instruction is a non-blocking atomic operation. Moreover, despite the round-robin
execution of the outermost iteration groups on the thread units, the graph of synchronization signals
between outermost iterations still form a tree.
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Second the synchronization signal guarantees that the memory accesses preceding it on the same
thread unit have been committed. Indeed the accesses to the crossbar network are managed in first-in
first-out order at the sending network port. A memory access will not travel across the network until the
receiving side can handle the memory access atomically. Therefore the memory accesses issued over
the network are guaranteed to be executed in sequential order from the point of the view of the sending
thread unit. In consequence, this property also guarantees that when a signal instruction is issued, the
preceding memory accesses have already been committed.

6 Experimental Results

This section present our experimental results and analysis. Section 6.1 briefly describes the experimental
framework. Section 6.2 summarizes the main results. The rest subsections explain in more details each
individual results.

6.1 Experimental Framework

Our MT-SSP method has been implemented in the Open64 research compiler infrastructure as illustrated
in Figure 9.

Open64 uses the Winning Hierarchical Intermediate Representation Language, or WHIRL, as the
representation for all the optimizations. Most of the Multi-threaded SSP steps are applied at the Very
Low level during the code generation (CG) phase, while the data dependence analysis step takes place
during the LNO phase at the High level. The final step generates the IBM Cyclops-64 assembly code
from the register-allocated kernel.

Fourteen loop nests from the Livermore Suite, SPEC2000 and NAS were compiled and evaluated
using FAST–an architecture simulator provided by ETI that can simulate the IBM Cyclops-64 architec-
ture [3] and provide performance information. Loop tiling factor of 1, 2, 4, 8, 16, 32, 64, and 128 were
tested on the processor with 99 thread units. The execution time absolute speedup was measured with
1, 3, 7, 15, 31, 63, and 99 thread units with the best loop tiling factor measured. The issue width of a
thread unit was assumed to be equal to 2. The problem size of each benchmark was chosen as large as
possible.

6.2 Summary of Main Results

The main experimental results can be summarized as follow.

• Result I: Overall correctness and efficiency. For All test cases we experimented with, our MT-SSP
scheduler produces multithreaded software pipelined schedules that are correct and deadlock free.

• Result II: Speedup (also see Section 6.3 for details). Our experiments demonstrate a very good
scalability across all benchmark tested. For example, as the number of thread units increases, a
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Figure 9: SSP Implementation in Open64

linear speedup has been observed and has reached beyond 81 for matrix multiply and 78 for SOR
benchmarks when running on 99 thread units. Also, the speedup improves as the problem sizes
increases.

• Result III: Tiling and tiling Factor (also see Section 6.4 for details). Our experiments demonstrates
that the tiling factor we have propose in Section 4.3 is quite good: the best results observed with
hand-tuned tiling factor matches very well with the calculated factor.

• Result IV: Efficiency of cross-iteration synchronization between thread units (also see Section
6.5 for details). Our experiments demonstrates good efficiency of cross-iteration synchronization
between thread units. Although we implement in software such synchronization between thread
units, the overhead is quite small and there will not be much room for further improvement even
if in-memory atomic synchronization at instruction set architecture level is used.

• Result V: Register Pressure (also see Section 6.6 for details). Our experiments also show that the
register pressure due to the MT-SSP scheduling is well within the hardware limits of the register
resource in the target multi-core architecture we have used.
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6.3 Execution Time Speedup

The scalability results for a representative set of benchmarks are shown in Figure 10. The best loop
tiling factor for each benchmark was used in these experiments.

Our experiments demonstrate a very good scalability across all benchmark tested. As the number of
thread units increase, a linear speedup has been observed. Also, the speedup improves as the problem
sizes increases.

As the number of thread units increases, the total execution time of the benchmarks dramatically
reduces. Theikj variant of matrix-multiply shows the best result with an absolute speedup of 81 for 99
thread units. The worst speedup, 57.5 for 99 thread units, was encountered when evaluating benchmark
hydro.
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Figure 10: Execution Time Absolute Speedup

We can observe that the performance of our ST-SSP results is still at a distance from the ideal
linear speedup. The difference is explained by two facts. First, cross-iteration dependences prevent
the iteration group from being executed in fully parallel and achieving a linear speedup. The second
explanation is the fixed cost of initializing the schedule. With 99 thread units, the cascaded initialization
of all the thread units is costly: thread uniti will not start before receiving two signals from thread
unit i − 1. Given a fixed number of outermost iterations, the more thread units are used, the higher the
initialization cost becomes. If the number of outermost iterations is too small, the initialization becomes
the dominant factor in the total execution time.

When the number of outermost iterations increases, so does the execution time speedup. For in-
stance, as shown in Figure 11, when the normalized problem size of thelivermore18.3 benchmark, is
increased by a factor of only 4 (see X-axis: from 2 to 8), the speedup for 99 thread units jumps from 42
to 67.
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Figure 11: Scalability With Problem Size

6.4 Loop Tiling Factor

The best loop tiling factor was searched for each of the benchmarks running on the IBM Cyclops-
64 processor with 99 thread units. A representative set of results are shown in Figure 12. Overall, the
benchmarks can be partitioned into 2 groups. In the first group, loop tiling helps reducing the execution
time of the benchmarks. For instance, theijk variant of matrix-multiply shows a speedup of 1.29 with a
tile factor of 32 or 64. The second group, which includesblas, hydro andlivermore18.3 in the graph,
only shows deteriorating speedup as the tiling factor increases.
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Figure 12: Loop Tiling Factor

The experimental results are in line with theoretical best value forG computed in Equation 1. The
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best value forG for the benchmarks in the second group happens to be 1 because the number of iterations
of the inner loops is too small. Using the measured average execution time of the wait instruction (14
cycles), the difference in total execution time using the empirical best value forG and the theoretical
bestG value (Gmin) was measured. The maximum recorded difference was1.7% with an average of
0.3%. Gmin is therefore a very accurate approximation of the best value to be chosen forG.

Note that, here we report our experiments results on smaller problem sizes to save simulation time
while without loss of generality.

6.5 Efficiency of cross-iteration synchronization between thread units

To study the efficiency of cross-iteration synchronization between iterations - we report the synchro-
nization stall cycles. The stall cycles were measured for all the benchmarks and using 99 thread units
with the best loop tiling factor. The average execution time of the wait is 14 cycles (synchronization
delays excluded). It is exactly the time it takes to execute the instruction when the data are already in
the buffer. Therefore, the wait instruction never blocked in the tested benchmarks.

The value could be further reduced by implementing the wait instruction as an atomic instruction
in the instruction set architecture. However, such a dedicated instruction would have almost no impact
on the total execution time of the schedules. On average, the number of cycles to execute the wait
instructions represents only0.2% of the total execution time with a maximum of0.7%. The cost of the
wait instruction is therefore negligible.

6.6 Register Pressure
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Figure 13: Register Pressure

Finally, the register pressure was measured for each of the benchmark. The average register pressure
was measured at55.1 registers with a maximum of96 for livermore8. That pressure is reasonable and
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much lower than for the Intel Itanium architecture [14], considering that IBM Cyclops-64 registers are
used both for floating-point and integer values. Such difference is explained by the reduced issue width
of the IBM Cyclops-64 processor. A limited issue width increases the initiation interval of the kernel
and therefore reduces the number of stages of the kernel. As a result, the number of interfering lifetimes
is also reduced.

The register pressure can be further reduced by tuning the register allocator to the multi-threaded
schedule. Indeed, stretched intervals [14], present in the single-core schedules, are now non-existent
and do not need to be accounted for anymore.

7 Related Work

There exists a very large number of related work to schedule loops on multi-threaded or multi-core
architectures. However they can only be applied to single loops. MT-SSP is applied to a loop nest and
produces a compact multi-threaded final schedule with minimized synchronization costs. Some of this
work is presented here.

Several software-pipelining techniques [12, 8, 18, 19] were proposed for clustered-VLIW architec-
tures. The IBM Cyclops-64 architecture is fundamentally different as the thread units are independent
from each other and interconnected via a network instead of a bus. Extra synchronization is required for
the cellular architecture, which can easily step up the number of thread units to the hundreds whereas
clustered architectures are limited to tens of independent compute engines.

Decoupled Software-Pipelining [13] schedules a single loop over multiple thread units. Instead of
distributing the iterations over the thread units, the same thread unit always executes the same group of
operations. Thus, if an iteration can be partitioned into groups, the first thread unit executes the first
group of every iteration, the second thread unit the second group, etc. However the solution does not
scale well when the number of thread units reaches the hundreds.

Other multi-threading techniques include speculative multi-threading with run-time analysis, also
called run-time parallelization of DOACROSS loops [1, 21, 20]. Threads are speculatively issued and
killed as information about the execution of loops is known. Although those methods allow for a wider
range of loops to be scheduled, especially with pointer-chasing structures, the thread control overheads
are very high compared to MT-SSP.

Some work was also done to efficiently port OpenMP to the IBM Cyclops64 architecture [2]. How-
ever, OpenMP is high-level language requiring extra intervention from the programmer and suffering
from generic constructs overheads. MT-SSP is directly applied at the instruction level and exclusively
target loop nests.

8 Conclusion

In this paper we presented a solution to software pipeline loop nests on multi-threaded cellular archi-
tectures based on SSP. The method is named Multi-Threaded Single-dimension Software-Pipelining
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(MT-SSP). Given the SSP kernel, a fully synchronized multi-threaded final schedule is generated to
efficiently execute the loop nest without any modification to the source code. The schedule is proven
deadlock-free and respect all the dependence and resource constraints.

Code generation algorithms were presented for the IBM Cyclops-64 architecture. Synchronization
is done through the use of a Lamport’s clock on each thread unit. The signal instruction is non-blocking
to allow for faster execution. The synchronization counter is placed in the local scratch-pad memory
of the receiving thread unit to limit network accesses and drastically reduce the execution time of the
wait instruction. Cross-iteration register dependences between thread units were handled through the
use of memory spill and restore operations to and from a buffer also in the scratch-pad memory of the
receiving thread unit. Those operations are scheduled in the kernel.

Experimental results showed that multi-threaded SSP schedules scales up well when the number
of thread units increases. The implementation uses a very light-weight synchronization method with
only standard instructions of the IBM Cyclops-64 architecture. The loop tiling factor was shown to
be correctly approximated using the definition ofGbest. Finally, the register pressure appeared to be
reasonable without taking any extra steps to reduce it.
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A Appendix: Mathematical Definitions

A.1 Synchronizations per Outermost Iteration Group

The number of synchronization signals sent (or received) by a group ofSn outermost iterations,
syncsPerGroup, is equal to the number of instances of each repeating pattern in the group to which
we add the extra synchronization instruction used for the synchronization delay (extraSync = 1). In
one iteration group, the prolog is executed onlyP=1 time. So is the epilog (E = 1). The number of
timesDFPi is executed, notedDi with i ∈ [2, n− 1], is given by:

Di = (Ni − 1) ∗Di−1 with D1 = P =
j=i∏
j=2

(Nj − 1) (3)

The number of times the tiled ILP is executed, notedI, can be expressed as:

I =
Nn − 1

G
∗ (Dn−1 + P ) =

Nn − 1
G

∗

1 +
j=n−1∏

j=2

(Nj − 1)

 (4)

Then we have after simplification

syncsPerGroup = extra + P + I + E +
i=n−1∑

i=2

Di

= 3 +
Nn − 1

G
+

Nn − 1
G

∗
j=n−1∏

j=2

(Nj − 1) +
i=n−1∑

i=2

j=i∏
j=2

(Nj − 1) (5)

If Nn − 1 is not a multiple ofG, (Nn − 1)/G must be replaced byb(Nn − 1)/Gc + 1 to account
for the extra wait instructions. If the loop nest is a double nest, then the last two terms of Equation 5 are
equal to zero.

A.2 MT-SSP Schedule Function

The multi-threaded schedule function, given in Eqn. 2, can be computed from the single-core schedule
function [16, 6] by ignoring the term introduced by the delay in single-core schedules and by adding the
initialization costs and the synchronization costs of the multi-threaded schedules:

σ(op, 0) + i1 ∗ T +
k=n∑
k=2

ik ∗ timeLk
+ initCosts + syncCosts (6)
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where

timeLk
=

i=n∑
i=k

(Si − Si+1) ∗ T ∗
j=i∏

j=k+1

Nj


Sn+1 = 0

The initialization costs correspond to the cascaded wake-ups of the thread units to which we add
the synchronization delay. We assume that theSIGNAL operation is executed instantaneously. The last
group ofSn outermost iterations is executed afterbN1/Snc−1 cascaded wake-up signals. Those signals
are sent everyln ∗ T cycles. The synchronization delay adds anotherG ∗ Sn ∗ T cycle delay before the
second signal is sent. Therefore the initialization cost is equal to:(⌊

N1

Sn

⌋
− 1

)
∗ (ln ∗ T + G ∗ Sn ∗ T ) (7)

The synchronization costs is the sum of the execution time of all theWAIT operations in the last
group ofSn outermost iterations,syncsPerGroup (defined in Appendix A.1), and those required for
the cascaded wake-up calls. Letw be the time to execute oneWAIT operation without stalling. For a
thread unit to start running, its predecessor must execute twoWAIT operations. Therefore the cascaded
signals amount to(bN1/Snc − 2) ∗ 2 ∗ w cycles and the synchronization costs are equal to(⌊

N1

Sn

⌋
− 2

)
∗ 2 ∗ w + syncsPerGroup ∗ w (8)
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