e University of Delaware
' Department of Electrical and Computer Engineering

Computer Architecture and Parallel Systems Laboratory

Handling Massive Parallelism Efficiently:
Introducing Batches of Threads
loannis E. Venetis

Theodore S. Papatheodorout
Guang R. Gao

CAPSL Technical Memo 70
October 9, 2006

Copyright (© 2006 CAPSL at the University of Delaware

THigh Performance Information Systems Laboratory
Department of Computer Engineering & Informatics
University of Patras, Rion 26500, Greece

University of Delaware e 140 Evans Hall e Newark, Delaware 19716 e USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Abstract

Emerging parallel architectures provide the means to efftty handle more fine-grained and larger num-
bers of parallel tasks. However, software for parallel paogming still does not take advantage of these
new possibilities, retaining the high cost associated witinaging large numbers of threads. A significant
percentage of this overhead can be attributed to operationgieues. In this paper, we present a methodol-
ogy to efficiently create and enqueue large numbers of tisrisadexecution. In combination with advances
in computer architecture, this reduces cost of handlinglfedism and allows applications to express their
inherent parallelism in a more fine-grained manner. Our pudlogy is based on the notion Bhtches of
Threads, which are teams of threads that are used to insert and ert@e than one objects simultaneously
from queues. Thus, the cost of operations on queues is amdrimong all members of a batch. We define
an API, present its implementation in the NthLib threadibgdry and demonstrate how it can be used in real
applications. Our experimental evaluation clearly denvatss that handling operations on queues improves
significantly. Furthermore, we show that better load-beilag and locality of memory references, due to
larger numbers of thread, can automatically improve paréorce of applications.

Contents

1

Introduction

Related Work

The Cost of Handling Parallelism

Defining Batches of Threads

4.1
4.2

Defining the API for Batches of Threads
Implementation Details

Experimental Evaluation

Conclusions

List of Figures

SMTSIM platforms.
SMTSIM platforms.

1 Creating fine-grained parallelism. e
2 Creating coarse-grained parallelism.
3 Representation of a Batch of Threads.
4 Creating threads with the original API of NthLib.
5 Creating threads with the new API of NthLib.
6 Finding descriptors in recycling queues to create a Batdiheeads.
7 Execution time for th&mpty benchmark on the Intel and
8 Execution time for thé.oop 6 benchmark on the Intel and
9 Execution time for th&oop 21 benchmark on the Intel and SMTSIM platforms
10 Time required to create and enqueue a thread on the latébon.
11 Time required to lookup and start athread onthe Intefgodat.
12 Time required to create and enqueue athread on SMTSIM.
13 Time required to lookup and start a thread on SMTSIM.

List of Tables
1 Hardware configuration of the experimentation platform

|_\
Ry N P

12
15

1 Introduction

Since the beginning of the computing era, the computatipaaler required to solve the most demanding prob-
lems of each specific period of time, usually exceeded thaagpof even the fastest uniprocessor system.
Parallel architectures have emerged as a solution to thiscseiming. Linking more computational units together
over an interconnection network, made it possible to compalutions to problems that were previously thought
impossible to solve. A wide range of parallel architectungth different characteristics has been proposed and
built. However, it became obvious very soon that the costatedie parallelism was limiting the efficiency of
those architectures. Although many of them have been designallow an application to express and efficiently
execute all of it's inherent parallelism, the cost to harglleh an amount of parallelism has proven too high to
allow it.

Recent advances in computer architecture, sucinagtaneous MultiThreading (SMT) [14], Hyper Thread-

ing [6], which is an implementation of SMT from Intel, and mutite processors, allow efficient execution
of more fine-grained parallelism, in addition to a larger temof parallel tasks. This has been achieved by
better exploiting computational units of a processor astefamplementation of mutual exclusion and context-
switching in hardware. On the other hand, software has nobgen adopted to fully exploit these changes.
At large, parallel programming methodologies have not ha#nenced by the new possibilities offered from
emerging parallel architectures. Although previouslyaleped methodologies still apply, those architectures
offer new grounds for unique optimizations.

In this paper we present a novel approach that allows faatioreof large numbers of threads. Our approach
is based on the notion datches of Threads, which are defined as teams of threads that are handled &vgeth
with respect to operations on queues. In conjunction withfdct that modern parallel architectures are able
to handle such a number of threads, allows us to significaetiyice cost of handling parallelism and allows
applications to express their parallelism at a more finéagthlevel. We define an API for Batches of Threads
in the context of NthLib [7], a threading library that implemts the Nano-Threads programming model [11],
and demonstrate how the idea can be used in real applicatidoseover, our experimental evaluation clearly
demonstrates the benefits of using Batches of Threads. Nyptdoes performance of operations on queues
improve, but using larger numbers of threads in an apptinatan automatically reduce it's execution time, due
to better load-balancing and locality of memory references

The rest of this paper is organized as follows: In Section Bemaretical analysis of the execution time of
a parallel application is presented, in order to justify sigmificance of operations on queues in contemporary
threading libraries. In Section 4 we define Batches of Tisemtl the corresponding API that has been im-
plemented in NthLib. Moreover, the most important impleitadion details are discussed and an example that
uses the previously defined API is presented. In Section Sxperenentally evaluate our approach. Finally, in
Section 6 we conclude our paper.

2 Related Work

Despite our extensive search, we were not able to identifypablished work that proposes a way to efficiently
create large numbers of threads and, hence, be directly araiplp to ours. However, there have been many
proposals to overcome this problem. One idea that has besiyhased and extensively studied, is to create a

smaller number of threads and equally distribute the waek llas to be performed among them. Representative
examples from this category aBiided Self-Scheduling [12] andFactoring [5]. Other ideas have been proposed
and implemented, in order to reduce the amount of time reduio complete basic operations in threading
libraries. An important methodology in this category isyaimg of used objects, in order to avoid expensive
allocations of memory. Others include lazy techniques [4,3), memory aware creation of parallel tasks and
self-adapting techniques for applications [1, 2, 10].

In this paper, many of these ideas are employed and used badtseon which we have built our own frame-
work. The latter provides the means to efficiently creatgdarumbers of threads, which is what differentiates
our work from previous approaches.

3 The Cost of Handling Parallelism

In this section, we analyze the cost of handling parallelismmontemporary threading libraries. Our goal is to
identify the operations that have the highest impact on tleeh®ad imposed by the parallelization process. The
main result of the following analysis is that two operati@ans the most important ones:

e Operations on ready-queues, which are used to dispatcidhfer execution.

e Creation of threads. Since most threading libraries ekpbaiycling-queues for this operation, the impor-
tance of efficiently handling queues becomes even greater.

We consider the class of threading libraries that inteynadle a local queue per processor to recycle objects.
This class can be further divided into two categories. Tt @ine includes the libraries that allocate a memory
region during thread creation and logically divide it int@escriptor and a stack. In this case, the objects that
are recycled are the allocated memory regions. Librariasliblong to the second category use different data
structures to represent descriptors and stacks, whicteayeled separately. Newly created threads are inserted
into ready-queues, which are also local to each processmettr, each processor can access all other queues
to steal objects. Furthermore, we assume a fork/join madedre the main thread creates all other threads of
a parallel region, before suspending itself and joiningrdst of the processors in executing the newly created
threads. Lefl" be the time that a serial application requires to run. We eailtulate the tim&p, which is the
time required to run a parallel version of the applicationfoprocessors. It is assumed that the application is
parallelized such that it has only one parallel region aati’hthreads are created/(> P). If an application has
more parallel regions, the following analysis can be apdiieeach one of them. The tirfi® can be computed as
the sum of smaller time intervals, each one correspondirgsieecific operation. Those intervals can be defined
by splitting the parallelization process into logicallstilnct phases, which are as follows:

Tc: Thetime required to create a thread. Itincludes the tinfimtba memory region or descriptor in a recycling

queue and the time to initialize it. If an object cannot benfbin a recycling queue, a new one has to be
allocated.

Tg: The time required to enqueue a newly created thread intadyrqueue, so that it can be dispatched and
executed by a processor.

Tz

-
Main Thread

Tu+Te+TwtTr

T

TutTs+Tw+Tr

TL2

(6.3)

Te Tu+Te+TwtTr T

Execution Time

Figure 1. Creating fine-grained parallelism. The numbengarentheses correspond to the thread and the pro-
cessor that dispatches and executegitandTy are the defining factors in this case.

Tr: The time required by the user-level scheduler of the lytarfind a thread in a ready-queue and dispatch
it.

Ts: The time required to start a thread on a processor, aftasibleen selected for execution by the user-level
scheduler.

Tw: The time spent by the thread for the main computation. Ferést of this paper, we will assume that
the total work that has to be performed by the applicationvenly divided among all threads, hence
Tw =T/N.

Tr: The time required until the user-level scheduler is inghladter a thread has finished it's main computation.
We will assume that this step requires a predefined numberstiuctions to complete, hen@& can be
considered to be a constant.

In order to simplify our analysis, we divide it into two casés the first case, we assume that the total work
that the application has to perform has been divided amomgasty threads, that each one requires a very small
amount of time to complete. As a result, the main thread isbtat to create threads at a sufficient pace, leaving
at times processors without useful work. Figure 1 illugtsain example of an application that is executing on a
four processor system. The main thread is running on oneeof tlereating threads and enqueueing them into
four ready-queues. The other three processors, which pietelé, dispatch threads and execute them. It must
be clarified, that each processor executes useful work onlshé timeTl;, + Ts + Tw + T, whereas it waits
for new threads during all other time intervals. Howeveg, lgngth of some of those intervals is known a priori
and equald + T, which is why we directly use this value.

Taking the first processor as an example, we observe thatitik Yo the first thread to be created, before
dispatching and executing it. During execution of the tbrghe main thread continues to create new threads
and delivers them to the other two processors. However, whefirst processor finishes, the main thread has
not yet finished creation of the next thread that this pramessll execute. As a result, this processor has to wait
for Tro. With T, we denote the time that a processor requires to dispatcteadtirom a ready-queue. This
time is not constant and depends on the number of the awaidpdues, which in turn is equal to the number of
processors. For example, the second processor dispatehésst thread that it executes from it's own queue,

3

whereas the second thread is dispatched from the queue @fghprocessor (Thread 5). Since searching all
queues for a thread is performed lineafly,; depends linearly on the total number of processors. If tne ti
required to access a specific queudisand a processor has the same probability to find a thread infeine
ready-queues, then:

_ P.(Z—H) - To _ P+1
P P P 2

_TQ+2-TQ+3'TQ+...+P'TQ B (1+2+...+P)-TQ B

Trq T (1)

It is obvious that in the case being analyzed, oRly- 1 processors are used to execute threads throughout
the execution of the application. Therefore, the time nemglifor parallel execution equals the time that each one
of those processors requires to exechitd P — 1) threads. However, this time must be augmented by the time
that the last processor requires, until it starts executiadjrst thread, yielding:

N
Tp = ﬁ . (T0+TE+TL1 +T5+Tw+TT+TL2)+(P— 1) . (Tc—l-TE) (2)
Figure 1 reveals that the total time to execute a thread aridfevathe next one on each processor, i.e.,
Tih + Ts + Tw + Tr + Tro, equals the time to create and insert into a ready-queueetktethread that this
processor will execute, i.éP — 1) - (T¢ + Tg). As a result, Equation 2 can be rewritten as:

Tp = N (Lo 4 T+ (P 1) (Te + Ti)] + (P~ 1) - (Te + Te) =

i P ©

N e 1)+ (P 1) (T4 Te) = | ST (P 1) (T + 1)

oy
e

~

The first important observation from our analysis can be driem Equation 3. For fine-grained parallelism,
execution time of an application depends exclusively ortithe required to create a thread and insert it into a
ready-queue. Moreover, execution time depends equalliiasetentities.

In the second part of our analysis, we assume that the crpatatlelism is more coarse-grained. As a result,
the main thread is able to create threads in time, keepingredlessors busy. Figure 2 illustrates an example,
where an application is running on a four processor systdm.time required to execute each thread is depicted
for the three processors that dispatch threads when theatmh starts. Moreover, the time required to create
and insert a thread into a ready-queue is also depicted,der @ make the relation among all time intervals
clear. We observe that a processor never waits for a threadite, after it has dispatched it’s first thread, due
to the fact that the main thread has enough time to create meads. Moreover, as execution advances, more
threads are created and accumulated in the ready-queues.

We observe that the first processor has to waiflfer+ T, before it starts executing the first thread. Let us
assume that this processor manages to exdctiteeads until the main thread creates/élthreads. For the rest
of our analysis, we will assume, without loss of generathgt the main thread creates and inserts the last thread
into a ready-queue at the time the first processor finishesuérg thread:. Thus, those processors will execute
threads at the same pace for the rest of the application. Asudtr

4

1.1

Tu+Ts+Tw+Tr ‘

Thread 9

Thread 5

‘ Thread 1

Te| Ti+Ts+Tw+Tr ‘

3.3)

Thread 10‘

Thread 6

Thread 2

TE‘ Tu+Ts+Tw+Tr ‘

Main Thread

Thread 11 ‘ Thread 7

‘ Thread 3

‘ TutTs+Tw+Tr ‘

Thread 12‘ Thread 8

‘ Thread 4

‘ T+ Te+Tw+Tr ‘

‘ Tt et Tyt Tr ‘

‘ Tu+Ts+Tw+Tr ‘

Te| ‘ To+Ts+Tu+Tr ‘

TE‘ ‘ Tu+Ts+Tw+Tr

Execution Time

Figure 2: Creating coarse-grained parallelism. The numbeparentheses correspond to the thread and the
processor that dispatches and executé&jtandTr are important in this case too.

(N-1) - (Tc + Tg)

N -Tec+Tg)=k-(Tp1+Ts+Tw +T7)+ (Tc+TEg) = k =
(Te + Tg) (Tta +Ts +Tw + Tr) + (Tc + Tg) Tor ¥ To + Tor 7 Tr

(4)

During this time, threads are dispatched fréh- 1 processors. If we also take into consideration the time
that is required until the last processor starts executisdjist thread, a total of P — 1) - £ threads will already
have been executed, until the main thread creates all thadhrof the parallel region. At this point, the main
thread suspends itself and allows the processor it wasnmgrom to join the rest of the processors to execute
threads. As a result, there will B processors executing tié — (P — 1) - k remaining threads. Therefore, total
execution time will be:

P-1)-k
szi(P—)l Ti+Ts+Tw+Tr)+(P—-1)- (Tec +Tg)+
N—-(P-1)-k
+ (P) -(TL1+T3+Tw+TT)@

=(N-1)-(Tc+Tg)+ (P —
+N'(TL1+TS+TW+TT)—

(Te + Tg)+ (5)

P2-P+N-1

T T
2 (Te +Tg) +

iz (Tra +Ts + Tw + Tr)
The most important conclusion drawn from Equation 3 and Egu®, is that the execution time of a parallel
application heavily depends on the time to create a thred@agueue it into a ready-queue. In order to formulate
the timeT, we must take into consideration that during thread creatiomemory region or a descriptor has
to be found in a recycling queue. However, there is also tesipiity that such an object will not be found in
any of those queues and that a new one must be allocated. Esuena that the probability to find an object in
a queue is always, the probability to allocate a new object will f& — ¢ - P). If the time required to access a

5

specific queue is again equal T, the time required to allocate a new objecflisy, and the time required to
initialize the descriptor i9¢7, then:

TC:q-TQ—|—q'2'TQ—|—Q'3'TQ—|—...—|—Q'P-TQ—|—(1—(]'P)'(P'TQ+TC]V[)—|—TC[:
P (P+1 (6)
—g- ZED g Py (P T Toan) + T
Since the number of possible outcome®is- 1, we can sey = r/(P + 1),r > 1. Substitutingg in the last
Equation, gives us:

P P
To = 2T-TQ+<1—P+T1>'(P'TQ—i—TCM)—FTC[:
(7)
2-7r)-P2+(2+7r)-P P-r
= To+ (1- 1) Tem + T,
2. (P+1) o+ py1) fomTta

The total probability to find an object in any of tlierecycling queues must also be less than or equal to one.
Therefore, the following inequality must also hold:

§+T1§1:»r§1+% 8
Equation 7 reveals that the time required to create a threpdriis on the time spent to search for an object
in the recycling queues. Our analysis makes it clear thaidied the cost to handle parallelism requires to
minimize the cost of operations on queues. Moreover, thistmes more important as parallelism becomes more
fine-grained and the number of processors rises. Theseusimt$ are not in contrast to general belief, which
states that minimizing creation time for threads leads tteb@erformance for parallel programming models.
However, our analysis demonstrates the important role efaijpns on queues. Usually, efforts to reduce thread
creation time concentrated on minimizing the number of mgratbocations and on minimizing the time required
to initialize a descriptor, i.e., timég-;; andT; in Equation 7. This was also the main argument for introdgicin
recycling queues in threading libraries. Although this wasmportant step, our analysis suggests that after the
introduction of recycling queues, the main problem hadethifo the time required for operations on queues.

4 Defining Batches of Threads

According to the previous section, the main question is howetluce the cost of operations on queues. An
obvious thought would be to use lock-free mechanisms tatins® and extract objects from queues. However,
this is not always possible. For example, if it is requirec¢oess a queue from both the head and the tail, the
data structure that represents a queue must maintain twtepgi Insertion or extraction of an object implies that
both pointers must be updated together atomically. Heheeynderlying hardware must provide the necessary
instructions to allow this kind of operations, which is navays the case.

The observation that leads us to a more general solutiohgi$act that the associated cost for operations
on queues is always measunas thread. This observation reveals an obvious way that allows usdaae the

6

Pointer {% ; J' ; J') J’ J L Pointer N

Pointer /f Pointer ; Pointer P Pointer

Descriptor Descriptor Descriptor Descriptor

Batch of Threads

Figure 3: Representation of a Batch of Threads.

aforementioned cost. If an operation on a queue is not peedron just one thread, but on a team of threads, the
cost of the operation can actually be amortized among tleadlsr of the team. This allows us to introduce the
notion of aBatch of Threads (BoT), which can be defined as a team of threads, that aredthadlan indivisible
entity with respect to operations on queues. Accordindlg, services provided by a threading library can be
extended, to include creation and insertion into readysgaef BoTs.

The above definition is very general and does not include atgild about how to implement BoTs. One
possibility to implement them would be to use the pointeeadly present in each descriptor, that is used to
manage threads in queues. As can be seen in Figure 3, eachemainabBoT uses this pointer to keep track of
the next member, except of the last one that terminates tielBarder to be able to efficiently insert a BoT into
a queue, it is necessary to use two pointers, that point téirieand the last member of it. Under this scheme,
a BoT is actually a queue of its own, which has not yet beerrtiesdénto a predefined queue of a library, like
the ready and the recycling queues. Obviously, an impoparameter for a BoT is it’s size, i.e., the number of
threads that constitute the BoT.

Probably the easiest way to exploit BoTs is for loop-levelafialism, although their applicability is not
limited to this domain. The regularity of loops in most pragmming languages allows easy integration of BoTs
into threaded applications and allows the programmer tiyeagress parallelism in a natural way, as will be
demonstrated in the next section.

4.1 Defining the API for Batches of Threads

In order to demonstrate that BoTs can actually be used iradimg libraries, we implemented an API in the
context of NthLib. More specifically, the addition of the Afr BoTs has been carried out on a newer imple-
mentation of the library, which has been optimized with eetgo memory requirements [15, 16]. This allows
creation of a greater number of threads, compared to thaatignplementation of NthLib. Our main concerns
while designing the API were simplicity and ease of use. kbeorto achieve these goals, the API has been
designed to be as similar as possible to existing and widsdy WAPIs. Moreover, the design allows both, the
original and the new API for creating threads to be used ganabusly in an application, if the programmer
decides that this would benefit the application.

Carefully analyzing an example that uses the current exterbf NthLib to create threads, reveals important
aspects of the procedure and helps us define the interfad&ofs. Figure 4 presents the simplest method to
create parallelism using NthLib. The functionh h_sel f () returns a pointer to the descriptor of the running

7

/**/

void nth_func(long Argl, |ong Arg2)

{
/+* Work performed by each thread */

}

/**/

voi d nth_main()

{
| ong i;
struct nth_desc *nth, *nth_nyself = nth_self();

nt h_depadd(nth_nysel f, NumOf Threads + 1);

for (i =0; i < NunOfThreads; i++) {
nth = nth_create_1s(nth_func, 0, nth_nyself, 2, Argl, Arg2);
nth_to_ Irq(i % kthreads, nth);

}
nt h_bl ock();

}

/**/

Figure 4: Creating threads with the original API of NthLikt ‘hr eads’ is the number of processors.

thread, which is stored int h_mysel f . Using the last value, a number of dependencies is addee twutinent
thread Ot h_depadd()), which equals the number of threads that will be creatddOf Thr eads). The
additional dependency is added for internal use of therybi@onsequently, all threads are created one by one in
a loop through the functiont h_cr eat e_1s() , which returns a pointer to the descriptor of the newly @dat
thread. Through this value, the thread is inserted into dyreg@eue it h_t o_l r g()). Finally, the main thread
suspends itself by calling the functiort h_bl ock(), hence calling the user-level scheduler to select a new
thread to run on the processor.

A thread is interested only on the number of dependenciessitdnd not on the method used to create those
threads. Hence, the functiort h_depadd() does not need any modifications in the API for BoTs, which is
also true for the functiomt h_bl ock() . As a result, new functions must be added only to create agdesre
threads. Defining the latter ones poses no special problémhe first and the last member of a BoT are known,
insertion either in front or at the end of a queue can be pexdreasily. However, defining the functions to
create BoTs seems to be more demanding. Creation of a thaedokecdivided into two stages. First, a memory
region or a descriptor has to be found in a recycling queubatffails, a new object must be allocated. Secondly,
the descriptor must be initialized. The goal in using BoTte iminimize references to queues. Therefore, finding
objects in the recycling queues should also be done using BBa&ch time a processor locks a queue, in order
to create a BoT, it should return from that queue as many s possible, without surpassing the requested
size of the BOT. Initializing each descriptor in this stemuld increase the time that each processor remains
in a critical section. Therefore, it would be more efficientinitialize each descriptor of a BoT, after the latter
has been created. Due to this fact, creating a BoT and imitigleach descriptor of it have been defined to be
separate operations in the current implementation. Asudtyéise API that we defined is as follows:

8

e struct nth_desc *nth_batch_get_desc(struct nth_desc *=*|ast_nth,
| ong numof _nt hs):
Create a BoT of sizeumof _nt hs. A pointer to the first member of the BoT is returned, whereas a
pointer to the last member is storediast _nt h.

e void nthbatchcreate(struct nthdesc *nth, void (*nthfunc)(),
int ndep, int nsucc, int narg, ...):
Initializes the descriptont h, which belongs to a previously created BoT. The thread wicaite the
function nt h_f unc() and will depend omdep threads. The parametensucc andnar g are the
number of threads that depend on the thread being createthamiimber of arguments t h_f unc.
Finally, the dependant threads and the actual parameténs &inction are mentioned.

e void nth_batchcreate ls(struct nth.desc *nth, void (*nth_func)(),
i nt ndep, struct nth.desc *succ, int narg, ...):
This function is the same as the previous one, with one exuept allows only one thread to depend on
the thread being createdycc).

e struct nth._desc *nth_batch_get _next(struct nth.desc *nth):
Returns the thread that followg h in the BoT orNULL, if there are no other threads.

e void nthobatchto.lrqg(int which, struct nth.desc *first_nth,
struct nth_desc |l ast_nth):
Insert the BoT with first membdri r st _nt h and last membdrast _nt h into the local ready-queue of
processomhi ch.

e void nthobatchto.lrgend(int which, struct nth.desc *first_nth,
struct nth_desc |l ast_nth):
Insert the BoT with first membdri r st _nt h and last membdrast _nt h into the end of the local ready-
queue of processarhi ch.

Having defined the new API, we will demonstrate its use by ghmanaccordingly the example of Figure 4.
The new program is depicted in Figure 5. We assume that ea€iwiBichave a size oBat chSi ze and that the
total number of threads will be agaMumOf Thr eads. Firstly, we compute the total number of BoTs that will
be createdr(t h_bat ch) and the possible remaindert(h_bat ch_r emai nder). In the next step, we update
the dependencies of the current thread, as in the previammeg. At this point, we observe that instead of the
loop that creates threads, there is a loop over all BoTs. dh #aration, a BoT of siz8at chSi ze is allocated,
using the functiomt h_bat ch_get _desc() . An important difference is that in addition to the pointkatt
is returned {i r st _nt h), another pointer to the last member of the BoT is also updétast _nt h). At this
point, the descriptors in the BoT have not yet been initlizUsing the temporary variableenp nt h and a
second loop, we initialize the first descriptorit h_bat ch_cr eat e_1s()) and move to the next descriptors in
the BoT ft h_bat ch_get next ()). Finally, using the pointers to the first and last membethefBoT, we
insert the latter into the local ready-queue of a procedtthere are any remaining threads, they are handled in
the same way, as a BoT of a smaller size. The last step, as amithieal example, is to suspend the main thread.

The main difference of this approach, compared to the fistrgte, is that thread creation is handled in two
levels, instead of one. Specifically, we handle a BoT as otiyanith respect to operations on queues, and each

9

/**/

voi d nth_main()

{

| ong i, nth_batch, nth_batch_renmminder;

struct nth_desc *first_nth, *last_nth;

struct nth_desc *tenp_nth, *nth_nmyself = nth_self();

nth_batch = Nuntf Threads / BatchSi ze;

nt h_bat ch_renai nder = Nunf Threads - nth_batch * BatchSi ze;

nt h_depadd(nth_mysel f, NumOf Threads + 1);

for (i =0; i < nth_batch; i++) {
first_nth = nth_batch_get_desc(& ast_nth, BatchSize);
temp_nth = first_nth;
while (tenmp_nth !'= NULL) {

nth_batch_create_1s(tenmp_nth, nth_func, 0, nth_myself, 2, Argl, Arg2);
tenmp_nth = nth_batch_get _next(tenp_nth);

}
nth_batch_to_lrqg(i %kthreads, first_nth, last_nth);

}

first_nth = nth_batch_get_desc(& ast_nth, nth_batch_renainder);

temp_nth = first_nth;

while (tenmp_nth !'= NULL) {
nth_batch_create_1s(tenmp_nth, nth_func, 0, nth_myself, 2, Argl, Arg2);
tenmp_nth = nth_batch_get _next(tenp_nth);

}

nth_batch_to_|rqg(0, first_nth, last_nth);

nt h_bl ock();

}

/**/

Figure 5: Creating threads with the new API of NthLib.

descriptor of a BoT separately to initialize them. The ségpaint that needs some attention, is that the number
of threads that must be created might not be exactly digdiylthe size of the BoTs. In this case, the remaining
threads must be handled separately.

A last remark about the newly defined API, is the fact thatiit ba used together with the previous approach,
due to the fact that both create and enqueue threads usirgathe ready and recycling queues. A possible
scenario, where this could be useful, would be an applicatiat needs to create a small number of threads per
processor in some parallel regions, whereas a larger nunhiieeads in the remaining regions. In the first case,
the original API could be used, whereas in the second caseethi®ne.

10

14

Head
Tail *}

Local

wews |1 1| [“ @
1

Local 1
queue 2

Head
Local Tail
queue 1
ol 1 L LM "’

queue 0

6
Head

&
Head

—__Tail
(d)

Figure 6: Finding descriptors in recycling queues to cragBatch of Threads.

4.2 Implementation Details

In order to better comprehend the concept of BoTs and thdenpial, we will briefly describe some im-
plementation details. Of all the functions that were defimedhe previous section, the most important are
nt h_bat ch_get _desc() and the functions that insert a BoT into a queue. All othecfioms are quite sim-
ple. The functionyt h_bat ch_creat e() andnt h_bat ch_cr eat e_1s() only initialize the fields of the
descriptor. Some of them are initialized according to thaipeters of those functions, whereas others get default
values. Their only differences, with respect to the comaesiing functions of the original APht h_cr eat e()
andnt h_cr eat e_1s()), are that they receive as a parameter the descriptor thettbreunitialized and that the
pointer to the next descriptor in a queue is not initializede to the fact that it is already used to manage the
descriptor in a BoT. The functiont h_bat ch_get _next () is also very simple, since it only returns the value
of the previously mentioned pointer.

Using Figure 6 as an example, we will describe havwh_bat ch_get _.desc() creates a BoT. We assume
that an application is executed on four processors andibaetuested size of a BoT is 16. Moreover, we assume
that the descriptors in the recycling queues are as depitftdte above function has been called from thread 2,
the search for descriptors will start from local queue 2.eAticquiring the lock of the queue, the function will
extract as many descriptors as possible, without surgasisérequested size of the BoT. In our example, it will
take two descriptors and update two pointers to the firstastthhember of the BoT (Case (a)). Another variable
will be updated to reflect how many descriptors are still mged he search will continue on local queue 3, where
three more descriptors will be added to the BoT and all véagatwill be updated accordingly (Case (b)). If this
gueue had at least 14 descriptors, the BoT would be comgiatesince this is not the case, local queue 0 is
examined. Five more descriptors will be added to the BoT €Gay and finally local queue 1 will be accessed.
One more descriptor will be added to the BoT and all variabldisbe updated. At this point, all queues have
been checked, however the BoT is still not complete. In thgeg¢the remaining descriptors are allocated from
memory.

11

An important conclusion from the description above, is thet that creating a BoT requires a maximum
number of accesses to queues, which is equal to the numbeoadgsors. If the 16 descriptors of the above
example would have been allocated separately, a minimuré attesses to queues would be necessary, due to
the fact that a descriptor might not be available in a queuerelver, the number of descriptors that must be
allocated in the above scenario, remains the same eithiethrd@tnew or the original API.

Although the functions that insert a BoT into a queue areegmitportant, their implementation is simple.
After acquiring the lock of the specified queue, those fumdiinsert the BoT either in the front or at the end
of the queue. This procedure is simplified by the fact that & Baactually represented using two pointers, one
to the first and one to the last member. Since all predefinedeguim NthLib maintain the same information,
insertion of a BoT poses no special problems.

5 Experimental Evaluation

In order to evaluate our approach, we implemented the peap®8$! for BoTs in the context of NthLib. The
version of NthLib that has been used, is the one that implésreebirect Sack Reuse scheme, which allows the
library to drastically reduce memory requirements to repné parallelism, without sacrificing performance. We
refer the reader to [15, 16] for more details about the speicifplementation.

Our experiments were run on two hardware platforms. Thedivstis a 4-processor, HyperThreading enabled
system, running Linux 2.6.8. The second one is SMTSIM [14jnaulator that implements an Alpha processor
with 8 execution contexts (EUs). More detailed charadiedggor both systems are summarized in Table 1. The
compiler used is gcc 4.0.2 for both platforms, at the higbhesimization level (-O3).

Our evaluation is focused towards proving the main poirds tiave been discussed so far in the paper. We
believe that our experiments clearly show that:

1. The overhead of handling queues is significantly redusitguBoTs, which in turn affects positively the
time required for other basic operations in threading fiesa

Intel processor based system SMTSIM

Processors

4 Intel Xeon MP HTs, 2 GHz,
2 execution contexts/process

1 Alpha based,
I8 execution contexts

L1 Data Cache

8KB shared, 4-way assoc.

32KB, 2-way assoc.,
10-cycle miss latency

L1 Inst. Cache

12KB shared execution trace

32KB, 2-way assoc.,
10-cycle miss latency

L2 Cache 512KB shared, unified, 256KB, 2-way assoc.,
8-way assoc. 15-cycle miss latency

L3 Cache 1MB shared, unified, 2MB, 2-way assoc.,
8-way assoc. 125-cycle miss latency

D-TLB 64 entries 128 entries

I-TLB 2x64 entries 48 entries

DRAM 2GB Depends on host systein

Table 1: Hardware configuration of the experimentationfpiat.

12

2. Real-world cases where usage of BoTs is beneficial exidditi@nally, converting those applications to
use BoTs is straight-forward.

3. Using larger numbers of threads can lead to better pediocain several cases, where load-balancing and
locality of memory references are achieved automaticallgni application.

The first benchmark we used, which we will refer toEspty, follows the fork/join model. The master
thread creates one million empty nano-threads, whereasldkie processors dispatch and execute them. The
master thread blocks after it has created all threads, heallieg the user-level scheduler and joining the other
processors to execute threads. This benchmark is appefwreestimating the pure run-time overhead of thread
management in NthLib. In the original version of the benctknahich we will refer to adNatural, all threads
are created one-by-one. Additionally, we implemented aigar which we will refer to a8atch, that creates
threads using BoTs with a size of 8.

Figure 7 summarizes the results for this benchmark on battfiopms. Execution times are given in seconds
for the Intel based system and in millions of simulated clogg&les for SMTSIM. For the latter, the horizontal
axis represents the number of EUs used. For the Intel basgtensythe numbers of physical processors and
EUs used on each one of them are mentioned. For example, (dedns that 1 EU was used on each one of
the 4 physical processors. A special case is the one dendteddwl1/2), where 2 EUs were used on 2 physical
processors and 1 EU on the other 2 physical processors. Néittkception of two EUs on one physical processor,
creating threads using BoTs is from 5,06% (case (1,1)) u83%6 (case (2,2)) faster on the Intel platform. For
SMTSIM, the range is between 1,70% (1 EU) up to 69,11% (4 EUSs).

In order to better understand these large differences, eheda Figures 10 up to 13, where the time required
for basic operations of NthLib is presented. To obtain threselts, we run the same benchmarks as above and
used the Time Stamp Counter on both hardware platforms, a&sune such small time intervals. All results
presented are per thread, meaning that the measured timBatéh have been divided by the size of each BoT.
With respect to the Intel platform, creation time of a thréad not changed significantly, when BoTs are used.
This can be attributed to the large number of descriptorshthae to be allocated during execution. The time
to start a thread after it has been selected to run, also didhamge significantly, since the steps required to
do so are almost identical in both cases. However, the tinemguieue a thread into a ready-queue has dropped
significantly, from about 180 to about 12 cycles per threachalfy, the time required to find the next thread
that will be executed on a processor, also did not changefisantly. The exception occurs when all physical
processors and EUs are used. At this point, the contentidheoqueues starts to show in tNatural variation,
whereas the usage of BoTs contributes in keeping contetdien With respect to SMTSIM, we observe that
the time to create a thread is worse, if up to two EUs are useghinA this can be explained by the fact that
many descriptors have to be allocated during execution. Aesalt, when members of the corresponding data
structures have to be accessed, they are usually not fouhd gache hierarchy. If, however, the number of EUs
rises, the time required drops significantly, as reuse afrisrs improves. Since SMTSIM does not measure
the time required to serve a system call, the behaviour sxdase is consistent with our theoretical approach,
where time spent for memory allocation is considered to fae las with the Intel platform, time to enqueue a
thread again improves significantly. We also notice thatithe required to find the next thread to be executed,
behaves as in the case of the Intel platform, although theenton on the queues shows up much earlier in the
Natural variation.

13

As our approach is especially suitable for loop-level daliam, we chose to use in our evaluation the C
version of two of the Livermore Kernels [3, 8], specificallpdp 6 and Loop 21. The Livermore Kernels are
excerpts from actual production codes, used at the Lawrkeeemore National Laboratory. Hence, they can
be used to evaluate the performance of our approach in rpitajons. Loop 6 is a general linear recurrence
equation. Due to data dependencies, the original code dbtdgehas to be executed serially. Therefore, we
parallelized a modified version of the loop, as proposed]inTBe main characteristics of the modified loop are
that it is unbalanced and that it requires fine-grained symihation. We implemented three variations of the
loop. The first onekqual) follows a classical parallelization strategy. A numbettokads, equal to the number
of processors used, are created and the outer-loop iterspiace is divided equally among them. The second
variation (Natural) creates one thread for each point of the iteration spadeeabtiter-loop. Threads are created
one-by-one. The last variatioB#tch) is similar toNatural. However, threads are created using BoTs of size 8. In
order to obtain measurable execution times for the loop,ha@ged the problem size 16 = 7500, which results
to an execution time of about 1 second for Metural variation on the Intel based system. Figure 8 summarizes
the results for this loop on both platforms. For the Inteldzhsystem, the overhead of synchronization on the
queues and in the application are obvious forKatural variation. However, using BoTs to create the threads
significantly alleviates the queueing subsystem of thaliorAs a result, the performance becomes comparable
to the Equal variation. For SMTSIM, we observe the same behaviour forNaRiral variation, as on the Intel
based system. However, tBatch variation yields not only comparable, but better resuléattheEqual variation
on this system. SMTSIM implements a very efficient lockingchemism, based on the notion offagkbox [14].

As a result, it eliminates a large percentage of the overlasadciated with handling queues in the library,
compared to the Intel based system, but also the synchtmmz&quired in the application. This, in turn, makes
the imbalance present in the application a much more impboféetor. Using theequal variation, all threads
have not the same amount of work to complete. As a resultuéracime depends largely on the slowest thread.
In the Batch version, however, the large number of threads allows thécapion to self-tune it's execution and
automatically achieve a much better load-balance amongepsors. Although it is possible to implement the
Equal variation by taking into account load-imbalance, the cadmiich larger and more difficult to understand.
On the other hand, using BoTs has the same effect and is muagiesito program.

The second kernel that we decided to employ for our evalngtiorposes is a very interesting one, as it
demonstrates how data distribution among threads canhgmfétct performance. Loop 21 is & x 25 by
25 x 25 matrix-matrix multiply. We implemented the same three ations as in the previous loop, parallelizing
the inner-most and largest loop of the application. Furtttee, we changed the problem sizeXo= 200001, so
as to obtain a 1 second execution time oflXadural variation on the Intel based system. Figure 9 summarizes the
results for this loop on both platforms. Obviously, the elifnce between tHequal and the other two variations
is impressive. The reason behind this large differenceasiploitation of the cache. For tligual variation,
the parallelized, inner-most loop has to work on more rowtbiefarge array that is being multiplied. As a result,
the cache hierarchy is not exploited in the best possible \Wmyvever, when the remaining two variations are
used, one thread is actually created for each row that isiptiett. As a result, the cache is exploited almost
perfectly for each thread in this case. Although it is pdsstb rearrange the loops of the kernel, so that the
Equal variation requires about the same amount of time to compthate requires careful analysis from the
programmer. However, using more threads in this case atitatha provides a better mapping between the data
that each thread has to access and the cache hierarchy gbthms Again, this provides the programmer with a
more natural way to express parallelism and obtain goodpaence.

14

6 Conclusions

In this paper, we presented a methodology to efficientlyterksage numbers of threads, using BoTs. We defined
an APl in the context of NthLib and discussed implementatietails. Our evaluation shows that time to handle
parallelism has significantly improved. Moreover, expiajtlarge numbers of threads has proven to be beneficial
in several cases, either due to better load balancing ordistidbution among threads. This proves that our
approach is viable and justifies our effort towards thisaios.

Our current work focuses on better exploiting our improvetagoresented in this paper. Specifically, it
has become clear that applications are not taking full adggmnof our newly implemented mechanisms, due to
excessive memory allocations for descriptors. This iggergd by the fact that overhead for dispatching and
executing a thread in NthLib are still quite high, comparedhe time that is required to insert a thread into
a ready-queue. This leaves the main thread without enouggrigers in the recycling queues. In order to
overcome this inefficiency, we are currently trying to expBoTs internally in the library. This approach can
work together with the one presented in this paper. Oumingkperiments show that this can improve even more
the time required to create and execute a thread and yietustmtter results for our applications.

Acknowledgments

We would like to thank Christos D. Antonopoulos and DimiriD. Nikolopoulos, for providing access to the
systems that where used throughout the evaluation pro@éssvould also like to thank Jeffery A. Brown, who
patiently answered many questions about SMTSIM.

15

275

650

()

(1,2) (2,1) (2,2) (4,1) 3,2)

[l Natural [Batch

(4, 7%)

(4.2)

600
550 —
500

4 6 8

[l Natural [[] Batch

Figure 7: Execution time for thEmpty benchmark on the Intel and SMTSIM platforms.

4.50 6000
400 5500
5000
3.50 4500
3.00 4000
250 3500
3000
200 2500
1.50 — 2000
1,00 1500
1000 —
0.50 — 500
0.00 0~
1,1) 1,2) 2,1 (2,2) (4,1) (32 4% 42 4 6 8
‘. Equal [Natural [] Batch ‘ ‘. Equal [Natural [] Batch‘
Figure 8: Execution time for thieoop 6 benchmark on the Intel and SMTSIM platforms.
12.00 — 3250
11.00 3000
10.00 - 2750
9.00 4 2500 —
8.00 2250 —
7004 2000 —
1750
6.00
1500 —
5.00 1250
4.00 1000 4
3.00 750 -
1.00 250
0.00 0~

()

1,2) (2,1) 2.2) (4.1) (3,2)

‘. Equal [Natural [] Batch ‘

(4,7%)

(4.2)

4 6 8

‘. Equal [Natural [] Batch‘

Figure 9: Execution time for thieoop 21 benchmark on the Intel and SMTSIM platforms.

16

1,1)

IIIIIIIIIIIIIJ

1,2) 21 2.2 4,1) 3.2

[l Natural [Batch

(4, %) 4,2

1,1 (1,2) 2,1

[l Natural [Batch

Figure 10: Time required to create and enqueue a thread dnttielatform.

2,2) 4,1) 3.2

4,%) 4,2

1100
1000]
900 - - -
]]]
800]]]
700 [| [| [|
]]]
600]]]
500 [| [| [|
- - -
300 | =
200 — -
100 [
0 []
1,1) (1,2) @2,1) 2.2) 4,1) 3.2) 4, %) 4.2) 1,1) (12) 2,1) 2,2) 4,1) 3.2) (4, %) 42
Figure 11: Time required to lookup and start a thread on thed platform.
250 200
225 180 —
200 160 —
175 140 —
150 120 —
125 100 -
100 80 —
75 60 —
50 — 40
25 — 20 —
0 — 0 —
1 2 4 6 8 1 2 4 6 8
Figure 12: Time required to create and enqueue a thread orS8WMT
2250 225
2000 200 —
1750 175 —
1500 150 —
1250 125 —
1000 100 —
750 75 —
500 50 —
250 25 —
0 0 —
1 2 4 6 8 1 2 4 6 8

Figure 13: Time required to lookup and start a thread on SWILSI

17

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatftegou. Scheduling Algorithms with Bus Band-
width Considerations for SMPs. Proceedings of the 32nd International Conference on Parallel Process-
ing, pages 547-554, Kaohsiung, Taiwan, October 2003.

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy ThreadsTlaead Virtual Machine for the Cyclops64
Cellular Architecture. IrProceedings of the 5th Workshop on Massively Parallel Processing, Denver, Col-
orado, April 2005.

J. Feo. An Analysis Of The Computational And Parallel Qaexity Of The Livermore Loops. UCRL-
95708, Lawrence Livermore National Laboratory, 1986.

S. C. Goldstein, K. E. Schauser, and D. E. Culler. LazyeBlls: Implementing a Fast Parallel Catlurnal
of Paralldl and Distributed Computing, Volume 37, Issue 1:5-20, August 1996.

S. Hummel, E. Schonberg, and L. Flynn. Factoring: a Reatand Robust Method for Scheduling Parallel
Loops. InProceedings of Supercomputing 1991, pages 610-632, Albuquerque, USA, 1991.

D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, .JA. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitectutetel Technology Journal, Volume 6, Issue 1:4-15, Febru-
ary 2002.

X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. Atary Implementation of the Nano-Threads
Programming Model. IfProceedings of the 2nd International EuroPar Conference, pages 644—649, Lyon,
France, August 1996.

F. McMahon. The Livermore FORTRAN Kernels Test of the Naennal Performance RangPBerformance
Evaluation of Supercomputers, Elsevier Science B.V.,, North Holland, Amsterdam, Volume 4:143-186, 1988.

E. Mohr, D. A. Kranz, and Jr. R. H. Halstead. Lazy Task Gima A Technique for Increasing the Gran-
ularity of Parallel Programs.IEEE Transactions on Parallel and Distributed Systems, Volume 2, Issue
3:264-280, July 1991.

D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polyobmoulos, J. Labarta, and E. Ayguadé. Is Data Dis-
tribution Necessary in OpenMP? Rroceedings of Supercomputing’ 2000: High Performance Computing
and Networking Conference, Dallas, TX, November 2000.

C. Polychronopoulos, N. Bitar, and S. Kleiman. Nane#us: A User-Level Threads Architecture. Techni-
cal Report 1297, CSRD, University of lllinois at Urbana-@Gtpaign, 1993.

C. Polychronopoulos and D. Kuck. Guided Self-SchadyliA Practical Scheduling Scheme for Parallel
Supercomputerd EEE Transactions on Computers, 36(12):1485-1495, December 1987.

K. Taura, K. Tabata, and A. Yonezawa. Stackthreads/Mitegrating Futures into Calling Standards.
Technical Report TR 99-01, University of Tokyo, 1999.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous Muféading: Maximizing On-Chip Parallelism. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 392—403, S.
Margherita Ligure, Italy, 1995.

18

[15] I. E. Venetis and T. S. Papatheodorou. A Time and MemdfigiEnt Implementation of the Nano-Threads
Programming Model. Technical Report HPCLAB-TR-210106gtHPerformance Information Systems
Laboratory, January 2006.

[16] I. E. Venetis and T. S. Papatheodorou. Tying Memory Mgmaent to Parallel Programming Models. In
Proceedings of the 2006 European Conference on Parallel Computing (EuroPar 2006), pages 666—675,
Dresden, Germany, August 2006. Springer Verlag, LNCS \i284

19

