
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Handling Massive Parallelism Efficiently:

Introducing Batches of Threads

Ioannis E. Venetis

Theodore S. Papatheodorou†

Guang R. Gao

CAPSL Technical Memo 70

October 9, 2006

Copyright c© 2006 CAPSL at the University of Delaware

†High Performance Information Systems Laboratory
Department of Computer Engineering & Informatics

University of Patras, Rion 26500, Greece

University of Delaware • 140 Evans Hall • Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

Emerging parallel architectures provide the means to efficiently handle more fine-grained and larger num-
bers of parallel tasks. However, software for parallel programming still does not take advantage of these
new possibilities, retaining the high cost associated withmanaging large numbers of threads. A significant
percentage of this overhead can be attributed to operationson queues. In this paper, we present a methodol-
ogy to efficiently create and enqueue large numbers of threads for execution. In combination with advances
in computer architecture, this reduces cost of handling parallelism and allows applications to express their
inherent parallelism in a more fine-grained manner. Our methodology is based on the notion ofBatches of
Threads, which are teams of threads that are used to insert and extract more than one objects simultaneously
from queues. Thus, the cost of operations on queues is amortized among all members of a batch. We define
an API, present its implementation in the NthLib threading library and demonstrate how it can be used in real
applications. Our experimental evaluation clearly demonstrates that handling operations on queues improves
significantly. Furthermore, we show that better load-balancing and locality of memory references, due to
larger numbers of thread, can automatically improve performance of applications.

i

Contents

1 Introduction 1

2 Related Work 1

3 The Cost of Handling Parallelism 2

4 Defining Batches of Threads 6
4.1 Defining the API for Batches of Threads 7
4.2 Implementation Details 11

5 Experimental Evaluation 12

6 Conclusions 15

List of Figures

1 Creating fine-grained parallelism. 3
2 Creating coarse-grained parallelism. 5
3 Representation of a Batch of Threads. 7
4 Creating threads with the original API of NthLib. 8
5 Creating threads with the new API of NthLib. 10
6 Finding descriptors in recycling queues to create a Batch of Threads. 11
7 Execution time for theEmpty benchmark on the Intel and SMTSIM platforms. 16
8 Execution time for theLoop 6 benchmark on the Intel and SMTSIM platforms. 16
9 Execution time for theLoop 21 benchmark on the Intel and SMTSIM platforms. 16
10 Time required to create and enqueue a thread on the Intel platform. 17
11 Time required to lookup and start a thread on the Intel platform. 17
12 Time required to create and enqueue a thread on SMTSIM. 17
13 Time required to lookup and start a thread on SMTSIM. 17

List of Tables

1 Hardware configuration of the experimentation platform. .. 12

ii

1 Introduction

Since the beginning of the computing era, the computationalpower required to solve the most demanding prob-
lems of each specific period of time, usually exceeded the capacity of even the fastest uniprocessor system.
Parallel architectures have emerged as a solution to this shortcoming. Linking more computational units together
over an interconnection network, made it possible to compute solutions to problems that were previously thought
impossible to solve. A wide range of parallel architectureswith different characteristics has been proposed and
built. However, it became obvious very soon that the cost to handle parallelism was limiting the efficiency of
those architectures. Although many of them have been designed to allow an application to express and efficiently
execute all of it’s inherent parallelism, the cost to handlesuch an amount of parallelism has proven too high to
allow it.

Recent advances in computer architecture, such asSimultaneous MultiThreading (SMT) [14], HyperThread-
ing [6], which is an implementation of SMT from Intel, and multicore processors, allow efficient execution
of more fine-grained parallelism, in addition to a larger number of parallel tasks. This has been achieved by
better exploiting computational units of a processor and faster implementation of mutual exclusion and context-
switching in hardware. On the other hand, software has not yet been adopted to fully exploit these changes.
At large, parallel programming methodologies have not beeninfluenced by the new possibilities offered from
emerging parallel architectures. Although previously developed methodologies still apply, those architectures
offer new grounds for unique optimizations.

In this paper we present a novel approach that allows fast creation of large numbers of threads. Our approach
is based on the notion ofBatches of Threads, which are defined as teams of threads that are handled together,
with respect to operations on queues. In conjunction with the fact that modern parallel architectures are able
to handle such a number of threads, allows us to significantlyreduce cost of handling parallelism and allows
applications to express their parallelism at a more fine-grained level. We define an API for Batches of Threads
in the context of NthLib [7], a threading library that implements the Nano-Threads programming model [11],
and demonstrate how the idea can be used in real applications. Moreover, our experimental evaluation clearly
demonstrates the benefits of using Batches of Threads. Not only does performance of operations on queues
improve, but using larger numbers of threads in an application can automatically reduce it’s execution time, due
to better load-balancing and locality of memory references.

The rest of this paper is organized as follows: In Section 3 a theoretical analysis of the execution time of
a parallel application is presented, in order to justify thesignificance of operations on queues in contemporary
threading libraries. In Section 4 we define Batches of Threads and the corresponding API that has been im-
plemented in NthLib. Moreover, the most important implementation details are discussed and an example that
uses the previously defined API is presented. In Section 5 we experimentally evaluate our approach. Finally, in
Section 6 we conclude our paper.

2 Related Work

Despite our extensive search, we were not able to identify any published work that proposes a way to efficiently
create large numbers of threads and, hence, be directly comparable to ours. However, there have been many
proposals to overcome this problem. One idea that has been heavily used and extensively studied, is to create a

1

smaller number of threads and equally distribute the work that has to be performed among them. Representative
examples from this category areGuided Self-Scheduling [12] andFactoring [5]. Other ideas have been proposed
and implemented, in order to reduce the amount of time required to complete basic operations in threading
libraries. An important methodology in this category is recycling of used objects, in order to avoid expensive
allocations of memory. Others include lazy techniques [4, 9, 13], memory aware creation of parallel tasks and
self-adapting techniques for applications [1, 2, 10].

In this paper, many of these ideas are employed and used as thebasis on which we have built our own frame-
work. The latter provides the means to efficiently create large numbers of threads, which is what differentiates
our work from previous approaches.

3 The Cost of Handling Parallelism

In this section, we analyze the cost of handling parallelismin contemporary threading libraries. Our goal is to
identify the operations that have the highest impact on the overhead imposed by the parallelization process. The
main result of the following analysis is that two operationsare the most important ones:

• Operations on ready-queues, which are used to dispatch threads for execution.

• Creation of threads. Since most threading libraries exploit recycling-queues for this operation, the impor-
tance of efficiently handling queues becomes even greater.

We consider the class of threading libraries that internally use a local queue per processor to recycle objects.
This class can be further divided into two categories. The first one includes the libraries that allocate a memory
region during thread creation and logically divide it into adescriptor and a stack. In this case, the objects that
are recycled are the allocated memory regions. Libraries that belong to the second category use different data
structures to represent descriptors and stacks, which are recycled separately. Newly created threads are inserted
into ready-queues, which are also local to each processor. However, each processor can access all other queues
to steal objects. Furthermore, we assume a fork/join model,where the main thread creates all other threads of
a parallel region, before suspending itself and joining therest of the processors in executing the newly created
threads. LetT be the time that a serial application requires to run. We willcalculate the timeTP , which is the
time required to run a parallel version of the application onP processors. It is assumed that the application is
parallelized such that it has only one parallel region and thatN threads are created (N ≥ P). If an application has
more parallel regions, the following analysis can be applied to each one of them. The timeTP can be computed as
the sum of smaller time intervals, each one corresponding toa specific operation. Those intervals can be defined
by splitting the parallelization process into logically distinct phases, which are as follows:

TC : The time required to create a thread. It includes the time tofind a memory region or descriptor in a recycling
queue and the time to initialize it. If an object cannot be found in a recycling queue, a new one has to be
allocated.

TE : The time required to enqueue a newly created thread into a ready-queue, so that it can be dispatched and
executed by a processor.

2

Execution Time

(1,1)

(2,2)

(3,3)

(4,1)

(5,2)

(6,3)

TC TE TL1+TS+TW+TT

TC TE

TC TE

TC TE

TC TE

TC TE

Main Thread

Thread 5

Thread 6

Thread 3

Thread 4

Thread 1

Thread 2

Thread 7

Thread 8

TL2

TL1+TS+TW+TT TL2

TL1+TS+TW+TT TL2

TL1+TS+TW+TT TL2

TL1+TS+TW+TT TL2

TL1+TS+TW+TT TL2

Figure 1: Creating fine-grained parallelism. The numbers inparentheses correspond to the thread and the pro-
cessor that dispatches and executes it.TC andTE are the defining factors in this case.

TL: The time required by the user-level scheduler of the library to find a thread in a ready-queue and dispatch
it.

TS : The time required to start a thread on a processor, after it has been selected for execution by the user-level
scheduler.

TW : The time spent by the thread for the main computation. For the rest of this paper, we will assume that
the total work that has to be performed by the application is evenly divided among all threads, hence
TW = T/N .

TT : The time required until the user-level scheduler is invoked, after a thread has finished it’s main computation.
We will assume that this step requires a predefined number of instructions to complete, henceTT can be
considered to be a constant.

In order to simplify our analysis, we divide it into two cases. In the first case, we assume that the total work
that the application has to perform has been divided among somany threads, that each one requires a very small
amount of time to complete. As a result, the main thread is notable to create threads at a sufficient pace, leaving
at times processors without useful work. Figure 1 illustrates an example of an application that is executing on a
four processor system. The main thread is running on one of them, creating threads and enqueueing them into
four ready-queues. The other three processors, which are depicted, dispatch threads and execute them. It must
be clarified, that each processor executes useful work only for the timeTL1 + TS + TW + TT , whereas it waits
for new threads during all other time intervals. However, the length of some of those intervals is known a priori
and equalsTC + TE , which is why we directly use this value.

Taking the first processor as an example, we observe that it waits for the first thread to be created, before
dispatching and executing it. During execution of the thread, the main thread continues to create new threads
and delivers them to the other two processors. However, whenthe first processor finishes, the main thread has
not yet finished creation of the next thread that this processor will execute. As a result, this processor has to wait
for TL2. With TL1, we denote the time that a processor requires to dispatch a thread from a ready-queue. This
time is not constant and depends on the number of the available queues, which in turn is equal to the number of
processors. For example, the second processor dispatches the first thread that it executes from it’s own queue,

3

whereas the second thread is dispatched from the queue of thefirst processor (Thread 5). Since searching all
queues for a thread is performed linearly,TL1 depends linearly on the total number of processors. If the time
required to access a specific queue isTQ and a processor has the same probability to find a thread in anyof the
ready-queues, then:

TL1 =
TQ + 2 · TQ + 3 · TQ + . . . + P · TQ

P
=

(1 + 2 + . . . + P) · TQ

P
=

P ·(P+1)
2 · TQ

P
=

P + 1

2
· TQ (1)

It is obvious that in the case being analyzed, onlyP − 1 processors are used to execute threads throughout
the execution of the application. Therefore, the time required for parallel execution equals the time that each one
of those processors requires to executeN/(P − 1) threads. However, this time must be augmented by the time
that the last processor requires, until it starts executingit’s first thread, yielding:

TP =
N

P − 1
· (TC + TE + TL1 + TS + TW + TT + TL2) + (P − 1) · (TC + TE) (2)

Figure 1 reveals that the total time to execute a thread and wait for the next one on each processor, i.e.,
TL1 + TS + TW + TT + TL2, equals the time to create and insert into a ready-queue the next thread that this
processor will execute, i.e.(P − 1) · (TC + TE). As a result, Equation 2 can be rewritten as:

TP =
N

P − 1
· [TC + TE + (P − 1) · (TC + TE)] + (P − 1) · (TC + TE) =

=
N · P

P − 1
· (TC + TE) + (P − 1) · (TC + TE) =

[

N · P

P − 1
+ (P − 1)

]

· (TC + TE)
(3)

The first important observation from our analysis can be drawn from Equation 3. For fine-grained parallelism,
execution time of an application depends exclusively on thetime required to create a thread and insert it into a
ready-queue. Moreover, execution time depends equally on those entities.

In the second part of our analysis, we assume that the createdparallelism is more coarse-grained. As a result,
the main thread is able to create threads in time, keeping allprocessors busy. Figure 2 illustrates an example,
where an application is running on a four processor system. The time required to execute each thread is depicted
for the three processors that dispatch threads when the application starts. Moreover, the time required to create
and insert a thread into a ready-queue is also depicted, in order to make the relation among all time intervals
clear. We observe that a processor never waits for a thread toarrive, after it has dispatched it’s first thread, due
to the fact that the main thread has enough time to create new threads. Moreover, as execution advances, more
threads are created and accumulated in the ready-queues.

We observe that the first processor has to wait forTC + TE , before it starts executing the first thread. Let us
assume that this processor manages to executek threads until the main thread creates allN threads. For the rest
of our analysis, we will assume, without loss of generality,that the main thread creates and inserts the last thread
into a ready-queue at the time the first processor finishes executing threadk. Thus, those processors will execute
threads at the same pace for the rest of the application. As a result:

4

(1,1)

(2,2)

(3,3)

(4,1)

(5,2)

(6,3)

(7,1)

(8,2)

(9,3)

Execution Time

TC TE TL1+TS+TW+TT

Main Thread

Thread 9

Thread 10

Thread 3

Thread 4

Thread 1

Thread 2

Thread 11

Thread 12

TC TE

TC TE

TC TE

TC TE

TC TE

TL1+TS+TW+TT

TL1+TS+TW+TT

TL1+TS+TW+TT

TL1+TS+TW+TT

TL1+TS+TW+TT

TC TE

TC TE

TC TE

TL1+TS+TW+TT

TL1+TS+TW+TT

TL1+TS+TW+TT

Thread 5

Thread 6

Thread 7

Thread 8

Figure 2: Creating coarse-grained parallelism. The numbers in parentheses correspond to the thread and the
processor that dispatches and executes it.TC andTE are important in this case too.

N · (TC + TE) = k · (TL1 + TS + TW + TT) + (TC + TE) ⇒ k =
(N − 1) · (TC + TE)

TL1 + TS + TW + TT

(4)

During this time, threads are dispatched fromP − 1 processors. If we also take into consideration the time
that is required until the last processor starts executing it’s first thread, a total of(P − 1) · k threads will already
have been executed, until the main thread creates all the threads of the parallel region. At this point, the main
thread suspends itself and allows the processor it was running on to join the rest of the processors to execute
threads. As a result, there will beP processors executing theN − (P − 1) · k remaining threads. Therefore, total
execution time will be:

TP =
(P − 1) · k

P − 1
· (TL1 + TS + TW + TT) + (P − 1) · (TC + TE)+

+
N − (P − 1) · k

P
· (TL1 + TS + TW + TT)

(4)
=

= (N − 1) · (TC + TE) + (P − 1) · (TC + TE)+

+
N · (TL1 + TS + TW + TT) − (P − 1) · (N − 1) · (TC + TE)

P
=

=
P 2 − P + N − 1

P
· (TC + TE) +

N

P
· (TL1 + TS + TW + TT)

(5)

The most important conclusion drawn from Equation 3 and Equation 5, is that the execution time of a parallel
application heavily depends on the time to create a thread and enqueue it into a ready-queue. In order to formulate
the timeTC , we must take into consideration that during thread creation, a memory region or a descriptor has
to be found in a recycling queue. However, there is also the possibility that such an object will not be found in
any of those queues and that a new one must be allocated. If we assume that the probability to find an object in
a queue is alwaysq, the probability to allocate a new object will be(1 − q · P). If the time required to access a

5

specific queue is again equal toTQ, the time required to allocate a new object isTCM and the time required to
initialize the descriptor isTCI , then:

TC = q · TQ + q · 2 · TQ + q · 3 · TQ + . . . + q · P · TQ + (1 − q · P) · (P · TQ + TCM) + TCI =

= q ·
P · (P + 1)

2
· TQ + (1 − q · P) · (P · TQ + TCM) + TCI

(6)

Since the number of possible outcomes isP + 1, we can setq = r/(P + 1), r ≥ 1. Substitutingq in the last
Equation, gives us:

TC =
P · r

2
· TQ +

(

1 −
P · r

P + 1

)

· (P · TQ + TCM) + TCI =

=
(2 − r) · P 2 + (2 + r) · P

2 · (P + 1)
· TQ +

(

1 −
P · r

P + 1

)

· TCM + TCI

(7)

The total probability to find an object in any of theP recycling queues must also be less than or equal to one.
Therefore, the following inequality must also hold:

P · r

P + 1
≤ 1 ⇒ r ≤ 1 +

1

P
(8)

Equation 7 reveals that the time required to create a thread depends on the time spent to search for an object
in the recycling queues. Our analysis makes it clear that reducing the cost to handle parallelism requires to
minimize the cost of operations on queues. Moreover, this becomes more important as parallelism becomes more
fine-grained and the number of processors rises. These conclusions are not in contrast to general belief, which
states that minimizing creation time for threads leads to better performance for parallel programming models.
However, our analysis demonstrates the important role of operations on queues. Usually, efforts to reduce thread
creation time concentrated on minimizing the number of memory allocations and on minimizing the time required
to initialize a descriptor, i.e., timesTCM andTCI in Equation 7. This was also the main argument for introducing
recycling queues in threading libraries. Although this wasan important step, our analysis suggests that after the
introduction of recycling queues, the main problem has shifted to the time required for operations on queues.

4 Defining Batches of Threads

According to the previous section, the main question is how to reduce the cost of operations on queues. An
obvious thought would be to use lock-free mechanisms to insert into and extract objects from queues. However,
this is not always possible. For example, if it is required toaccess a queue from both the head and the tail, the
data structure that represents a queue must maintain two pointers. Insertion or extraction of an object implies that
both pointers must be updated together atomically. Hence, the underlying hardware must provide the necessary
instructions to allow this kind of operations, which is not always the case.

The observation that leads us to a more general solution, is the fact that the associated cost for operations
on queues is always measuredper thread. This observation reveals an obvious way that allows us to reduce the

6

Descriptor

Pointer

Pointer

Descriptor

Pointer

Descriptor

Pointer

Descriptor

Pointer
. . .

Batch of Threads

Pointer

Figure 3: Representation of a Batch of Threads.

aforementioned cost. If an operation on a queue is not performed on just one thread, but on a team of threads, the
cost of the operation can actually be amortized among the threads of the team. This allows us to introduce the
notion of aBatch of Threads (BoT), which can be defined as a team of threads, that are handled as an indivisible
entity with respect to operations on queues. Accordingly, the services provided by a threading library can be
extended, to include creation and insertion into ready-queues of BoTs.

The above definition is very general and does not include any details about how to implement BoTs. One
possibility to implement them would be to use the pointer already present in each descriptor, that is used to
manage threads in queues. As can be seen in Figure 3, each member of a BoT uses this pointer to keep track of
the next member, except of the last one that terminates the BoT. In order to be able to efficiently insert a BoT into
a queue, it is necessary to use two pointers, that point to thefirst and the last member of it. Under this scheme,
a BoT is actually a queue of its own, which has not yet been inserted into a predefined queue of a library, like
the ready and the recycling queues. Obviously, an importantparameter for a BoT is it’s size, i.e., the number of
threads that constitute the BoT.

Probably the easiest way to exploit BoTs is for loop-level parallelism, although their applicability is not
limited to this domain. The regularity of loops in most programming languages allows easy integration of BoTs
into threaded applications and allows the programmer to easily express parallelism in a natural way, as will be
demonstrated in the next section.

4.1 Defining the API for Batches of Threads

In order to demonstrate that BoTs can actually be used in threading libraries, we implemented an API in the
context of NthLib. More specifically, the addition of the APIfor BoTs has been carried out on a newer imple-
mentation of the library, which has been optimized with respect to memory requirements [15, 16]. This allows
creation of a greater number of threads, compared to the original implementation of NthLib. Our main concerns
while designing the API were simplicity and ease of use. In order to achieve these goals, the API has been
designed to be as similar as possible to existing and widely used APIs. Moreover, the design allows both, the
original and the new API for creating threads to be used simultaneously in an application, if the programmer
decides that this would benefit the application.

Carefully analyzing an example that uses the current interface of NthLib to create threads, reveals important
aspects of the procedure and helps us define the interface forBoTs. Figure 4 presents the simplest method to
create parallelism using NthLib. The functionnth self() returns a pointer to the descriptor of the running

7

/**/

void nth_func(long Arg1, long Arg2)

{

/* Work performed by each thread */

}

/**/

void nth_main()

{

long i;

struct nth_desc *nth, *nth_myself = nth_self();

nth_depadd(nth_myself, NumOfThreads + 1);

for (i = 0; i < NumOfThreads; i++) {

nth = nth_create_1s(nth_func, 0, nth_myself, 2, Arg1, Arg2);

nth_to_lrq(i % kthreads, nth);

}

nth_block();

}

/**/

Figure 4: Creating threads with the original API of NthLib. ‘kthreads’ is the number of processors.

thread, which is stored innth myself. Using the last value, a number of dependencies is added to the current
thread (nth depadd()), which equals the number of threads that will be created (NumOfThreads). The
additional dependency is added for internal use of the library. Consequently, all threads are created one by one in
a loop through the functionnth create 1s(), which returns a pointer to the descriptor of the newly created
thread. Through this value, the thread is inserted into a ready-queue (nth to lrq()). Finally, the main thread
suspends itself by calling the functionnth block(), hence calling the user-level scheduler to select a new
thread to run on the processor.

A thread is interested only on the number of dependencies it has, and not on the method used to create those
threads. Hence, the functionnth depadd() does not need any modifications in the API for BoTs, which is
also true for the functionnth block(). As a result, new functions must be added only to create and enqueue
threads. Defining the latter ones poses no special problems.If the first and the last member of a BoT are known,
insertion either in front or at the end of a queue can be performed easily. However, defining the functions to
create BoTs seems to be more demanding. Creation of a thread can be divided into two stages. First, a memory
region or a descriptor has to be found in a recycling queue. Ifthat fails, a new object must be allocated. Secondly,
the descriptor must be initialized. The goal in using BoTs isto minimize references to queues. Therefore, finding
objects in the recycling queues should also be done using BoTs. Each time a processor locks a queue, in order
to create a BoT, it should return from that queue as many objects as possible, without surpassing the requested
size of the BoT. Initializing each descriptor in this step, would increase the time that each processor remains
in a critical section. Therefore, it would be more efficient to initialize each descriptor of a BoT, after the latter
has been created. Due to this fact, creating a BoT and initializing each descriptor of it have been defined to be
separate operations in the current implementation. As a result, the API that we defined is as follows:

8

• struct nth desc *nth batch get desc(struct nth desc **last nth,

long num of nths):
Create a BoT of sizenum of nths. A pointer to the first member of the BoT is returned, whereas a
pointer to the last member is stored inlast nth.

• void nth batch create(struct nth desc *nth, void (*nth func)(),

int ndep, int nsucc, int narg, ...):
Initializes the descriptornth, which belongs to a previously created BoT. The thread will execute the
function nth func() and will depend onndep threads. The parametersnsucc andnarg are the
number of threads that depend on the thread being created andthe number of arguments tonth func.
Finally, the dependant threads and the actual parameters ofthe function are mentioned.

• void nth batch create 1s(struct nth desc *nth, void (*nth func)(),

int ndep, struct nth desc *succ, int narg, ...):
This function is the same as the previous one, with one exception. It allows only one thread to depend on
the thread being created (succ).

• struct nth desc *nth batch get next(struct nth desc *nth):
Returns the thread that followsnth in the BoT orNULL, if there are no other threads.

• void nth batch to lrq(int which, struct nth desc *first nth,

struct nth desc *last nth):
Insert the BoT with first memberfirst nth and last memberlast nth into the local ready-queue of
processorwhich.

• void nth batch to lrq end(int which, struct nth desc *first nth,

struct nth desc *last nth):
Insert the BoT with first memberfirst nth and last memberlast nth into the end of the local ready-
queue of processorwhich.

Having defined the new API, we will demonstrate its use by changing accordingly the example of Figure 4.
The new program is depicted in Figure 5. We assume that each BoT will have a size ofBatchSize and that the
total number of threads will be againNumOfThreads. Firstly, we compute the total number of BoTs that will
be created (nth batch) and the possible remainder (nth batch remainder). In the next step, we update
the dependencies of the current thread, as in the previous example. At this point, we observe that instead of the
loop that creates threads, there is a loop over all BoTs. In each iteration, a BoT of sizeBatchSize is allocated,
using the functionnth batch get desc(). An important difference is that in addition to the pointer that
is returned (first nth), another pointer to the last member of the BoT is also updated (last nth). At this
point, the descriptors in the BoT have not yet been initialized. Using the temporary variabletemp nth and a
second loop, we initialize the first descriptor (nth batch create 1s()) and move to the next descriptors in
the BoT (nth batch get next()). Finally, using the pointers to the first and last member of the BoT, we
insert the latter into the local ready-queue of a processor.If there are any remaining threads, they are handled in
the same way, as a BoT of a smaller size. The last step, as in theoriginal example, is to suspend the main thread.

The main difference of this approach, compared to the first example, is that thread creation is handled in two
levels, instead of one. Specifically, we handle a BoT as one entity, with respect to operations on queues, and each

9

/**/

void nth_main()

{

long i, nth_batch, nth_batch_remainder;

struct nth_desc *first_nth, *last_nth;

struct nth_desc *temp_nth, *nth_myself = nth_self();

nth_batch = NumOfThreads / BatchSize;

nth_batch_remainder = NumOfThreads - nth_batch * BatchSize;

nth_depadd(nth_myself, NumOfThreads + 1);

for (i = 0; i < nth_batch; i++) {

first_nth = nth_batch_get_desc(&last_nth, BatchSize);

temp_nth = first_nth;

while (temp_nth != NULL) {

nth_batch_create_1s(temp_nth, nth_func, 0, nth_myself, 2, Arg1, Arg2);

temp_nth = nth_batch_get_next(temp_nth);

}

nth_batch_to_lrq(i % kthreads, first_nth, last_nth);

}

first_nth = nth_batch_get_desc(&last_nth, nth_batch_remainder);

temp_nth = first_nth;

while (temp_nth != NULL) {

nth_batch_create_1s(temp_nth, nth_func, 0, nth_myself, 2, Arg1, Arg2);

temp_nth = nth_batch_get_next(temp_nth);

}

nth_batch_to_lrq(0, first_nth, last_nth);

nth_block();

}

/**/

Figure 5: Creating threads with the new API of NthLib.

descriptor of a BoT separately to initialize them. The second point that needs some attention, is that the number
of threads that must be created might not be exactly divisible by the size of the BoTs. In this case, the remaining
threads must be handled separately.

A last remark about the newly defined API, is the fact that it can be used together with the previous approach,
due to the fact that both create and enqueue threads using thesame ready and recycling queues. A possible
scenario, where this could be useful, would be an application that needs to create a small number of threads per
processor in some parallel regions, whereas a larger numberof threads in the remaining regions. In the first case,
the original API could be used, whereas in the second case thenew one.

10

Local

queue 3

Local

queue 2

Local

queue 1

Local

queue 0

Tail

Head

14

Tail

Head

11

Tail

Head

6

Tail

Head

5

(a)

(b)

(c)

(d)

Figure 6: Finding descriptors in recycling queues to createa Batch of Threads.

4.2 Implementation Details

In order to better comprehend the concept of BoTs and their potential, we will briefly describe some im-
plementation details. Of all the functions that were definedin the previous section, the most important are
nth batch get desc() and the functions that insert a BoT into a queue. All other functions are quite sim-
ple. The functionsnth batch create() andnth batch create 1s() only initialize the fields of the
descriptor. Some of them are initialized according to the parameters of those functions, whereas others get default
values. Their only differences, with respect to the corresponding functions of the original API (nth create()

andnth create 1s()), are that they receive as a parameter the descriptor that must be initialized and that the
pointer to the next descriptor in a queue is not initialized,due to the fact that it is already used to manage the
descriptor in a BoT. The functionnth batch get next() is also very simple, since it only returns the value
of the previously mentioned pointer.

Using Figure 6 as an example, we will describe hownth batch get desc() creates a BoT. We assume
that an application is executed on four processors and that the requested size of a BoT is 16. Moreover, we assume
that the descriptors in the recycling queues are as depicted. If the above function has been called from thread 2,
the search for descriptors will start from local queue 2. After acquiring the lock of the queue, the function will
extract as many descriptors as possible, without surpassing the requested size of the BoT. In our example, it will
take two descriptors and update two pointers to the first and last member of the BoT (Case (a)). Another variable
will be updated to reflect how many descriptors are still needed. The search will continue on local queue 3, where
three more descriptors will be added to the BoT and all variables will be updated accordingly (Case (b)). If this
queue had at least 14 descriptors, the BoT would be complete,but since this is not the case, local queue 0 is
examined. Five more descriptors will be added to the BoT (Case (c)) and finally local queue 1 will be accessed.
One more descriptor will be added to the BoT and all variableswill be updated. At this point, all queues have
been checked, however the BoT is still not complete. In this case, the remaining descriptors are allocated from
memory.

11

An important conclusion from the description above, is the fact that creating a BoT requires a maximum
number of accesses to queues, which is equal to the number of processors. If the 16 descriptors of the above
example would have been allocated separately, a minimum of 16 accesses to queues would be necessary, due to
the fact that a descriptor might not be available in a queue. Moreover, the number of descriptors that must be
allocated in the above scenario, remains the same either with the new or the original API.

Although the functions that insert a BoT into a queue are quite important, their implementation is simple.
After acquiring the lock of the specified queue, those functions insert the BoT either in the front or at the end
of the queue. This procedure is simplified by the fact that a BoT is actually represented using two pointers, one
to the first and one to the last member. Since all predefined queues in NthLib maintain the same information,
insertion of a BoT poses no special problems.

5 Experimental Evaluation

In order to evaluate our approach, we implemented the proposed API for BoTs in the context of NthLib. The
version of NthLib that has been used, is the one that implements aDirect Stack Reuse scheme, which allows the
library to drastically reduce memory requirements to represent parallelism, without sacrificing performance. We
refer the reader to [15, 16] for more details about the specific implementation.

Our experiments were run on two hardware platforms. The firstone is a 4-processor, HyperThreading enabled
system, running Linux 2.6.8. The second one is SMTSIM [14], asimulator that implements an Alpha processor
with 8 execution contexts (EUs). More detailed characteristics for both systems are summarized in Table 1. The
compiler used is gcc 4.0.2 for both platforms, at the highestoptimization level (-O3).

Our evaluation is focused towards proving the main points that have been discussed so far in the paper. We
believe that our experiments clearly show that:

1. The overhead of handling queues is significantly reduced using BoTs, which in turn affects positively the
time required for other basic operations in threading libraries.

Intel processor based system SMTSIM
Processors 4 Intel Xeon MP HTs, 2 GHz, 1 Alpha based,

2 execution contexts/processor8 execution contexts
L1 Data Cache 8KB shared, 4-way assoc. 32KB, 2-way assoc.,

10-cycle miss latency
L1 Inst. Cache 12KB shared execution trace 32KB, 2-way assoc.,

10-cycle miss latency
L2 Cache 512KB shared, unified, 256KB, 2-way assoc.,

8-way assoc. 15-cycle miss latency
L3 Cache 1MB shared, unified, 2MB, 2-way assoc.,

8-way assoc. 125-cycle miss latency
D-TLB 64 entries 128 entries
I-TLB 2x64 entries 48 entries
DRAM 2GB Depends on host system

Table 1: Hardware configuration of the experimentation platform.

12

2. Real-world cases where usage of BoTs is beneficial exist. Additionally, converting those applications to
use BoTs is straight-forward.

3. Using larger numbers of threads can lead to better performance in several cases, where load-balancing and
locality of memory references are achieved automatically in an application.

The first benchmark we used, which we will refer to asEmpty, follows the fork/join model. The master
thread creates one million empty nano-threads, whereas theslave processors dispatch and execute them. The
master thread blocks after it has created all threads, hencecalling the user-level scheduler and joining the other
processors to execute threads. This benchmark is appropriate for estimating the pure run-time overhead of thread
management in NthLib. In the original version of the benchmark, which we will refer to asNatural, all threads
are created one-by-one. Additionally, we implemented a version, which we will refer to asBatch, that creates
threads using BoTs with a size of 8.

Figure 7 summarizes the results for this benchmark on both platforms. Execution times are given in seconds
for the Intel based system and in millions of simulated clockcycles for SMTSIM. For the latter, the horizontal
axis represents the number of EUs used. For the Intel based system, the numbers of physical processors and
EUs used on each one of them are mentioned. For example, (4, 1)means that 1 EU was used on each one of
the 4 physical processors. A special case is the one denoted with (4, 1/2), where 2 EUs were used on 2 physical
processors and 1 EU on the other 2 physical processors. With the exception of two EUs on one physical processor,
creating threads using BoTs is from 5,06% (case (1,1)) up to 43,33% (case (2,2)) faster on the Intel platform. For
SMTSIM, the range is between 1,70% (1 EU) up to 69,11% (4 EUs).

In order to better understand these large differences, we include Figures 10 up to 13, where the time required
for basic operations of NthLib is presented. To obtain theseresults, we run the same benchmarks as above and
used the Time Stamp Counter on both hardware platforms, to measure such small time intervals. All results
presented are per thread, meaning that the measured times for Batch have been divided by the size of each BoT.
With respect to the Intel platform, creation time of a threadhas not changed significantly, when BoTs are used.
This can be attributed to the large number of descriptors that have to be allocated during execution. The time
to start a thread after it has been selected to run, also did not change significantly, since the steps required to
do so are almost identical in both cases. However, the time toenqueue a thread into a ready-queue has dropped
significantly, from about 180 to about 12 cycles per thread. Finally, the time required to find the next thread
that will be executed on a processor, also did not change significantly. The exception occurs when all physical
processors and EUs are used. At this point, the contention onthe queues starts to show in theNatural variation,
whereas the usage of BoTs contributes in keeping contentionlow. With respect to SMTSIM, we observe that
the time to create a thread is worse, if up to two EUs are used. Again, this can be explained by the fact that
many descriptors have to be allocated during execution. As aresult, when members of the corresponding data
structures have to be accessed, they are usually not found inthe cache hierarchy. If, however, the number of EUs
rises, the time required drops significantly, as reuse of descriptors improves. Since SMTSIM does not measure
the time required to serve a system call, the behaviour in this case is consistent with our theoretical approach,
where time spent for memory allocation is considered to be low. As with the Intel platform, time to enqueue a
thread again improves significantly. We also notice that thetime required to find the next thread to be executed,
behaves as in the case of the Intel platform, although the contention on the queues shows up much earlier in the
Natural variation.

13

As our approach is especially suitable for loop-level parallelism, we chose to use in our evaluation the C
version of two of the Livermore Kernels [3, 8], specifically Loop 6 and Loop 21. The Livermore Kernels are
excerpts from actual production codes, used at the LawrenceLivermore National Laboratory. Hence, they can
be used to evaluate the performance of our approach in real applications. Loop 6 is a general linear recurrence
equation. Due to data dependencies, the original code of theloop has to be executed serially. Therefore, we
parallelized a modified version of the loop, as proposed in [3]. The main characteristics of the modified loop are
that it is unbalanced and that it requires fine-grained synchronization. We implemented three variations of the
loop. The first one (Equal) follows a classical parallelization strategy. A number ofthreads, equal to the number
of processors used, are created and the outer-loop iteration space is divided equally among them. The second
variation (Natural) creates one thread for each point of the iteration space of the outer-loop. Threads are created
one-by-one. The last variation (Batch) is similar toNatural. However, threads are created using BoTs of size 8. In
order to obtain measurable execution times for the loop, we changed the problem size toN = 7500, which results
to an execution time of about 1 second for theNatural variation on the Intel based system. Figure 8 summarizes
the results for this loop on both platforms. For the Intel based system, the overhead of synchronization on the
queues and in the application are obvious for theNatural variation. However, using BoTs to create the threads
significantly alleviates the queueing subsystem of the library. As a result, the performance becomes comparable
to theEqual variation. For SMTSIM, we observe the same behaviour for theNatural variation, as on the Intel
based system. However, theBatch variation yields not only comparable, but better results than theEqual variation
on this system. SMTSIM implements a very efficient locking mechanism, based on the notion of alockbox [14].
As a result, it eliminates a large percentage of the overheadassociated with handling queues in the library,
compared to the Intel based system, but also the synchronization required in the application. This, in turn, makes
the imbalance present in the application a much more important factor. Using theEqual variation, all threads
have not the same amount of work to complete. As a result, execution time depends largely on the slowest thread.
In theBatch version, however, the large number of threads allows the application to self-tune it’s execution and
automatically achieve a much better load-balance among processors. Although it is possible to implement the
Equal variation by taking into account load-imbalance, the code is much larger and more difficult to understand.
On the other hand, using BoTs has the same effect and is much simpler to program.

The second kernel that we decided to employ for our evaluation purposes is a very interesting one, as it
demonstrates how data distribution among threads can greatly affect performance. Loop 21 is aN × 25 by
25 × 25 matrix-matrix multiply. We implemented the same three variations as in the previous loop, parallelizing
the inner-most and largest loop of the application. Furthermore, we changed the problem size toN = 200001, so
as to obtain a 1 second execution time of theNatural variation on the Intel based system. Figure 9 summarizes the
results for this loop on both platforms. Obviously, the difference between theEqual and the other two variations
is impressive. The reason behind this large difference is the exploitation of the cache. For theEqual variation,
the parallelized, inner-most loop has to work on more rows ofthe large array that is being multiplied. As a result,
the cache hierarchy is not exploited in the best possible way. However, when the remaining two variations are
used, one thread is actually created for each row that is multiplied. As a result, the cache is exploited almost
perfectly for each thread in this case. Although it is possible to rearrange the loops of the kernel, so that the
Equal variation requires about the same amount of time to complete, this requires careful analysis from the
programmer. However, using more threads in this case automatically provides a better mapping between the data
that each thread has to access and the cache hierarchy of the system. Again, this provides the programmer with a
more natural way to express parallelism and obtain good performance.

14

6 Conclusions

In this paper, we presented a methodology to efficiently create large numbers of threads, using BoTs. We defined
an API in the context of NthLib and discussed implementationdetails. Our evaluation shows that time to handle
parallelism has significantly improved. Moreover, exploiting large numbers of threads has proven to be beneficial
in several cases, either due to better load balancing or datadistribution among threads. This proves that our
approach is viable and justifies our effort towards this direction.

Our current work focuses on better exploiting our improvements presented in this paper. Specifically, it
has become clear that applications are not taking full advantage of our newly implemented mechanisms, due to
excessive memory allocations for descriptors. This is triggered by the fact that overhead for dispatching and
executing a thread in NthLib are still quite high, compared to the time that is required to insert a thread into
a ready-queue. This leaves the main thread without enough descriptors in the recycling queues. In order to
overcome this inefficiency, we are currently trying to exploit BoTs internally in the library. This approach can
work together with the one presented in this paper. Our initial experiments show that this can improve even more
the time required to create and execute a thread and yields even better results for our applications.

Acknowledgments

We would like to thank Christos D. Antonopoulos and Dimitrios D. Nikolopoulos, for providing access to the
systems that where used throughout the evaluation process.We would also like to thank Jeffery A. Brown, who
patiently answered many questions about SMTSIM.

15

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Natural Batch

1 2 4 6 8
0

50
100
150
200
250
300
350
400
450
500
550
600
650

Natural Batch

Figure 7: Execution time for theEmpty benchmark on the Intel and SMTSIM platforms.

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Equal Natural Batch

1 2 4 6 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Equal Natural Batch

Figure 8: Execution time for theLoop 6 benchmark on the Intel and SMTSIM platforms.

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00

Equal Natural Batch

1 2 4 6 8
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250

Equal Natural Batch

Figure 9: Execution time for theLoop 21 benchmark on the Intel and SMTSIM platforms.

16

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0

250
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750

Natural Batch

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0

20
40
60
80
100
120
140
160
180
200

Natural Batch

Figure 10: Time required to create and enqueue a thread on theIntel platform.

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0

100
200
300
400
500
600
700
800
900
1000
1100

Natural Batch

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4, ½) (4,2)
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Natural Batch

Figure 11: Time required to lookup and start a thread on the Intel platform.

1 2 4 6 8
0

25

50

75

100

125

150

175

200

225

250

Natural Batch

1 2 4 6 8
0

20

40

60

80

100

120

140

160

180

200

Natural Batch

Figure 12: Time required to create and enqueue a thread on SMTSIM.

1 2 4 6 8
0

250

500

750

1000

1250

1500

1750

2000

2250

Natural Batch

1 2 4 6 8
0

25

50

75

100

125

150

175

200

225

Natural Batch

Figure 13: Time required to lookup and start a thread on SMTSIM.

17

References

[1] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou. Scheduling Algorithms with Bus Band-
width Considerations for SMPs. InProceedings of the 32nd International Conference on Parallel Process-
ing, pages 547–554, Kaohsiung, Taiwan, October 2003.

[2] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy Threads: aThread Virtual Machine for the Cyclops64
Cellular Architecture. InProceedings of the 5th Workshop on Massively Parallel Processing, Denver, Col-
orado, April 2005.

[3] J. Feo. An Analysis Of The Computational And Parallel Complexity Of The Livermore Loops. UCRL-
95708, Lawrence Livermore National Laboratory, 1986.

[4] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing a Fast Parallel Call.Journal
of Parallel and Distributed Computing, Volume 37, Issue 1:5–20, August 1996.

[5] S. Hummel, E. Schonberg, and L. Flynn. Factoring: a Practical and Robust Method for Scheduling Parallel
Loops. InProceedings of Supercomputing 1991, pages 610–632, Albuquerque, USA, 1991.

[6] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitecture.Intel Technology Journal, Volume 6, Issue 1:4–15, Febru-
ary 2002.

[7] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. A Library Implementation of the Nano-Threads
Programming Model. InProceedings of the 2nd International EuroPar Conference, pages 644–649, Lyon,
France, August 1996.

[8] F. McMahon. The Livermore FORTRAN Kernels Test of the Numerical Performance Range.Performance
Evaluation of Supercomputers, Elsevier Science B.V., North Holland, Amsterdam, Volume 4:143–186, 1988.

[9] E. Mohr, D. A. Kranz, and Jr. R. H. Halstead. Lazy Task Creation: A Technique for Increasing the Gran-
ularity of Parallel Programs.IEEE Transactions on Parallel and Distributed Systems, Volume 2, Issue
3:264–280, July 1991.

[10] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and E. Ayguadé. Is Data Dis-
tribution Necessary in OpenMP? InProceedings of Supercomputing’2000: High Performance Computing
and Networking Conference, Dallas, TX, November 2000.

[11] C. Polychronopoulos, N. Bitar, and S. Kleiman. Nanothreads: A User-Level Threads Architecture. Techni-
cal Report 1297, CSRD, University of Illinois at Urbana-Champaign, 1993.

[12] C. Polychronopoulos and D. Kuck. Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel
Supercomputers.IEEE Transactions on Computers, 36(12):1485–1495, December 1987.

[13] K. Taura, K. Tabata, and A. Yonezawa. Stackthreads/MP :Integrating Futures into Calling Standards.
Technical Report TR 99-01, University of Tokyo, 1999.

[14] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing On-Chip Parallelism. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 392–403, S.
Margherita Ligure, Italy, 1995.

18

[15] I. E. Venetis and T. S. Papatheodorou. A Time and Memory Efficient Implementation of the Nano-Threads
Programming Model. Technical Report HPCLAB-TR-210106, High Performance Information Systems
Laboratory, January 2006.

[16] I. E. Venetis and T. S. Papatheodorou. Tying Memory Management to Parallel Programming Models. In
Proceedings of the 2006 European Conference on Parallel Computing (EuroPar 2006), pages 666–675,
Dresden, Germany, August 2006. Springer Verlag, LNCS Vol. 4128.

19

