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Abstract

Dynamic programming is an efficient technique to solve caratarial search and optimization
problem. There have been many parallel dynamic programmaiiggrithms. The purpose of this
paper is to study a family of dynamic programming algorithimewe data dependence appear be-
tween non-consecutive stages, in other words, the datandepee is non-uniform. This kind of
dynnamic programming is typically callegbnserial polyadic dynamic programmin@wing to the
non-uniform data dependence, it is harder to optimize ttoslpm for parallelism and locality on
parallel architectures. In this paper, we address the t@rage of exploiting fine grain parallelism
and locality of nonserial polyadic dynamic programming omalti-core architecture. We present
a programming and execution model for multi-core architexs with memory hierarchy. In the
framework of the new model, the parallelism and localityifiefrom a data dependence transfor-
mation. We propose a parallel pipelined algorithm for filithe dynamic programming matrix by
decomposing the computation operators. The new parafjetithm tolerates the memory access
latency using multi-thread and is easily improved withtdehnique. We formulate and analytically
solve the optimization problem determing the tile size thatimizes the total execution time. The
experiments on a simulator give a validation of the propasedel and show that the fine grain
parallel algorithm achieves sub-linear speedup and thattenpal high scalability on multi-core
arichitecture.
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1 Introduction

Combinatorial search and optimization is used to look for a solution to a proateomng many po-
tential ones. For many search and optimization problems, dynamic programDf)ds(a classical,
powerful and well-known technique for solving large kinds of optimizagwoblems. There are many
applications such as scheduling, inventory management, automatic conttL &I design, etc [17].
More recently, it has been found useful towards solving many probler®informatics. For exam-
ple, the two most important application is Smith-Waterman algorithm [27] for madctequences of
amino-acids/necleotides and Zuker’s algorithm [24] for predicting RBlZosdary structures. However,
a combinatorial explosion limits this method’s chance of being widely usedibedhe CPU time and
storage requirements can be so high. Parallel processing could [ffeceemetool to solve large-scale
DP problems. In fact, parallelization of DP algorithm has been a clagsioblem in parallel algorithm
research in the last decade. In order to find efficient parallel algoriftommplementing DP, Grama,
et.al. [17] present a classification of DP formulation: DP can be coresides a multistage problem com-
posed of many subproblems. If subproblems at all levels depend onheaesults of the immediately
preceding levels, it is called serial DP formulation; otherwise, it is called @onserialDP formula-
tion. Typically, there is recursive equation calleflactional equationwhich represents the solution to
optimization problem. If a functional equation contains a single recursive, ttire DP formulation is
monadi¢ otherwise, if it contains multiple recursive terms, we cafpadyadicformulations. Based on
this classification criteria, four classes of DP formulations can be defssei@l monadic (single source
shortest path problem, 0/1 knapsack problem), serial polyadic (Flopaia#l shortest paths algorithm),
nonserial monadic (longest common subsequence problem, Smith-Watalgoaithm) and nonserial
polyadic (optimal matrix parenthesizeation problem and Zuker algorithrojnEhe view point of data
dependence [31], serial DP formulation shows a uniform deperedastause between subproblems is
consecutive. The data dependence in nonserial DP formulation apgp@ang non-consecutive levels,
meaning that it is non-uniform. This non-uniform data dependence makgatadelization harder on
current memory hierarchy and network latency computer architectuie p@per will focus on the par-
allel performance of nonserial polyadic DP algorithms which have be¢benmost important method
for RNA secondary structure prediction on an emerging multi-core ar¢hie2¢BM Cyclops64.

1.1 Problem Formulation

The nonserial polyadic DP formulation is defined by following recuresen
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in DP domain(matrix) may depend on several entries which has been compuatextier to simplify
the presentation of the proposed algorithm, without disturbing the depesder instantiate the gen-

This formulation defines a x n triangular domain with dependence vectésg, j) = (



eral formulation by the DP formulation appearing in RNA secondary stregitediction. In fact, our
research on this instantiation also applies to the general problem becays®posed algorithm only
depends on the data dependence which is not been changed. The DR amdbe filled using following
recursive formulation:

0<i<ji<n

(1)

~
I
<.

1.2 A Large Scale Multi-core Architecture Case: IBM Cyclops64

Larg scale multi-core architectures, which have been mainstream, hameubed to build a petaflops
supercomputer. There are several prototypes or real products lGfcone chips, such as IBM’s
Cell [18]/Cyclops64 [13], Cray's new XMT [2] and GRAPE-DR [1].0 Bome extent, some common
features of these large scale multi-core architectures are their smaftipmremory (no data cache)
and explicit memory hierarchy to programmer. The memory access latendyedaterated by multi-
threads. However, to exploit locality and data reuse in the on-chip memdhy adhiving maximum
parallelism is a challenging problem. In this work, we present our pamierithm based on IBM
Cyclops64 multi-core architecture.

The Cyclops64(C64) (See Figure 1) is petaflops supercomputer projeler development at
IBM T.J.Watson Laboratory [13]. It is designed to serve as a dedicaiagbete engine for running
high performance scientific and engineering applications. The C64 ctiiiteature employs a large
scale multi-core on chip design by integrating 160 hardware threads unigha same amount of
embedded SRAM memory banks in a single silicon chip. A C64 chip has 80gzass each with two
thread units (TU), a floating-point unit (FP) and two SRAM memory bank32B each. A 32KB
instruction cache (not shown in the figure) is shared among five pgoresThe basic unit of memory,
a word, in C64 is 8 bytes. The C64 chip architecture represents a majartdee from mainstream
microprocessor design. Although the C64 also supports uniform memoeggamong all processors
like other multi-core architecture, it features a three level (Scratchpad{®mory, on-chip SRAM,
off-chip DRAM) (See Figure 2) memory hierarchy without data cachstelad, a portion of each thread
unit’s corresponding on-chip SRAM bank is configured as the dupait memory (SP). Therefore,
the thread unit can access to its own SP with very low latency, which proddest temporary
storage to exploit locality under software control. The remaining sextibmll on-chip SRAM banks
together form the global memory that is uniformly addressable from alldhwaés. The total on-chip
memory (including SP) is approximately 5SMB. There are 4 off-chip memoryroters connected to 4
off-chip DRAM banks with size of 1GB in current design. The C64 pregido resource virtualization
mechanisms, which means that there is no hardware virtual memory manabéneathree-level
memory hierarchy is visible to the programmer.
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Figure 1: IBM Cyclops64 chip architecture
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Figure 2: IBM Cyclops64 memory hierarchy

A maximum configuration of a C64 system consisting of 13,824 C64 chipsgoted by a 3D mesh
network, is expected to achieve over 1 petaflops peak performancestA64 system is planned to
be installed in 2007. The goal of our work is to demonstrate an experigndesigning an algorithm
on C64-like multi-core architectures. Our previous work has shown s@timiaation techniques for
numerical computation such as dense matrix multiplication [21]. In this worlloses an irregular
computation with non-uniform data dependence-nonserial DP algorithm.

The rest of this paper is organized as follows: Section 2 summarize®psawiork on parallelizing the
nonserial DP algorithm. In section 3, for the memory hierarchy on mulgé-eochitectur, we construct
a preliminary programming model and execution model. In order to exploitrbedillelism, we
perform a transformation of the data dependence for nonserial DRtalgo Then based on the models,
we proposed a parallel pipelined algorithm with load balancing for teaimefd nonserial polyadic DP.
Furthermore, a tiling technique [22] is used to improve the performanteeiurSection 5 develops an
analytical model for the proposed parallel algorithm. Section 6 presenéxpiggimental results on the
C64 simulator-FAST [10], which is execution driven cycle-by-cycle simulafde conclude this paper
in Section 7.

2 Related Works

For this family of DP algorithms with non-uninform data dependence, whietoably make the par-
allelization harder, there has been a lot of work on exploiting the parallelBadford [7] described
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several algorithms, which solve optimal matrix chain multiplication parenthesnzatising the CREW
PRAM model. Edmonds et al. [14] and Galil et al. [16] presented separallel algorithms on general
shared memory multiprocessor systems. Another important research ar¢hdsystolic framework,
for example, Guibas et al. [19] [23] focuses on designing triangyisiosc arrays. These works fo-
cus on how to reduce the complexity of arithmetic cost on different theatqiarallel models. On
distributed memory multi-computer systems, the main difficulty for obtaining ficiesft parallel im-
plementation is to find a good balance between communication and computatiomd8$[15] [26],
the authors represented parallel implementations of RNA secondaryus&rpeediction DP algorithm.
The computational load balance is satisfactory, however, the algorithmotdiptimize the communica-
tion cost. The authors proved experimentally that the communication take s@fAubf the execution
time for a sequence of length 9212. Although a simple blocking method was thegddidn’t take in
account the value of the startup latency, and furthermore, the presegssmssumed to be permanently
busy. For current machines it is an unrealistic approximation. Inspiragtidoylocking technique, F.
Almeida [4] proposed a parallel implementation with tiling on a ring of processbiney showed the
usefulness of the tiling technique for this nonuniform dependence DRetkr, like the algorithms
in [26], this parallel tiling algorithm can’t achieve computational load badani their performance
analytical model, the authors ignored the fact that the computation of eaatidtepoint is different.
Besides, in order to only achieve communication between two neighborstti®shave to keep the
entire iteration in each processor. W.Zhou [33] presented a paratleifaore [29] algorithm for this
dynamic programming problem under the conventional out-of-core mddhdir research is to find a
replacement strategy for in-core buffer. They used a load balanceithlg which is similar to the
method in [28], but this method only can promise the number of entries on eackssor is the same,
the arithmetic cost on each processor is not the same because of theiftwmuata dependence.

3 The Proposed Algorithm

Like memory hierarchy on general computer systems, it is a great chalterip exploit parallelism
while keeping locality. A general strategy on a cache memory model is to ghepatallel out-of-core
algorithm. On IBM Cyclops64 the latency of access to each memory segmefferemnt. However,
there are many cheap hardware thread units on this multi-core architeghich, permits the memory
access latency to be tolerated by use of multi-threading (that is same with othiecone architec-
ture). In order to facilitate the study of the methodology for designing algostbn such a large scale
multi-core architecture, it is necessary to build a programming/execution modehuBe the memory
hierarchy plays an important role in achieving performance, we deviseainentional out-of-core
model. The most important feature in this new model arenttiper threadswhich are used to tolerate
memory access latency. In our proposed parallel algorithm, there bréwamhelper threads, one of
which is used to load data from DRAM to SRAM, the other transfers data 88 AM to DRAM.
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3.1 Programming Model

In order to exploit the locality, we refer to out-of-core programming madakh is inspired by data
parallel programming paradigm [6]. In fact, we can consider the baséiilcote architecture-IBM
Cyclops64 as a new data parallel architecture. In the out-of-coregroging model mapped on IBM
Cyclops64, a large array is declared with full size stored in DRAM.<tsT an array that is too large to
fitin SRAM/SPM on chip, calle®ut-of-Core Arraysr OCAs Each time only a small section can fitin
SRAM/SPM. The memory pieces in SRAM/SPM is callaeCore Arraysor ICAs In this programming
model, the locality means that operations should ad€a&sthat are in SRAM/SPM. Another important
indication of this out-of-core model is thBEEAsshould be shared so that other helper threads move the
data betweemCAsand OCAs So, in this model, we can use helper threads to tolerate the latency of
access t@CAs then release the burden on maximize locality.

pl‘ Ioad‘ comput# toreload| compute stort LU load| computestore| load| comput¢ store
p2 load| computestore  + + -+ load| computestore| load| computg store

pn-1
pn

load| compute stofdoad| compute store

I I
I I
I I
I I
I I [P
\ \ load| compute storgload| compute store

" time
(a). mode 1

! -
1 synchronizatiot
1

pl comput¢compute compute  + + compute comput
p2 computgcomputd compute  + + - compute compute

I
o e
1

pn-{load| load | oad | load e load |

| store | store PP store | store [ storg

pn !

time
(b). mode 2

Figure 3: (a). The execution model of previous out-of-core model. The execution model of out-
of-core model on multi-core architecture. The numbehelper threaddepends on the architecture
parameters such as bandwidth.

3.2 Execution Model

In the framework of out-of-core model, each work thread should follosvgbguential stepdpad-
compute-storeR. Bordawekar [6] proposedlaocal Placement Modeh which a worker can compute
the elements inCAs until it load the data fromOCAs At the end of each synchronization step, each
thread perform a store to flusBAsto OCAs In their model, all opertions are serialized (See Figure 3).
On multi-core architecture, some threads (or idle threads) can be eddisdeelper threads to overlap
load/store operations with computation. However in this new execution modblaei€CAs should be
available. Thus, the compuation of elements in it ICAs and load/store betMZ@esand OCAsare
parallelized. The execution is visualized as Figure 3. In the next sectienagdress the challenge of
developing an efficient fine-grained parallel algorithm for non-seoéfadic dynamic programming on
multi-core architecture with memory hierarchy.
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3.3 Parallel Algorithms on Memory Hierarchy

Blocking is an efficient technique to exploit locality on memory hierarchy rhotlée use blocking
strategy to exploit not only locality, but also fine grain parallelism. Howether parallelism is not
enough if the DP matrix is simply blocked, because of data dependencepplyeaadata dependence
transformation to the original problem so that the data dependenceiallpaamoothed when the DP
matrix is blocked.

3.3.1 A Transformation of Data Dependence

The purpose of the computation during dynamic programming algorithms isaalfinamic program-
ming matrix, which can be easily implemented as a simple three nested loops. Wescohisiéis an
iteration domain problem. Figure 4 gives a original blocked DP matrix. Thekbtbenatrix dosen’t
change the data dependence. For exanipiek(0,3) depends omblock(0,0),block(0,1),block(0,2)
andblock(3,1), block(3,2), block(3,3). According to the programming model on memory hierarchy,
only a limited number of sub-blocks are loaded into lower level memory and deahfnecause of
the small size of memory. Without loss of generality, we assume that we canhiablocks: the
computed block and two other blocks which it depends on. Wierk (0, 3) is being computed using
block(0, 1), block(1,3),0nly block(0, 3), block(0,1), block(1,3) are loaded. Following equation 1,
each element pair betweéfock(0,1) andblock(1,3) is accumulated. However, the corresponding
elements on the right border &fock (0, 1) are inblock(2, 3) and the corresponding elements on upper
border ofblock(1,3) are inblock(0,0) (See Figure 4), which are not in lower level memory. We
call this casecross block referencevhere the depended elements are reloaded and the parallelism
within blocks decreases. Therefore, in order to achieve more blo@atadeuse and parallelism, a data
dependence transformation is applied to the original DP domain.



@

0|0 °
0|0
0|0
olo|
olg "
0|0
00|
olo|
0|0~
olo|
0[O0
olo|

@ 0|0
® 0|0

]
@ O
@00
® 0|0 O
%

@ O 0|00 O0(Q

® 0 0|0 0
@ 00000

® 0 0 0|0
0000
@ 00000

s

OOO%

® 0000000000 0|00 0 0|0

@0000

® 0
@ GO

Figure 5. The blocked transformed DP matrix (size= 16) where the gray points along the diagonal
do not contribute to computation, tiseoss block referencis eliminated

Assume(i, j) is the original coordinate in the original domaih = {(7,7)|0 < i < j < n},
wheren = |D]| is the original problem sizg}’, j') is the new coordinate in the transformed domain
D' ={(,5)0 < i < j" < n'}, wheren = n+ 1 = |D’| is the new problem size. The iteration
domain transformation is defined as follows:

(@) = f.5) " =i, j =j+1

Thus, in the transformed domain equation 1 is rewritten as the new equatidrea4s) is the known
initial value (the values on the new diagonal also can be any values).

mini’+1§k’<j'{m[i,7j/]a m[ilv kq + m[klaj/]}
L. 0<+i <3 <n
mli', =13 ! (2)

J<i 41

In the new domain, the entries on the new diagonal doesn't contribute wothputation. We claim
that except for the unused values on the new diagonal in the new domairarie@ormed formulation
2 gets the same dynamic programming matrices with the original formulation & wridinal domain.
Thus, we have corollary 1.

Corollary 1. V(i,j) € D andV(i,j") = (i,j + 1) € D', after formulation 1 and 2 are used in
domainD andD’, respectivelymnl|i, j] = m/[¢/, j'] or m[i, j] = m/[i,j + 1].

Proof: See Appendix 1.

This domain transformation ensures that the new DP formulation 2 gets tteetcasults. In fact,
the original domairD is a subset of the transformed dom@h D C D'. It can be viewed as adding a
new diagonal to the original DP matrices (See the gray point along the d@ibigoRigure 5. Thus, the
cross block referencis eliminated. Our parallel algorithm is considered within the transformed domain
D'



3.3.2 Parallel Pipelined Algorithm

Let us assume that we hapet 2 threads, two of which are helper threads, and the size of transformed
domain (DP matrix) is2. The DP matrix is divided by a block siz&/p. For any blockA(4, j) in
the blocked transformed domain, it depends on the blocks on the saméd (iow..j) and column
A(i...7,7). The blocks along the diagonal are triangles and it is self-containeédhére exits good
parallelism for computing the triangular blocks in a diagonal-wise way. Bssitle execution time
of the triangles occupies a little in the total execution time, so we focus on ahtmgular blocks.
Because there is data dependence between two consecutive entreesamigarow and column, we can
not get efficient parallelism. However, through decomposing the computati® can exploit higher
fine grain parallelsim.

Based on equation 2, we define two tensor operatioasd® for the blocked matrices operation. Let
matricesA = (aij)5><s,B = (bw‘)sXS,C = (Cij)s><5.

definition 1. Vaij €A, bl'j € B,Cij eC,1<i,5<s,if Cij = min’gzl{cl-7j,ai7k + kaj}, then
C=A®B.

definition Z.Vaij €A, bij € B, Cij € C,1<14,5 <s, if Cij = min{am, bm’}, thenC = A® B.

Thus, we get a formulation to compute any bloti, j):

Ali, ) = Sy (Al k) @ A(k, )

= (®]_1(AG, k) ® Ak, 7)) (3)
®(A(i,1) ® A(i, §)) @ (A(i,j) ® A(j, §))

In equation 3, the computation of a blogKi, 7) (i # j) is divided into two parts. The first one depends
on rectangular blocks on the same row/column:

®1_i 11 (AG, k) @ A(k, 7))
the second one depends on a triangular block and itself:
(A(i, 1) ® A(i, §)) & (A(i, 1) © A(j, 7))

Let us take computation afi(0, 3) for example in Figure 6, the first part {s1(0,1) ® A(1,3)) &
(A(0,2) ® A(2,3)), the second part i$A(0,0) ® A(0,3)) @ (A(0,3) ® A(3,3)) We observe
that parallelism can be exploited at two levels for the first part. The firgl lsvO(j — i — 1) @
operations; The second level is eagloperation. The parallelism in the second part is low because of
the data dependence between two consecutive entries. Howevegooungosition algorithm leverages
the computation in the second part and reduces the proportion of this meircofmputing any block
A(i, 7), the number of operatorss(and@®) is O(j — ¢ — 1) in the firs part, but it is onlyO(2) in the
second part.

During computation of the second part, the submatriéési) and A(j, j) are triangular. The two
operationsA(i,i) ® A(i, ), A(i, j) ® A(j, ) depend on the final results df(i, j), S0 A(i,4), A(j, j),
A(i, j) are integrated into one sub-matrices, where the parallelism can be exgloitegthe diagonal.
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Now, we focus on the part c@k Z+1(A(z‘, k) ® A(k,j)). Obviously, eachw for the depended blocks
can be executed in parallel, which is the idea similar to previous coarse djpamellel algorithm.
However, we noted that the memory access latency is different for eatlorpsegment even though
the memory address is uniformly arranged. So, in our fine grained pagtaithm we need to find a
strategy to tolerate memory access latency so that the parallel algorithroldanesfine scalability.

thread unit map of a bloc
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Figure 6: Each block size i§. The first block in each row strip is triangular, others are rectangular.
Each block is partitioned into 4 sub-blocks with sizepot |/p x /p when computing a block. The
elements are mapped to threads as a 2-D mesh fashion. The tile along thatisiengle and others
are rectangle whose width and height ar@ndy respectively. This figure illustrates the case 4 and

the size of tiled space is 16.
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/ |
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Figure 7. The computation of one block which is divided into 4 sub-blocke Jub-blocks from the
operand matrices also are divided into 4 sub-blocks. The red substdoekhe images in SRAM buffers
when computing sub-bloak'(0, 0) in step 1

Because the block size 25/p, each block is divided into 4 sub-blocks with sizepof= | /p x /p
(See Figure 7). Each element in one sub-block is mapped to one theeadi@ire 6). According to
the definition 1, there is no dependence among all elements in a blockfoperation, so all threads
proceed in parallel. Forany+ 1 < k < j — 1, we need computd (i, k) ® A(k,j). LetC, AandB
denoteA(i, j), A(i, k) and A(k, j), respectively. The data dependence shown in equation 2 indicates
that the computation of one sub-block @f needs the sub-blocks in the same row and columB in
and C, respectively (This is the same with the blocked matrix multiplication) A simple sirateg
implements can be derived from matrix multiplication. Typically, it negds/p)® x (3+1) = 32p,/p
(3 loads and 1 store), therefore, there exists data reuse for eatihoskb In order to reduce the number
of read sub-block from DRAM, we allocate three SRAM buffers whiohtain half of each sub-block,



respectively. There are two helper threads used to load/store dateebdDRAM and SRAM. One half
of each of the three buffers is used for computation, the other half istoseansfer data. The basic
idea is that the helper threads can load/store data that is used to computgtthesud-block while
the computation threads compute the cur@rgub-block. The computation of 4 sub-blocks@fcan
proceed in a pipeline style. The pipeline algorithm consists of 8 paralle$ sthjch are described in
Figure 8

ParllelSteps

startup: LOADC00, A00, B0O;

step 1: COMPUTEC'00; LOAD A01, B10;

step 2: COMPUTE'00; LOAD C01, B01,

step 3: COMPUTECO01; LOAD B11; STORE
C00;

step 4: COMPUTE'01; LOAD C'11, A10;

step 5: COMPUTEC11; LOAD All; STORE
Co01;

step 6: COMPUTE’'11; LOAD C'10, B0O;

step 7: COMPUTEC10; LOAD B10; STORE
C11;

step 8: COMPUTE_'10;

end: STOREC10;

Figure 8: The eight pipelined parallel steps for computing one block.nfdmory access is overlapped
with computation by multi-thread

The pipeline algorithnParalelStpesn Figure 8 needs 4 loads/stores fromto 4 loads fromA,
6 loads fromB, therefore the number of memory access is drdy. Although the memory access
complexity is not optimal, we have exploited a fine parallel algorithm to overlap tansfer with
computation, and thus, the memory access latency is tolerated.
For each blockA(i, j), the number ofv operations required i©(5 — i — 1). In fact, whilestep 8is
computingC'10, one of the helper threads can load @0, A00, B0O0 for the next® operation. Thus,
the startupstep is removed tstep 8so that a pipeline is reformed among tReoperations for block

A(i, j)-

3.3.3 Tiling

Tiling iteration domain (loop blocking) [9] [30] [25] [32] is a well-known tegique used by compil-
ers and programmers to improve data locality and to control parallel grégulaiorder to increase
the computation to communication ratio. In our parallel algorithm based on thédieabdut-of-core
programming model, thecommunicatiohis the data transfer between DRAM and SRAM/SPM, while
the locality in SRAM/SPM also should be accounted. In this case, tiling is used iminénthe total
execution time of parallel program on out-of-core programming model oti-eare architecture.

We now apply a tiling approach to this parallel pipelined algorithm, which fillsridwesformed domain
D’. Each tile has two parametersandy, which are called tildeightandwidth respectively (see Figure
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6). In this current work, we only consider a square tile with= y (in the rest of this paper, we only
use tile parameters referring to tile width/height). In the tiled domain, eachatilde considered as a
element in this new domain. In order to keep the dependence, the tiles algogaiare triangles, the
other tiles are rectangle, and both tile parameters aBecause the data dependence in the tiled domain
is the same as that equation 2, the tiled DP matrix can be filled using the proparsdldlpipelined
algorithm.

4 Performance Modeling

The study of performance modeling is confined to parallel algorithm with tilidge Basic operation is
blocked® which contains eight parallel steps. Assume that the size of the originafdramed domain
is n, tile parameters ig, the number of computational threadisThen, the size of the tiled domain
ism = 2, which is blocked with block size ofp = 2,/p x 2,/p. According to the proposed parallel
pipelined algorithm, there are’ = % row strips. In row stripi, there arem’ — i blocks to be
filled. Because of the data dependence shown in transformed DP formwatior any blockA(i, j)

(e <j <m' —1i)inrow strips, it needsj — ¢ — 1 blocked® operations. Lefg denotes the number of

blocked® operations for filling the entire tiled transformed DP domain.

Becausen = -, we get the nubmer of blocketd operations:

1. n3 n? n

+8——] (4)

Io— — | ¢l
© 24[353]9% ?p /P

4.1 Memory-traffic Complexity

The programming model that is used for designing algorithms that deal wik freblems is similar

to the out-of-core model. In the out-of-core model, an important perfocemameasurement is 1/0
complexity [3] [20]. On IBM Cyclops64 multi-core system, there is no dateheabut the access
latency for each memory segment is different, so this memory system careatsogider as a memory
hierarchy. For example, we refer to SPM closest to hardware threadsievel 1 on-chip SRAM

as it level 2 and off-chip DRAM atevel 3 However, SPM is mainly used to keep the private data
for each thread, so we only use SRAM lorCore Arrays In the new out-of-core model, we refer to
memory-traffic complexityThis is defined as the amount of memory traffic between on-chip SRAM
that is smaller than problem size and off-chip DRAM that is larger than thagmosize.

Lemma 1. For the parallel pipelined algorithm, tiling with parameterreduces the memory-traffic
complexity by a factor of, wherez = O(+/C) andC is the size of on-chip SRAM.

11



Proof: For the parallel algorithms without tiling, the memory-traffic complexity of ngrefned
and pipelined is:
Mnonfpipeline = [® X 32]3\/1; = O(n3)

n3
%)

For the tiling version, the element of each singleperation is tile with parametar and the volume

of a tile isz2. Then each single operation needs? memory traffic, so the amount of memory traffic

of the blocked® operation isl8pz2. Because the number of blockedoperations isls, combining
equation 4, thenemory-traffic complexitis shown that:

Mpipeline =1z x 18p = O(

Mm’le = I@ X 18p
3 2
= —214[ T — 65 + 8.75] X 18p

3p32 p Z\/P
- o)

Lemma 1 gives the upper bound wfemory-traffic complexityThe ® operation is similar to the
basic operation in matrix multiplication, and as a result, we can use the similaidael20] to prove
the lower bound omemory-traffic complexitig Q(%), which gives us the following theorem:

Theorem 1. The parallel tiled pipelined algorithm, which is tiled with parameigris asymptoti-
cally optimal with respect to memory-traffic complexity.

The termmemory-traffic complexitgnly shows the amount of memory access similar to the case
on general memory hierarchy. However, we noted that there are hblgads to tolerate memory
access latency on multi-core architecture. That is, besides the memassascare overlapped with
computation, they also can be parallelized within memory bandwidth limitation bsipgr threads. In
this performance model, assume that there is no bandwidth limitation and that theyresoess for
load and store is the same. We refer to another measure oadlecbry-traffic efficiencyit is defined as
a ratio of the time reduction percent of memory access to the number of tielpads. In our proposed
parallel algorithm, we use two helper threads. If one helper thread isfasémhd, the other is used
for store, then the 4 store operations are completely overlapped and theetioaion percent for &
operation ist/18, therfore, thenemory-traffic efficiendg 11% for 2 helper threads. However, as shown
in figure 8, each parallel step only needs two memory accesses, tleergéocan schedule one idle load
thread to store and the time reduction percent fer@peration i3 /18 andmemory-traffic efficiencig
22%. If the number helper threads is 3, then in each parallel step all memaegsecare parallel and
the time reduction percent i€)/18, but memory-traffic efficiencis 19%. In fact, thememory-traffic
efficiencyis determined by the parallelism in memory access. In all practical archited¢here exists
memory bandwidth limitation, so more helper threads do not means higleeedi.

4.2 Execution Time

Under the execute model we now determine a analytic formulation of the texetne of our parallel
program. In this work, we only use square tile. Let us denote the time taexacsingle instance of

12



equation 2 asy and , the latency of one memory accessjasEach step irParallelStepsneeds, /p
instance ofg operation for each thread. For the tiled algorithm, since the element of pachtion is
a tile with volumez?, the execution time of computation in each parallel step is:

Tcomp = O‘\/ﬁ%‘3

In each parallel step, there are only two memory accesses that arelzaely two helper threads, so
the data transfer time is:
Ttran = ﬁpr

Because the helper and computation threads proceed in parallel, the titren&ferring data and exe-

cuting® operation for a tile is overlapped (the execution time should be determined lpntiex one).
In the startup and end of the pipeline, two extra load/store are requiteztefore, the execution time

ParallelStepss
Ty = maz{Tcomp, Ttran} = max{a\/f)aﬁg, ﬂpr} (5)

Combining equation 4 with 5, we get the execution time of all parallel pipelined:step

To(z) = 2I\f x 20pz? + Ig x 8 x Ty

=nfB/pr + 8 x Iy x maz{a,/pz*, Bpz*} ©)
T1(x) = nBy/pr + 81g X Bpx? < =
Th(z) = nfB/pr + 8lg x ay/pr® x> %

The triangular blocks on the diagonal is self-contained and their runimegis:

m' VP 2P n2
a(d./p+1
szZ%—mZxa-napx —I—(\4/]3)$ @)
7j=1
So the optimal: is selected to minimize following formulation:

P : Minimize T(x)=Ty(x)+ T3(x) o
s.t. %§w<mm{,/&,ﬁ} ®

Therefore, the objective is to select a optimal tile parameterminimize the functior?'(z).

Theorem 2. The optimal tile parameter of parallel tiling pipelined algorithm is selected kyrtte:
if2<p< ﬁmm{w/zls,”} x* = ﬁ\f

otherwise,
n
o Lmj —const  n<
| &J —const n > %

Proof: See Appendix 2.
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Figure 9: Finding the global minimum of the tile parametesiccording to Theorem 2, = 16, n =
1024, 27 ., =12 mm{@/@,f%}:(ﬂ,x =12

We have some observations for solving this non-linear optimizaiton probkoeording to the
solution toTy(x), x is expected to be larger, however the portion of computing triangular blacks i
more with increase of—that is, the portion of parallelism decreased even though the execution time
of parallel pipeline algorithm is reduced. An important implication from tHgisg this optimal tiling
problem is the scalability of the parallel algorithm. The whole solution spacetii@aed byz” ... The
case that the optimal solution falling into the left:gf,,; means} < g.That is, the execution time is
determined by the memory data transfer when the number of thread is laagesaime value. Corollary
2 shows that the optimal solution locates the right9f ;, which means the scalability of our algorithm
is determined by the arithmetic operation instead of memory latency. So quoged parallel algorithm
on multi-core architecture has fine scalability with large scale processbissdiution for the global

minimum in case ofi = 1024 andp = 16 is shown in Figure 9

5 Numerical Experiments

IBM Cyclops64 supercomputer is an on-going project and there is haaazhine to date. The simula-
tion tool, named Functionally Accurate Simulation Toolset (FAST) [10],[iEXesigned for the purpose

of architecture design verification and software development. Bas#itedRAST simulator, a thread
virtual machine (TNT) [11] is implemented to support a multi-thread programmimgement. The
parallel algorithms are implemented using TNT library on the simulator. Be¢he$2P algorithm only
needs to fill an upper triangular matrix, the data layout is very important tsnerprove its locality.
However, this topic is beyond the scope of this paper. We use a linegrtarstore the triangular DP
matrix with row-wise order. For thECAsfor row and column data that is depended on by other entities,
the data layouts are row-wise and column-wise respectively.
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Figure 10: The comparison of theoretical and experimental execution firel6, n = 102427 ., =
12 2* =12

5.1 Model Validation

We validated the performance model by comparing the theoretical to expéairagacution time, which
was measured on the FAST simulator. Figure 10 plots the trends of theticaband experimental exe-
cution time. The performance model accurately predicts the trend of axetime and gets the correct
the optimal tile parameter*. Because the model does not take the synchronization into account, the
theoretical execution time is less than the experimental execution time. When thizetilecseases, the
number ofparallel stepdor a given problem size decrease, thus the synchronization owtbeeames
less because there is a synchronization at the end of each step. Thia fiilgure 10 demonstrates that
the difference between theoretical and experimental execution time isa@dvith the increasing tile
size. Because the synchronization on the C64 is implemented by hardiieiengy [34], the perfor-
mance model, which does not consider the synchronization overhessintalate the trend of running
time and the optimal tile parameter. However, as shown in the next perforreaalcation experiment,
it is important to reduce synchronization overhead in order to achieve be#tiability.

5.2 Performance

In this test, the execution time is obtained at the optimal tile parameter for diffeases. For emphasiz-
ing the importance of locality optimization, we keep the initialized DP matrix in ofp€iRAM. Table

1 presents the running time of the original serial and optimized parallel algoritihis work attempts
to demonstrate some optimization schemes on multi-core architectures. Sovhearal algorithm is
is implemented as a three nested loops iteration. The proposed parallel atgacitieves sub-linear
speedup. The locality and scalability of the algorithms are evaluated:

Locality. The computation strategy ParallelStepsmproves data reuse, which reduces the amount of
off-chip memory access, reducing the overhead of memory acceaseHid plots the distribution of
computation and off-chip memory access time for problem 2¥6e512 and1024. Even though we do
not take helper thread into account in this experiment, the cost of off-chipameaccess is reduced
greatly. The number of computation threadd,so we estimate the number of off-chip memory ac-
cesses is approximagetimes less than the naive implementation according to the algorithmic analysis
in section 3.2.3 In our implementation, tiling is also used to improve the locality, so the real ¢ost o
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Table 1: The execution time of different problem size. The first rowasgnts the running time of the
serial algorithm which is implemented as three nested loops iteration. Timendseco

#threads| 256 | 512 1024 | 2048
serial 1.407| 11.289| 90.435| 226.546

4 0.362| 2.469 | 17.946| 42.720
16 0.168| 1.014 | 6.996 | 15.751
64 0.120| 0.623 | 4.579 | 7.579

off-chip memory access is reduced by more tBdimes. In other words, the pipeline algorithm actually
reduecd the DRAM bandwidth through the on-chip data reuse. Wherigbstam is implemented in

IBM Cyclops64-like multi-core architecture, an more aggressive optimizé#iickis to useLDM/STM
composed of fouL DD/ST(load/store double word) instructions to aggregate multiple memory access.
Hence, DRAM requests are reduced}aﬁmes so that the utilization of DRAM bandwidth is improved.

7e+10 o
m original

fer10 ® optimized

5e+10 —
$e+10 -
]

Be+10
2e+10
le+10 —

0 [ ™

512

1oz 2048
problem size

Figure 11: Comparison of the cost of off-chip memory access forréifiteproblem size.

61 | n=256
I/ n=512

51 ~O—=< n=1024
n=2048

4 14 24 34 44 54 64
problem size

Figure 12: The speedup of our proposed parallel pipelined algorithdifi@nent number of threads
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Figure 13: The total execution time for problem s&6, 512, 1024 and2048

Scalability. First, we have measured the scalability of the proposed parallel pipelinedtiaig
in weak scaling experiments. In a weak scaling study, we increase thieprsize as the number of
compute threads increases. The speedup is defined as the ratio ofdhicexeéme of parallel program
to the execution time of the original serial program. Figure 12 clearly denztestthe scalability of
our parallel DP scheme. For all problem sizes, the parallel algorithrie\aeh sub-linear speedups
because of the greatly improvement of locality and the pipeline schedulirgm&ckvhich hide the
off-chip memory access latency. This is most evident in the case whereithber of threads is less
than 16, and the parallel algorithm get linear speedups. The plots shoth¢halgorithm has a fine
scalability that means higher speedup for a larger scale problem size igeadeale processor size.
Second, we have conducted strong scaling experiments. In contrasttoscaling, we fixed the size
of the problem size while increasing the number of processors in thegstoating experiments. Figure
13 presents the strong scaling experiments results. As shown in thisregpe for a given problem
size, as the number of threads increase, the reduction in execution tiramdedess significant.
Although there is an efficient hardware synchronization on C64, teehead becomes significant
when the cost of arithmetic and memory latency is greatly reduced for a giedrlem size on large
scale threads. Figure 14 and 15 plot the synchronization overheals$ trEar the small problem sizes
such a®56 and512, the percentage of synchronization overhead determines the the tatafierdime.

T
4 14 24 34 a4 54 64
#threads

Figure 14: The synchronization overhead percentage in total exeduien
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Figure 15: The synchronization overhead time

A barrier synchronization is inserted at the end of each BapllelStepgo implement the above
pipelined scheme. This guarantees that computation happens after lohdivegyraquired data, and
that storing follows the corrresponding computation stage. Although éebaan be finished in as
little as dozens of cycles, since the pipeline algorithm hides the memory daterssy and the time of
arithmetic operations is reduced greatly by parallel thread units, the adedi®darrier synchronization
become significant (see Figure 14). Because of the limitation of the simulatozan not test larger
problem sizes in time, but the experiments give some reasonable implicatienseitain that the cost
of one synchronization operation increases with the larger scale afd$yrbut the percentage of the
overhead of synchronization decreases with increasing of problenirsiigure 14. This implicates
that the algorithm has a fine scalability with problem size. An interesting icaBe&gure 15 is that
the total synchronization time decreases with the larger scale of threads.p&iformance benifits
from the optimal tiling parallel technique. On one hand, while a larger scdleedds results in more
synchronization time, it reduces the number of synchronization operationsthe other hand, the
volume of a tile determines the number BdrallelStepsto fill the DP matrix. However, although
most of the barrier synchronizations occurRarallelSteps a proper tile parameters can reduce the
synchronization overhead. This causes the parallel algorithm to lkeas®mable scalability with the
number of threads.

6 Conclusion and Future Work

We have demonstrated an efficient scheme to exploit fine grain paralledino@ality of a dynamic
programming algorithm with non-uniform data dependence on a multi-coritecture. In order to
generalize program optimization technique, we have presented a progrgquaamaiexecution model for
C64-like multi-core architectures. Moreover, this model is an extensiorecwional out-of-core model,
therefore our proposed algorithm can be adapted to achieve higiripearice on conventional out-of-
core model. Because experiments have shown that our proposednpenfee model is reasonable,
we can apply a similar technique to optimize other algorithm on multi-core archigechu fact, our
solution of the optimal parameter can be incorporated into the developmentarhatic optimization
tools or runtime functions in compilers. Besides, if we ignore libfper threadsthe decomposition
and pipeline technique in the parallel algorithm can be efficiently ported &r otimventional parallel
architectures.
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Although the hardware synchronization technique is very efficient & @yclops64, it is not without
cost. In order to achieve high scalability with parallel agorithms on large Huaeads, it is necessary to
optimize synchronization overhead further. Another chanllenge is tdafe@emethod to analytically
determine the optimal number of helper threads which is used to tolerate macwgss on multi-
core architecture. This topic is very important to port more applications to thegergemulti-core
architectures. In our on-going work, we are optimizing a graph theooyiéiigns bechmark SSCA#2 [5]
on C64 platform. Under the framework of our proposed executionfproming model on multi-core
architecture, the preliminary results show that the optimized algorithms &chie6 speedups for the
original bechmark. Since SSCA#2 bechmark is memory intensive and its ipece®ss is irregular, the
determination of the optimal helper threads plays a very important role invéahieetter performance.
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8 Proof of Corollary 1

Proof: Diagonal traverse, horizontal traverse and vertical traverse casdzbto fill the DP matrices,
for simplicity, we only give the proof with diagonal traverse. Becausgediagonal in the transformed
domainD’ is unused, it is ignored.

Base caseWhen diagonadl = j—i = 0, m[i, j| = a(7) is the initial value andn/[¢/, j'] = m/[i, j+1] =
a(i) also is the initial value, seu[i, j] = m/[i’, j/] or m[i, j] = m/[i,j + 1], where(¢, j') = (i, + 1)
Induction step: Assumed = j — i < p, m[i,j] = m/[, j'] where(7,j") = (i,7 + 1), it has to be
proven true fod = j — i = p. For (¢, ') = (i, + 1) andd > 0, we have

m/[ilvj/] = mini’+1§k/<j’{m,[i,7j/]a m/[ilv k/] + m/[klvj/]}
= min;y1<p <y {m/[3, 7], m/[i, K'] + m/[K', ']}
= mini+1§k’<j+1{m/[i7j + 1]7 m/[i¢ k/] + m/[k/>j + 1]}

and
m[%]] = mini§k<]’{m[i>ﬂam[ia k] + m[k + 1)]]}

According to the definition of domain transformation function, the initial value:gt, j + 1] equals
to that ofm[i, j]. So we only have to proof thaw'[i, k'] + m/[k’, j + 1] = m]i, k] + m[k + 1, j] for
1+ 1<k <j+1andi <k < j. Inthe process of calculating DP formulatidghandk’ is increased
by 1 fromi + 1 and, respectively, that is to sak, = k + 1, so we have

m'[i, '] +m/ [k, 5 +1] = m'[i, k + 1] +m'[k + 1,5 + 1]
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Sincek<j=k—i<j—i<pandi<k=j—k—1<j—1i< p,according to the induction
hypothesis, we have

mli, k| = m/[i, k + 1]

mlk +1,5] =m'[k + 1, 7]
Thus, fori +1 < k' < j+1andi < k < j, m'[i, k'] + m'[K',j + 1] = m[i, k] + m[k + 1, j].
Furthermore:

mini<k<i{mli, j], m[i, k] + m[k + 1, j]}
= mini+1§k/<]~+1{m’[i,j + 1], m'[i, k’] + m’[k’,j + 1]}

Thatis, whenl = j — i = p, m[i, j] = m/[i’, /] orml[i, j] = m'[i,j + 1], where(i', /) = (i,j + 1).
This finishes the proof for Corollary 1.

9 Proof of Theorem 2

Before we give a proof of theorem 2, we prove the following corollagnd 3. Note that the following
properties hold:
Ti(x) > Ta(z) z< %

Ti(z) = To(zx) =202

®

Ty(z) < To(z) x> 22

[0}

Therefore we need to solve the following optimization problem:

P, i Minimize Ty(z) =8 x min{maz{Ti(z), To(x)}}

st. x=0((C) ©)

In our parallel algorithm, there are at least six SRAM buffers with siZgstdes, whose data type is
double and therefore, we get the first constraint condition:

| C

Next, noting that/g, > 0, we get the second constraint condition:

n
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Therefore, by combining equations 4, 9, 10, 11 an instance of the optinmzatidlem is produced as

follows:
P’ Minimize Tp(x)

n3
_ 1 [ Tile) = (g + 9By —n”5 v < B
- 3
Ty(x) = 8naz® + (nfyp — “)r + 1 x> B (12)
st. x< 4gp
T < 4\/5

By denotingz* as the solution of probler®’, we have following corollary:

Corollary 2. Given the problem size and SRAM sizé€’, the optimal tile parameter* for problem
Pis:
L#J —const n< \/g

(&
3

* j—
| 48pj —const n >

where const is positive integer which satisfiés> 0

Proof:If we denote byr; andzx? as the solutions df’ () andT5(x) respectively, we get:

* n * bna — pﬂ
xrHA = — LTy = ——
! 27 16a,/p

3Vp

If we denotez; ., = M, it partitions the solution space into the two intervald), = .| and

maid
[0 mand /&, 4"%}). However, it is obviously that; > W andzx3 > W' that is,z] and
x% are out of the valid solution space. In the solution space to the left ahdz?, 71 (z) andT»(x) are

descending and they reach a minimum pointit { &, ﬁ} — const.

Corollary 3. Given the problem size and2 < p < gmin{
problemP is z* 6\[
6n ey ”201(4\/5-‘!-1) - . .
Proof:Leta = (8na+nap) b= (nfyp—""="+ ), the global minimum of (x )|s obtained

£,12}, the optimal solution to

atz* = 5—5 However, the solution space is confined within the mtervééf[ min{

Assume that* > H‘T[ we have

48p’ 4\f})

< 468p(2p + 17) (13)

2400 — oy /p(4/p + 1)

According to equation 13; > 0 if and only if p < 2. That is, wherp > 2, z* < %. The property of
quadratic function shows thdt(x) is increasing for: > x*. So the solution to problerR is %.
Combining Corollary 2 and 3, we can determine the optimal tile parameétersing following

theorem:
Theorem 2.The optimal tile parameter of parallel tiling pipelined algorithm is selected byrdifes

if 2 <p < Gmin{ 8, Tha
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