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Abstract

A trend of emerging large-scale multi-core chip design is to employ multithreaded archi-

tectures - such as the IBM Cyclops-64 (C64) chip that integrates large number of hardware

thread units, main memory banks and communication hardwares on a single chip. A cellular

supercomputer is being developed based on a 3D connection of the C64 chips. This paper

introduces our design, implementation, and evaluation of the Cyclops Datagram Protocol

(CDP) for the IBM C64 multithreaded architecture and the C64 supercomputer system.

CDP is inspired by the TCP/IP protocol. Its design is very simple and compact. The

implementation of CDP leverages the abundant hardware thread-level parallelism provided

by the C64 multithreaded architecture.

The main contributions of this paper are: (1) We have completed a design and imple-

mentation of CDP that is used as the fundamental communication infrastructure for the

C64 supercomputer system. It connects the C64 back-end to the front-end and forms a

global uniform namespace for all nodes in the heterogeneous C64 system; (2) On a multi-

threaded architecture like C64, the CDP design and implementation effectively exploit the

massive thread-level parallelism provided on the C64 hardware, achieving good performance

scalability; (3) CDP is quite efficient. Its Pthread version can achieve around 90% channel

capacity on the Gigabit Ethernet, even it is running at the user-level on a single processor

machine; (4) Extensive application test cases are passed and no reliability problems have

been reported.
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1 Introduction

Cyclops-64 (C64) is a multithreaded architecture developed at the IBM T.J. Watson research

center [6]. It is the latest version of the Cyclops cellular architecture that employs a unique

multiprocessor-on-a-chip design [1]. It integrates a large number of thread execution units,

main memory banks, and communication hardware on a single chip. See Figure 1. The C64
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Figure 1: Cyclops-64 Node

chip plus the host control logics and the off-chip memory becomes the building block (i.e. the

C64 node) of the C64 supercomputer system. See Figure 2. The C64 supercomputer system

consists of tens of thousands of C64 nodes that are connected by the 3D-mesh network and the

Gigabit Ethernet and can provide petaflop computing power.

To interconnect the two different subnetworks in the C64 supercomputer, we designed the

Cyclops Datagram Protocol (CDP). CDP is a projection of the conventional network commu-

nication protocol (TCP/IP) to the modern C64 multithreaded architecture. It is a datagram-

based, connection-oriented communication protocol. It supports reliable data transfer and

provides a full-duplex service to the application layer. We have implemented the very popular

BSD socket API in CDP. This provides a user-friendly programming environment for the C64

system/application programmers.

We have implemented the whole CDP protocol on the C64 thread virtual machine (the C64

TVM) [5]. The C64 thread virtual machine is a lightweight runtime system that resides inside

the C64 chip. It provides a mechanism to directly map the software threads onto the C64

hardware thread units. It also provides a familiar and efficient programming interface for the

C64 system programmers. Currently the C64 hardware is still under development, so the C64
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Figure 2: Cyclops-64 Supercomputer

thread virtual machine is running on the C64 FAST simulator.

We have explored a multithreaded methodology in the development of the CDP protocol. A

fine-grain thread library called TiNy Thread (TNT) library [5] is used to implement the CDP

protocol. The TNT thread library is part of the C64 Thread Virtual Machine. It implements

the C64 fine-grain thread model [5].

We have evaluated the performance of CDP through micro-benchmarking. From the ex-

perimental results, we have two observations: (1) The multithreaded methodology used in the

implementation of CDP is very successful. It effectively exploits the massive thread-level paral-

lelism provided on the C64 hardware and achieves good performance scalability. The speedup of

a CDP benchmark that uses 128 receiving threads is 82.55. (2) As a communication protocol,

CDP is efficient. A Pthread version of CDP achieves around 90% channel capacity on Gigabit

Ethernet, even it is running at the user-level on a single processor Linux machine.

In the next section, we will give a problem formulation and briefly introduce the our solution.

2 Problem Formulation and Solution

As shown in Figure 1, a C64 chip has integrated 80 “processors”, which are connected to a

96-port crossbar network. Each processor has two thread units, one floating point unit, and

two SRAM memory banks, each 32KB. A thread unit is a 64-bit, single issue, in-order RISC

processor core operating at clock rate of 500MHz. The execution on the thread unit is not

preemptable. A 32KB instruction cache is shared among five processors. There is no data

cache on the chip. Instead, a portion of each SRAM memory bank can be configured as

scratchpad memory (SP), which is a fast temporary storage that can be used to exploit locality

under software control. All of the remaining part of the SRAM form the global memory (GM)

and is uniformly addressable from all thread units. There is no virtual memory subsystem on

2



the C64 chip.

The A-switch interface in the chip connects the C64 node to its six neighbors in the 3D-

mesh network. In every CPU cycle, A-switch can transfer one double word (8 bytes) in one

direction. The 3D-mesh may scale up to several ten thousands of nodes, which will form

the powerful parallel compute engine of the C64 supercomputer. The C64 compute engine is

attached to the host system through Gigabit Ethernet. See Figure 2. The whole C64 system

is designed to provide petaflop computer performance. It is targeted at applications that are

highly parallelizable and require enormous amount of computing power.

Given the C64 multithreaded architecture and the C64 supercomputer system, we are in-

terested in two questions regarding the implementation of CDP:

• Is it possible to implement CDP in a way such that it effectively utilizes the massive

thread-level parallelism provided on the C64 hardware and achieve good performance

scalability?

• Is the communication protocol we developed for the C64 architecture an efficient one?
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Figure 3: CDP Multithreaded Implementation

In order to answer these questions, we came up a multithreaded solution, shown in Figure

3. A CDP program at runtime consists of a set of TNT threads [5]: the CDP receiving threads,

the CDP timer thread, and the CDP user threads. The receiving threads are responsible for

handling the asynchronous events specified in the CDP protocol implementation, while the

timer thread is to handle the synchronous events. The CDP code called by the user threads

implements the semantics defined by the BSD socket API. These threads cooperate with each

other to implement the full semantics and functions of the CDP protocol. A find-grain lock

algorithm is proposed to ensure that operations on different CDP connection can be done in

parallel. Section ?? will give a detailed description.

The rest of the paper is organized as follows. Section 3 briefly introduces the CDP com-

munication protocol. Section 4 discusses the multithreaded implementation of CDP. Section

5 presents the experimental results and analysis. Section 6 introduces some related works.

Section 7 is our conclusion. We will talk a little about our future work in section 8.
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3 CDP Protocol

CDP is inspired by TCP/IP. It is simpler and more compact. See Figure 5. Such a design is

based on the consideration that both the C64 architecture and the network topology of the C64

supercomputer are simple. For the C64 chip, each thread unit is a single-issue RISC core. Its

execution is not preemptable and there is no virtual memory subsystem. These features indicate

that the C64 chip is not good at running complicate control intensive programs. Meanwhile,

there are only two subnets in the C64 supercomputer system (Figure 2). One of them is

reliable (the 3D-mesh), the other one is very stable (Gigabit Ethernet bit-error-rate is smaller

than 10−10). Given these properties, we are able to make some customizations to make the

protocol simpler. This helps us to focus on studying our multithreaded implementation method.

It is not our intention to discuss the cutting-edge techniques for network protocol design

in this paper. So, we will only briefly introduce the CDP protocol here and focus on protocol

implementation in the next section.

3.1 Overview

Figure 4 shows the position of CDP in the protocol stack. According to the OSI reference

model, CDP corresponds to the Transport layer plus the Network layer. This implies that CDP

should implement the main functions (or at least some) of these two layers that are specified

in the OSI reference model. Below are the main features of CDP protocol:

• CDP is a datagram-based, connection-oriented communication protocol.

• CDP is a reliable communication protocol. It supports timeout retransmission on the

CDP connection.

• CDP provides simple packet routing function.

• CDP uses sliding-window based flow control mechanism to avoid network traffic conges-

tion.

• CDP provides a full-duplex service to the application layer.

The CDP library has implemented the very familiar BSD Socket programming interfaces for

the CDP program developers.

3.2 Protocol Design

Figure 5 shows the CDP header format. Actually, the CDP header can be viewed as merging

the IP header into the TCP header (or reverse) with some customizations being applied.

In Figure 5, the destination node is used for addressing and routing. The 4-tuple

<destination node, destination port, source node, source port> is used to identify a unique

4
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Figure 4: OSI Reference Model, TCP/IP Reference Model, and CDP Protocol Stack

CDP connection, while the ”sequence number” field identifies an individual CDP packet on

a specific connection. CDP does not support selective or negative acknowledgments. So the

receiver uses the ”acknowledgment number field to tell the other side that it has successfully

received up through but not including the datagram specified by the ”acknowledgment number.

The ”flags” field contains some control flags similar to TCP header.

Options (optional)

Destination Address

Source Address

Header ChecksumprotocolTTL

Total Length

fragment offsetidentification

ver IHL ToS

destination node destination port

source node source port

sequence number

acknowledgment number

flags total length

Options (optional)

Checksum Urgent Pointer

windowflags

acknowledgment number

sequence number

source port destination port

TCP Header

IP Header

CDP Header

Figure 5: CDP Packet Header Format

We do not allow fragment and defragment in CDP, We also do not calculate checksum for

the CDP datagram. This is because both underlying subnets are error-free.

As for the CDP connection, the finite state automata used to direct the connection state

transition is shown in Figure 6. This finite state automata is similar to the one used in TCP/IP.

The difference is that, instead of using a 4-way handshake protocol [13] to terminate a con-

nection, CDP uses a simplified 2-way handshake protocol. This is because we do not want to

support a ”half-close” CDP connection. This makes sense to most applications. When one end

of the communication closes its connection, it always means that it does not have any data

to send out and that it does not want to receive any data from the other side. So, there is

no problem to close the whole connection. With this simplification, four states (FIN WAIT 2,

CLOSING, TIME WAIT, LAST ACK) are are removed from the CDP state transition au-

tomata.
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server: cdp_listen()

cdp_close()
send: FIN

recv: ACK timeout

client: cdp_connect()
send: SYN

cdp_close()

recv: fin; send: ACK

starting point

passive open
send: SYN,ACK

recv: SYN;

recv: ACK

active close

state transitions of server
state transitions of client

CLOSED

LISTEN

ESTABLISHED

FIN_WAIT

connection established

CLOSE_WAIT

passive close

SYN_RECV SYN_SEND

recv: SYN,ACK;

cdp_close()

RST, or PIN timeout

send: ACK

active open

Figure 6: CDP State Transition Diagram

4 CDP Protocol Implementation

In this section, we will introduce the multithreaded methodology we used to implement the

CDP communication protocol. (If not otherwise specified, the word ”CDP” always refers to the

implementation of CDP.) The internals of CDP can be viewed as a collection of data objects

(e.g. socket) and a set of TNT threads that operate on them in parallel. Figure 7 shows the

global picture of a CDP program at runtime.

4.1 Programming Interfaces

We have implemented the exact BSD socket API in CDP. They are socket(), bind(), listen(),

connect(), accept(), send(), recv(), and close(). Except some minor differences in the

argument list, the semantics of these functions are the same as in the BSD socket API [14].

Therefore, CDP supports the client/server programming model. Users can only access the

socket data object through the file descriptor, which follows the Unix convention. See the ”fd[]”

array in Figure 7.

4.2 CDP Socket

The most important data structure in CDP is the CDP socket (or socket for short). Socket

has two functions. On one hand, it is the interface (through the file descriptor: fd[]) to the

user; on the other hand, it represents the CDP connection endpoint. All the important infor-

mation about a CDP connection, like address, state, receiving buffer, sliding-window, etc, are
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maintained in the socket. When the user wants to open a connection, a socket is created first.

All the operations on the connection are actually performed on the corresponding socket. The

sockets are linked into hash lists to improve the efficiency of socket searching. See Figure 7.

The hash key is a function of the 3-tuple <destination port, source node, source port>. The

hash function ensures that each hash list is evenly populated. Locks are attached to the socket

and the hash list to guarantee mutually exclusive access.

4.3 CDP Threads

Figure 7 shows that there are three kinds of threads in a CDP program: the user thread, the

receiving thread, and the timer thread. These threads cooperate with each other to realize the

full semantics and functions of the CDP protocol.
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sock NUL

polling

polling

polling
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hash

: CDP User Threads

: CDP Receiving Threads

: CDP Timer Threads

: incoming packet port

Figure 7: CDP Threads and Data Objects

The user threads are created by the user. There can be a lot of them. They are not part

of the CDP implementation. But the user threads may call CDP API (send(), recv(), bind(),

listen(), etc.) to access the internal CDP data objects, especially the socket. The user thread

may establish a lot of CDP connections at runtime. However, in any transaction with the CDP

module, it can only work on one connection, i.e. one socket. The user thread obtains the socket

through a file descriptor, following the Unix convention. The user threads never travel the hash

lists to search for a socket. Sometimes, the user threads may insert a new socket into the hash

list (by calling accept() or connect()), but they never delete sockets from the hash list.

The receiving threads are created by the C64 runtime system as TNT threads [5]. So the

execution of receiving thread is not preemptable and can not be interrupted. They always poll

on the ”incoming packet port” for new packets. See Figure 7. These ”incoming packet ports” are

the places where the underlying protocol handler will put the incoming packets. All receiving

threads are doing the same type of work: polling on a specific port for incoming packets; fetching

a packet from the port if there is one available; searching the socket hash list and looking for

7



the socket that needs to take this packet; processing the packet and the socket according to the

operations specified by the CDP protocol; the packet is dropped or queued into the receiving

buffer of the socket according to the result of the processing. The receiving threads neither

insert sockets in the hash list, nor delete sockets from the hash list.

There is only one timer thread in the C64 runtime system. The timer thread is responsible

for processing the synchronous events in the CDP program. A large number of these syn-

chronous events are the timeout retransmission of CDP packets. Every one second, the timer

thread is woke up from sleep by the hardware timer. It then traverses every hash list and visits

every socket to handle the timeout events. If the timer thread founds that the current socket

being visited is in closed state, or need to be closed, it will remove the socket from the hash

list. Timer thread will go to sleep again after it finishes visiting all the sockets in the program.

Timer thread is the only thread that can remove socket from the hash list, but it never inserts

new socket into it.

4.4 Parallelism

Generally, the performance of a network protocol is largely decided by the efficiency of the

receiving side. This is easy to understand, because it does not make much sense to send out

more data if the receiver can not receive it. Therefore, the performance of CDP can be stated

as: ”the number of CDP packets that can be processed per time unit by the receiving side”. This

can be characterized by the equation below:

P = N̄ × t × ρ(t) (1)

In equation 1, N̄ is the average number of packets can be processed by a single receiving thread

per time unit, assuming that the underlying network link has infinite bandwidth. Its value is

inverse proportional to the number of operations that need to be performed when processing

one CDP packet. Actually, this is largely decided by the protocol design. t is the number of

receiving threads used in the system. It is treated as a configurable system parameter. ρ(t) is

a factor that measures the parallelism in the program. ρ(t) is a function of t. If t increases,

ρ(t) will decrease because the overhead of resource contention increases. The maximum value

of ρ(t) equals to 1 when t is 1. Generally, ρ(t) is decided by the resource contention among the

CDP threads. Higher contentions causes lower parallelism, which means smaller value of ρ(t).

So, ρ(t) is inverse proportional to the resource contention.

According to Figure 7 and the discussion above, there are two kinds of resources that may

limit the parallelism of a CDP program: the incoming packet port and the socket hash list.

The incoming packet port can be implemented as a container data structure (list, queue,

etc.). A lock is associated with each port to guarantee mutually exclusive access. The incoming

packet ports are the interface between the CDP receiving threads and the underlying device

drivers. Since the cost of copying a new CDP packet from the port is almost a constant, the

only thing that may have great impact on the performance scalability of CDP is the number

of ports used in the C64 runtime system. The experimental results show that one incoming

8



packet port can support 16 receiving threads without harming the performance scalability too

much. Section ?? has very detail discussion. Here we will focus on the socket hash list.

The access efficiency of the socket hash list has great impact to the performance scalability

of CDP. This is because all threads need to access the socket hash list before they can do any

operation on a socket. The only exception is that the user thread may access the socket directly

through the file descriptor. There are three kinds of operations performed on the hash list:

socket insertion, socket deletion, and socket searching. The socket insertion operation happens

when a connection is established and is only performed by the user threads. The socket deletion

operation happens when a connection is closed and is only performed by the timer thread. These

two kinds of operations are not as frequent as the socket searching operation, which happens

every time when an incoming packet is received by a receiving thread. All these operations on

the hash list need to be performed exclusively if they may cause data conflict.

sock sock sock sock sock sock

NULhash list

: spin lock

Figure 8: Hash List: Coarse-Grain Lock

A coarse-grain lock solution is shown in Figure 8. A spin lock is attached to every socket

on the hash list. No matter what operation (insertion, deletion, and searching) is performed on

the hash list, the thread first tries to obtain the spin lock associated with the list head. If the

thread can not get the lock, it will busy wait; if the thread get the lock, it will hold it until the

operation is finished. The spin lock on the socket is to make sure that no two threads operate

on the same connection at the same time. So, after a thread finds the expected socket on the

hash list, it will also try to obtain the spin lock on the target socket before it releases the lock

on head node of the the hash list.

sock sock sock sock sock sock

NULhash list

: read/write lock

: spin lock

Figure 9: Hash List: Fine-Grain Lock

It can be easily figured out from the description that multiple receiving threads are forced to

traverse the hash list sequentially, even they may search for different sockets. A more efficient

solution is shown in Figure 9. The original spin lock is splitted into two: one is the read/write
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lock that is only used to protect the list pointer recorded in the socket; the other is the spin

lock used to protect the connection related data fields. The spin lock on the list head is also

replaced with a read/write lock. This fine-grain lock scheme allows multiple receiving threads

to traverse the hash list in parallel. When the receiving thread wants to search a socket on the

hash list, it does not need to lock the whole list. It only needs to read lock the read/write locks

attached to the current node being visited. When the user threads or timer thread wants to

perform insert/delete operations on the hash list, they need to write lock the read/write lock

on the list node to make sure mutual exclusion is enforced. For the socket insertion operation,

the new socket is always inserted on the list head. So, only the read/write lock on the list head

needs to be write lock’ed. For the socket deletion operation, two consecutive list nodes need

to be write lock’ed. They are the node to be deleted and the node previous to it. Since only

the timer thread can do socket deletion, it is the only thread that tries to grab two locks at

the same time. Therefore, deadlock will never happen. Although a socket insertion or socket

deletion operation will force other threads that access the same socket to wait, it does not lock

the whole linked-list. The threads that work on other segment of the list can still proceed.

We did not consider using some lock-free algorithms [15] [9] to implement the socket hash

list. [15] uses extra auxiliary nodes in the linked-list to help implementing lock-free operations.

This algorithm consumes more memory and makes the linked-list structure and operations more

complicated than our algorithm. [9] depends on the hardware double-compare-and-swap atomic

primitive which is not supported on the C64 architecture.

The fine-grain lock solution leverages the different linked-list access patterns of different

CDP threads. The philosophy of this scheme is to make the common cases fast and keep the

the whole design simple. In Section ??, we compare the coarse-grain lock and the fine-grain

lock scheme by experiments. The experimental results demonstrate that the fine-grain lock

solution has much better performance scalability than the coarse-grain lock solution.

5 Evaluation

We have designed two experiments to evaluate our CDP implementation. The first experiment

is to investigate the performance scalability of CDP; the second experiment is to assess the

CDP throughput performance on the real hardware and compare it with that of the TCP/IP

implementation in the Linux kernel.

5.1 Performance Scalability

One of the unique feature of CDP is its threaded implementation. The CDP program can

spawn a specified number of CDP receiving threads (dynamically or statically) to handle the

same number of CDP connections simultaneously. In this way, the CDP program obtains good

performance scalability. The experimental results support our arguments.
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Simulation

The experiment is performed on the C64 FAST simulator. FAST is an execution-driven, binary-

compatible simulator for the C64 multithreaded architecture. It can accurately model not only

the functional behavior of each hardware component in a single C64 chip, but also the functions

of multiple C64 chips that are connected in 3D-mesh. Although FAST is not cycle-accurate,

it still estimates the hardware performance by modeling the instruction latencies and resource

contentions at all levels of the C64 system.

In this paper, our performance evaluation is restricted on a single C64 chip. This allows us

only focus on a variety of design alternatives that may affect the performance of CDP protocol.

The purpose of the simulation is not to analyze the microscopic runtime behaviors of CDP

protocol. The goal is to evaluate the performance scalability of the threaded implementation

of CDP on the C64 multithreaded architecture. According to this, we measured the number of

cycles that a CDP program need to take to process a specified number of CDP packets and the

speedup that obtained when using different number of CDP receiving threads.

The test case used in the experiment is a microbenchmark. At the beginning of the program,

128 connections are created. The number of connections is not fixed. It fluctuates around 128

at runtime. This is to exactly model the connection creation/termination events in the real

world. Later, the specified number (1-128) of CDP receiving threads are spawned. As we

mentioned in the last section, these threads are programmed as TNT thread in the C64 virtual

machine. So, the execution of receiving threads is not preemptable and may not be interrupted.

Once started running, the receiving threads poll on the incoming packet ports for new packets.

In addition to the receiving threads, an extra TNT thread is created to dynamically generate

random CDP packets and feed them into the incoming packet ports.

To highlight the quality of CDP protocol, we assume infinite bandwidth of the underlying

network links. Therefore, every time when a CDP receiving thread reads a port, there is always

a packet ready to be copied. There is no latency in between.

Experimental Results

Figure 10 shows the performance scalability of the threaded implementation of CDP protocol.

We fed 256,000 packets into the program and run different number (1-128) of receiving threads

to handle them. All packets have the same amount of payload: 1472 bytes. The figure shows

the time (cycle number) that the program used to process all the packets and the speedup

obtained when using different number of receiving threads. We have presented in Figure 10

the experimental results of two different design alternatives: the fine-grain lock and the coarse-

grain lock, which are described in detail in section ??. The figure tells that the performance

of both versions scale up well when the number of CDP receiving threads increase from 1 to

128. However, the scalability of the fine-grain lock version is better than the coarse-grain lock

11
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Figure 10: CDP Performance Scalability: Fine-Grain Lock vs. Coarse-Grain Lock

version.

For the test program using fine-grain lock, the number of cycles it takes to process 256,000

packets decreases from 2162.8M to 26.2M when the number of receiving threads increases from

1 to 128. Thus, the speedup is 82.55. While for the test program using coarse-grain lock, the

number of cycles it takes to process the same number of packets decreases from 2228.3M to

151.8M when the number of receiving threads increases from 1 to 128. The speedup is only

14.46, much less than the program using fine-grain lock. This indicates that there are higher

resources contention in the program using coarse-grain lock than using fine-grain lock, as we

have argued in section ??.
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Figure 11: CDP Performance Scalability: Using Different Number of Ports (Time)

Figure 11 and Figure 12 show how CDP performance scalability is affected by the number of

incoming packet ports used in CDP implementation. This is because multiple receiving threads

may poll on a single port for incoming packets. Their accesses to this port are serialized through
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Figure 12: CDP Performance Scalability: Using Different Number of Ports (Speedup)

a lock associated with it. If the incoming packets flow into the C64 system in a speed that is

faster than the receiving threads can tolerate, according to Little’s law [2], the internal buffer

of the underlying network devices will be exhausted soon. This may cause more packets to be

dropt and thus hurt the the performance of CDP. The solution to this problem is to increase

the number of incoming packet ports that can be used by the underlying network device drivers

and the CDP protocol. The network device driver may put a new packet into a different and

vacant port instead of waiting for an occupied one. Meanwhile, the receiving threads can also

fetch packets from multiple ports in parallel. Therefore, in the same time unit, more CDP

packets can be processed.

We measured the running time (Figure 11) and speedup (Figure 12) of the CDP test pro-

grams that processes 256,000 packets with 1 to 128 receiving threads under different configura-

tions of incoming packet ports. The results show that, when the number of ports is less than 8,

the speedup will stop scaling before the number of receiving threads reaches 128. If the number

of ports equals to 8, the speedup scales very well in the range of 1 to 128 receiving threads.

To continue increasing the port number will not help improving the speedup. See the curves

denoted as 16-port and 8-port in Figure 12.

We have not done the same experiment for test cases with receiving threads more than 128.

The reason is that there are only 160 thread units on a single C64 chip, and some of them need

to be reserved for other user/system tasks. So, practically, we believe 128 is a reasonable upper

bound for the number of receiving threads that we use in a CDP program.

5.2 Throughput

In order to evaluate the efficiency of CDP, we have designed experiment to measure the through-

put performance of a single-thread CDP version on real machine. The throughput metric is

important because CDP is supposed to be used in an environment where bulk data transfer
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is the majority network traffic. We have performed the same experiment for TCP and UDP.

We compared the experimental results of the three protocols and found that the performance

of CDP is comparable with TCP and UDP, even CDP runs as a user-mode program but TCP

and UDP run in the Linux kernel.

Experimental Platform

Because the C64 hardware is still under development, we do not have the real silicon C64

machine to run the CDP program. Meanwhile, the C64 simulator does not support full-system

simulation [11] [12] [10]. It only simulate the architectural behavior of the C64 chip. Therefore,

it is not possible to generate the exact CDP performance number on the C64 simulator.

In this condition, we adapted the TNT thread implementation of CDP to POSIX thread

and ran the CDP communication protocol as a user-level program on Linux. We use the packet

socket [14] interface (supported by all kinds of Linux platforms) in the CDP library to access

the Ethernet device directly. Through this interface, we can encapsulate our proprietary CDP

packet in the Ethernet frame and broadcast it to the Ethernet. Although the performance

number obtained in this way is not 100% accurate, it still gives us enough insight into the CDP

performance character.

The experiment was conducted on two compute nodes of a Penguin Performance Cluster,

which is made by the Penguin Computing Inc.. Both of the nodes have the same hardware

configurations. To be more specific, an AMD Opteron 200 processor, dual Broadcom BCM5721

10/100/1000 Gigabit Ethernet cards, 4GB of ECC DDR SDRAM, with Linux kernel 2.4 in-

stalled. We developed the microbenchmarks to measure the throughput performance of CDP,

TCP, and UDP. The CDP version of the test case is linked to the CDP communication pro-

tocol library. The other two versions are linked to libc to use the corresponding protocols.

The microbenchmarks are client/server programs. The client tries its best to send fixed size

datagrams to the server side (through different protocols) and see how many bytes can be

transferred during a fixed amount of time.

Experimental Results

Figure 13 is the result of the experiment. The curves show the throughput of each proto-

col at different message sizes. The peak performance of CDP throughput is 884Mbps, which

implements 88.4% channel capacity of the underlying Gigabit Ethernet. For the other two pro-

tocols, the maximum throughput of UDP is 920Mbps, and the maximum throughput of TCP

is 927Mbps. All of these three protocols reach their peak performance number at message size

1472 bytes. We stopped at 1472 bytes because, under the limitation of Ethernet MTU (1514

bytes), this is the biggest user datagram that CDP can send. As we can tell from these numbers,

the peak throughput of CDP is a little bit smaller than TCP and UDP. But this doesn’t mean
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Figure 13: Throughput of CDP, UDP, and TCP under different message sizes: 1-1472 bytes

that the design and implementation of CDP are poor. There are three reasons that can explain

this result: (1) CDP has more interprocess context switches. The CDP test case needs at

least 3 pthreads at runtime, while the test cases using TCP or UDP use only one Linux native

process. Since the POSIX thread is implemented as a native process on Linux platform, there

are more processes competing for processors in the CDP test case than in the TCP or UDP test

case. (3) CDP has more memory-memory copies. In the CDP test case, user data need first

be copied into the internal buffer of the CDP library, then be copied into Linux kernel space

for further transfer. In the test cases using TCP or UDP, user data is directly copied into the

kernel space. Compared with TCP or UDP, CDP test case needs two more memory copies in

a send/receive session. (3) CDP has more kernel-mode/user-mode switches. In the CDP test

cases, CDP library is running at user-level, while TCP and UDP are running at kernel-level.

There are more kernel-mode/user-mode switches in the CDP test case than in the TCP or UDP

test cases.

All of these are adverse factors that cause performance degradation in the CDP test case.

However, these negative factors do not exist in the real C64 hardware platform. On the real

C64 hardware, CDP protocol is running at kernel-level (as TNT threads) in the C64 thread

virtual machine. There is no kernel-mode/user-mode switches, and no extra memory to mem-

ory copies either. Moreover, the TNT threads run on separate C64 hardware thread units and

the execution of TNT threads are NOT preemptable. So, there is no competition for processors

and no inter-process context switches. With these advantages from the real C64 platform, the

performance of CDP will increase and may outperform TCP/IP. (currently, the peak perfor-

mance of CDP is within the range of 95.4% of the TCP peak performance and 96.1% of the

UDP peak performance).

In order to make an accurate comparison between CDP and TCP/IP & UDP/IP, we need

to offset the negative effects caused by extra kernel-mode/user-mode switches and inter-process

context switches in the CDP test case. We can achieve this in two ways, either adding some

”counterbalance code” in the TCP/UDP test cases, or directly implementing CDP in Linux ker-
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nel. However, both methods are not quantitatively accurate. So, we do not have the motivation

to make such a kind of comparison. After all, it is not our intention to design a new protocol

to beat TCP/IP and replace it. Our goal is to develop a simple and compact communication

protocol for a special multithreaded hardware and explore a multithreaded methodology that

can effectively exploit the massive thread-level parallelism on the hardware and achieve good

performance scalability.

6 Related Work

There is some literature about the implementation of TCP/IP in a variety of computer systems.

[7] introduces the experience in running TCP/IP protocol stack on wireless sensor network. [8]

is about the work on implementing TCP/IP on small embedded devices. These devices are

usually 8-bit or 16-bit microcontrollors. [13] contains a thorough explanation of how TCP/IP

protocols are implemented in the 4.4BSD operating system. [16] is a similar book that gives a

comprehensive introduction to the TCP/IP implementation in the Linux kernel. However, all

of these works are focused on implementing the functions and features of TCP/IP protocol that

are documented in RFC. They seldom discuss the implementation methodology. This paper

explores the multithreaded method to implement a network communication protocol.

Here we make a brief comparison between the CDP implementation in the C64 thread

virtual machine (or C64 TVM) and the TCP/IP implementation in Linux kernel. In the Linux

kernel, interrupt is used to notify the arrival of a new packet [4], while in the C64 TVM, the

CDP receiving threads poll on the incoming CDP packet port for new packets. Thus the CDP

receiving thread responds instantly to the incoming packets. In the Linux kernel, the processing

of an IP packet is splitted into two halves: the top-half is the urgent and fast interrupt handler

[4] and the bottom-half is the slow and deferrable protocol handler [16]. But in the C64 TVM,

the CDP receiving thread process a new packet without any stop until it is accepted or dropped.

In the Linux kernel, the protocol handler is treated as a softirq [3] and is executed in the ksoftirqd

kernel thread. The new packets need to wait until the ksoftirqd thread is scheduled to a CPU.

Therefore, there is a longer latency between the arrival of a packet and its processing in the

Linux kernel than in C64 TVM. Actually, the protocol handler is just one of the many tasks

that need to be executed by the ksoftirqd kernel thread. In the C64 TVM, the CDP receiving

thread is bound to a physical thread unit (no thread scheduling overhead) and is dedicated to

processing incoming CDP packets. In addition, the number of CDP receiving thread is system

parameter that can be changed. The C64 TVM can increase the number of receiving threads

if the network traffic is heavy. This is not possible for the Linux kernel, in which the number

of ksoftirqd kernel threads is a constant.
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7 Conclusion

In the previous sections, we have reported our design, implementation and evaluation of CDP, a

simple network communication protocol for the C64 multithreaded architecture which provides

however all the necessary functionalities for real applications. We have also discussed our

multithreaded methodology used to implement the CDP protocol. According to the analysis

on the experimental results, we have these conclusions:

• Given a multithreaded architecture like C64 that has integrated a huge number of hard-

ware thread units, we can develop a lightweight communication protocol for it such that

the implementation of the protocol effectively leverages the massive thread-level paral-

lelism provided by the hardware and thus obtains very good performance scalability.

• The communication protocol we developed for the C64 multithreaded architecture is effi-

cient. The performance of the single-thread version of CDP implemented by using pthread

can achieve about 90% of the channel capacity on Gigabit Ethernet, even it is running at

the user-level on a Linux machine.

8 Future Work

Another unique feature of the C64 multithreaded architecture is its segmented memory space.

Each thread unit on the C64 chip has local scratchpad memory and on-chip SRAM. The on-

chip memory has much shorter latency than the off-chip DRAM. See Figure 1. Meanwhile, all

memory accesses to the off-chip DRAM or to the on-chip memory in the other processor need

go through the 96-port crossbar switch, thus make the crossbar become a critical resource.

Our future work will try to improve the memory access efficiency of CDP by utilizing the non-

uniform memory space feature of the C64 architecture. In addition, we also try to investigate

how the resource contention for the crossbar switch influence the performance scalability of

CDP. We will investigate the method to optimize the data layout of the critical data objects in

the CDP implementation, and therefore decrease the contention for crossbar switch.
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